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Abstract In this paper we consider the problem of working with rational functions
in a numeric environment. A particular problem when modeling with such functions
is the existence of Froissart doublets, where a zero is close to a pole. We discuss three
different parameters which allow one to monitor the absence of Froissart doublets
for a given general rational function. These include the euclidean condition number
of an underlying Sylvester-type matrix, a parameter for determining coprimeness of
two numerical polynomials and bounds on the spherical derivative. We show that our
parameters sharpen those found in a previous paper by two of the authors.

Mathematics Subject Classification 41A21 · 65F22

1 Introduction

Let C[z] be the space of polynomials with complex coefficients, Cn[z] the subset of
polynomials of degree at most n, and
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Cm,n[z] =
{
p

q
: p ∈ Cm[z], q ∈ Cn[z], q �= 0

}

the set of rational functions. Rational functions have long played an important role
in applied mathematics. As an example, Padé approximants and rational interpolants
are used for approximation, analytic continuation and for determining singularities
of a function [1,19]. Also, Padé approximants of the z transform of noisy signals are
employed for detecting the number of significant signals, their frequencies, damp-
ing, phase and amplitude [4]. Other applications include sparse interpolation [11,13],
computer algebra [7,9] and exponential analysis [6,15,16].

In order to successfully use rational functions for modelling, one first has to address
the subtle question of choosing a priori the degrees m, n. We want to make sure
that the rational function r ∈ Cm,n[z] is nondegenerate, that is, at least one of the
numerator or denominator degrees is maximal after removing common factors. In
addition, such a rational function should also be sufficiently “far” from Cm−1,n−1[z].
Indeed, overshooting the degree may produce strange artifacts commonly referred to
as spurious poles. By this wemean wemight have so-called Froissart doublets [8], that
is, a pair of points, one a pole and the other a zero of r , which are close to each other.
This of course makes it impossible to approach smooth functions with such rational
functions. Another second well known artifact is a simple pole with small residual,
which does not seem to be significant if one wants to evaluate r at points not too
close to such a pole. These issues become particularly significant when computation
is done in a numeric environment where one can only obtain close rather than exact
answers.

In a recent paper [12], the authors introduced the notion of robust Padé approxi-
mants, a lower order Padé approximant based on the SVD of the underlying Toeplitz
matrix. There the authors showed in many illustrating examples that their robust Padé
approximants no longer have spurious poles. Only later was it shown that the underly-
ing nonlinear Padé map taking the coefficients of the initial Taylor series and mapping
them to the coefficients in the basis of monomials of the numerator and denominator
of a Padé approximant is forward well conditioned (but not necessarily backward) at
such robust Padé approximants [3, Theorem 1.2], and that robust Padé approximants
may have spurious poles [3,14]. A first important contribution to this set of questions
is [20] for the continuity of the Padé map.

In computer algebra the area of symbolic/numeric computation often considers
correctness and stability issueswhenworkingwith polynomial arithmetic. For example
there has been considerable work on problems such as the numerical gcd of two
polynomials having floating point coefficients. However there seems to be very little
work which deals with numerical analysis around rational functions. Indeed even
the first issue of clarifying how to measure distances in Cm,n[z] has not really been
considered.

It seems natural that one should expect a connection between “nearly” degenerate
rational functions and numerators and denominators having a non-trivial numerical
gcd. This includes the two papers [2,5] where coprimeness parameters are considered
and which both make the link with the underlying Sylvester matrix formed by the
coefficients of the numerator and denominator (see Definition 2.1).
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On rational functions without Froissart doublets 617

The aim of this paper is to discuss three different parameters which allow one
to monitor the absence of Froissart doublets for a given general rational function
r ∈ Cm,n[z].
• The euclidean condition number of underlying Sylvester-type matrices depending
on some integer �;

• the coprimeness parameter of [2,5];
• bounds on the spherical derivative.

In each case we will show how our first two parameters generalize and sharpen the
parameters presented in [3]. In the case of the spherical derivative, the two new param-
eters introduced here are essentially best Lipschitz constants of a rational function and
we show how measuring distances in Cm,n[z] also partially sharpens some distance
measures found in [3].

This paper is a follow up to the paper [3] where some of the same problems were
considered. In order to explain our contributions in more detail, we describe results
from the previous paper along with our new findings. For this it is helpful to refer to
different properties given in Fig. 1. The authors in [3] refer to r = p/q with mod-
est euclidean condition number of the underlying Sylvester-type matrix for � = 1 as
well conditioned rational functions, and deduced several properties of such functions.
This includes, for example, the absence of Froissart doublets [3, Theorem 1.3(a)] and
of small residuals for simple poles [3, Theorem 1.3(b)], a large distance to the set
Cm−1,n−1[z] of degenerate rational functions [3, Theorem 1.4], but also a modest
forward and backward condition number for the non-linear Padé map for well con-
ditioned Padé approximants [3, Theorem 1.2]. They also establish the equivalence of
two different distances in Cm,n[z], one based on values and the other on coefficients
of rational functions [3, Theorem 4.1]. This corresponds to the implications on the
right of Fig. 1. We will establish later in Theorem 2.3 that the choice of our parameter
� in Definition 2.1 is not essential.

