
Bohemian Matrix Geometry
Robert M. Corless

rcorless@uwaterloo.ca

Cheriton School of Computer Science

University of Waterloo

Canada

George Labahn

glabahn@uwaterloo.ca

Cheriton School of Computer Science

University of Waterloo

Canada

Dan Piponi

dan.piponi@epicgames.com

Epic Games

USA

Leili Rafiee Sevyeri

leili.rafiee.sevyeri@uwaterloo.ca

Cheriton School of Computer Science

University of Waterloo

Canada

ABSTRACT
A Bohemian matrix family is a set of matrices all of whose entries

are drawn from a fixed, usually discrete and hence bounded, subset

of a field of characteristic zero. Originally these were integers—

hence the name, from the acronym BOunded HEight Matrix of

Integers (BOHEMI)—but other kinds of entries are also interesting.

Some kinds of questions about Bohemian matrices can be answered

by numerical computation, but sometimes exact computation is

better. In this paper we explore some Bohemian families (symmet-

ric, upper Hessenberg, or Toeplitz) computationally, and answer

some open questions posed about the distributions of eigenvalue

densities.

CCS CONCEPTS
•Computingmethodologies→Hybrid symbolic-numericmeth-
ods;Linear algebra algorithms; Symbolic calculus algorithms.
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1 INTRODUCTION
A Bohemian matrix family is a set of matrices all of whose entries

are drawn from a fixed finite population, usually integers, algebraic

integers, or Gaussian integers. The name “Bohemian” was invented

in 2015 at the Fields Institute Thematic Year in Symbolic Com-

putation; the mnemonic is useful because it highlights searching
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Figure 1: Eigenvalues of 5·10
6 dimension𝑚 = 8 matrices with

entries chosen uniformly at random among the population
𝑃 = {−1, 0, 1}. We see that the uniform distribution as𝑚 → ∞
result of [37] is evident already. As𝑚 increases, the “holes”
close up, and the relative percentage of the real eigenvalues
(which extend past the

√
𝑚 disk radius) becomes negligible.

for commonality among features of matrices with discrete pop-

ulations. Our original interest was for software testing, and as a

testing ground for optimization over (in search of improved com-

putational bounds for certain quantities, such as the growth factor

in Gaussian elimination with complete pivoting, or the departure

from normality). Bohemian matrices are a specialization in the sense
of Pólya, and have led now to several workshops, at Manchester

in 2018, at ICIAM in 2019, and at SIAM in 2021. There have been

several publications since, including [13], [21], [20], [12], and the

very interesting [3] which explores a connection to the asymptotic

spectral theory of Toeplitz matrices [35], which is very much alive

today: see e.g. [1, 7, 8, 22] and [6].

The study of matrices with rational integer entries is very old,

and the literature too vast to survey coherently here. We instead

point to the early survey by Olga Taussky–Todd [39] as an entry

point. We are also going to be working with Gaussian integer and

algebraic integer entries; see for instance [10] for work on general-

ized Hadamard matrices where the entries are roots of unity.

The study of random matrices where the entries are drawn

from discrete distributions is also very advanced; see [37, 38] for

instance. Those papers established that dense square matrices of

dimension𝑚 whose entries are drawn from a discrete population,
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Figure 2: Eigenvalues of all dimension 𝑚 = 31 skew-
symmetric tridiagonal matrices with entries drawn from
𝑃 = {−1, 𝑖, 1,−𝑖}, the fourth roots of unity. Picture courtesy
Aaron Asner. We explain the unexpected eigenvalue geome-
try in this paper.

say −1, 0, and 1, have eigenvalues that are asymptotically uniformly
distributed on a disk of radius

√
𝑚. See Figure 1.

However, if the matrices are structured, other pictures arise, and
little is known about the asymptotic distributions of their eigen-

values. For instance, in [17] we find skew-symmetric tridiagonal
matrices with unexpectedly square distributions, or even diamond-

shaped, as in Figure 2. We will explain some of these shapes in this

paper, and prove that they will not fill out to disk shapes as𝑚 → ∞.

We will also explain some other interesting features that arise in

certain Bohemian families, including upper Hessenberg Toeplitz

Bohemians.

There is a significant connection to number theoretic works,

as well. Kurt Mahler [31] was interested in the distribution of ze-

ros of polynomials with given length (the one-norm of the vector

of coefficients) and height (the infinity-norm of the vector of co-

efficients). This is connected with the Littlewood conjecture for

polynomials [29] (How large on the unit circle must a polynomial

with −1,1 coefficients be?). The numerical visualization of zeros

of polynomials with coefficients 0 or 1 was apparently first done

in [33], who proved that the limiting set was connected; later work

explained the “holes" [5] and visualizations by Peter Borwein and

Loki Jörgenson made several other questions clearer [4]. See also

the web pages of John Carlos Baez and of Dan Christensen. Their

article, The Beauty of Roots, published on Baez’ website at the previ-

ous link, explains quite a few of the visible structures. Then we will

see a connection to Kate Stange’s work on Schmidt Tessellations,

https://math.katestange.net/illustration/schmidt-arrangements/. See

also [24] and [19] who connect Galois theory and visualization of

roots of polynomials (and therefore, although they do not point

this out, of eigenvalues of Bohemian matrices).

2 ORGANIZATION OF THE PAPER
In section 3 we mention a few research questions about Bohemian

matrices that may be interesting to the computer algebra commu-

nity. In section 4 we discuss specific matrix structures and give our

main theorems, which describe and explain the constraints that

these structures place on the spectra. In particular, we give a new

(and surprising) theorem about eigenvalues of upper Hessenberg

Toeplitz matrices which gives an essentially complete explanation

of the “fractal” edges seen in some of the figures. This is based on

the well-known asymptotic spectral theory of Toeplitz matrices,

but extended to the case where we have an uncountable number of

such matrices in the limit as the dimension goes to infinity. This

theorem extends a result of Schmidt and Spitzer, which is concerned

with Toeplitz matrices whose “symbol” is a Laurent polynomial

and with certain semi-algebraic curves that arise from that Laurent

polynomial, to matrices whose symbol is a Laurent series.
Together these theorems explain the appearance of some of

these figures.We also explain some of the “algebraic number starscape"

appearance [24] and connect to Schmidt tesselations [36] by mak-

ing an approximate computation of eigenvalues, and displaying the

results in Figure 5.

