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ABSTRACT
Given a matrix of univariate polynomials over a field K,
its columns generate a K [x]-module. We call any basis of
this module a column basis of the given matrix. Matrix
gcds and matrix normal forms are examples of such module
bases. In this paper we present a deterministic algorithm
for the computation of a column basis of an m × n input
matrix with m ≤ n. If s is the average column degree of the
input matrix, this algorithm computes a column basis with
a cost of O∼

(
nmω−1s

)
field operations in K. Here the soft-

O notation is Big-O with log factors removed while ω is the
exponent of matrix multiplication. Note that the average
column degree s is bounded by the commonly used matrix
degree that is also the maximum column degree of the input
matrix.

Categories and Subject Descriptors: I.1.2 [Symbolic
and Algebraic Manipulation]: Algorithms; F.2.2 [Analysis
of Algorithms and Problem Complexity]: Nonnumerical Al-
gorithms and Problems
General Terms: Algorithms, Theory
Keywords: Order Basis, Kernel basis, Nullspace basis,
Column Basis

1. INTRODUCTION
In this paper, we consider the problem of efficiently com-
puting a column basis of a polynomial matrix F ∈ K [x]m×n

with n ≥ m. A column basis of F is a basis for the K [x]-
module

{Fp | p ∈ K [x]n } .
Such a basis can be represented as a full rank matrix T ∈
K [x]m×r whose columns are the basis elements. A column
basis is not unique and indeed any column basis right mul-
tiplied by a unimodular polynomial matrix gives another
column basis. As a result, a column basis can have arbitrar-
ily high degree. In this paper, the computed column basis
has column degrees bounded by the largest column degrees
of the input matrix.
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Column bases are fundamental constructions in polyno-
mial matrix algebra. As an example, when the row dimen-
sion is one (i.e. m = 1), then finding a column basis co-
incides with finding a greatest common divisor (GCD) of
all the polynomials in the matrix. Similarly, the nonzero
columns of column reduced forms, Popov normal forms, and
Hermite normal forms are all column bases satisfying addi-
tional degree constraints. A column reduced form gives a
special column basis whose column degrees are the smallest
possible, while Popov and Hermite forms are special column
reduced or shifted column reduced forms satisfying addi-
tional conditions that make them unique. Efficient column
basis computation is thus useful for fast computation for
such core procedures as determining matrix GCDs [4], col-
umn reduced forms [7] and Popov forms [15] of F with any
dimension and rank. Column basis computation also pro-
vides a deterministic alternative to randomized lattice com-
pression [11, 14].
Column bases are produced by column reduced, Popov

and Hermite forms and considerable work has been done on
computing such forms, for example [1, 8, 9, 12, 13]. How-
ever most of these existing algorithms require that the input
matrices be square nonsingular and so start with existing
column bases. It is however pointed out in [12, 13] that
randomization can be used to relax the square nonsingular
requirement.
To compute a column basis, we know from [3] that any

matrix polynomial F ∈ K [x]m×n can be unimodularly trans-
formed to a column basis by repeatedly working with the
leading column coefficient matrices. However this method
of computing a column basis can be expensive. Indeed one
needs to work with up to

∑
~s such coefficient matrices,

which could involve up to
∑
~s polynomial matrix multipli-

cations, where a sum without index denotes the sum of all
entries.
In this paper we give a fast, deterministic algorithm for

the computation of a column basis for F having complexity
O∼

(
nmω−1s

)
field operations in K with s being the average

column degree of F. Here the soft-O notation is Big-O with
log factors removed while ω is the exponent of matrix mul-
tiplication. Our algorithm works for both rectangular and
non-full column rank matrices. Our method depends on ker-
nel basis computation of F along with finding a factorization
of the input matrix polynomial into a column basis and a
left kernel basis of a right kernel basis of F. Finding the
right and left kernel basis then makes use of the fast ker-
nel basis and order basis algorithms from [20] and [18, 19],
respectively.



The remainder of this paper is as follows. Basic definitions
and preliminary results on both kernel and order bases are
given in the next section. Section 3 provides the matrix fac-
torization form of our input polynomial matrix that forms
the core of our procedure, with a column basis being the left
factor, and the right factor is a left kernel basis of a right
kernel basis of the input matrix. Section 4 provides an algo-
rithm for fast computation of a left kernel basis making use
of order bases computation with unbalanced shift. The col-
umn basis algorithm is given in Section 5 with the following
section giving details on how the methods can be improved
when the number of columns is significantly larger than the
number of rows. The paper ends with a conclusion along
with topics for future research.

2. PRELIMINARIES
In this paper computational cost is analyzed by bounding

the number of arithmetic operations in the coefficient field
K on an algebraic random access machine. We assume the
cost of multiplying two polynomial matrices with dimension
n and degree d is O∼(nωd) field operations, where the mul-
tiplication exponent ω is assumed to satisfy 2 < ω ≤ 3.
We refer to the book by [16] for more details and references
about the cost of polynomial multiplication and matrix mul-
tiplication.
In this section we first describe the notations used in this

paper, and then give the basic definitions and properties of
shifted degree, order basis and kernel basis for a matrix of
polynomials. These will be the building blocks used in our
algorithm.

2.1 Notations
For convenience we adopt the following notations in this

paper.