The results in this paper correspond to the left side of Fig. 1. In Sect. 2.1 we recall
some of the findings from [3] and also the coprimeness parameter of [2,5]. We show,
in Theorem 2.5, how this coprimeness parameter allows one to monitor the absence
of Froissart doublets, and so generalizes and sharpens the previous attempts found in
[2,3]. In Sect. 2.2 we introduce two new parameters based on the spherical derivative.
We show, inTheorem2.9(a), (b) andCorollary 2.8, that these parameters are essentially
best Lipschitz constants of a rational function, and that these new parameters also
allow one to insure the absence of Froissart doublets and poles with small residual.
In addition, in Theorem 2.12 we describe some special cases where these findings are
sharper than those of Theorem 2.5. Finally, in Sect. 2.3 we come back to the question
of comparing distances in Cm,n[z]. We show, in Theorem 2.13, that [3, Theorem 4.1]
can be partly sharpened in terms of the coprimeness parameter and give an example
showing that a second inequality cannot be improved. This completes the picture of
Fig. 1.

The remainder of this paper is as follows. Statements of our main results involving
our three parameters are presented in three subsections in Sect. 2, with proofs of all
our main statements given in Sect. 3. The paper then ends with a conclusion and topics
for future research in Sect. 4.
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618 B. Beckermann et al.

Fig. 1 Link between the three indicators (Sylvester condition number, coprimeness, bounded spherical
derivative) and Froissart doublets of rational functions, together with the numbers of the corresponding
statements

2 Main results

In this section we present the main results mentioned in the previous section. Here all
theorems are stated with the proofs given later in the following section.

2.1 Measure of coprimeness and Sylvester type matrices

In what follows we consider fixed integers m, n ≥ 0. In order to simplify nota-
tion, we will not explicitly indicate the dependency on m, n of each object. For
a polynomial c(z) = c0 + c1z + . . . + cnzn with coefficients c j we denote by
vec(c) = (c0, c1, . . . , cn)T its coefficient vector, with the size of this vector being
clear from the context. We start by introducing a so-called Sylvester-type matrix S(�)

associated to a pair of polynomials.

Definition 2.1 Given an integer � ≥ 0 and polynomials p ∈ Cm[z], q ∈ Cn[z],
with coefficients p j , q j , respectively, the associated (m + n + �) × (m + n + 2�)
Sylvester-type matrix of p and q is defined by
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On rational functions without Froissart doublets 619

S(�)(p, q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0
p1 p0
... p1

. . .

pm
...

. . . p0
pm p1

. . .
...

pm︸ ︷︷ ︸
n+�

q0
q1 q0
... q1

. . .

qn
...

. . . p0
qn q1

. . .
...

qn︸ ︷︷ ︸
m+�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ C
(m+n+�)×(m+n+2�).

��
When � = 0, S(�)(p, q) reduces to the transpose of the classical Sylvester matrix
[10] while when � = 1 we get the Sylvester-type matrix used in [3]. The more gen-
eral � allows us to consider increased degrees in an associated diophantine equation
connected to polynomial gcd computation of p and q.

It is well known [10] that the classical square Sylvester matrix S(0)(p, q) is
invertible if and only if the polynomials p and q are coprime and the defect
min(m − deg (p), n − deg (q)) is equal to zero, that is, the rational function p/q
is nondegenerate. More generally, S(�)(p, q) has full row rank if and only p/q is non-
degenerate. We refer to [3, Lemma 3.1] for a proof in the case � = 1, while a proof
for � > 1 is similar, based on the relation

(
1, z, . . . , zm+n+�−1

)
S(�)(p, q)

=
(
p(z), z1 p(z), . . . , zn+�−1 p(z), q(z), z1q(z), . . . , zm+�−1q(z)

)
. (2.1)

In order to make the link with the coprimeness parameter discussed by Corless,
Gianni, Trager, and Watt in [5] we introduce as in [3] a norm in C[z] × C[z] through
the formula

‖(p, q)‖2 =
√

‖vec(p)‖22 + ‖vec(q)‖22,

and consider the following quantities.

Definition 2.2 For p ∈ Cm[z], q ∈ Cn[z], and a set K ⊆ C, consider

ε2(p, q) = inf
{‖(p− p̃, q−q̃)‖2 : ( p̃, q̃) ∈ Cm[z] × Cn[z] have a common root

}
,

εK ,2(p, q) = inf
z∈K

(
|p(z)|2∑m
j=0 |z|2 j + |q(z)|2∑n

j=0 |z|2 j
)1/2

.

The coprimeness parameter ε2(p, q) measures the distance to the set of pairs of
polynomials with a non-trivial gcd. At the same time it is mentioned in [5, Remark
4] that ε2(p, q) coincides with εC,2(p, q), with the latter quantity being much more
accessible since one minimizes only with respect to the single complex parameter z.
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620 B. Beckermann et al.

Since ‖S(�)(p, q)‖2 is not too far from ‖(p, q)‖2, our coprime measure ε2(p, q)

approximately also gives the distance of S(�)(p, q) to the set of singular Sylvester-type
matrices S(�)( p̃, q̃), that is, a kind of smallest structured singular value [17]. As such,
a bound of the form

εC,2(p, q) = ε2(p, q) ≥ 1√
m + n + 1 ‖S(�)(p, q)†‖2

(2.2)

in terms of the norm of the pseudo-inverse is not surprising. To see this we just take
norms in (2.1) (see also [3, Lemma 5.1] for a proof in the case � = 1). In [3, § 6.2] we
conjectured that the dependency on � of the right-hand side of (2.2) is not important.
In the present paper we are able to state:

Theorem 2.3 Let p ∈ Cm[z], q ∈ Cn[z] be such that p/q is nondegenerate. Then

‖ S(0)(p, q)−1 ‖2 ≤ ‖ S(�)(p, q)† ‖2 ≤ (1 + √
�) ‖ S(0)(p, q)−1 ‖2 (2.3)

for all integers � ≥ 0.

