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ABSTRACT
Scalings form a class of group actions that have both the-
oretical and practical importance. A scaling is accurately
described by an integer matrix. Tools from linear algebra
are exploited to compute a minimal generating set of ratio-
nal invariants, trivial rewriting and rational sections for such
a group action. The primary tools used are Hermite normal
forms and their unimodular multipliers. With the same line
of ideas, a complete solution to the scaling symmetry reduc-
tion of a polynomial system is also presented.
Keywords: Matrix normal form; Group actions; Rational
invariants; Symmetry reduction.
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1. INTRODUCTION
Scalings form a simple class of group actions: they are diag-
onal actions of a torus on an affine space. For example,

[(µ, ν), (z1, z2, z3, z4, z5)]→ (µ6z1, ν
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describes the action of the group (R∗)2, with coordinates
(µ, ν), on R5, with coordinates (z1, z2, z3, z4, z5). The action
simply rescales each individual coordinate. One can check
that the three rational functions
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are left invariant by any of the above transformation de-
termined by (µ, ν). They actually form a generating set of
invariants of the scaling: they have the property that any
other rational invariant f can be written as a rational func-
tion of them. In fact they have an even stronger property:
the rewriting is given by a simple substitution. Indeed, if
f(z) is a rational invariant then

f(z1, z2, z3, z4, z5) = f
(
g1
−1, g2, g1, g2

−1, g3
)
.

Providing a generating set of rational invariants along with
an associated rewriting substitution for any given scaling is
the first goal of the present article.

Though simple, scalings and their invariants have consider-
able practical importance. On the theoretical front scalings
are known as torus actions and play a major role in alge-
braic geometry and combinatorics. In addition, they under-
lie what is known as dimensional analysis with the invariants
giving the dimensionless quantities needed to derive physical
laws [2, 3, 11]. Dimensional analysis has been automated in
the works [12] and [13]. Central to this is the Buckingham-π-
theorem. A reinterpretation of it states that a fundamental
set of invariants is obtained from the basis of the nullspace of
a matrix of exponents of the scaling [19, Section 3.4]. A sec-
ond use of scalings is that they give mathematical sense to
the rule of thumb used to reduce the number of parameters
in biological models [15, 18]. This reduction by scaling sym-
metry of dynamical or polynomial systems was previously
studied in [10, 14, 23].

In this paper we go further in this direction than handled
in the previously cited works. In particular we produce in-
variants which are rational functions, that is, which do not
involve any square roots or other fractional powers of the
variables. In addition we provide trivial rewrite rules for
our generating set of invariants. By this we mean that we
give explicit substitution rules for rewriting any rational in-
variant (and actually any smooth invariant) in terms of the
generating set. Again, this operation is performed without
introducing any radicals.

Algorithmic tools for finding generating rational invariants
and rewrite rules for the general class of rational actions of
an algebraic group typically require Gröbner bases compu-
tations [7, 17]. A rewriting substitution can be achieved
provided we allow algebraic functions [8].

In the case of scaling we show that a unimodular multiplier
for the Hermite normal form of the integer matrix of ex-
ponents contains even more information. The unimodular
multiplier provides a basis for the integer lattice of vectors in
the kernel of the matrix of exponents. This basis actually de-
scribes rational invariants given as Laurent monomials (that
is, monomials where we allow negative powers). We show
that these invariants form a generating set for the field of
rational invariants, and indeed forms a minimal generating
set.

In fact we show more than the generation property. We also
provide a simple method to rewrite any invariant in terms of
these monomials via variable substitution. The substitution



is read off from the inverse of the unimodular multiplier. The
triviality of the rewrite rules actually reflects the existence of
a rational section to the orbits of the action. The equation
of the section can be read off the unimodular multiplier,
something of independent theoretical interest in the area of
group actions.

The unimodular multiplier for the Hermite form of the ma-
trix of exponents is not unique. We give a construction for a
canonical unimodular multipler which allows us to pinpoint
the simplest rational sections. Our construction is also prac-
tical in terms of computation with the cost of determining
both the Hermite form and the canonical unimodular multi-
plier being O∼

(
nω+1d

)
. Here O∼ is the same as Big-O but

without log factors, ω is the power of fast matrix multipli-
cation and d is the maximal integer exponent of the scaling.

In order to show a practical application of our new tools
we address and solve a specific symmetry reduction prob-
lem. The knowledge of a symmetry of the solution set of a
polynomial system brings implies that the size of the prob-
lem can perhaps be reduced by factoring out the symmetry.
The reduced system is given in terms of new variables which
represent the generating invariants. Generally a more dif-
ficult task is then to retrieve the solution of the original
system from the solution of the reduced system. In the case
of scaling symmetries, the number of variables is reduced by
the dimension of the group by a simple substitution. Here
we provide a parameterization of the toric solutions of the
original system from the toric solutions of the reduced sys-
tem. Geometrically, the solution of the reduced sytem is
the intersection of the solution set of the original system
with the rational section. Yet, a unimodular multiplier for
the Hermite normal form, and its inverse, are the only data
required to spell out this symmetry reduction scheme.