Comparing Unordered Lists For two lists ~a ∈ Zn and
~b ∈ Zn, let ā = [ā1, . . . , ān] ∈ Zn and b̄ =

[
b̄1, . . . , b̄n

]
∈

Zn be the lists consists of the entries of ~a and ~b but
sorted in increasing order.
~a ≥ ~b if āi ≥ b̄i for all i ∈ [1, . . . n]

~a ≤ ~b if āi ≤ b̄i for all i ∈ [1, . . . n]

~a >~b if ~a ≥ ~b and āj > b̄j for at least one j ∈ [1, . . . n]

~a <~b if ~a ≤ ~b and āj < b̄j for at least one j ∈ [1, . . . n] .

Uniformly Shift a List For a list ~a = [a1, . . . , an] ∈ Zn
and c ∈ Z, we write ~a + c to denote ~a + [c, . . . , c] =
[a1 + c, . . . , an + c], with subtraction handled similarly.

Compare a List with a Integer For ~a = [a1, . . . , an] ∈
Zn and c ∈ Z, we write ~a < c to denote ~a < [c, . . . , c],
and similarly for >,≤,≥,=.

2.2 Shifted Degrees
Our methods depend extensively on the concept of shifted

degrees of polynomial matrices [5]. For a column vector
p = [p1, . . . , pn]T of univariate polynomials over a field K,
its column degree, denoted by cdeg p, is the maximum of
the degrees of the entries of p, that is,

cdeg p = max
1≤i≤n

deg pi.

The shifted column degree generalizes this standard column
degree by taking the maximum after shifting the degrees

by a given integer vector that is known as a shift. More
specifically, the shifted column degree of p with respect to
a shift ~s = [s1, . . . , sn] ∈ Zn, or the ~s-column degree of p is

cdeg ~s p = max
1≤i≤n

[deg pi + si] = deg(x~s · p),

where x~s = diag (xs1 , xs2 , . . . , xsn) . For a matrix P, we
use cdeg P and cdeg ~sP to denote respectively the list of its
column degrees and the list of its shifted ~s-column degrees.
When ~s = [0, . . . , 0], the shifted column degree specializes
to the standard column degree. The shifted row degree of a
row vector q = [q1, . . . , qn] is defined similarly as

rdeg ~sq = max
1≤i≤n

[deg qi + si] = deg(q · x~s).

Shifted degrees have been used previously in polynomial
matrix computations and in generalizations of some matrix
normal forms [6].
The usefulness of the shifted degrees can be seen from

their applications in polynomial matrix computation prob-
lems [19, 20]. One of its uses is illustrated by the follow-
ing lemma from [17, Chapter 2], which can be viewed as a
stronger version of the predictable-degree property [10].

Lemma 2.1. Let A ∈ K [x]m×n be a ~u-column reduced
matrix with no zero columns and with cdeg ~uA = ~v. Then
a matrix B ∈ K [x]n×k has ~v-column degrees cdeg ~vB = ~w if
and only if cdeg ~u (AB) = ~w.

The following lemma from [17, Chapter 2] describes a re-
lationship between shifted column degrees and shifted row
degrees.

Lemma 2.2. A matrix A ∈ K [x]m×n has ~u-column de-
grees bounded by ~v if and only if its −~v-row degrees are
bounded by −~u.

Another essential fact needed in our algorithm, also based on
the use of the shifted degrees, is the efficient multiplication
of matrices with unbalanced degrees [20, Theorem 3.7].

Theorem 2.3. Let A ∈ K [x]m×n with m ≤ n, ~s ∈ Zn a
shift with entries bounding the column degrees of A and ξ, a
bound on the sum of the entries of ~s. Let B ∈ K [x]n×k with
k ∈ O (m) and the sum θ of its ~s-column degrees satisfying
θ ∈ O (ξ). Then we can multiply A and B with a cost of
O∼(n2mω−2s) ⊂ O∼(nωs), where s = ξ/n is the average of
the entries of ~s.

2.3 Order Basis
Let K be a field, F ∈ K [[x]]m×n a matrix of power series

and ~σ = [σ1, . . . , σm] a vector of non-negative integers.

Definition 2.4. A vector of polynomials p ∈ K [x]n×1

has order (F, ~σ) (or order ~σ with respect to F) if F · p ≡ 0
mod x~σ, that is,

F · p = x~σr

for some r ∈ K [[x]]m×1. If ~σ = [σ, . . . , σ] has entries uni-
formly equal to σ, then we say that p has order (F, σ) . The
set of all order (F, ~σ) vectors is a free K [x]-module denoted
by 〈(F, ~σ)〉.

An order basis for F and ~σ is simply a basis for the K [x]-
module 〈(F, ~σ)〉. We again represent order bases using ma-
trices, whose columns are the basis elements. We only work



with those order bases having minimal or shifted minimal
degrees (also referred to as a reduced order basis in [3]),
that is, their column degrees or shifted column degrees are
the smallest possible among all bases of the module.
An order basis [2, 3] P of F with order ~σ and shift ~s, or

simply an (F, ~σ,~s)-basis, is a basis for the module 〈(F, ~σ)〉
having minimal ~s-column degrees. If ~σ = [σ, . . . , σ] is uni-
form then we simply write (F, σ, ~s)-basis. The precise defi-
nition of an (F, ~σ,~s)-basis is as follows.

Definition 2.5. A polynomial matrix P is an order basis
of F of order ~σ and shift ~s, denoted by (F, ~σ,~s)-basis, if the
following properties hold:

1. P is a nonsingular matrix of dimension n and is ~s-
column reduced.

2. P has order (F, ~σ) (or equivalently, each column of P
is in 〈(F, ~σ)〉).

3. Any q ∈ 〈(F, ~σ)〉 can be expressed as a linear combi-
nation of the columns of P, given by P−1q.

In this paper, a (F, ~σ,~s)-basis is also called a (F, ~σ,~s)-
order basis to further distinguish it from the kernel basis
notation given in the following subsection.
Note that any pair of (F, ~σ,~s)-order bases P and Q are

column bases of each other and are unimodularly equivalent.
We will need to compute order bases with unbalanced

shifts using Algorithm 2 from [18]. This computation can
be done efficiently as given by the following result from [20].

