Load data
data = read.table("ForceEdgeStudy1NasaTLX.csv", header=TRUE, sep=",")
Filter to keep only frustration
data_filtered = data %>% filter(question == "frustration")
Merge task and technique
data_aggr = data_filtered %>% unite("task_technique", c("task", "technique"))
mdata = melt(data_aggr, id=c("participant","task_technique","score"))
Boxplot
boxplot(score~task_technique,data=mdata, xlab="Task x technique", ylab="Frustration score")
Transpose data
data_tr = mdata %>% spread(task_technique,score)
data_tr$participant = NULL
data_tr$variable = NULL
data_tr$value = NULL
kable(data_tr)
20 |
4 |
13 |
5 |
9 |
6 |
11 |
4 |
17 |
1 |
2 |
2 |
13 |
3 |
2 |
3 |
20 |
8 |
6 |
11 |
20 |
12 |
12 |
9 |
17 |
3 |
19 |
8 |
17 |
15 |
15 |
12 |
19 |
4 |
17 |
14 |
18 |
7 |
7 |
13 |
15 |
6 |
2 |
2 |
11 |
5 |
8 |
8 |
7 |
7 |
5 |
11 |
5 |
5 |
5 |
4 |
17 |
1 |
10 |
1 |
14 |
9 |
8 |
7 |
Friedman
res = friedman.test(data.matrix(data_tr))
pander(res)
Friedman rank sum test: data.matrix(data_tr)
21.94 |
3 |
6.717e-05 * * * |
Wilcoxon post-hoc analysis
res = pairwise.wilcox.test(mdata$score, mdata$task_technique, paired = TRUE, p.adj = "bonf")
kable(res$p.value)
Move_ForceEdge |
0.0065079 |
NA |
NA |
Select_Baseline |
0.0136319 |
0.8746468 |
NA |
Select_ForceEdge |
0.0049920 |
1.0000000 |
1 |
Interpretation of the results
A Friedman analysis on the NASA-TLX responses found sig- nificant effects for performance (χ2(3) = 21.9, p < 0.0001). Wilcoxon post-hoc analysis revealed participants found themselves significantly (p < 0.02) more successful using ForceEdge (median=17) compared to Baseline (median=5.5) for the Move task.