2. INTEGER MATRIX NORMAL FORMS
In this section we provide the basic information about the
Hermite normal form of a matrix of integers and its unimod-
ular multiplier. We propose a canonical unimodular multi-
plier that is relevant in providing a simple rational section
to the orbits of a scaling.

2.1 Hermite Normal Forms
Definition 2.1 An m × n integer matrix H = [hij ] is in
column Hermite Normal Form if there exists an integer r
and a strictly increasing sequence i1 < i2 < · · · < ir of pivot
rows such that the last n− r columns are zero and

(i) hk,j = 0 for k > ij;

(ii) 0 ≤ hij ,k < hij ,j when j < k.

Thus a matrix is in column Hermite normal form if the sub-
matrix formed by the pivot rows i1, · · · , ir and the first r
columns is upper triangular and that all nonzero elements
of the pivot rows are positive and less than the correspond-
ing (positive) diagonal entry. The integer r is the rank of
the matrix. By changing column to row and row to column
indices in (i) and (ii) one obtains the row Hermite Normal
Form of a matrix of integers.

Every integer matrix can be transformed via integer column
operations to obtain a unique column Hermite form. The
column operations are encoded in unimodular matrices, that
is, invertible integer matrices whose inverses are also integer
matrices. Thus for each A there exists a unimodular matrix
V such that A · V is in Hermite normal form. Similar state-
ments also hold for the row Hermite normal form. We refer
the reader to [4, 22] for more information on such forms.

When A ∈ Zr×n, with r ≤ n, has full row rank r then the
column Hermite normal form satisfies:

A · V = [H, 0] with H ∈ Zr×r triangular of full rank. (1)

If W ∈ Zn×n is the inverse of V then we can partition V
and W as

V = [Vi, Vn] with Vi ∈ Zn×r and Vn ∈ Zn×(n−r) (2)

and

W =

[
Wu

Wd

]
with Wu ∈ Zr×n and Wd ∈ Z(n−r)×n. (3)

We then have

In = WV =

[
WuVi WuVn

WdVi WdVn

]
(4)

In = VW = ViWu + VnWd . (5)

Note that the blocks of V provide the Hermite normalization
of the blocks of W since from (4) we have

Wu[Vi, Vn] = [Ir, 0] and Wd[Vn, Vi] = [In−r, 0].

We state some well known properties of Hermite normal
forms [4, 22] in a way that will be needed later in the paper.

Lemma 2.2 Let A ∈ Zr×n be a full row rank matrix and
V ∈ Zn×n a unimodular matrix such that AV = [ H, 0] with
H ∈ Zr×r. If V is partitioned as in (2), then the columns of
Vn form a basis for the integer lattice defined by the kernel
of A.

2.2 Normal unimodular multiplier
For the problem of interest in this paper the number of
columns is larger than the rank. In this case the unimod-
ular multiplier is not unique. Indeed, with the partition
V = [Vi, Vn] as in (2), column operations using the columns
of Vn do not affect the Hermite form H for the initial matrix
A and hence results in a different unimodular multiplier V .
In this subsection we describe a normalization of the multi-
plier V which is both simple and unique. Previous work on
determining unique unimodular multipliers includes that of
[6] for integer matrices where the unimodular multiplier is
reduced via lattice reduction. We favor the component Vn to
be in Hermite normal form, as in [1], which deals with poly-
nomial matrices. The resulting triangular form exhibits the
simplest rational sections (Proposition 4.7) and allows for a
rational parameter reduction scheme for dynamical systems
[9].

Proposition 2.3 Suppose A ∈ Zr×n has full row rank. Then
there exists a unique unimodular matrix V (called the nor-
mal unimodular multiplier) such that



(a) A · V = [H, 0] with H ∈ Zr×r in column Hermite nor-
mal form,

(b) V = [Vi, Vn] with Vn ∈ Zn×(n−r) in column Hermite
normal form,

(c) If i1 < i2 < · · · < in−r are the pivot rows for Vn then
for each 1 ≤ j ≤ n− r :

0 ≤ [Vi]ij ,k < [Vn]ij ,j for all 1 ≤ k ≤ r.

Thus Vi is reduced with respect to the pivot rows of Vn.

Proof. While it is possible to prove the result directly,
the following gives a proof which also hints at a simple
method for computing both the Hermite form and its normal
unimodular multiplier.

Let V ∗ ∈ Zn×n be a unimodular matrix such that

H∗ =

[
In
A

]
· V ∗

is in column Hermite form. Partition V ∗ = [V ∗1 , V
∗
2 ] with

V ∗2 having r columns and set V = [V ∗2 , V
∗
1 ]. We claim that

V is our normal unimodular multiplier, that is, V ∗1 = Vn and
V ∗2 = Vi.