Theorem 2.6. If ~s satisfies ~s ≤ 0 and −
∑
~s ≤ mσ, then

a (F, σ, ~s)-basis can be computed with a cost of O∼(nωd) field
operations, where d = mσ/n.

2.4 Kernel Bases
The kernel of F ∈ K [x]m×n is the F [x]-module

{p ∈ K [x]n | Fp = 0}

with a kernel basis of F being a basis of this module. Kernel
bases are closely related to order bases, as can be seen from
the following definitions.

Definition 2.7. Given F ∈ K [x]m×n, a polynomial ma-
trix N ∈ K [x]n×∗ is a (right) kernel basis of F if the follow-
ing properties hold:

1. N is full-rank.

2. N satisfies F ·N = 0.

3. Any q ∈ K [x]n satisfying Fq = 0 can be expressed as a
linear combination of the columns of N, that is, there
exists some polynomial vector p such that q = Np.

Any pair of kernel bases N and M of F are column bases of
each other and are unimodularly equivalent.
A ~s-minimal kernel basis of F is just a kernel basis that

is ~s-column reduced.

Definition 2.8. Given F ∈ K [x]m×n, a polynomial ma-
trix N ∈ K [x]n×∗ is a ~s-minimal (right) kernel basis of F
if N is a kernel basis of F and N is ~s-column reduced. We
also call a ~s-minimal (right) kernel basis of F a (F, ~s)-kernel
basis.

In our earlier paper [20], a minimal kernel basis is called a
minimal nullspace basis. In this paper, the term kernel basis
is now used to emphasize the fact that we compute a basis
for a F [x]-module instead of a basis for a F (x)-vector space,
since the term nullspace basis usually refers to a basis of
some vector space as in [14].
We will need to the following result from [20] to bound

the sizes of kernel bases.

Theorem 2.9. Suppose F ∈ K [x]m×n and ~s ∈ Zn≥0 is
a shift with entries bounding the corresponding column de-
grees of F. Then the sum of the ~s-column degrees of any
~s-minimal kernel basis of F is bounded by

∑
~s.

We will also need the following result from [20] to compute
kernel bases by rows.

Theorem 2.10. Let G =
[
GT

1 ,G
T
2

]T ∈ K [x]m×n and
~t ∈ Zn a shift vector. If N1 is a

(
G1,~t

)
-kernel basis with

~t-column degrees ~u, and N2 is a (G2N1, ~u)-kernel basis with
~u-column degrees ~v, then N1N2 is a

(
G,~t

)
-kernel basis with

~t-column degrees ~v.

Also recall the cost of kernel basis computation from [20].

Theorem 2.11. Given an input matrix F ∈ K [x]m×n.
Let ~s = cdeg F and s =

∑
~s/n be the average column degree

of F. Then a (F, ~s)-kernel basis can be computed with a cost
of O∼ (nωs) field operations.

3. COLUMN BASIS VIA FACTORIZATION
In this section we reduce the problem of determining a

column basis of a polynomial matrix into three separate pro-
cesses. For this reduction it turns out to be useful to look
at following relationship between column basis, kernel basis,
and unimodular matrices.

Lemma 3.1. Let F ∈ K [x]m×n and suppose U ∈ K [x]n×n

is a unimodular matrix such that FU = [0,T] with T of full
column rank. Partition U = [UL,UR] such that F ·UL = 0
and FUR = T. Then

1. UL is a kernel basis of F and T is a column basis of F.

2. If N is any other kernel basis of F, then U∗ = [N, UR]
is also unimodular and also unimodularly transforms F
to [0,T].

Proof. Since F and [0,T] are unimodularly equivalent
with T having full column rank we have that T is a column
basis of F. It remains to show that UL is a kernel basis of
F. Since FUL = 0, UL is generated by any kernel basis
N, that is, UL = NC for some polynomial matrix C. Let
r be the rank of F, which is also the column dimension of
T and UR. Then both N and UL have column dimension
n − r. Hence C is a square (n − r) × (n − r) matrix. The
unimodular matrix U can be factored as

U = [NC,UR] = [N,UR]

[
C 0
0 I

]
,

implying that both factors [N,UR] and
[
C 0
0 I

]
are unimod-

ular. Therefore, C is unimodular and UL = NC is also a
kernel basis. Notice that the unimodular matrix [N,UR]
also transforms F to [0,T].



Remark 3.2. It is interesting to see what Lemma 3.1 im-
plies in the case of unimodular matrices. Let U ∈ K [x]n×n

be a unimodular matrix with inverse V, which, for a given

k, are partitioned as U = [UL,UR] and V =

[
VU

VD

]
with

UL ∈ K [x]n×k and VU ∈ K [x]k×n. Since U and V are
inverses of each other we have the identities

VU =

[
VUUL VUUR

VDUL VDUR

]
=

[
Ik 0
0 In−k

]
. (1)

Lemma 3.1 then gives:
1. Ik is a column basis of VU and a row basis of UL,

2. In−k is a column basis of VD and a row basis of UR,

3. VD and UL are kernel bases of each other,

4. VU and UR are kernel bases of each other.

Lemma 3.3. Let F ∈ K [x]m×n with rank r. Suppose N ∈
K [x]n×(n−r) is a right kernel basis of F and G ∈ K [x]r×n is
a left kernel basis of N. Then F = T ·G with T ∈ K [x]m×r

a column basis of F.
Proof. Let U =

[
UL,UR

]
be a unimodular matrix with

inverse V =

[
VU

VD

]
partitioned as in equation (1) and satis-

fying F ·U = [0,B] with B ∈ K [x]m×r a column basis of F.
Then F = [0,B] U−1 = B [0, I] V = BVD. Since VD is a
left kernel basis of UL, any other left kernel basis G of UL

is unimodularly equivalent to VD, that is, VD = W ·G for
some unimodular matrix W. Thus F = B ·W ·G. Then
T = B ·W is a column basis of F since it is unimodularly
equivalent to the column basis B.