3 SOME QUESTIONS OF INTEREST
Every polynomial written in the monomial basis can be embedded

as a Frobenius companion matrix into a matrix of the same height
(the height of a matrix A, as opposed to a polynomial, is the in-

finity norm of the matrix reshaped into a vector). Therefore every

question about roots of polynomials of bounded height translates

directly into a question about eigenvalues of Bohemian matrices. It

will become clear as we go that this is one-way, that is, there are

questions of Bohemian matrices that do not translate into questions

about bounded height polynomials.

One question is “which matrices in the family have the largest

characteristic height?” The characteristic height is the height of the
characteristic polynomial; as previously noted, the characteristic

height might be exponentially larger than the matrix height. This

is so for certain upper Hessenberg Toeplitz matrices [13], where

a lower bound containing a Fibonacci number is given for the

maximum characteristic height in the family studied in that paper.

Typically, one asks these questions in an asymptotic form; one

wants answers valid in the limit as the dimension𝑚 goes to infinity.

Examples of this include work by Tao and Vu, who show that

for general unstructured matrices the distribution of eigenvalues

divided by

√
𝑚 is asymptotically uniform on the unit disk [37, 38].

This is not true for structured matrices; see e.g. [16, 17] where skew-

symmetric tridiagonal matrices (independently of dimension, so no

scaling is needed) are seen to be confined to a diamond shape. We

explain that mystery in this paper, using a century-old theorem,

which deserves to be better-known.

4 THE EFFECT OF MATRIX STRUCTURE
The first Bohemian results were on real symmetric matrices or

Hermitian matrices [41]. We look at other structures here, in order

to get another view. We begin with complex symmetric matrices.

4.1 Complex Symmetric Matrices
A complex symmetric matrix𝑨 satisfies𝑨𝑇

= 𝑨, where𝑇 is the real

transpose operation. These occur, for instance in Bézoutmatrices for

polynomials with complex coefficients. Unlike Hermitian matrices,

the eigenvalues of complex symmetric matrices need not be real.

Indeed, any matrix may be brought by similarity transformation to

a complex symmetric matrix [28, Thm 4.4.9]. In many cases this can

https://math.ucr.edu/home/baez/roots/
https://jdc.math.uwo.ca/roots/
https://math.katestange.net/illustration/schmidt-arrangements/


be done by unitary similarity; see for instance, the characterizations

of when this can be done, in [30].

Here let us examine a specific complex symmetric family, with

population −1± 𝑖 where 𝑖 = (0, 1) is the square root of −1. At dimen-

sion𝑚, such a matrix has𝑚(𝑚 + 1)/2 free entries, each of which can

be either of −1 ± 𝑖 . This gives 2
𝑚(𝑚+1)/2

such matrices; this growth

is (much) faster than exponential. Still, examining eigenvalues of

small dimension examples can tell us much. If we take𝑚 = 6, then

the number of such matrices is only 2
21
, slightly more than 2 mil-

lion. The eigenvalues of all these matrices can be computed in a

reasonable time, and plotted. As depicted in Figure 3, they seem

confined to a strip in the left-half plane.

We now prove that this will always be true at any dimension.

Theorem 4.1. If the symmetric matrix 𝑨 has dimension𝑚, en-
tries drawn from −1 ± 𝑖 , and eigenvalue 𝜆, then −𝑚 ≤ ℜ(𝜆) ≤ 0 and
−𝑚 ≤ ℑ(𝜆) ≤ 𝑚.

Proof. Write 𝑨 = −𝑬 + 𝑖𝑴 where 𝑬 = ee𝑇 is the rank-one

matrix that has all 1s, and 𝑴 is symmetric and has entries only ±1.

We use the following theorem: [Bendixon–Bromwich–Hirsch] [27,

Fact 5, p. 16-2] (original references [2, 9, 26]) Write 𝑨 = 𝑯 + 𝑖𝑺
where 𝑯 = (𝑨 + 𝑨∗

)/2 and 𝑺 = (𝑨 − 𝑨∗
)/(2𝑖). Both 𝑯 and 𝑺 are

Hermitian matrices and therefore their eigenvalues are real. Denote

the eigenvalues of 𝑯 by 𝜇1 ≥ 𝜇2 ≥ . . . ≥ 𝜇𝑚 and the eigenvalues

of 𝑺 by 𝜈1 ≥ 𝜈2 ≥ . . . ≥ 𝜈𝑚 . Then all eigenvalues 𝜆 of 𝑨 lie in the

box 𝜇𝑚 ≤ ℜ(𝜆) ≤ 𝜇1 and 𝜈𝑚 ≤ ℑ(𝜆) ≤ 𝜈1. This theorem can be

proved in several ways; see its 1951 rediscovery by Kippenhahn as

translated by [43], for instance, where a particularly elegant proof

using the numerical range Φ(𝑨, x) := x∗𝑨x is given.

For our Bohemian matrix 𝑨 = −𝑬 + 𝑖𝑴 , (𝑨+𝑨∗
)/2 = −𝑬 , while

(𝑨−𝑨∗
)/(2𝑖) = 𝑴 . A short computation shows that the eigenvalues

of −𝑬 are −𝑚 and 0 with multiplicity𝑚 − 1, and the Gerschgorin

disk theorem shows that the eigenvalues of 𝑴 lie in the union of

circles centred at 1 of radius𝑚− 1 and centred at −1 of radius𝑚− 1.