Remark 2.4 The authors in [2] have obtained more compact expressions by choosing
in Definition 2.2 a different norm for pairs of polynomials, namely

‖(p, q)‖1 = max(‖vec(p)‖1, ‖vec(q)‖1).

This allowed them to deduce that ‖S(�)(p, q)‖1 = ‖(p, q)‖1, independent of �. In this
case, the one-norm equivalent of Definition 2.2 becomes

ε1(p, q) := inf
{‖(p − p̃, q − q̃)‖1 : ( p̃, q̃) ∈ Cm[z] × Cn[z] have a common root

}
= inf

{‖S(�)(p, q) − S̃‖1 : S̃ a Sylvester-type matrix of not full row rank
}
.

It was also shown in [2, Theorem 4.1] that ε1(p, q) = εC,1(p, q), where

εK ,1(p, q) := inf
z∈K max

{
|p(z)|

max
(
1, |z|m) ,

|q(z)|
max

(
1, |z|n)

}

= inf
z∈K

‖ (1, z, . . . , zm+n+�−1)S(�)(p, q) ‖1
‖ (1, z, . . . , zm+n+�−1) ‖1

.

The last relation implies ε1(p, q) ≥ 1
‖S(0)(p,q)−1‖1 , as mentioned already in [2,

Lemma 2.1]. ��

2.2 Froissart doublets

Let us now turn to the question of existence of a Froissart doublet for a rational function
r = p/q ∈ Cm,n[z], that is, a pair consisting of a zero z p and a pole zq of r which are
close to each other. In [3, Theorem 1.3(a)] it was shown that

|z p − zq | ≥ 1

3
√
2(m + n + 1)3/2cond(S(1)(p, q))

, (2.4)
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On rational functions without Froissart doublets 621

provided that both z p and zq are in the closed unit diskD.Here cond(B) = ‖B‖2 ‖B†‖2
denotes the condition number with respect to the euclidean norm.

It seems reasonable to expect that a sufficiently large εs(p, q) for s ∈ {1, 2} also
implies the absence of Froissart doublets, since in this case p, q is relatively far from
a pair of polynomials having a non-trivial gcd. Let

χ(x, y) := |x − y|√
1 + |x |2√1 + |y|2 .

be the chordal metric obtained by taking the euclidean distance on the Riemann sphere
S
2 which is identified with the extended complex planeC∪{∞} through stereographic

projection. Then the distance between a pole and a zero of a rational function as
measured using the chordal metric is bounded from below by:

Theorem 2.5 Let K ⊆ C and r = p
q ∈ Cm,n[z]. Then for any pair z p, zq ∈ C with

p(z p) = 0, q(zq) = 0 and s ∈ {1, 2} we have that
εK ,s(p, q)

2max ( m ‖ vec(p) ‖s, n ‖ vec(q) ‖s )
≤ χ(z p, zq). (2.5)

Moreover, if K ⊆ D or 1/K ⊆ D we can replace the maximum in the denominator by
a minimum.

It follows from Theorem 2.5 that if p and q are numerically coprime (that is, having a
sufficiently large εK ,s(p, q)) then r = p/q cannot have any Froissart doublets. Notice
that (2.5) for s = 2 and K = C is sharper than (2.4). Indeed using (2.5) one can obtain

|z p − zq | ≥ 1

2(m + n + 1)3/2cond(S(1)(p, q))
,

by verifying the two inequalities

max(m ‖vec(p)‖2, n ‖vec(q)‖2)
≤ (m + n + 1)‖S(1)(p, q)‖2 and |z p − zq | ≥ χ(z p, zq),

and by applying the bound (2.2). Special cases of Theorem 2.5 have been claimed
without proof in [2, §4] for s = 1 and K = C, and established in [3, Lemma 6.1] for
s = 2 and K = D.

It is interesting to note that the indicators used in (2.4) and (2.5) are not sensitive
with respect to a small perturbation of the numerator and denominator. Here we can
state the following.

Theorem 2.6 Let K ⊆ C and p
q ,

p̃
q̃ ∈ Cm,n[z].

(a) If p
q is nondegenerate and

‖(p − p̃, q − q̃)‖2 ≤ 1

3
√
m + n + 1 ‖S(1)(p, q)†‖2
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622 B. Beckermann et al.

then 1
2 ≤ cond(S(1)( p̃, q̃))/cond(S(1)(p, q)) ≤ 2.

(b) Let s ∈ {1, 2}. If

‖(p − p̃, q − q̃)‖s ≤ 1

2
εK ,s(p, q)

then 1
2 ≤ εK ,s( p̃, q̃)/εK ,s(p, q) ≤ 3

2 .

Notice that, according to (2.2), the neighborhood in part (b) for s = 2 is larger than
the neighborhood in part (a).