Lemma 3.3 outlines a procedure for computing a column ba-
sis of F with three main steps. The first step is to compute a
right kernel basis N of F, something which can be efficiently
done using the kernel basis algorithm of [20]. The second
step, computing a left kernel basis G for N and the third
step, computing the column basis T from F and G, will
still require additional work for efficient computation. Note
that, while Lemma 3.3 does not require the bases computed
to be minimal, working with minimal kernel bases keeps the
degrees well controlled, an important consideration for effi-
cient computation.

Example 3.4. Let

F =

[
x2 x2 x+ x2 1 + x2

1 + x+ x2 x2 1 + x2 1 + x2

]
be a matrix over Z2[x]. Then the matrix

N =


x 1
1 x
x 1
0 x


is a right kernel basis of F and the matrix

G =

[
1 0 1 0

x x2 0 1 + x2

]
is a left kernel basis of N. Finally the matrix

T =

[
x+ x2 1
1 + x2 1

]
satisfies F = TG, and is a column basis of F.

4. COMPUTING A RIGHT FACTOR
Let N be an (F, ~s)-kernel basis computed using the ex-

isting algorithm from [20]. Consider now the problem of
computing a left −~s-minimal kernel basis G for N, or equiv-
alently, a right

(
NT ,−~s

)
-kernel basis GT . For this problem,

the kernel basis algorithm of [20] cannot be applied directly,
since the input matrix NT has nonuniform row degrees and
negative shift. Comparing to the earlier problem of com-
puting a ~s-minimal kernel basis N for F, it is interesting
to note that the original output N now becomes the new
input matrix NT , while the new output matrix G has size
bounded by the size of F. In other words, the new input
has degrees that match the original output, while the new
output has degrees bounded by the original input. It is
therefore reasonable to expect that the new problem can be
computed efficiently. However, we need to find some way to
work with the more complicated input degree structure. On
the other hand, the simpler output degree structure makes it
easier to apply order basis computation in order to compute
a
(
NT ,−~s

)
-kernel basis.

4.1 Kernel Bases via Order Bases
In order to see how order basis computations can be ap-

plied here, let us first recall the following result (Lemma 3.3
[20]) on a relationship between order bases and kernel bases.

Lemma 4.1. Let P = [PL,PR] be any (F, σ, ~s)-order ba-
sis and N = [NL,NR] be any ~s-minimal kernel basis of F,
where PL and NL contain all columns from P and N, re-
spectively, whose ~s-column degrees are less than σ. Then
[PL,NR] is a ~s-minimal kernel basis of F, and [NL,PR] is
a (F, σ, ~s)-order basis.

It is not difficult to extend this result to the following lemma
to accommodate our situation here.

Lemma 4.2. Given a matrix A ∈ K [x]m×n and some in-
teger lists ~u ∈ Zn and ~v ∈ Zm such that rdeg ~uA ≤ ~v, or
equivalently, cdeg−~vA ≤ −~u. Let P be a (A, ~v + 1,−~u)-
order basis and Q be any (A,−~u)-kernel basis. Partition
P = [PL,PR] and Q = [QL,QR] where PL and QL con-
tain all the columns from P and Q, respectively, whose −~u-
column degrees are no more than 0. Then

(i) [PL,QR] is an (A,−~u)-kernel basis, and

(ii) [QL,PR] is an (A, ~v + 1,−~u)-order basis.

Proof. We can use the same proof from Lemma 3.3 in
[20]. We know cdeg−~vAPL ≤ cdeg−~uPL ≤ 0, or equiva-
lently, rdeg APL ≤ ~v. However it also has order greater than
~v and hence APL = 0. Thus PL is generated by the kernel
basis QL, that is, PL = QLU for some polynomial matrix
U. On the other hand, QL certainly has order (A, ~v + 1)
and therefore is generated by PL, that is, QL = PLV for
some polynomial matrix V. We now have PL = PLVU and
QL = QLUV, implying both U and V are unimodular. The
result then follows from the unimodular equivalence of PL

and QL and the fact that they are −~u-column reduced.

With the help of Lemma 4.2 we can return to the problem
of efficiently computing a (NT ,−~s)-kernel basis. In fact, we
just need to use a special case of Lemma 4.2, where all the
elements of the kernel basis have shifted degrees bounded
by 0, thereby making the partial kernel basis be a complete
kernel basis.



Lemma 4.3. Let N be a (F, ~s)-kernel basis with cdeg ~s N =
~b. Then any (NT ,−~s)-kernel basis GT satisfies cdeg−~sG

T ≤
0. Let P = [PL,PR] be a

(
NT ,~b+ 1,−~s

)
-order basis, where

PL consists of all columns p satisfying cdeg−~s p ≤ 0. Then
PL is a (NT ,−~s)-kernel basis.