This establishes our theorem. □

Remark 1. We could have stated and proved that theorem with

greater generality. That is, the population could equally well have

been 𝑎 ± 𝑏𝑖 for real numbers 𝑎 and 𝑏 and the conclusions would

have been the same, apart from scaling. For simplicity of exposition,

we used only this specific example.

We now use this method to explain why skew-symmetric tridi-

agonal matrices with population 1 and 𝑖 (the population considered

in [17] and [16]) are confined to a diamond shape.

4.2 Squares, Diamonds, and other shapes
Theorem 4.2. Let 𝑨 be a square skew-symmetric matrix of di-

mension 𝑚 and population −1 ± 𝑖 . Then its eigenvalues 𝜆 satisfy
−2 ≤ ℜ(𝜆) ≤ 2 and −2 ≤ ℑ(𝜆) ≤ 2, and are thus confined to a
square.

Proof. A matrix𝑨 from this family can be written as𝑨 = 𝑺 + 𝑖𝑻
where the superdiagonal of 𝑺 is −1 and the superdiagonal of 𝑻 is

±1. Both are skew-symmetric: 𝑺𝑇 = −𝑺 and 𝑻𝑇 = −𝑻 . We have (𝑨 +

𝑨𝐻
)/2 = 𝑖𝑻 and (𝑨−𝑨𝐻

)/(2𝑖) = −𝑖𝑺 . Application of the Gerschgorin
circle theorem to each of these shows that the eigenvalues of either

matrix are confined to the interval −2 ≤ 𝜇 ≤ 2. By the theorem of

Figure 3: All eigenvalues with ℑ(𝜆) ≥ 0 of symmetric dimen-
sion𝑚 = 6 matrices with entries −1 ± 𝑖. The set is symmetric
about the real axis. We see the eigenvalues apparently con-
fined to the strip −6 ≤ ℜ(𝜆) ≤ 0, and bounded below and
above by −6 ≤ ℑ(𝜆) ≤ 6. There are several other unexplained
features of this eigenvalue distribution.

Bendixon–Bromwich–Hirsch cited earlier, the eigenvalues of 𝑨 are

confined to the square −2 ≤ ℜ(𝜆) ≤ 2, −2 ≤ ℑ(𝜆) ≤ 2. □

Remark 2. Skew-symmetric tridiagonal matrices with population

1 and 𝑖 are confined to a diamond |ℜ(𝜆)|+|ℑ(𝜆)|≤
√

2. To see this,

multiply the matrix by −1 + 𝑖 , which rotates its eigenvalues by 𝜋/4

and stretches them by

√
2; but now the matrix population is −1 ± 𝑖

and it’s still skew-symmetric, and hence confined to the square as

described above. Rotate the square back by 𝜋/4 and shrink by

√
2,

and the result follows.

We have therefore explained the non-round shape of the eigen-

value distribution of these matrices.

4.3 Upper Hessenberg Matrices
An upper Hessenberg matrix is a matrix of the form

ℎ1,1 ℎ1,2 ℎ1,3 . . . ℎ1,𝑚

ℎ2,1 ℎ2,2

.
.
.

.

.

.

0 ℎ3,2 ℎ3,3

.
.
.

.

.

.

.

.

.

.
.
.

.
.
.

.

.

.

0 . . . 0 𝑢𝑚,𝑚−1 𝑢𝑚,𝑚


. (4.1)

That is, it is zero below the first subdiagonal. If any entry of the

first subdiagonal is zero, then the matrix is said to be reducible,

because the matrix then separates into blocks containing distinct

eigenvalues. Here we restrict our attention to irreducible matrices

and indeed we specify that all the subdiagonal entries ℎ 𝑗+1, 𝑗 = −1.

If the subdiagonal entries all have |ℎ 𝑗+1, 𝑗 |= 1 we say that the matrix

is unit upper Hessenberg. If all the diagonal entries are zero, we
say that it is Zero Diagonal.

Many populations have zero as their mean value (e.g. {−1, 1} or
indeed roots of unity; or {−1, 0, 1}). In that case, the eigenvalues are

typically symmetric about zero and a simplified picture is obtained

simply by setting all the diagonal entries to zero, in which case the

Gerschgorin circles are all centred at 0. Sometimes we will have



Figure 4: Eigenvalues of a sample of 5 million upper Hessen-
berg matrices of dimension𝑚 = 5 matrices with population
cube roots of unity. The image is visually indistinguishable
from the density plot of all 14, 348, 907unit upperHessenberg
zero diagonal matrices of dimension𝑚 = 6.

to transform back to the nonzero diagonal case, but a surprising

amount of information is retained even with the simplification of

insisting on a zero diagonal.

4.4 Rayleigh Quotients
Recall the Rayleigh Quotient:

𝑟 =

y𝑇𝑨x
y𝑇 x

. (4.2)

If x is an approximate eigenvector, and y𝑇 an approximate left

eigenvector, then this quotient is a least-squares approximation to

an eigenvalue of 𝑨. If we replace 𝑨 by 𝑨−1
above, then this is an

approximation to an eigenvalue of 𝑨−1
, and typically the largest

one; this of course is the reciprocal of the smallest eigenvalue of 𝑨.
We will consider this not as an eigenvalue approximation, but

as a process in its own right, and plot the results of a single iteration

of this on a Bohemian family, with both y and x taken to be the

first elementary vectors. Thus the result is the top left corner of

the inverse of our Bohemian matrix. See Figure 5. This can also

be computed by the recurrence relation (4.6), as the ratio of two

determinants, from Cramer’s rule:

𝑟 =

𝑄𝑚(0; 𝑡1, 𝑡2, . . . , 𝑡𝑚−1)

𝑄𝑚−1(0; 𝑡1, 𝑡2, . . . , 𝑡𝑚−2)

(4.3)

Perhaps surprisingly to a numerical analyst, this offers an effective

way to perform this computation when the population consists

of small Gaussian integers, which can be represented as complex

“flints” and are not subject to rounding error when ring arithmetic

is carried out in floats. In this case the only division occurs at the

end, and so rounding error is trivial. Even with roots of unity, the

rounding errors are generally not of serious consequence.