We are now able to show that inequalities (2.4) and (2.5) are robust in the sense that
they remain valid up to somemodest constant if z p and zq are roots not of (p, q) but of
some perturbed ( p̃, q̃) ∈ Cm[z] ×Cn[z] sufficiently close to (p, q). For (2.4) this has
been done before in [3, Theorem 1.3(a)], and we essentially repeat their arguments.
For (2.5), it is convenient to write first the slightly weaker inequality

χ(z p, zq) ≥ εK ,s(p, q)

2(m + n) ‖(p, q)‖s ,

and to observe that εK ,s(p, q) ≤ ‖(p, q)‖s . Then Theorem 2.6 yields the following.

Corollary 2.7 Let K ⊆ C and p
q ,

p̃
q̃ ∈ Cm,n[z] and z p, zq ∈ K with p̃(z p) =

q̃(zq) = 0. Then, under the assumptions of Theorem 2.6(a),

|z p − zq | ≥ 1

6
√
2(m + n + 1)3/2cond(S(1)(p, q))

.

Furthermore, under the assumptions of Theorem 2.6(b),

χ(z p, zq) ≥ εK ,s(p, q)

6(m + n) ‖(p, q)‖s .

Again, using (2.2) one may show that the second statement for s = 2 implies the first
one.

2.3 Spherical derivatives and small residuals

In this subsection we will introduce a new parameter in order to monitor the existence
of Froissart doublets. Recall that the spherical derivative of a rational function r ∈
Cm,n[z] is given by

ρ(r)(z) = |r ′(z)|
1 + |r(z)|2 (2.6)

while for any K ⊆ C we set

ρK (r) := sup
z∈K

ρ(r)(z). (2.7)
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On rational functions without Froissart doublets 623

Note that 1
ρ(r)(zq )

equals the modulus of the residual of a simple pole zq . Hence the
following statement, complementing [3, Theorem 1.3(b)], is immediate.

Corollary 2.8 Let β be the residual of a simple pole zq of r in K . Then |β| ≥ 1
ρK (r) .

We show below that the quantity ρK (r) is the best Lipschitz constant for r in K . As
such, for a reliable evaluation of r(z) for z ∈ K , it seems to be reasonable to restrict
ourselves to rational functions r with modest ρK (r). On the other hand, if we want to
measure the distance of arguments in terms of the chordal metric, another indicator is
more appropriate, namely

ν(r)(z) = (1 + |z|2) |r ′(z)|
1 + |r(z)|2 and νK (r) := sup

z∈K
ν(r)(z). (2.8)

Let us now turn to Froissart doublets and compare our new indicators with those
given previously.

Theorem 2.9 Let K ⊆ C and r = p
q ∈ Cm,n[z]with p and q coprime and z p, zq ∈ K

with p(z p) = q(zq) = 0.

(a) If K is convex then
ρK (r) = sup

z1,z2∈K
χ(r(z1), r(z2))

|z1 − z2| . (2.9)

In particular, |z p − zq | ≥ 1
ρK (r) .

(b) If K is spherically convex1 then

νK (r) ≤ sup
z1,z2∈K

χ(r(z1), r(z2))

χ(z1, z2)
≤ π

2
νK (r). (2.10)

In particular, χ(z p, zq) ≥ 2
πνK (r) .

It is also interesting to explore the links between the spherical derivative and the
numerical measure of coprimeness. Here the following observation is helpful.

Remark 2.10 Notice that, by definition

εK ,s(p
m, qm) = εK ,s(p, q)m

strongly depends on m, whereas ρK (rm)(z) ≤ 2mρK (r)(z) for any rational function
r . This follows from

ρ(rm)(z) = m |r(z)|m−1
∣∣r ′(z)

∣∣
1 + |r(z)|2m ≤ |r(z)|m−1

max(1, |r(z)|2m−2)

m
∣∣r ′(z)

∣∣
max(1, |r(z)|2)

≤ m
2
∣∣r ′(z)

∣∣
1 + |r(z)|2 = 2mρ(r)(z),

using the fact that 2max(1, |r(z)|2) ≥ 1 + |r(z)|2 and then taking sup over K . ��

1 This means that, with z1, z2 ∈ K , also the preimage of the shortest path from z1 to z2 on the Riemann
sphere belongs to K . Notice that disks and half-planes are spherically convex.
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624 B. Beckermann et al.

In the following example, which was already studied in [2, Example 5.3], we see
that the bound of Theorem 2.9(a) is approximately sharp whereas Theorem 2.5 is not
of the same order, at least for larger m = n.

Example 2.11 Consider r = (
p
q )m for p(z) = z, q(z) = z−1

2 with m ≥ 0 an inte-
ger. The poles and zeros of r lie in the closed unit disk K = D (or K = [0, 1])
and have a euclidean distance 1 or spherical distance 1/2. However, ‖vec(pm)‖1 =
‖vec(qm)‖1 = 1. In addition we note without proof that

ε1(p
m, qm) = ε1(p, q)m = 3−m and ρK (

p

q
) = ρ{1/3}(

p

q
) = 9

4
.

Since ρK (r) ≤ 2m ·ρK (
p
q ) by our previous remark, we can then compare the spherical

derivative by

ρK (r) ≤ 2m ρK (
p

q
) = 2m ρ{1/3}(

p

q
) = 9m

2
.

��
The previous example also shows that the product between spherical derivative and

the numerical measure of coprimeness can be very close to 0. Our next statement
shows that this product is nicely bounded above.

Theorem 2.12 Let K ⊆ C and r = p
q ∈ Cm,n[z].