Proof. The column dimension of any (NT ,−~s)-kernel
basis GT equals the rank r of F. Since both F and G
are in the left kernel of N, we know F is generated by G,
and the −~s-minimality of G ensures that the −~s-row de-
grees of G are bounded by the corresponding r largest −~s-
row degrees of F. These are in turn bounded by 0 since
cdeg F ≤ ~s. Therefore, any (NT ,−~s)-kernel basis GT satis-
fies cdeg−~sG

T ≤ 0. The result follows from Lemma 4.2.

While Lemma 4.3 shows that a complete (NT ,−~s)-kernel
basis can be computed by computing a

(
NT ,~b+ 1,−~s

)
-

order basis, in fact we do not compute such a order basis, as
the computational efficiency can be improved by using Theo-
rem 2.10 to compute a

(
NT ,−~s

)
-kernel basis by rows. More

specifically, we can partition N into [N1,N2] with ~s-column
degrees ~b1, ~b2 respectively, compute a

(
NT

1 ,−~s
)
-kernel ba-

sis Q1 with −~s-column degrees −~s2, and then compute a(
NT

2 Q1,−~s2
)
-kernel basis Q2, then Q1Q2 is a

(
NT ,−~s

)
-

kernel basis. In order to compute the kernel bases Q1 and
Q2, we still use order basis computations but work with sub-
sets of rows rather than the whole matrix NT . We now need
to make sure that the order bases computed from subsets of
rows contain these kernel bases.

Lemma 4.4. Let N be partitioned as [N1,N2], with ~s-
column degrees ~b1, ~b2, respectively. Then we have the fol-
lowing:

1. A
(
NT

1 ,~b1 + 1,−~s
)
-order basis contains a

(
NT

1 ,−~s
)
-

kernel basis whose −~s-column degrees are bounded by
0.

2. If Q1 is this
(
NT

1 ,−~s
)
-kernel basis from above and

−~s2 = cdeg−~sQ1, then a
(
NT

2 Q1,~b2 + 1,−~s2
)
-basis

contains a
(
NT

2 Q1,−~s2
)
-kernel basis, Q2, whose −~s-

column degrees are bounded by 0.

3. The product Q1Q2 is a
(
NT ,−~s

)
-kernel basis.

Proof. To see that a
(
NT

1 ,~b1 + 1,−~s
)
-basis contains a(

NT
1 ,−~s

)
-kernel basis whose−~s-column degrees are bounded

by 0, we just need to show that cdeg−~sQ̄1 ≤ 0 for any(
NT

1 ,−~s
)
-kernel basis Q̄1 and then apply Lemma 4.2. Note

that there exists a polynomial matrix Q̄2 such that Q̄1Q̄2 =
Ḡ for any

(
NT ,−~s

)
-kernel basis Ḡ, as Ḡ satisfies NT

1 Ḡ = 0

and is therefore generated by the
(
NT

1 ,−~s
)
-kernel basis Q̄1.

If cdeg−~sQ̄1 � 0, then Lemma 2.1 forces cdeg−~s
(
Q̄1Q̄2

)
=

cdeg−~sḠ � 0,a contradiction since we know from Lemma
4.3 that cdeg−~sḠ ≤ 0.
As before, to see that a

(
NT

2 Q1,~b2 + 1,−~s2
)
-basis con-

tains a
(
NT

2 Q1,−~s2
)
-kernel basis whose −~s-column degrees

are no more than 0, we can just show cdeg−~s2Q̂2 ≤ 0 for
any

(
NT

2 Q1,−~s2
)
-kernel basis Q̂2 and then apply Lemma

4.2. Since cdeg ~sN2 = ~b2, we have rdeg−~b2N2 ≤ −~s or

Algorithm 1 MinimalKernelBasisReversed(M, ~s, ξ)

(Kernel basis computation with reversed degree structure)

Input: M ∈ K [x]k×n and ~s ∈ Zn≥0 such that
∑

rdeg ~sM ≤
ξ,
∑
~s ≤ ξ, and any (M,−~s)-kernel basis having row

degrees bounded by ~s (equivalently, having −~s-column
degrees bounded by 0).

Output: G ∈ K [x]n×∗, a (M,−~s)-kernel basis.
1:
[
MT

1 ,M
T
2 , · · · ,MT

dlog ke−1,M
T
dlog ke

]
:= MT , with

Mdlog ke,Mdlog ke−1, · · · ,M2,M1 having ~s-row degrees
in the range

[
0, 2ξ

k

]
, ( 2ξ

k
, 4ξ
k

], ..., ( ξ
4
, ξ
2
], ( ξ

2
, ξ].

2: for i from 1 to dlog ke do
3: σi :=

⌈
ξ

2i−1

⌉
+ 1;~σi := [σi, . . . , σi], number of entries

matching the row dimension of Mi;
4: end for
5: ~σ :=

[
~σ1, ~σ2, . . . , ~σdlog ke

]
;

6: N̂ := x~σ−
~b−1M;

7: G0 := In; G̃0 := In;
8: for i from 1 to dlog ke do
9: ~si := −cdeg−~sGi−1; (note ~s1 = ~s)
10: Pi := UnbalancedFastOrderBasis

(
N̂iG̃i−1, σi,−~si

)
;

11: [Gi,Qi] := Pi, where Gi is a
(
M̂i,−~si

)
-kernel basis;

12: G̃i := G̃i−1 ·Gi;
13: end for
14: return G̃i

equivalently, cdeg−~b2NT
2 ≤ −~s. Then combining this with

cdeg−~sQ1 = −~s2 we get cdeg−~b2NT
2 Q1 ≤ −~s2 using Lemma

2.1. Let Ĝ = Q1Q̂2, which is a
(
NT ,−~s

)
-kernel basis by

Theorem 2.10. Note that cdeg−~s2Q̂2 = cdeg−~sQ1Q̂2 =

cdeg−~sĜ ≤ 0.