Figure 5: Density plot of the upper left corner element of𝑨−1

where𝑨 is sampled randomly from the 8 by 8 upper Hessen-
berg Bohemian (not unit or zero diagonal) family with pop-
ulation cube roots of unity. There are 3

43 > 3.2 · 10
20 such

matrices; we sampled only 2 · 10
7 of these and gave a density

plot on a 2048 by 2048 grid, enhanced by anti-aliased point
rendering.

What we are computing here is representable in (if cube roots

of unity are used) Q(

√
−3), and moreover the rational numbers in-

volved will not have overly large values. This suggests that the ap-

pearance in Figure 5 can be explained as Schmidt arrangements, as

done by Katherine Stange. See her blog at https://math.katestange.

net/, but note in particular [36] and her papers previously cited.

4.5 Unit upper Hessenberg and Toeplitz zero
diagonal matrices

We will use the following Theorem repeatedly, to ensure that we

see all the eigenvalues of the family in the window of the plot.

Theorem 4.3. Suppose that every entry of a unit upper Hes-
senberg zero diagonal matrix H has magnitude at most 𝐵: that is,
|ℎ𝑖, 𝑗 |≤ 𝐵. Then every eigenvalue 𝜆 of H is bounded independently of
dimension by

|𝜆 |≤ 1 + 2

√
𝐵 . (4.4)

Proof. The proof uses an idea already present in [35]: namely,

one chooses a diagonal matrix 𝑫 = diag(1, 𝑟 , 𝑟2, . . . , 𝑟𝑚−1
) with a

free parameter 𝑟 > 1 and considers the similar matrix 𝑫𝑯𝑫−1
,

which therefore has the same eigenvalues as 𝑯 . Suppose, without

loss of generality, that the subdiagonal entries of the zero diagonal

unit upper Hesssenberg 𝑯 are all −1. Then

𝑫𝑯𝑫−1
=



0 ℎ1,2/𝑟 ℎ1,3/𝑟
2 . . . ℎ1,𝑚/𝑟𝑚−1

−𝑟 0 ℎ2,3/𝑟 ℎ2,𝑚/𝑟𝑚−2

0 −𝑟 0 ℎ3,4/𝑟
.
.
.

.

.

.

.
.
.

.
.
.

.

.

.

0 . . . 0 −𝑟 0


. (4.5)

The Gerschgorin disk for the first row has radius at most 𝐵/(𝑟−1) by

comparison with a geometric series; the second and all subsequent

rows have the bound 𝑟 + 𝐵/(𝑟 − 1) for the radius which is larger

because 𝑟 > 1. To minimize this bound, we write it as 1 + 𝑟 − 1 +

𝐵/(𝑟 − 1) and use the AGM inequality to say that this is minimized

https://math.katestange.net/
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Figure 6: Density plot of eigenvalues of all 1, 048, 576 upper
Hessenberg Toeplitz matrices of dimension 11 with zero di-
agonal, −1 subdiagonal, and population ±1, ±𝑖 (fourth roots
of unity) otherwise. Brighter colours correspond to higher
density.

when 𝑟 − 1 = 𝐵/(𝑟 − 1) or 𝑟 = 1 +

√
𝐵; this gives the value of the

Gershgorin radius as 1 + 2

√
𝐵, as desired. □

Remark 3. This is the only Gerschgorin-like theorem that we are

aware of that gives a bound for eigenvalues which is independent

of the dimension and depends on the square root of the bound for

the entries in the matrix instead of the more usual linear power of

the bound. Of course, if one multiplies a matrix 𝑨 by a constant

factor, then the eigenvalues must also be multiplied by that factor;

but we cannot perform such a multiplication here and remain in

the class of unit upper Hessenberg matrices.

A Toeplitz matrix 𝑻 has constant elements on every diagonal,

that is, 𝑡𝑖, 𝑗 = 𝑡0, 𝑗−𝑖 . The authors of [13] found that the Toeplitz sub-

set of unit upper Hessenberg matrices maximized the characteristic
height, and so decided to study that subset directly; it contains only

exponentially many elements (#𝑃𝑚−1
, rather than #𝑃𝑂(𝑚2

)
) and has

several other interesting features. For large dimension, the spectral

theory connects to the well-known asymptotic spectral theory for

Toeplitz matrices.

Remark 4. “Well-known” is not the same as “everyone knows".

The major results of this area include the surprising fact that eigen-

values of finite-dimensional Toeplitz matrices do not approach the

eigenvalues of the infinite-dimensional Toeplitz operator, although

the pseudospectra do [7, 8, 15, 18, 42]. We shall not be concerned

with pseudospectra in this paper, although they play a role for com-

putation of eigenvalues of even modestly large dimension Toeplitz

matrices.

At the edges of Figures 6 and 7 we see clear indication of frac-

tal gasket-like structures. When the population is third roots of

unity, we see Sierpinski gaskets; when the population only has two

elements, we see pairs, and pairs of pairs, recursively; with five-

element populations we see recursive pentagonal structures. The

phenomenon seems universal for upper Hessenberg Toeplitz ma-

trices. We conjectured that there must be a recursive construction

underlying this, and we now know this to be true.

Figure 7: Density plot of eigenvalues of all 262, 144upperHes-
senberg Toeplitz matrices of dimension 10 with zero diago-
nal, −1 subdiagonal, and population ±1 ± 𝑖 (four corners of
a square) otherwise. Brighter colours correspond to higher
density.