If K ⊆ D or m = n then

εK ,1(p, q)

2 max ( m ‖ vec(p) ‖1, n ‖ vec(q) ‖1 )
≤ 1

νK (r)
≤ 1

ρK (r)
.

Theorem 2.12 identifies some particular cases where the bounds of Theorem 2.9(a),
(b) are sharper than the bound (2.5) of Theorem 2.5. In addition, in the case of a simple
pole z̃ of r = p/q, Theorem 2.12 combined with Corollary 2.8 also implies that p
and q numerically relatively prime implies no small residual at z̃.

2.4 Distance of rational functions

Numerical analysis in Cm,n[z] requires one to measure distances between rational
functions r = p

q ∈ Cm,n[z] and r̃ = p̃
q̃ ∈ Cm,n[z]. As mentioned in [3] several

choices are possible. If one is interested in values, then the choice

χK (r, r̃) := sup
z∈K

χ(r(z), r̃(z))

could be the most suitable since the chordal metric measures the euclidean distance of
points in the Riemann sphere. On the other hand, if one prefers to define a distance in
terms of the coefficients of numerators and denominators, then one should take care of
the fact that coefficient vectors are only unique up to a scaling with a complex factor,
that is, the norm and the phase. In [3] the authors made the choice
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On rational functions without Froissart doublets 625

d(r, r̃) = min

{∥∥∥∥ 1

‖(p, q)‖2
[
vec(p)
vec(q)

]
− a

‖( p̃, q̃)‖2
[
vec( p̃)
vec(q̃)

]∥∥∥∥ : a ∈ C, |a| = 1

}
,

and hence

d(r, r̃) = min

{∥∥∥∥ 1

‖(p, q)‖2
[
vec(p)
vec(q)

]
± 1

‖( p̃, q̃)‖2
[
vec( p̃)
vec(q̃)

]∥∥∥∥
}

in the case r, r̃ ∈ Rm,n(z) of real coefficients. In [3, Theorem 4.1] it is shown that
when r is nondegenerate we have

(m + n + 1)−3/2

√
2 cond(S(1)(p, q))

≤ χD(r, r̃)

d(r, r̃)
≤ √

2(m + n + 1) cond(S(1)(p, q)). (2.11)

Thus, roughly speaking, the two distances are comparable provided that cond
(S(1)(p, q)) is modest, or, in other words, the rational function r is well conditioned.

In view of the preceding statements, it is then natural to wonder whether simi-
lar inequalities are kept if we replace cond(S(1)(p, q)) in (2.11) by 1

εK ,1(p,q)
. The

following theorem shows that this is possible for the right-hand side of (2.11).

Theorem 2.13 If K ⊆ D or m = n then for any r = p
q , r̃ = p̃

q̃ ∈ Cm,n[z] we have

εK ,1(p, q) · χK (r, r̃) ≤ √
2 ‖ (p − p̃, q − q̃) ‖1 .

On the other hand the corresponding statement does not hold for the left-hand side
of (2.11) as long as we want to keep constants which are only polynomially growing
in m + n. That is, there is not a quantity C(m + n) of order a small power of m + n
for which

χD (r, r̃) ≥ C(m + n) ‖ (p − p̃, q − q̃) ‖1 εD,1(p, q), (2.12)

Indeed, in the following example we let m = n and show that for each m there are
polynomials pm, qm, p̃m, q̃m ∈ Rm[z], with corresponding rational functions rm and
r̃m , such that, up to some constants,

χD(rm, r̃m)

‖(pm − p̃m, qm − q̃m)‖1 ∼
√
m( 38 )

m

εD,1(pm, qm)
∼ 9m

cond(S(1)(p, q))

∼ √
m

(
27

8

)m

εD,1(pm, qm), (2.13)

are all of the same order of magnitude but that

χD(rm, r̃m)

d(rm, r̃m)

1

εD,1(pm, qm)
(2.14)

grows at least as a constant times
√
m( 278 )m .
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Example 2.14 Let pm(z) = zm, qm(z) = ( z−1
2

)m
be the polynomials from Exam-

ple 2.11, and suppose these are perturbed as

( p̃m, q̃m) = (pm − ηum, qm − ηvm)

where um, vm ∈ Rm−1[z] are such that qm(z)um(z) − pm(z)vm(z) = 1, and η is a
small parameter which we will fix later. Then

‖S(1)(pm, qm)‖1 = ‖vec(pm)‖1 = ‖vec(qm)‖1 = ‖(pm, qm)‖1 = 1. (2.15)

In [2, Examples 5.2 and 5.3] explicit formulas for um, vm and S(0)(pm, qm)−1 were
derived, allowing the authors to deduce that

‖vec(vm)‖1 ≤ ‖vec(um)‖1 ∼ 23m−1

√
πm

and
‖S(0)(pm, qm)−1‖1

‖vec(um)‖1 ∈ [1, 2].

As η is still not fixed, we can now specify that

2 ‖(p − p̃, q − q̃)‖1 = 2 |η| ‖vec(um)‖1 = εD,1(pm, qm), (2.16)

from which, using Example 2.11 and Theorem 2.6(b), we then have for all z ∈ D,

ε1(pm, qm) = εD,1(pm, qm) = 3−m with
ε{z},1( p̃m, q̃m)

ε{z},1(pm, qm)
∈
[
1

2
,
3

2

]
.