Notice first that V is unimodular since this matrix is simply
a reordering of the columns of the unimodular matrix V ∗. In
addition, since A ·V ∗ is equal to the last r rows of H∗, which
is in column Hermite form, and A has full row rank, says
that A · V ∗ = [0, H+] with H+ in Hermite form. Therefore
A · V = [H+, 0] is in column Hermite form with V
unimodular and so by uniqueness we have H+ = H. This
gives part (a). Parts (b) and (c) follow from the fact that
V ∗ is also equal to the first n rows of H∗, which is in column
Hermite form. Finally, the uniqueness of V follows from the
uniqueness of Hermite forms. 2

The proof of Proposition 2.3 provides a computational method
for determining both the Hermite form H and the normal
unimodular multiplier V = [Vi, Vn]. Indeed one has[

In
A

]
· [Vn, Vi] =

[
Vn Vi
0 H

]
,

with the right side in column Hermite form. The complex-
ity of such a computation is therefore the cost of finding
a column Hermite form of an (r + n) × n integer matrix.
This can be done using the methods of [24, 25] with a cost
of O∼

(
nω+1d

)
bit operations, with d being the size of the

largest entry in A.

Example 2.4 Let

A =

[
8 2 15 9 11
6 0 6 2 3

]
which has Hermite normal form [I2, 0]. The reduction per-
formed by Maple results in the unimodular multiplier

V ′ =


−49 −1 −57 −13 −28
−36 −1 −42 −10 −21

79 2 92 21 45
−36 −1 −42 −9 −21
−36 −1 −42 −10 −20

 .

while the normalized unimodular multiplier is

V =


−1 −2 −2 −2 −1
−3 −14 −7 −13 −7

1 1 2 1 0
0 2 0 3 0
0 1 0 0 2

 .

3. SCALINGS
Scalings can be described through the matrix of exponents
of the group parameters as they act on each component. In
this section we describe the matrix forms and properties that
are useful when representing scalings and computing their
invariants.

We consider an algebraically closed field K, the multiplica-
tive group of which is K∗.

3.1 Matrix notations for monomial maps
If a = [a1, . . . , ar]

T is a column vector of integers and λ =
[λ1, . . . , λr] is a row vector with entries in K∗ then λa denotes
the scalar

λa = λa11 · · ·λ
ar
r .

If λ = [λ1, . . . , λr] is a row vector of r indeterminates, then
λa can be understood as a monomial in the Laurent polyno-
mial ring K[λ, λ−1], a domain isomorphic to K[λ, µ]/(λ1µ1−
1, . . . , λrµr − 1). We extend this notation to matrices: If A
is an r × n matrix then λA is the row vector

λA = [λA·,1 , · · · , λA·,n ]

where A·,1, . . . , A·,n are the n columns of A.

If x = [x1, . . . , xn] and y = [y1, . . . , yn] are two row vectors,
we write x ? y for the row vector obtained by component
wise multiplication:

x ? y = [x1y1, . . . , xnyn]

Proposition 3.1 Suppose A and B are matrices of size r×
n and n× n, respectively, and that λ is a row vector with r
components. Then

(a) If A = [Ai, An] is a partition of the columns of A, then
λA = [λAi , λAn ],

(b) λAB = (λA)B,

(c) (y ? z)A = yA ? zA.

(d) λA+B = λA ? λB

Proof. Part (a) follows directly from the definition of
λA. For part (b) we have for each component j, 1 ≤ j ≤ t:

[(λA)B ]j =
∏n
i=1[λA]

bij
i =

∏n
i=1(

∏r
`=1 λ

a`i
` )bij

=
∏r
`=1(

∏n
i=1 λ

a`ibij
` )

=
∏r
`=1( λ

∑n
i=1 a`ibij

` ) = [λAB ]j .

For part (c) one simply notices that for each j we have

[(y ? z)A]j =
∏r
i [y ? z]

ai,j
i =

∏r
i y

ai,j
i · zai,ji

= [yA]j [z
A]j = [yA ? zA]j .

The proof of (d) follows along the same lines. 2



3.2 Scalings in matrix notation
The r-dimensional torus is the Abelian group (K∗)r. Its
identity is 1r = (1, . . . , 1) and the group operation is com-
ponentwise multiplication, which we denoted ?.

Definition 3.2 Let A be a r×n integer matrix: A ∈ Zr×n.
The associated scaling is the linear action of T = (K∗)r on
the affine space Kn given by

(K∗)r ×Kn → Kn

(λ , z) → λA ? z. (6)

With the notations introduced above we have that

λA ? z = [λA·,1z1, . . . , λ
A·,nzn]

with A·,1, . . . , A·,n being the n columns of A. Thus for each
j = 1, . . . , n the action scales the jth component zj by the
power product λ

a1,j
1 · · ·λar,jr . The axioms for a group action

are satisfied thanks to Proposition 3.1: 1r ? z = z and (λ ?
µ)A ? z = λA ? (µA ? z).