The keys to understanding this are the spectral theory of Toeplitz

matrices, the improved Gerschgorin bound of Theorem 4.3, and a

recurrence for the characteristic polynomials. Denote the character-

istic polynomial of a unit upper Hessenberg zero diagonal matrix

by 𝑄 : then we have

𝑄𝑛+1(𝑧; 𝑡1, 𝑡2, . . . , 𝑡𝑛) =𝑧𝑄𝑛(𝑧; 𝑡1, 𝑡2, . . . , 𝑡𝑛−1)

−
𝑛∑

𝑘=1

(−1)
𝑘𝑡𝑘𝑄𝑛−𝑘 (𝑧; 𝑡1, 𝑡2, . . . , 𝑡𝑛−𝑘−1

) .

(4.6)

There is a somewhat more complicated recurrence relation for a

general upper Hessenberg matrix; see [13]. Proofs can be found

in many places, for instance [11]. The final term is ±𝑡𝑛𝑄0(𝑧) and

𝑄0(𝑧) = 1.

Using Theorem 4.3 with 𝑟 = 2 (this is also used in [3]) we find

the Toeplitz symbol to be

− 2

𝑒𝑖𝜃
+

∑
𝑘≥1

𝑡𝑘

2
𝑘
𝑒𝑖𝑘𝜃 . (4.7)

The eigenvalues of any𝑚-dimensional Toeplitz matrix with a

finite symbol—that is, a Laurent polynomial—are known to con-

verge as𝑚 → ∞ to the union of several algebraic curves described

by the Schmidt–Spitzer theorem [27, Ch. 22]. For brevity we will

write SS for Schmidt–Spitzer hereafter. An improved algorithm for

computing these curves is given in [6], which we have implemented.

For convenience, we state the SS theorem here.

Theorem 4.4. Given the Laurent polynomial

𝑓 (𝑧) =

ℎ∑
𝜈=−𝑞

𝑎𝜈𝑧
𝜈

(4.8)

where 𝑞 > 0, ℎ > 0 and 𝑎−𝑞𝑎ℎ ̸= 0, and given 𝜆 ∈ C, define the
polynomial

𝑄(𝜆; 𝑧) = 𝑧𝑞 (𝑓 (𝑧) − 𝜆) . (4.9)

Denote the moduli of its 𝑞 + ℎ zeros counted according to multiplicity
by 𝛼 𝑗 for 1 ≤ 𝑗 ≤ 𝑞 + ℎ. Assume that they have been ordered so
that 𝛼1 ≤ 𝛼2 ≤ · · · ≤ 𝛼𝑞+ℎ . Then 𝜆 ∈ Λ, that is the set of SS points,
if and only if the 𝑞th largest and (𝑞 + 1)st largest roots have the



same magnitude: 𝛼𝑞 = 𝛼𝑞+1. Recall that 𝑞 is fixed by the Laurent
polynomial.

Proof. See [35]. One key piece is to use Rouché’s theorem and

a contour integral for a winding number; the polynomial nature

of the symbol is essential. The behaviour of the nonpolynomial

case is usually quite different, and connect with pseudospectra.

The proofs in that paper also typically assume that eigenvalues are

simple, which is generically true. For us, multiple eigenvalues have

nonzero but typically exponentially small probability. Extensions

to this theorem such as in [22] use more sophisticated ideas. □

What we observed experimentally, as demonstrated in Figure 8,

is that the SS curves themselves seem to converge rapidly (basically

already for dimension 𝑛 = 𝑚) as we add new sequence elements 𝑡𝑘 .

This is in spite of the known sensitivity of eigenvalues of Toeplitz

matrices to perturbations; indeed the sensitivity is exponential in

the dimension of the matrix. Why, then, do we see convergence, in

this case?

The following sequence of lemmas explain how this can be true.

Lemma 1. Suppose a fixed infinite sequence 𝑡𝑘 ∈ 𝑃 is given, where
each |𝑡𝑘 |≤ 𝐵. Take 𝜌 ∈ (0, 1). The truncated Toeplitz symbols 𝑎𝑚(𝑧) =

−1/𝑧 +

∑𝑚−1

𝑘=1
𝑡𝑘𝑧

𝑘 converge in 0 < |𝑧 |≤ 𝜌 < 1 to a mereomorphic
function 𝑎(𝑧), indeed analytic in the punctured disk 0 < |𝑧 |≤ 𝜌 < 1.

Proof. Immediate, because the tail is bounded by a geometric

series. □

Lemma 2. The scaled symbols 𝑎𝑚(𝑧/𝑟 ) = −𝑟/𝑧 +

∑𝑚−1

𝑘=1
𝑡𝑘/𝑟

𝑘𝑧𝑘

converge to a function analytic in the punctured disk 0 < |𝑧 |≤ 𝜌 <

𝑟 , where now 𝜌 can be taken to be larger than 1 by taking 𝑟 >

1. Moreover, the SS curves of all the unscaled symbols 𝑎𝑚(𝑧) are
contained in the images 𝑎𝑚(𝑒𝑖𝜃 /𝑟 ) of the unit circle, which are closed
curves contained in a finite subset of the complex plane. Therefore the
SS curves are also contained in the intersection of these images over
all 𝑟 > 1.

Proof. Almost immediate, by using the same diagonal scaling

used in the proof of Theorem 4.3. □

Remark 5. It is this scaling using 𝑟 > 1 which allows us to use

symbols which are not in 𝐿∞ when 𝑟 = 1: the eigenvalues and

curves which the scaled and therefore 𝐿∞ symbols enclose are

precisely the same eigenvalues and curves as the unscaled version.

Our use of this scaling requires the matrix to have only finitely

many subdiagonals, such as being upper Hessenberg.

Theorem 4.5. The SS curves for the unscaled 𝑎𝑚(𝑧) converge in
the Hausdorff metric, in the limit as𝑚 → ∞, to a set Λ of piecewise
analytic arcs inside the image 𝑎(𝑒𝑖𝜃 /𝑟 ) for any 𝑟 > 1.