Since (pmq̃m − p̃mqm)(z) = η, we have

χD(rm, r̃m) = sup
z∈D

|η|√
(|pm(z)|2 + |qm(z)|2)(| p̃m(z)|2 + |̃qm(z)|2)

≥ sup
z∈D

|η|
2 ε{z},1( p̃m, q̃m) ε{z},1(pm, qm)

= |η|
3 εD,1(pm, qm)2

.

Similarly

χD(rm, r̃m) ≤ sup
z∈D

|η|
ε{z},1( p̃m, q̃m) ε{z},1(pm, qm)

≤ 2|η|
εD,1(pm, qm)2

.

Thus, up to some constants,

χD(rm, r̃m)

‖(pm − p̃m, qm − q̃m)‖1 ∼ 1

εD,1(pm, qm)2 ‖vec(um)‖1 ,

which shows our perturbation satisfies equation (2.13).

123



On rational functions without Froissart doublets 627

Finally, notice that (2.16) and (2.15) also imply that

‖( p̃, q̃)‖1 ∈ [1 − |η| ‖vec(um)‖1, 1 + |η| ‖vec(um)‖1] ⊆
[
1

2
,
3

2

]
,

and thus

d(rm, r̃m) ≤ 2|η| ‖vec(um)‖1
1 − |η| ‖vec(um)‖1 ≤ 4 |η| ‖vec(um)‖1.

Combining, we find that

χD(rm, r̃m)

d(rm, r̃m)
≥ 1

12 ‖vec(um)‖1 εD,1(pm, qm)2
,

from which the remaining growth statement (2.14) follows. ��

3 Proofs of Theorems

Proof of Theorem 2.3 Denote S = S(0)(p, q) and S∗, the matrix obtained by a per-
mutation P of columns of S(�)(p, q) such that

S∗ = S(�)(p, q) · P =
(
S E
0 V

)
,

where E ∈ C
(n+m)×� and V ∈ C

(2�)×�. From non degeneracy we know that S is
regular and that S(�)(p, q) is of maximum rank n + m + �. Its kernel is therefore of
dimension �. Let Y ∈ C

(n+m+2�)×� be a matrix whose columns generate Ker(S∗). We
know that the orthogonal projector onto Ker(S∗) is Y (Y ∗Y )−1Y ∗ = YY † and so, as
S†∗S∗ is the projector onto Ker(S∗)⊥ we get

S†∗S∗ = I − YY †.

Let B2 ∈ C
(n+m+2�)×� be a matrix such that

S(�)(p, q) · B2 =
(
0
I�

)
, I� identity of order �.

We can construct the columns of B2 in the following way. Let w be the last column
of S−1, that is, Sw = en+m , where en+m is the (n + m)th unit canonical vector. In
polynomial language,w contains the coefficients of two polynomials u and v of degree
n − 1 and m − 1, respectively, and satisfying the Bezout equation

p(z)u(z) + q(z)v(z) = zm+n−1.
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The columns of B2 contain the coefficients of zi · u(z) and zi · v(z), i = 1, . . . , �.
More precisely, the columns have the form

(0, . . . , 0︸ ︷︷ ︸
i−1

, vec(u)T , 0, . . . , 0︸ ︷︷ ︸
�−1

, vec(v)T , 0, . . . , 0︸ ︷︷ ︸
�−i

) i = 1, . . . �.

We set B1 = P−1 · B2 and so

B =
(

S−1

0
B1

)
(3.1)

is a right inverse of S∗ since S∗B = I . Then

S†∗ =
(
I − YY †

)
B and ‖ S†∗ ‖2 ≤ ‖ B ‖2 . (3.2)

Let us now bound ‖ B ‖2. From (3.1) and noting the fact that ‖ B1 ‖2 is bounded
by its Frobenius norm of B1 and remembering that the columns of B1 are constructed
from Sw = en+m we get

‖ B ‖2≤‖ S−1 ‖2 + ‖ B1 ‖2≤‖ S−1 ‖2 +√
� ‖ w ‖2≤ (1 + √

�) ‖ S−1 ‖2 .

Thus the second inequality of (2.3) follows.
Let us now prove the first inequality of (2.3). Here we make use of the formula

(
S E
0 V

)†

=
(
S−1 −S−1EV †

0 V †

)
.

for the pseudo-inverse of S∗. To see this consider the QR decomposition of S and V

S = QSRS, V = QV

(
RV

0

)
= Q̃V RV ,

where QS, QV are unitary matrices and RS and RV invertible since both S and V have
maximum rank. Then S∗ can be written as the product

S∗ =
(
QS 0
0 Q̃V

)(
RS Ẽ
0 RV

)
, Ẽ = Q−1

S E

where the first matrix in the product has linearly independent columns and the second
one has linearly independent rows. We then have the pseudo-inverse of S∗ as

S†∗ =
(
R−1
S −R−1

S Ẽ R−1
V

0 R−1
V

)(
Q∗

S 0
0 Q̃V

)
=
(
S−1 −S−1EV †

0 V †

)
.