There is no loss of generality in assuming that A has full
row rank. Indeed, we can view the scaling defined by A as a
diagonal representation of (K∗)r on the n dimensional space
Kn:

(K∗)r → Dn

(λ1, . . . , λr) 7→ diag(λA)

where Dn is the group of invertible diagonal matrices. This
in turn can be factored by the group morphism from (K∗)r
to (K∗)n defined by A. This is given explicitly by:

ρ(A) : (K∗)r → (K∗)n
(λ1, . . . , λr) 7→ λA

Suppose now that UA =

[
B
0

]
is a row Hermite form for

A with unimodular row multiplier U . Writing U =

[
U1

U2

]
where U1A = B is of row dimension d we have that U2A = 0.
Then

(K∗)d × (K∗)r−d U−→ (K∗)r A−→ (K∗)n

(µ1, µ2) 7→ µU1
1 ? µU2

2 7→ (µU1
1 ? µU2

2 )A = µB1 .

Since U is unimodular, ρ(U) is an isomorphism of groups
and the image of (K∗)r by ρ(A) is equal to the image of
(K∗)d by ρ(B).

4. RATIONAL INVARIANTS
Consider a full row rank matrix A ∈ Zr×n which defines
an action of the torus (K∗)r on Kn. A rational invariant is
an element f of K(z) such that f(λA ? z) = f(z). Rational
invariants form the subfield K(z)A of K(z). In this section
we show how a unimodular multiplier V , where A · V is the
Hermite normal form, provides us with a complete descrip-
tion of the subfield of rational invariants. From V we shall
extract

• n−r generating rational invariants that are algebraically
(and functionally) independent

• a simple rewriting of any (rational) invariant in terms
of this generating set,

• a rational section to the orbits of the scaling.

We thus go much further than the group action transcrip-
tion of the Buckingham π-theorem of dimensional analysis
[2, 19]. This latter takes any basis of the nullspace of the
matrix A and provides a set of functionally generating in-
variants, some of which could involve fractional powers. In
the present approach, only integer powers are involved. This
spares us the determination of proper domains of definition.
Furthermore, the Buckingham π-theorem gives no indication
on how to rewrite an invariant in terms of the generators pro-
duced. The rewriting we propose is a simple substitution.
This is reminiscent of the normalized invariants appearing
in [5, 8, 16] (or replacement invariants in [7]). We are also
in a position to exhibit a rational section to the orbits of
the scaling. The substitution is again rational: we do not
introduce any algebraic functions as would generally be the
case when choosing a (local) cross-section arbitrarily.

4.1 Generating and replacement invariants
A Laurent monomial zv is a rational invariant if (λA ? z)v =
zv and therefore if and only if Av = 0. The following lemma
shows that rational invariants of a scaling can be written as
a rational function of invariant Laurent monomials.

Lemma 4.1 Suppose p
q
∈ K(z)A, with p, q ∈ K[z] relatively

prime. Then there exists u ∈ Zn such that

p(z) =
∑

v∈ kerA∩ Zn

av z
u+v and q(z) =

∑
v∈ kerA∩ Zn

bv z
u+v

where the families of coefficients, (av)v and (bv)v, have finite
support.1

Proof. We take advantage of the more general fact that
rational invariants of a linear action on Kn are quotients of
semi-invariants (see for instance [21, Theorem 3.3]). Indeed,
if p/q is a rational invariant, then we have

p(z) q(λA ? z) = p(λA ? z) q(z)

in K(λ)[z]. As p and q are relatively prime, p(z) divides
p(λA ? z) and, since these two polynomials have the same
degree, there exists χ(λ) ∈ K(λ) such that p(λA ? z) =
χ(λ) p(z). It then also follows that q(λA ? z) = χ(λ) q(z).

Let us now look at the specific case of a scaling. Then

p(z) =
∑
w∈ Zn

aw z
w ⇒ p(λA ? z) =

∑
w∈ Zn

awλ
Aw zw.

For p(λA ? z) to factor as χ(λ)p(z) we must have Aw = Au
for any two vectors u,w ∈ Zn with av and au in the support
of p. Let us fix u. Then w − u ∈ kerA and χ(λ) = λAu.
From the previous paragraph we have

∑
w∈ Zn bwλ

Aw zw =

q(λA ? z) = λAuq(z) = λAu
∑
w∈ Zn bw z

w. Thus Au = Aw
and therefore there exists v ∈ kerA∩Zn such that w = u+v
for all w with bw in the support of q. 2

1In particular av = 0 (respectively bv = 0) when u+v /∈ Nn.