4.2 Efficient Computation of Kernel Bases
Now that we can correctly compute a

(
NT ,−~s

)
-kernel

basis by rows with the help of order basis computation using
Lemma 4.4, we need to look at how to do this efficiently. One
major difficulty is that the order ~b+1, or equivalently, the ~s-
row degrees of NT may be unbalanced and can have degree
as large as

∑
~s. Note that the existing kernel basis algorithm

from [20] handles input matrices with unbalanced column
degrees, but not unbalanced row degrees. For example, in
the simpler special case of ~s = [s, . . . , s] having uniformly
equal entries, the sum of the row degrees is O(ns), but the
sum of column degrees can be Θ

(
n2s
)
, which puts an extra

factor n to the cost if the algorithm from [20] is used. To
overcome this problem with unbalanced ~s-row degrees, we
separate the rows of NT into blocks according to their ~s-
row degrees, and then work with these blocks one by one
successively using Lemma 4.4.
Let k be the column dimension of N and ξ be an upper

bound of
∑
~s. Since∑

cdeg ~sN =
∑

~b ≤
∑

~s ≤ ξ

by Theorem 2.9, at most k
c
columns of N have ~s-column

degrees greater than or equal to c ξ
k

for any c ≥ 1. With-
out loss of generality we can assume that the rows of NT

are arranged in decreasing ~s-row degrees. We divide NT into
dlog ke row blocks according to the ~s-row degrees of its rows,



or equivalently, divide N into blocks of columns according to
the ~s-column degrees. Let N =

[
N1,N2, · · · ,Ndlog ke−1,Ndlog ke

]
with Ndlog ke,Ndlog ke−1, . . . ,N2,N1 having ~s-column degrees
in the range [0, 2ξ/k], (2ξ/k, 4ξ/k], (4ξ/k, 8ξ/k], ..., (ξ/4, ξ/2],
(ξ/2, ξ], respectively. Let σi =

⌈
ξ/2i−1

⌉
+ 1 and ~σi =

[σi, . . . , σi] with the same dimension as the row dimension
of Ni and ~σ =

[
~σdlog ke, ~σdlog ke−1, . . . , ~σ1

]
be the orders in

the order basis computation.
To further simplify our task, we also make the order of

our problem in each block uniform. Rather than of using
NT as the input matrix, we instead use

N̂ =

 N̂1

...
N̂dlog ke

 = x~σ−
~b−1

 NT
1

...
NT
dlog ke

 = x~σ−
~b−1NT

so that a
(
N̂, ~σ,−~s

)
-order basis is a

(
NT ,~b+ 1,−~s

)
-order

basis.
In order to compute a

(
NT ,−~s

)
-kernel basis we determine

a series of kernel bases via a series of order basis computa-
tions as follows:

1. Let ~s1 = ~s. Compute an
(
N̂1, ~σ1,−~s1

)
-order basis P1

using Algorithm 2 from [19] for order basis computa-
tion with unbalanced shift. Note that here the order
~σ1 = [σ1, . . . , σ1] is uniform, an

(
N̂1, ~σ1,−~s1

)
order

basis is also
(
N̂1, σ1,−~s1

)
-order basis. Partition P1 as

P1 = [G1,Q1], where G1 is a
(
N̂1,−~s1

)
-kernel basis

by Lemma 4.4. Set G̃1 = G1 and ~s2 = −cdeg−~sG1.

2. Compute an
(
N̂2G̃1, σ2,−~s2

)
-order basis P2 and par-

tition P2 = [G2,Q2] with G2 a
(
N̂2,−~s2

)
-kernel ba-

sis. Set ~s3 = −cdeg−~s2G2 and G̃2 = G̃1G2.

3. Continuing this process, at each step i we compute a(
N̂iG̃i−1, σi,−~si

)
-order basis Pi and then partition

Pi = [Gi,Qi] with Gi a
(
N̂iG̃i−1,−~si

)
-kernel basis.

Let G̃i =
∏i
j=1 Gi = G̃i−1Gi.

4. Return G̃dlog ke, a
(
NT ,−~s

)
-kernel basis.

This process of computing a
(
NT ,−~s

)
-kernel basis is for-

mally given in Algorithm 1.

4.3 Cost of Left Kernel Basis Computation
The cost of Algorithm 1 is dominated by the order basis

computations and the multiplications N̂iG̃i−1 and G̃i−1Gi.
Let s = ξ/n.

Lemma 4.5. An
(
N̂iG̃i−1, σi,−~si

)
-order basis can be com-

puted with a cost of O∼ (nωs).

Proof. Note that Ni has less than 2i columns. Other-
wise, since cdeg ~sNi > ξ/2i, we have

∑
cdeg ~sNi > 2iξ/2i =

ξ, contradicting with
∑

cdeg ~sN =
∑~b ≤

∑
~s ≤ ξ. It fol-

lows that N̂i, and therefore N̂iG̃i−1, also have less than 2i

rows. We also have σi =
⌈
ξ/2i−1

⌉
+ 1 ∈ Θ

(
ξ/2i

)
. There-

fore, Algorithm 2 from [19] for order basis computation with
unbalanced shift can be used with a cost of O∼ (nωs).

Lemma 4.6. The multiplications N̂iG̃i−1 can be done with
a cost of O∼ (nωs).