This trivially gives ‖ S−1 ‖2 ≤ ‖ S†∗ ‖2 and the result follows. ��
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Proof of Theorem 2.5 Assume first that p/q is nondegenerate. If we let p, q denote
the polynomials with reversed coefficients of p and q, respectively, then we get
εK ,s(p, q) = ε1/K ,s(p, q). Without loss of generality we may thus suppose
min(

∣∣z p∣∣ , ∣∣zq ∣∣) ≤ 1. We can write

∣∣p(zq)∣∣ = ∣∣p(zq) − p(z p)
∣∣ ≤

m∑
k=1

|pk |
∣∣∣zkq − zkp

∣∣∣ = ∣∣zq − z p
∣∣ m∑
k=1

|pk |
∣∣∣∣∣∣
k−1∑
j=0

z jq z
k− j−1
p

∣∣∣∣∣∣ .
(3.3)

Let us suppose
∣∣zq ∣∣ ≥ ∣∣z p∣∣ and so

∣∣z p∣∣ ≤ 1. Then by twice applying the Cauchy–
Schwarz inequality we obtain

∣∣p(zq)∣∣ ≤ ∣∣zq − z p
∣∣
⎧⎨
⎩

‖ vec(p) ‖2 m ·
(∑m−1

j=0

∣∣zq ∣∣2 j
)1/2

‖ vec(p) ‖1 m · max(1,
∣∣zq ∣∣m−1

)
.

The definition of the chordal metric implies
∣∣z p − zq

∣∣ ≤ √
2 χ(z p, zq)

√
1 + ∣∣zq ∣∣2,

and using

√√√√√(1 + ∣∣zq ∣∣2)
⎛
⎝m−1∑

j=0

∣∣zq ∣∣2 j
⎞
⎠ =

√√√√m−1∑
j=0

∣∣zq ∣∣2 j +
m∑
j=1

∣∣zq ∣∣2 j ≤ √
2

√√√√ m∑
j=0

∣∣zq ∣∣2 j

we obtain

∣∣p(zq)∣∣ ≤ 2 χ(z p, zq) ×
{

‖ vec(p) ‖2 m ·
(∑m

j=0

∣∣zq ∣∣2 j
)1/2

‖ vec(p) ‖1 m · max(1,
∣∣zq ∣∣m)

.

Thus by the definition of εK ,s(p, q)

εK ,s(p, q) ≤ 2 χ(z p, zq) m ‖ vec(p) ‖s .

Similarly, if
∣∣z p∣∣ ≥ ∣∣zq ∣∣ then we get

εK ,s(p, q) ≤ 2 χ(z p, zq) n ‖ vec(q) ‖s
and the result then follows.

Finally we remark that the result follows trivially if p/q is degenerate. ��
Proof of Theorem 2.6 For part (a) we use a Neumann series argument similar to the
proof of [3, Lemma 5.1]. Define

E = S(1)(p, q)†
(
S(1)(p, q) − S(1)( p̃, q̃)

)
.
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Then by assumption and by comparison with the Frobenius norm ‖ · ‖F we have

‖E‖2 ≤ ‖S(1)(p − p̃, q − q̃)‖F ‖S(1)(p, q)†‖2
≤ √

m + n + 1 ‖(p − p̃, q − q̃)‖2 ‖S(1)(p, q)†‖2 ≤ 1/3.

Since also by assumption S(1)(p, q) has full row rank, we find that

S(1)( p̃, q̃) = S(1)(p, q)(I − E)

and thus (I − E)−1S(1)(p, q)† is a right inverse of S(1)( p̃, q̃). This implies that

cond(S(1)( p̃, q̃)) ≤ ‖S(1)( p̃, q̃)‖2 ‖(I − E)−1S(1)(p, q)†‖2
≤ 1 + ‖E‖2

1 − ‖E‖2 cond(S
(1)(p, q)) ≤ 2 cond(S(1)(p, q)).

The other inequality in part (a) follows by symmetry.
For part (b), we first notice that, for any z ∈ K ,

|ε{z},s(p, q) − ε{z},s( p̃, q̃)|
=
∣∣∣ ∥∥∥
(

p(z)

‖(1, z, . . . , zm)‖s ,
q(z)

‖(1, z, . . . , zn)‖s
)∥∥∥

s

−
∥∥∥
(

p̃(z)

‖(1, z, . . . , zm)‖s ,
q̃(z)

‖(1, z, . . . , zn)‖s
)∥∥∥

s

∣∣∣
≤
∥∥∥
(

p(z) − p̃(z)

‖(1, z, . . . , zm)‖s ,
q(z) − q̃(z)

‖(1, z, . . . , zn)‖s
)∥∥∥

s

≤
∥∥∥(‖vec(p − p̃)‖s, ‖vec(q − q̃)‖s)

∥∥∥
s

= ‖(p − p̃, q − q̃)‖s ≤ εK ,s(p, q)

2
≤ ε{z},s(p, q)

where in the second last inequality we used our hypothesis. Thus

1

2
ε{z},s(p, q) ≤ ε{z},s( p̃, q̃) ≤ 3

2
ε{z},s(p, q)

for all z ∈ K . The claim follows by taking the infimum for z ∈ K .