We remark that one can prove Lemma 4.1 by specializing
more general results on generating sets of rational invariants
and the multiplicative group of invariant monomials [21].
Our proof has the advantage of being both simple and direct.

The set of rational functions on Kn that are invariant under
a group action form a subfield of K(z) and, as such, it is
a finitely generated field. In the case of a scaling the gen-
erators of this field can be constructed making use only of
linear algebra and the representation of rational invariants
given in Lemma 4.1.

Theorem 4.2 Let V = [ Vi, Vn ] and W =

[
Wu

Wd

]
be

unimodular matrices of integers such that AV = [ H, 0 ] is
in column Hermite normal form and W is the inverse of V .
Then the scaling defined by A has the following properties:

(a) The n − r components of g = [z1, . . . , zn]Vn form a
generating set of rational invariants;

(b) Any rational invariant can be written in terms of the
components of g by substituting z = [z1, . . . , zn] by the
respective components of gWd .

Proof. Observe first that the components of g are invari-

ants. Indeed the columns of Vn span kerA and so
(
λA ? z

)Vn =

λAVn ?zVn = zVn . We shall prove that any rational invariant
can be rewritten in terms of these components.

Since V and W are inverses of each other we have In =
ViWu+VnWd. Thus z = zViWu+VnWd , where z = [z1, . . . , zn],
the vector of degree 1 monomials. More generally, for any
v ∈ Zn, zv = z(ViWu+VnWd)v. If now v ∈ kerA ∩ Zn then
zv = zVnWdv = gWdv since ker A ⊂ ker Wu.

The representation given in Lemma 4.1 implies that any
p
q
∈ K(z)T , with p, q ∈ K[z] relatively prime, has the form

p(z) =
∑

v∈ kerA∩ Zn

av z
u+v and q(z) =

∑
v∈ kerA∩ Zn

bv z
u+v

for some u ∈ Zn. As elements of K(z), we can rewrite these
as

p(z) = zu
∑
v∈kerA∩ Zn av

(
zVnWd

)v
q(z) = zu

∑
v∈ kerA∩ Zn bv

(
zVnWd

)v
and so

p(z)

q(z)
=
p
(
zVnWd

)
q (zVnWd)

=
p
(
gWd

)
q (gWd)

.

2

Both V and W are needed for computing invariants and
rewrite rules. Since a matrix V is produced from column
operations converting A to Hermite normal form, the W
matrix can be computed simultaneously with minimal cost
by the inverse column operations.

Example 4.3 Consider the scaling defined by A =
[

2 3
]
.

A unimodular multiplier for its Hermite normal form is

V =

[
−1 3

1 −2

]
with inverse W =

[
2 3
1 1

]
.

It follows that g = x3

y2
is a generating invariant. Any other

rational invariant can be written in terms of g with the sub-
stitution x 7→ g, y 7→ g.

Example 4.4 Consider the 2× 5 matrix A given by

A =

[
6 0 −4 1 3
0 3 1 −4 3

]
.

If z = (z1, z2, z3, z4, z5) and λ = (µ, ν) then the group action
defined by A is given by

λA ? z = ( µ6z1, ν
3z2,

ν

µ4
z3,

µ

ν4
z4, µ

3ν3z5).

The column Hermite normal form for A is given by

[H, 0] =

[
3 2 0 0 0
0 1 0 0 0

]
and the normal unimodular multiplier and its inverse are

V=


1 1 2 1 0
1 0 −1 2 0
1 1 3 2 1
1 0 0 2 1
0 0 0 0 1

 , W=


2 −2 −2 3 −1
0 3 1 −4 3
0 −1 0 1 −1
−1 1 1 −1 0

0 0 0 0 1

 .
A generating set of invariants is given by the components

(g1, g2, g3) = zVn =

(
z21z

3
3

z2
, z1z

2
2z

2
3z

2
4 , z3z4z5

)
while the rewrite rules are given by

(z1, z2, z3, z4, z5)→ gWd =

(
1

g2
,
g2
g1
, g2,

g1
g2
,
g3
g1

)
.

4.2 Rational section to the orbits
The fact that we can rewrite any invariant in terms of the
generating set by a simple substitution actually reflects the
existence and intrinsic use of a rational section [7, 8]. And
indeed, any unimodular multiplier for the Hermite normal
form provides a rational section. The simplest rational sec-
tions are uncovered by the normal unimodular multipliers of
Proposition 2.3.

An irreducible variety P ⊂ Kn is a rational section for the
rational action of an affine algebraic group if there exists a
nonempty Zariski open subset Z ⊂ Kn such that any orbit
of the induced action on Z intersects P at exactly one point
[21, Section 2.5].