Proof. The Laurent polynomial symbols 𝑎𝑚(𝑧) obtained by trun-

cation to degree𝑚 − 1 converge uniformly to an analytic function

𝑎(𝑧) as 𝑚 → ∞ in 0 < |𝑧 |≤ 𝜌 < 1, by Theorem 2.7a in [25, Vol

I]. By Hurwitz’ theorem [40] for fixed 𝜃 ̸= 0 the zeros of the se-

quence 𝑎𝑚(𝑧)−𝑎𝑚(𝑧𝑒𝑖𝜃 ) also converge to a (possibly multiple) zero

of 𝑎(𝑧) − 𝑎(𝑧𝑒𝑖𝜃 ), for any fixed 𝜃 , and every zero of 𝑎(𝑧) − 𝑎(𝑧𝑒𝑖𝜃 )

has the appropriate number of zeros of the sequence converge to

it. If these two equal-magnitude roots, which are distinct because

𝜃 ̸= 0 and both in 0 < |𝑧 |≤ 𝜌 < 1, are the smallest (which are what

we care about, because 𝑞 = 1), then 𝜆 = 𝑎(𝑧) = 𝑎(𝑧𝑒𝑖𝜃 ) ∈ Λ, the SS

curve. □

Remark 6. This theorem partially explains why eigenvalues of the

𝑚-dimensional Toeplitz matrices with symbol 𝑎𝑚(𝑧) converge to Λ

as𝑚 → ∞. The symbols 𝑎𝑚(𝑧) converge to 𝑎(𝑧), and the number

of roots of 𝑎(𝑧) − 𝑎(𝑧𝑒𝑖𝜃 ) in any punctured disk 0 < |𝑧 |≤ 𝜌 < 1 is

finite by the regularity of 𝑎(𝑧); therefore, there exists𝑚0 so so that

the number of roots of 𝑎𝑚(𝑧)−𝑎𝑚(𝑧𝑒𝑖𝜃 ) if𝑚 ≥ 𝑚0 will be at least 1

because the finite SS curve (with all 𝑡𝑘 = 0 if 𝑘 ≥ 𝑚0) is not empty;

call the smallest magnitude root 𝑧∗𝑚 and the corresponding limiting

root 𝑧∗∞. Since, by compactness, the roots converge uniformly as

𝑚 → ∞, 𝜆∗ = 𝑎(𝑧∗∞) is close to 𝜆∗𝑚 = 𝑎𝑚(𝑧∗𝑚). Therefore, the

the eigenvalues of any Toeplitz family where we truncate to a

Laurent polynomial of degree 𝑛 > 𝑚 will be close to the same

curve. Yet this is only a partial explanation: above, we remarked

that the eigenvalues are close to the SS curves already for dimension

𝑛 = 𝑚, when the SS theorem only guarantees that as 𝑛 → ∞ the

eigenvalues will cluster around the SS curves. It is absolutely critical

that these perturbations occur in the top right corner of the matrix;

perturbations in the bottom left corner will have drastic effects on

the eigenvalues, and the resulting pictures are then explainable by

the theory of pseudospectra.

4.6 Explanation of the Fractal Appearance
Suppose for instance that the population 𝑃 of a Bohemian upper

Hessenberg zero diagonal family has three distinct elements. Then

𝑄𝑛+1(𝑧) = 𝐹𝑛(𝑧) + 𝑡𝑛 (4.10)

where 𝐹𝑛(𝑧) = 𝑧𝑄𝑛(𝑧) − ∑𝑛−1

𝑘=1
(−1)

𝑘𝑡𝑘𝑄𝑛−𝑘 is a fixed polynomial

depending only on previous 𝑡𝑘 . This final term 𝑡𝑛 perturbs that

fixed polynomial in one of (in this case) three ways. Now use a

homotopy argument: Replacing 𝑡𝑛 by 𝑠𝑡𝑛 where 0 ≤ 𝑠 ≤ 1, we see

the roots of 𝑄𝑛+1 arising by paths emanating in three directions

from the roots of 𝐹𝑛(𝑧). That is, for each root of 𝐹𝑛(𝑧), three nearby
roots of different 𝑄𝑛+1(𝑧) arise. The roots of 𝐹𝑛(𝑧) are also near the

zeros of the symbol. This explains the fractal structure.

This recursive construction is not a linear one: the structures

resembling Sierpinski gaskets seen in the close-up in Figure 9 are

clearly not rigid triangles, but rather have been distorted into curved

shapes. Nonetheless we believe the above explanation is one way

of understanding why this structure arises.

5 ON VISUALIZATION
Most of the figures in this present paper use only the simplest

techniques of visualization: Figures 1 and 2 show colourized density

plots of eigenvalues in the complex plane, about which more in a

moment. Figure 3 is a simple plot. Figure 9 is a greyscale density plot

on an 800 by 800 grid. Figures 6 and 7 are colourized density plots,

where the colouring scheme was chosen by using a cumulative

frequency count in order to attempt to equalize the apparent density
of eigenvalues using colour; this verges on true computer imaging

techniques but is actually very crude. The technique has some

value because it is relatively faithful to the underlying mathematics:

brighter colours correspond to higher eigenvalue density, and when

https://en.wikipedia.org/wiki/Hurwitz's_theorem_(complex_analysis)


(a) 𝑡1 = 1 (b) 𝑡1 = 1, 𝑡2 = −1 (c) 𝑡3 = 1

(d) 𝑡4 = −1 (e) 𝑡5 = −1 (f) 𝑡6 = −1

(g) 𝑡7 = −1 (h) 𝑡8 = 1 (i) 𝑡9 = 1

Figure 8: The SS curves for Toeplitz matrices with symbol
𝑎(𝑧) = −1/𝑧 +

∑𝑚−1

𝑘=1
𝑡𝑘𝑧

𝑘 for a fixed sequence of 𝑡𝑘 with |𝑡𝑘 |≤ 1

and various 𝑚. As we increase 𝑚, and thus see a new mem-
ber of the sequence, the curves are seen to converge quite
rapidly. After 𝑚 = 10 they are visually indistinguishable
from thefinal case shownhere. The red dots are the eigenval-
ues of the dimension𝑚 Toeplitzmatrixwith those entries. In
the limit as𝑚 → ∞ these are guaranteed to converge to the
SS curves but we see that they are visually there from nearly
the beginning.