Proof. The dimension of N̂i is bounded by 2i × n and∑
rdeg ~sN̂i ≤ 2i·ξ/2i−1 ∈ O (ξ). We also have cdeg−~sG̃i−1 ≤

0, or equivalently, rdeg G̃i−1 ≤ ~s. We can now use Theorem
2.3 to multiply G̃T

i−1 and N̂T
i with a cost of O∼ (nωs).

Lemma 4.7. The multiplication G̃i−1Gi can be done with
a cost of O∼ (nωs).

Proof. We know cdeg−~sG̃i−1 = −~si, and cdeg−~siGi =

−~si+1 ≤ 0. In other words, rdeg Gi ≤ ~si, and rdeg ~siG̃i−1 ≤
~s, hence we can again use Theorem 2.3 to multiply GT

i and
G̃T
i−1 with a cost of O∼ (nωs).

Lemma 4.8. Given an input matrix M ∈ K [x]k×n, a shift
~s ∈ Zn, and an upper bound ξ ∈ Z such that

(i)
∑

rdeg ~sM ≤ ξ,

(ii)
∑
~s ≤ ξ,

(iii) any (M,−~s)-kernel basis having row degrees bounded
by ~s, or equivalently, −~s-column degrees bounded by 0.

Then Algorithm 1 costs O∼ (nωs) field operations to compute
a (M,−~s)-kernel basis.

Note that while the upper bound ξ can be simply replaced
by
∑
~s in Lemma 4.8 and Algorithm 1 for computing a

right factor in this section, keeping it separate makes the
algorithm more general and allows it to be reused in the
next section.
It may also be informative to note again the correspon-

dence between Lemma 4.8 and Theorem 2.11, on the reversal
of the degree structures of the input matrices and the output
kernel bases.

Theorem 4.9. A right factor G satisfying F = TG for
a column basis T can be computed with a cost of O∼ (nωs).

5. COMPUTING A COLUMN BASIS
Once a right factor G of F has been computed, we are in

a position to determine a column basis T using the equation
F = TG. In order to do so efficiently, however, the degree
of T cannot be too large. We see that this is the case from
the following lemma.

Lemma 5.1. Let F and G be as before and ~t = −rdeg−~sG.
Then

(i) the column degrees of T are bounded by the correspond-
ing entries of ~t;

(ii) if ~t has r entries and ~s ′ is the list of the r largest
entries of ~s, then ~t ≤ ~s ′.

Proof. Since G is −~s-row reduced, and rdeg−~sF ≤ 0,
by Lemma 2.1 rdeg−~tT ≤ 0, or equivalently, T has column
degrees bounded by ~t.
Let G′ be the −~s-row Popov form of G and the square

matrix G′′ consist of only the columns of G′ that contains
pivot entries, and has the rows permuted so the pivots are
in the diagonal. Let ~s ′′ be the list of the entries in ~s
that correspond to the columns of G′′ in G′. Note that
rdeg−~s ′′G

′′ = −~t ′′ is just a permutation of −~t with the



same entries. By the definition of shifted row degree, −~t ′′
is the sum of −~s ′′ and the list of the diagonal pivot degrees,
which are nonnegative. Therefore, −~t ′′ ≥ −~s ′′. The result
then follows as ~t is a permutation of ~t ′′ and ~s ′ consists of
the largest entries of ~s.

Having determined a bound on the column degrees of T,
we are now ready to compute T. This is done again by
computing a kernel basis using an order basis computation
as before.

Lemma 5.2. Let ~t∗ =
[
0, . . . , 0,~t

]
∈ Zm+r. Then any([

FT ,GT
]
,−~t∗

)
-kernel basis has the form

[
V
T̄

]
, where V ∈

Km×m is a unimodular matrix and
(
T̄V −1

)T is a column
basis of F.

Proof. Note first that the matrix
[
−I
TT

]
is a kernel basis

of
[
FT ,GT

]
and is therefore unimodularly equivalent to any

other kernel basis. Hence any other kernel basis has the form[
−I
TT

]
U =

[
V
T̄

]
, with U and V = −U unimodular. Thus

T =
(
T̄V −1

)T . Also note that the −~t∗ minimality forces the
unimodular matrix V in any

([
FT ,GT

]
,−~t∗

)
-kernel basis

to be of degree 0, the same degree as I.

Example 5.3. Let

F =

[
x2 x2 x+ x2 1 + x2

1 + x+ x2 x2 1 + x2 1 + x2

]
,

a matrix over Z2[x], and

G =

[
1 0 1 0

x x2 0 1 + x2

]
,

a minimal left kernel basis of a right kernel basis of F. In
order to compute the column basis T satisfying F = TG,
first we can determine cdeg T ≤ ~t = [2, 0] from Lemma 5.1.
Then we can compute a

[
0, 0,−~t

]
-minimal left kernel basis

of
[
F
G

]
. The matrix

[
V, T̄

]
=

[
1 0 x+ x2 1
1 1 1 + x 0

]
is such a left kernel basis. A column basis can then be com-
puted as

T = V −1T̄ =

[
x+ x2 1
1 + x2 1

]
.

In order to compute a
([

FT ,GT
]
,−~t∗

)
-kernel basis, we can

again use order basis computation as before, as we again
have an order basis that contains a

([
FT ,GT

]
,−~t∗

)
-kernel

basis.

Lemma 5.4. Any
([

FT ,GT
]
, ~s+ 1,−~t∗

)
-order basis con-

tains a
([

FT ,GT
]
,−~t∗

)
-kernel basis whose −~t∗-row degrees

are bounded by 0.
Proof. As before, Lemma 4.2 can be used here. We just

need to show that a
([

FT ,GT
]
,−~t∗

)
-kernel basis has −~t∗-

row degrees no more than 0. This follows from the fact that

rdeg−~t∗

[
I

TT

]
≤ 0.