Every vector a ∈ Zr can be uniquely written as a = a+−a−
where a+ and a− are nonnegative and have disjoint support.
Their components are:

[a+]i =

{
ai if ai ≥ 0
0 otherwise

and [a−]i =

{
ai if ai ≤ 0
0 otherwise.

This can be extended to r × n matrices by

A+= [(A.,1)+, · · · , (A.,n)+] and A−= [(A.,1)−, · · · , (A.,n)−].

Theorem 4.5 With the hypotheses of Theorem 4.2, the va-

riety P of (zV
+
i − zV

−
i ) : z∞ is a rational section for the

scaling defined by A. The intersection of the orbit of a point
z ∈ (K∗)n with this section is the point zVnWd .



Proof. The matrix Wd is full row rank and Wd ·[Vn, Vi] =
[In−r, 0]. By Lemma 2.2 the columns of Vi span the lattice
kernel of Wd. Thus the kernel of

K[z] → K[x, x−1]
z 7→ xWd .

is the prime (toric) ideal P =
(
zV

+
i − zV

−
i

)
: (z1 . . . zn)∞ of

dimension r [26, Lemma 4.1, 4.2 and 12.2].

Assume z ∈ (K∗)n. For z̃ = λA ? z to be on the variety
P of P the components of z̃Vi need to all be equal to 1.
Thus λAVi = z−Vi , that is, λH = z−Vi . Because of the
triangular structure of H we can always find λ ∈ (K∗)r
satisfying this equation. For any such λ we then have z̃ =(
λA ? z

)ViWu+VnWd since ViWu + VnWd = In and so z̃ =

λHWu ? zViWu+VnWd = z−ViWu ? zViWu+VnWd = zVnWd by
Proposition 3.1. Thus the intersection of the orbit of z with
the variety of P exists, is unique and equal to zVnWd . 2

From this description we deduce that the invariants zVnWd

are actually the normalized invariants as defined in [8]. As
such the rewriting of Theorem 4.2 applies to the more gen-
eral class of smooth invariants. Furthermore, if the Hermite
form of A is Ir there is a global moving frame for the group
action and zVnWd correspond to the normalized invariants
as originally defined in [5]. This moving frame is the equiv-
ariant map (K∗)n → (K∗)r given by z 7→ z−Vi .

Example 4.6 Consider the scaling given by

(z1, z2, z3, z4, z5)→ (
η

ν3
z1,

η

µ
z2, ηz3,

ν

ηµ
z4,

ην

µ
z5)

an example used to illustrate dimensional analysis in [19].
In this case the matrix of exponents is

A =

 −3 1 1 −1 1
0 −1 0 −1 −2
1 0 0 1 1

 .
The normal unimodular multiplier and its inverse are

V =


0 0 1 −1 −1
0 −1 0 −1 −2
1 1 3 −1 −2
0 0 0 1 0
0 0 0 0 1

,W =


−3 1 1 −1 1
0 −1 0 −1 −2
1 0 0 1 1
0 0 0 1 0
0 0 0 0 1

 .

Thus the rewrite rules are simply z → gWd = (1, 1, 1, g1, g2).
By Theorem 4.5 the associated rational section is the variety
(z3 − 1, z3 − z2, z1z33 − 1) : z∞. Simple combinations of the
ideal generators show that this ideal is equal to (z1 − 1, z2 −
1, z3 − 1).

Example 4.3 illustrates a case where things are particularly
simple: The r first components of the rewrite tuple gWd are
equal to 1. This comes from the lower left (n− r)× r block
of V , and therefore of W , being zero. When such a situation
is possible the normal unimodular multiplier and its inverse
are

V =

[
V ∗i V ∗n
0 In−r

]
and W =

[
V ∗i
−1 −V ∗i −1V ∗n

0 In−r

]
.

Indeed, the diagonal blocks of V are then unimodular. The
Hermite normal form of Vn has the identity matrix as bottom
n− r rows.

Proposition 4.7 If the canonical unimodular multiplier V
of A for its Hermite normal form is

V =

[
V ∗i V ∗n
0 In−r

]
(7)

then the variety of (z1 − 1, . . . , zr − 1) is a rational section
to the scaling defined by A. There are then n− r generating
invariants g∗r+1, . . . , g

∗
n such that any other rational invari-

ants can be written in terms of these invariants using the
substitution (z1, . . . , zn) 7→ (1, . . . , 1, g∗r+1, . . . , g

∗
n).

The proof proceeds by first noting that V ∗i is unimodular

and so one can take the power (V ∗i )−1 of (zV
+
i − zV

−
i ). The

components then belong to the ideal generated by the com-

ponents of (zV
+
i − zV

−
i ) which factors as a product of

(z1− 1, . . . , zr − 1) with a monomial in z. This then implies
that (1, . . . , 1, g∗r+1, . . . , g

∗
n) = zVn·Wd = (1r, z

Vn) = (1r, g).