Figure 9: A close-up (window −2.5 ≤ ℜ(𝜆) ≤ −1.5, 0 ≤ ℑ(𝜆) ≤
1) of an 800 by 800 density plot of the eigenvalues of all
531, 441 upper Hessenberg zero diagonal matrices with pop-
ulation cube roots of unity. The resemblance to a Sierpinski
gasket is striking.

the viridis or, better, cividis colour palette is used, the colours are

relatively even perceptually [32]. The copper palette of Figure 4

retains the correlation of brightness to density, but has a smaller

colour range.

The appearance of Figure 5, however, depends on some rather

more professional techniques, as described in [34]. The basic idea is

to estimate spatial derivative information (using TensorFlow Gradi-

ent) and use that to enhance the figure, making the density visible

even with relatively sparse data (for this figure, only 500, 000 matri-

ces were used, and the computational cost was substantially lower

than for the other figures). The technique is called “anti-aliased

point rendering.” The picture remains faithful to the underlying

mathematics, however.

Figure 10 also uses this enhancement, this time because without

it some features of the eigenvalues (relative increase in density near

the edgeℜ(𝜆) = 0, for instance) are not so easy to see.

6 CONCLUDING REMARKS
The notion of a Bohemian matrix seems to be a remarkably pro-

ductive one, with substantial connections to very active areas of

research, including visualizations in number theory, random matri-

ces in physics, numerical analysis, and computer algebra.

Many combinatorial questions about Bohemians, such as “how

many different characteristic polynomials are there” for a given Bo-

hemian family (say unit upper Hessenberg with population (−1, 0, 1)

for concreteness), can be addressed computationally, but floating-

point error is an issue. One is forced to look at polynomials (and thus

computer algebra, however implemented) because of the multiple-
eigenvalue problem: in those circumstances, numerical computation

of eigenvalues is ill-conditioned and one cannot really count things

by “clustering” nearby eigenvalues. One is often tempted, when

thinking of random matrices, to say that “multiple eigenvalues

never happen” but of course this is not true, although typically

exponentially unlikely. Supplying constraints (either on the popula-

tion or the matrix structure) significantly enhances the probability

that multiplicity will be encountered.

One topic some of us have looked at briefly is that of stable ma-

trices. Which Bohemian matrices have all their eigenvalues strictly

in the left half-plane? For those matrices 𝑨, and those matrices

only, the solutions to the linear differential equation ¤𝑦 = 𝑨𝑦 will

ultimately decay to zero. If the dimensions are large, then one may

have to consider pseudospectra (and thus matrix non-normality) as

well.

It can be unsatisfactory to compute the eigenvalues of a matrix

𝑨 and check to see if they are all in the left half plane; rounding

errors may drift some of them into the right half plane. Computation

of the characteristic polynomial, and subsequent use of the Routh–

Hurwitz criterion, seems in order. One would like to take advantage

of the compression seen for several families: rather than computing

eigenvalues of several million matrices, instead compute the roots

of the (equivalent) several thousand characteristic polynomials.

Better yet, apply the Routh–Hurwitz criterion, which is a rational

criterion, to make the decision in an arena uncontaminated by

rounding errors.

As an example, consider the symmetric matrices with popula-

tion −1± 𝑖 of dimension𝑚 = 6. We already know from Theorem 4.1

https://en.wikipedia.org/wiki/Spatial_anti-aliasing#Signal_processing_approach_to_anti-aliasing
https://en.wikipedia.org/wiki/Spatial_anti-aliasing#Signal_processing_approach_to_anti-aliasing


Figure 10: A 1024 by 1024 grid density plot of the roots of all
14, 604 stable characteristic polynomials, enhanced by anti-
aliased point rendering. The Bohemian family is upper Hes-
senberg, population −1 − 𝑖, −1, −1 + 𝑖, and dimension𝑚 = 4.
The plot is on −𝐿 − 1 ≤ ℜ(𝜆) < 𝐿 − 1, −𝐿 ≤ ℑ(𝜆) ≤ 𝐿, where
𝐿 = 1 + 2 · 2

1/4.

that all eigenvalues lie in ℜ(𝜆) ≤ 0. But are there any of the 4, 970

characteristic polynomials of these 2
21

matrices which have all of
their roots strictly in the left half plane? Yes. By applying Maple’s

Hurwitz tool to the characteristic polynomials (which were actually

computed using Python and exported in a JSON container to Maple)

we identified 1328 of these polynomials, all of whose roots were

strictly inℜ(𝜆) < 0. Indeed, the maximum real part was approxi-

mately −1.03 · 10
−5
. Corresponding to these 1328 polynomials were

966, 240 matrices, or about 46% of the total.

For upper Hessenberg matrices with population (−1,−1±𝑖) and
dimension𝑚 = 4, out of 1, 594, 323 matrices we find 365, 307 distinct

characteristic polynomials. Of these, only 14, 604 (associated with

66, 782 matrices, about 4.2% of the total) have all their roots strictly

in the left half plane. The maximum real part is about −7.1 · 10
−5
.

See Figure 10. We enhanced the figure to show more clearly the

increase in density near ℜ(𝜆) = 0. For comparison, we plot the

eigenvalues of the whole family in Figure 11. One sees immediately

that the majority of matrices in this collection have eigenvalues in

the right half-plane.