Proof of Theorem 2.9(a), (b) We start by observing that

lim
x→z

χ(r(z), r(x))

|z − x | = ρ(r)(z), lim
x→z

χ(r(z), r(x))

χ(z, x)
= ν(r)(z),

and thus the suprema in (2.9), (2.10) are bigger than or equal to ρK (r) and νK (r),
respectively. Following [18], the spherical metric σ(z1, z2) is given by the length of
the shortest path on the Riemann sphere joining z1 and z2, and thus
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σ(z1, z2) = min
�

∫
�

|dz|
1 + |z|2

where � is any differentiable curve joining z1 to z2, with the minimum being obtained
for � being the preimage of the shorter of the two circular arcs of radius 1/2 on
the Riemann sphere joining z1 and z2. By elementary trigonometry, we can link the
chordal metric χ to the spherical metric via

χ(z1, z2) ≤ σ(z1, z2) ≤ π

2
χ(z1, z2). (3.4)

Thus

χ(r(z1), r(z2)) ≤ min
�

∫
r(�)

|dw|
1 + |w|2 = min

�

∫
�

∣∣r ′(z)
∣∣

1 + |r(z)|2 (1 + |z|2) |dz|
1 + |z|2

≤
{

ρK (r) |z1 − z2|
νK (r) σ (z1, z2)

.

Combined with (3.4), we obtain the remaining inequalities for establishing (2.9),
(2.10).

For the last statements in both (a) and (b) we estimate the distance between pole
and zero, with

1 = χ(0,∞) = χ(r(z p), r(zq)) ≤ ρK (r) |z p − zq |,

and similarly for νK (r). Here we have used our assumption that z p, zq ∈ K . ��
Proof of Theorem 2.12 The inequality ρK (r) ≤ νK (r) is an immediate consequence
of the definition. Let νK (r) = ν(r)(̃z) for some z̃ ∈ K . We consider first the case
K ⊆ D and thus |̃z| ≤ 1. Then νK (r) ≤ 2ρ(r)(̃z), where

ρ(r)(̃z) =
∣∣p′(̃z)q (̃z) − p(̃z)q ′(̃z)

∣∣
|p(̃z)|2 + |q (̃z)|2

≤ (
∣∣p′(̃z)

∣∣+ ∣∣q ′(̃z)
∣∣)max(|p(̃z)| , |q (̃z)|)

max(|p(̃z)|2 , |q (̃z)|2)
≤ m ‖ p′ ‖1 max(1, |̃z|m) + n ‖ q ′ ‖1 max(1, |̃z|n)

max(|p(̃z)| , |q (̃z)|)
≤ m ‖ p ‖1

max(|p(̃z)| , |q (̃z)|) + n ‖ q ‖1
max(|p(̃z)| , |q (̃z)|) .

Thus when |̃z| ≤ 1, the assertion of Theorem 2.12 follows.
If |̃z| > 1 and thus m = n by hypothesis, we consider as before the reversed

polynomials

p(z) = zm p(1/z) ∈ Cm[z], q(z) = znq(1/z) ∈ Cn[z],
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and observe that r(z) := p(z)/q(z) = r(1/z). Thus

νK (r) = ν1/K (r) = ν(r)(1/̃z) ≤ 2ρ(r)(1/̃z),

and the assertion follows making use of εK ,1(p, q) = ε1/K ,1(p, q).

Proof of Theorem 2.13 Using the Cauchy–Schwarz inequality we get
√

|p(z)|2 + |q(z)|2 · χ(r(z), r̃(z)) = |((p − p̃)̃q − (q − q̃) p̃)(z)|√
| p̃(z)|2 + ∣∣̃q(z)2

∣∣
≤
√

|(p − p̃)(z)|2 + |(q − q̃)(z)|2

≤
√

‖ p − p̃ ‖21 max(1, |z|m )2 + ‖ q − q̃ ‖21 max(1, |z|n)2

≤ √
2 ‖ (p − p̃, q − q̃) ‖1 ×

{
1 if |z| ≤ 1
|z|n if |z| ≥ 1 and m = n

.

We also have for |z| ≤ 1 that

√
|p(z)|2 + |q(z)|2 ≥ max(|p(z)| , |q(z)|) = ‖ (1, z, . . . , zm+n)S(1)(p, q) ‖1

≥ εK ,1(p, q) ‖ (1, z, . . . , zm+n) ‖1 = εK ,1(p, q).

Using the definition of χK (r, r̃) the result follows.
For |z| ≥ 1 and m = n we get

√
|p(z)|2 + |q(z)|2 ≥ 1

|zn| max(
∣∣zn p(z)∣∣ , ∣∣znq(z)

∣∣
= 1

|zn| ‖ (1, z, . . . , zm+n)S(1)(p, q) ‖1

≥ 1

|zn|εK ,1(p, q)
∣∣zn+n

∣∣ = εK ,1(p, q)
∣∣zn∣∣ .

Then

χ(r(z), r̃(z)) ≤ √
2 ‖ (p − p̃, q − q̃) ‖1 |z|n

εK ,1(p, q) |z|n = √
2
‖ (p − p̃, q − q̃) ‖1

εK ,1(p, q)

and the result follows. ��

4 Conclusions and topics for future research

In this paper we have considered the problem of working with rational functions in a
numeric environment, with the particular goal of monitoring the absence of Froissart
doublets. Three different parameters were studied, including the euclidean condition
number of underlying Sylvester-type matrices depending on some integer �, a param-
eter for determing coprimeness of two numerical polynomials and bounds on the
spherical derivative. Each case these parameters sharpen those found in [3].
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On rational functions without Froissart doublets 633

Future plans include using our three parameters as penalties for computing rational
approximants with the goal of removing such undesirable features. In addition, there
are a number of open questions that fall out of our work. All our results are given using
amonomial basis. It is of interest to seewhat can be said in the case of other polynomial
bases, for example those based on orthogonal polynomials. It is also natural to look
for an interpretation of the quantity ν(r) in terms of residues.
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