An equally simple section can be chosen when the pivot rows
of Vn are the rows of an (n− r)-identity matrix. In this case
we can recover the above situation by permuting the columns
of A and therefore the order of the original variables.

5. REDUCING POLYNOMIAL SYSTEMS
If the solution set of a polynomial system of equations is
invariant under a group action, then there is an equivalent
system given in terms of invariants of this group action [19].
The equivalent system written in terms of a generating set of
invariants is the reduced system. A further problem is to re-
cover the solutions of the original system from the solutions
of the reduced system.

In this section we show how to fully work out a symmetry re-
duction for a scaling symmetry. If the scaling symmetry is r-
dimensional, then the reduced system has r fewer variables.
In addition, we show how to retrieve all toric solutions of the
original system from the toric solutions of the reduced sys-
tem. We shall indeed discount the solutions for which there
is a zero component. This is a relevant case. For instance,
in a chemical reaction or a population dynamics model we
look for the equilibria where no species disappears.

We consider a set of equations p1(z) = 0, . . . , pm(z) = 0
where p1, . . . , pm are in K[z] = K[z1, . . . , zn] or even in the
Laurent polynomial ring K[z, z−1] since we are concerned
with solutions in (K∗)n. For convenience we introduce the
map p = (p1, . . . , pm) and write the system of equations as
p(z) = 0.

Definition 5.1 The matrix A ∈ Zr×n defines a scaling sym-
metry for the polynomial system p(z) = 0 if, for a given
z ∈ (K∗)n, we have

p(z) = 0 ⇒ p(λA ? z) = 0, ∀λ ∈ (K∗)r. (8)

In the following we suppose that A ∈ Zr×n defines a scaling
symmetry for the polynomial system p(z) = 0. A sufficient,



but not necessary, condition for that is that the pi are invari-
ants or semi-invariants2. Then V is a unimodular multiplier
such that A · V is the Hermite normal form of A, and W
is the inverse of V . The reduction of p ∈ K[z, z−1] associ-
ated to a choice of V is a Laurent polynomial q in n − r
variables (y1, . . . , yn−r) defined by q(y) = f

(
yWd

)
. From

Theorem 4.2 we know that if p is invariant then p(z) = q(g)
where g = zVn . However we do not restrict reduction to
invariants.

Proposition 5.2 Let q1, . . . , qm in K[y, y−1] be defined as
qi(y) = pi

(
yWd

)
. If y ∈ (K∗)n−r is a solution of q(y) = 0,

then for all λ ∈ (K∗)r, λA ? yWd is a solution of p(z) = 0.

The Laurent polynomials q1, . . . , qm form the reduced sys-
tem. This reduced system has r fewer variables than the
original system. As described in the above proposition,
any point on its solution set provides a parameterized r-
dimensional set of solutions for the original system. Propo-
sition 5.2 is an immediate result of the symmetry condi-
tion (8). The following result is a stronger assertion: any
toric solution of the original system can be obtained that
way.

Theorem 5.3 Assume that A ∈ Zr×n defines a scaling sym-
metry for the polynomial system p(z) = 0 and that q(y) = 0
is the reduced system. Then for any z ∈ (K∗)n satisfying
p(z) = 0 there exists λ ∈ (K∗)r and y ∈ (K∗)n−r such that
q(y) = 0 and z = λA ? yWd .

Proof. Assume z ∈ (K∗)n satisfies p(z) = 0. Since H is
triangular and nonsingular, there exists λ ∈ (K∗)r such that

λH = z−Vi . Set y = zVn . Since λ[H,0] =
(
z−Vi , 1n−r

)
we

have (
λA ? z

)[Vi,Vn]

= λ[H,0] ? (zVi , zVn) = (1r, y).

Taking both sides of the above equality to the power W gives

λA ? z =
(
λA ? z

)V ·W
= (1r, y)

 Wu

Wd


= yWd .

By the symmetry hypothesis p
(
yWd

)
= p(λA ?z) = 0. Thus

q(y) = 0. 2

There is a geometric interpretation for the above approach
that stems out of the work of [5, 7, 8]. Namely, the solution
set of the reduced system describes the projection, along the
orbits, of the original solution set on the section zVi = 1.
From the above proof it is clear that the group element λ ∈
(K∗)r providing the link between the solution of the original
system and the solution of the reduced system is unique if
and only if the Hermite normal form is the identity.

Example 5.4 Consider the system of polynomial equations

z2z4
2 − z1 = 0

z1z3 − z2 = 0.

2Given p, [9, Section 5] provides an algorithm to determine
a maximal scaling such that the pi are semi-invariants.

presented in [14, Example 3.14]. On one hand we can look
for the solutions that have a zero component. They are part
of the two-parameter family of solutions given by (0, 0, α, β).
The scaling symmetry for this system determined by [9, Sec-
tion 5] is

A =

[
1 1 0 0
0 2 2 −1

]
.