Algorithm 2 ColumnBasis(F)

Input: F ∈ K [x]m×n.
Output: a column basis of F.
1: ~s := cdeg F;
2: N := MinimalKernelBasis (F, ~s);
3: G :=

(
MinimalKernelBasisReversed(NT , ~s,

∑
~s)
)T ;

4: ~t∗ := [0, . . . , 0,−rdeg−~sG], with rowDimension(G)
number of 0’s ;

5:
[
V
T̄

]
:= MinimalKernelBasisReversed(

[
FT ,GT

]
,~t∗,

∑
~s)

with a square V ;
6: T =

(
T̄V −1

)T ;
7: return T;

In order to compute a
([

FT ,GT
]
,−~t∗

)
-kernel basis effi-

ciently, we notice that we have the same type of problem
as in Section 4.2 and hence we can again use Algorithm 1.

Lemma 5.5. A
([

FT ,GT
]
,−~t∗

)
-kernel basis can be com-

puted using Algorithm 1 with a cost of O∼ (nωs), where
s = ξ/n is the average column degree of F as before.

Proof. Just use the algorithm with input
([

FT ,GT
]
,~t∗, ξ

)
.

We can verify the conditions on the input are satisfied.

• To see that
∑

rdeg ~t∗
[
FT ,GT

]
≤ ξ, note that from

~t = −rdeg−~sG and Lemma 2.2 that cdeg ~tG ≤ ~s,
or equivalently, rdeg ~tG

T ≤ ~s. Since we also have
rdeg FT ≤ ~s, it follows that rdeg ~t∗

[
FT ,GT

]
≤ ~s.

• The condition
∑
~t∗ ≤ ξ follows from Lemma 5.1.

• The third condition holds since
[
−I
TT

]
is a kernel basis

with row degrees bounded by ~t∗.

With a
([

FT ,GT
]
,−~t∗

)
-kernel basis [V T , T̄T ]T computed,

a column basis is then given by T =
(
T̄V −1

)T .
The complete algorithm for computing a column basis is

then given in Algorithm 2.

Theorem 5.6. A column basis T of F can be computed
with a cost of O∼ (nωs), where s = ξ/n is the average column
degree of F as before.

Proof. The cost is dominated by the cost of the three
kernel basis computations in the algorithm. The first one is
handled by the algorithm from [20] and Theorem 2.11, while
the remaining two are handled by Algorithm 1, Lemma 4.8
and Lemma 5.5.

6. A SIMPLE IMPROVEMENT
When the input matrix F has column dimension n much

larger than the row dimension m, then we can separate F =[
F1,F2, . . . ,Fn/m

]
into n/m blocks, each with dimension

m ×m, assuming without loss of generality n is a multiple
of m, and the columns are arranged in increasing degrees.
We then do a series of column basis computations. First
we compute a column basis T1 of [F1,F2]. Then compute
a column basis T2 of [T1,F3]. Repeating this process, at
step i, we compute a column basis Ti of [Ti−1,Fi+1], until
i = n/m− 1, when a column basis of F is computed.



Lemma 6.1. Let s̄i = (
∑

cdeg Fi) /m. Then at step i,
computing a column basis Ti of [Ti−1,Fi+1] can be done
with a cost of O∼ (mω(s̄i + s̄i+1)/2) field operations.

Proof. From Lemma 5.1, the column basis Ti−1 of
[F1, . . . ,Fi] has column degrees bounded by the largest col-
umn degrees of Fi, hence

∑
cdeg Ti−1 ≤

∑
cdeg Fi. The

lemma then follows by combining this with the result from
Theorem 5.6 that a column basis Ti of [Ti−1,Fi+1] can be
computed with a cost of O∼ (mω ŝi), where

ŝi =
(∑

cdeg Ti−1 +
∑

cdeg Fi+1

)
/2m ≤ (s̄i + s̄i+1)

2
.

Theorem 6.2. If s = (
∑

cdeg F) /n, then a column basis
of F can be computed with a cost of O∼ (mωs).

Proof. Summing up the cost of all the column basis
computations,

n/m−1∑
i=1

O∼ (mω (s̄i + s̄i+1) /2)

⊂ O∼
mω

n/m∑
i=1

s̄i

 = O∼
(
nmω−1s

)
,

since
∑

cdeg F =
∑n/m
i=1 (ms̄i) = ns.

Remark 6.3. In this section, the computational efficiency
is improved by reducing the original problem to about n/m
subproblems whose column dimensions are close to the row
dimension m. This is done by successive column basis com-
putations. Note that we can also reduce the column dimen-
sion by using successive order basis computations, and only
do a column basis computation at the very last step. The
computational complexity of using order basis computation
to reduce the column dimension would remain the same, but
in practice it may be more efficient since order basis compu-
tations are simpler.

7. CONCLUSION
In this paper we have given a fast, deterministic algorithm

for the computation of a column basis for F having complex-
ity O∼ (nωs) field operations in K with s an upper bound
for the average column degree of F. Our methods rely on a
special factorization of F into a column basis and a kernel
basis. These in turn are computed via fast kernel basis and
fast order basis algorithm of [20, 19]. When these computa-
tions involve the multiplication of polynomial matrices with
unbalanced degrees then they use the fast method for such
multiplications given in [20].
In a later publication we will show how this column basis

algorithm can be used in efficient deterministic computa-
tions of matrix determinant, Hermite form, and computa-
tions of column reduced form and Popov form for matrices
of any rank and any dimension.
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