One of the referees suggested that we compare our results

on skew-symmetric tridiagonal matrices with those of [14], which

contains similar pictures. Indeed, one of their dimension 15 pictures

(their Figure 3, top right, p. 762) clearly shows rounding errors from

nilpotent matrices, as explained for the skew-symmetric context

in [16]. The authors of [14] do not appear to have noticed that the

central rose in that figure is due to rounding errors; to be sure, they

only occur at odd dimension and in particular when the dimension

is one less than a power of two, so they are easy to overlook (and

are not central to the subject of their paper anyway).

The paper [14] is described in Mathematical Reviews as “a

significant paper”, and now that we are aware of it, we agree. The

paper studies infinite tridiagonal matrices with entries drawn from

±1 at random, and some of its results clearly transfer over to our

case. In particular, they also prove that the eigenvalues must lie

in the diamond shape. They do so by appealing to a known result

about numerical range, proved in 1951 by Kippenhahn; a translation

is available in [43]. Very interestingly, these papers support our

Figure 11: A 1200 by 1200 grid unenhanced density plot of
the eigenvalues of the whole family, to compare with the
plot of Figure 10. The Bohemian family is upperHessenberg,
population −1− 𝑖, −1, −1 + 𝑖, and dimension𝑚 = 4. The plot is
on −𝐿 − 1 ≤ ℜ(𝜆) < 𝐿 − 1, −𝐿 ≤ ℑ(𝜆) ≤ 𝐿, where 𝐿 = 1 + 2 · 2

1/4.
The spirals are completely unexplained.

contention that the Bendixon–Bromwitch–Hirsch theorem should

be better known, because the result of Kippenhahn that is used is

exactly this theorem, which Kippenhahn rediscovered (apparently

independently). Moreover, none of these papers appear to know that

this result is from the first decade of the 20th century, not the middle.

To be fair, Kippenhahn then generalized the result substantially

(after rediscovering it), and gave more tools than simple boxes to

enclose eigenvalues. Indeed, the algebraic tools he invented are

now called Kippenhahn polynomials, and we are very interested to

see if they can be used in a Bohemian context.

The paper [23] cites [14] and proves that their conjecture about

the asymptotic density of the general problem they study is cor-

rect. This implies (among other things) that the spectra of all such

matrices is dense on a disk, as in the Tao and Vu result for general

matrices. It is only the peculiar special population cases studied here

and in [14] which converge instead to diamond-shaped subsets.

Finally, another of the referees asks if there are unsolved con-

jectures that arise from the pictures of this paper. The answer is

yes, certainly. Perhaps the most “itching” question has to do with

the visible spirals in figure 11. We suspect that the spirals have

something to do with the particular algebraic numbers that occur

as eigenvalues of this family, along the lines of [36] or [24]. But it’s

not so simple, and while other instances of spirals are known (see

e.g. the January image of the Bohemian Matrix 2022 calendar), they

are rare.
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Figure 12: An example SS curve, together with the eigenval-
ues of the smallest matrix in the Toeplitz family which the
Laurent polynomial symbol (A.11) applies. The closed curve
is the graph of 𝑎(𝑒𝑖𝜃 /𝑟 ) for 𝑟 = 1.75.

A MAPLE CODE
TheMaple code to implement our version of the algorithm of [6] can

be found in theMapleworkbook at https://github.com/rcorless/Bohemian-

Matrix-Geometry. The algorithm is laid out in Algorithm 1. As an

example, we chose the vector t = [1,−1, 1, 0, 1], so 𝑚 = 6. This

means that the symbol is the Laurent polynomial

𝑎(𝑧) = −1

𝑧
+

𝑚−1∑
𝑘=1

𝑡𝑘𝑧
𝑘 . (A.11)

For Figure 12 we chose 101 values of 𝜙 equally-spaced on [−𝜋, 𝜋].

We chose the scale factor 𝜌 = 1.75 because it gives a reasonably

tight bound on the SS curves when we draw the image 𝑎(𝑒𝑖𝜓 /𝑟 ) of

the unit circle under the map defined by the symbol. We also plotted

the eigenvalues of the dimension𝑚 matrix with that population—

this is the smallest matrix in the family that this symbol and SS

curve apply to. The visible agreement of eigenvalues and SS curve

is satisfactory.

Algorithm 1 Schmidt–Spitzer, specialized to unit upper Hessen-

berg zero-diagonal case

Require: Scale factor 𝜌 > 1. Vector t of Toeplitz matrix entries, of

length𝑚 − 1. 𝑡𝑘 ∈ C.
1: Construct the scaled Laurent polynomial 𝑎(𝑧) = −𝜌/𝑧 +∑𝑚−1

𝑘=1
𝑡𝑘 (𝑧/𝜌)

𝑘

2: Choose a vector of 𝜙 values in −𝜋 ≤ 𝜙 𝑗 ≤ 𝜋 . More vector

entries mean a finer resolution of the SS curves. We ignore

the case 𝜙 = 0 which requires special handling but only adds

isolated points.

3: for 𝜙ℓ ∈ 𝜙 do
4: Solve the polynomial equation 𝑧𝑎(𝑧) − 𝑧𝑎(𝑒𝑖𝜙ℓ 𝑧) = 0. There

are𝑚 roots 𝑢 𝑗 .

5: for 𝑗 to𝑚 do
6: Compute 𝜆 = 𝑎(𝑢 𝑗 ).

7: solve 𝑧𝑎(𝑧) − 𝑧𝜆. There are𝑚 roots 𝑣𝑘 again, two of which

are 𝑢 𝑗 and 𝑒
𝑖𝜙ℓ𝑢 𝑗 .

8: If |𝑢 𝑗 |= |𝑒𝑖𝜙ℓ𝑢 𝑗 | are the smallest roots in magnitude, then

𝜆 is on a SS curve. Record it and continue.

9: end for
10: end for

https://github.com/rcorless/Bohemian-Matrix-Geometry
https://github.com/rcorless/Bohemian-Matrix-Geometry
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