A unimodular multiplier V , and its inverse W , to obtain the
Hermite normal form of A are

V =


1 −1 1 −1
0 1 −1 1
0 0 1 0
0 1 0 2

 , W =


1 1 0 0
0 2 2 −1
0 0 1 0
0 −1 −1 1

 .
The reduced system is thus obtained by substituting (z1, z2, z3, z4)
by (y1, y2)Wd = (1, 1

y2
, y1
y2
, y2):

1
y2
y22 − 1 = 0

y1
y2
− 1

y2
= 0

}
⇔
{
y1 = 1
y2 = 1.

The latter system has a solution set consisting of a single
point. It provides a two parameter solution to the origi-
nal system: λA ? (1, 1)Wd = (λ1, λ1λ

2
2, λ

2
2, λ
−1
2 ). By Theo-

rem 5.3, any solution, without zero component, of the origi-
nal system is obtained in this way. Since A ·V =

[
I2 0

]
,

the pair (λ1, λ2) providing the given solution is unique. It

can be read from the columns of Vi: (λ1, λ2) =
(

1
z1
, z1
z2z4

)
.

For the geometric interpretation note that the underlying ra-
tional section is the variety of (z1 − 1, z2z4 − z1). One can
check that the intersection of the solution set of the origi-
nal system with this section is (1, 1)Wd = (1, 1, 1, 1). Any
element in the orbit of this point solves the original system.

The semi-rectified system obtained in [14] is different than
our reduced system. The process described there introduces
square roots and the semi-rectified system has two solutions.
This owes to the row-echelon form used. In our approach
we get a clear connection between the toric solutions of the
reduced system and of the original system. As we are free
of fractional powers, we avoid having to pay attention to the
sign of the components in the solution set.

Example 5.5 Consider the polynomial system of 3 equa-
tions in 5 variables given by

z41z
6
3 − 5z21z2z

3
3 + 6z22 = 0

z21z
5
2z

4
3z

4
4 − 2z31z

2
2z

5
3z

2
4 − z21z33 + z2 = 0

z1z
3
2z

4
3z

3
4z5 − z21z33 − z2 = 0.

On one hand there is a three-parameter family of solutions
given by (0, 0, α, β, γ). On the other hand, a symmetry of
this system is given by the 2 × 5 matrix A of Example 4.4.
The reduced system

y21 − 5y1 + 6 = 0

y22 − 2y1y2 + y1 + 1 = 0

y2y3 − y1 − 1 = 0.

is obtained with the substitution:

(z1, z2, z3, z4, z5) 7→
(

1

y2
,
y2
y1
, y2,

y1
y2
,
y3
y1

)
.



The solution set of the above reduced system consists of the 4
points (2, 1, 3), (2, 3, 1), (3, 3+

√
5, 3−

√
5) and (3, 3−

√
5, 3+√

5). In this case the underlying rational section is the vari-
ety of (z1z2z3z4−1, z2z4−1). The intersection of the solution
set of the original system are the four points (2, 1, 3)Wd =
(1, 1

2
, 1, 2, 3

2
), (2, 3, 1)Wd = ( 1

3
, 3, 3, 1

3
, 1
2
), (3, 3+

√
5, 3−

√
5)Wd

and (3, 3−
√

5, 3+
√

5)Wd . Any element in the orbits of these
points is a solution of the original system. We thus have four
parameterized two dimensional solution subsets. For exam-

ple, λA ?(2, 1, 3)Wd = (µ6, ν
3

2
, ν
µ4 ,

2ν
µ4 ,

3µ3ν3

2
) is a parameter-

ized two-dimensional subset of solutions. By Theorem 5.3,
all solutions, without zero component, of the original system
are obtained in this way.

6. CONCLUSION
In this paper we have made use of the Hermite Normal Form
of the matrix of exponents of a scaling symmetry. Invari-
ants, rewrite rules and rational section for a scaling are all
determined from an associated unimodular multiplier and its
inverse. We have also illustrated how scaling can be used to
reduce polynomial systems of equations. All the algorithms
in this paper have been implemented in the computer alge-
bra system Maple.

There are a number of research topics that follow from our
work. The Hermite Normal Form is not the only rank-
revealing or normalizing transformation of an integer matrix.
Other possibilities include using the Smith Normal Form of
the scaling matrix or lattice reduction basis (i.e. LLL) for
the normal unimodular multiplier. We are interested in the
invariants, rewrite rules and sections that result from using
these alternate forms, in particular seeing when these are
simpler than those that result from the use of the Hermite
form.

We have shown how to reduce polynomial systems of equa-
tions by scaling symmetries. A complete scheme for scaling
symmetry reduction of dynamical systems is also available
in [9]. This has applications to parameter reduction in bio-
logical and physical modeling. We expect to report on the
reduction of other significant classes of differential systems
in future publications.
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