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ABSTRACT
Due to the inherent randomness of both solar power generation
and residential electrical load, jointly sizing solar panel and storage
capacity to meet a given quality-of-service (QoS) constraint is chal-
lenging. The challenge is greater when there is limited representative
historical data. We therefore propose generating synthetic solar and
load traces, corresponding to different realizations of the underlying
stochastic processes. Specifically, we compare the effectiveness of
three generative models: autoregressive moving-average (ARMA)
models, Gaussian mixture models (GMMs), and generative adversar-
ial networks (GANs) – as well as two direct sampling methods – for
synthetic trace generation. These traces are then used for robust joint
sizing by a technique described in recent work. Extensive experi-
ments based on real data show that our approach finds robust sizing
with only one year’s worth of hourly trace data. Moreover, assuming
that solar data are available, given a database of load traces, we
demonstrate how to perform robust sizing with access to only twelve
data points of load, one for each month of one year.

CCS CONCEPTS
• Mathematics of computing → Probability and statistics.
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1 INTRODUCTION
With the rapid decline in the price of solar photovoltaic (PV) sys-
tems, commercial and residential buildings are increasingly using
roof-mounted solar panels to generate energy. However, solar and
load are both intrinsically uncertain, so solar generation never ex-
actly matches consumption. This mismatch is balanced either using
storage devices (e.g., batteries) [18] or by purchases from and sales
to the electrical grid. Both storage devices and grid purchases add
to system cost, so it is important to jointly size solar generation and
storage systems to minimize this cost.

In this work, for simplicity, we consider the case of sizing solar
and storage resources (or sizing pairs) for an off-grid residential or
commercial building. Here, if solar panels and storage are under-
sized the load cannot be fully met all the time, which inevitably
decreases the comfort level of building occupants. On the other

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
e-Energy ’19, June 25–28, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6671-7/19/06. . . $15.00
https://doi.org/10.1145/3307772.3328306

hand, if they are over-sized the capital cost is higher, which is also
undesirable. The objective of our work, therefore, is to minimize the
capital cost of installing solar panels and storage subject to system
operational constraints and a quality-of-service (QoS) constraint on
the unmet load.

Determining an optimal sizing pair for a given building is chal-
lenging because we typically have access to only limited data from
the past and we want to size for the future. Even assuming that the
past data well represents the future, the QoS actually achieved de-
pends on the values realized by the solar and load processes. Thus,
we can only meet probabilistic QoS constraints. For concreteness, a
typical probabilistic QoS constraint is “the percentage of the unmet
load during a fixed period (e.g., any consecutive period of 100 days)
should not exceed a certain threshold (e.g., 5%)". We call such a
fixed period the QoS period.

Prior work by Kazhamiaka et al. [27] presented robust and practi-
cal techniques to compute a sizing pair. Their approach was found
to work well when three years of hourly solar and load traces were
available. In contrast, we consider situations where there is access to
(a) only a single year of hourly trace data, and (b) when the data is
in the form of daily or monthly aggregates of solar and load. As in
prior work, to account for uncertainty, we consider a scenario-based
robust design approach. By a scenario, we mean a possible real-
ization of future events (That is, it is a trajectory of the underlying
stochastic process.). To deal with the problem of having a limited
horizon of available data, we empirically compare several distinct
approaches to generating synthetic data traces. Moreover, to accom-
modate consumers with access to only aggregated data–the common
but more challenging case–we propose using a database consisting
of complete hourly data from different consumers, using traces from
the most-similar user in the database to parametrize our generative
models.

Our key contributions are:
• To combat the uncertainty of solar and load as well as the

limited size of historical data, we propose to first generate
synthetic traces using generative models and then feed them to
an existing robust-sizing framework. We empirically compare
the performance of three distinct generative models (ARMA,
GMMs, and GANs) with two direct sampling methods based
on real dataset in terms of the capital cost incurred by the
sizing system and the number of unmet QoS constraints in
testing years.

• We find that compared to the other two generative models,
in our dataset an ARMA-based approach can always meet
QoS constraints in testing years with only one year’s worth
of historical trace data. Compared to the direct sampling
methods, the ARMA-based approach generally incurs a lower
capital cost.

• Assuming solar data and a database of typical consumer loads
are available, our approach can determine a robust sizing with
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access to only twelve monthly load data points, which is the
typical case. In particular, the corresponding costs with the
monthly load data are 2% to 14% higher than those computed
with hourly data, which can be interpreted as the cost of hav-
ing incomplete information.

The organization of rest of the paper is as follows. In Section 2
we briefly summarize related work. In Section 3 we describe the
system model and our research focus. In Section 4 we sketch prior
work on a robust sizing framework, and in Section 5 we extend it to
accommodate aggregated data. Our generative models are presented
in Section 6, and the experimental results are shown in Section 7.
We discuss our work and conclude in Sections 8 and 9, respectively.

2 RELATED WORK
2.1 Sizing Approaches
Mathematical approaches to solar and storage sizing fall into three
general classes: mathematical programming, simulation, and analyti-
cal methods. In the first class, sizing is formulated as an optimization
problem. Here, both the sizes of solar panels and storage, as well as
the system operation–such as choosing when to charge or discharge
storage, and by how much, are treated as optimization variables (e.g.,
[15, 16, 20, 25, 30]). For example, Chen et al. [16] study storage
sizing in the context of the daily operation of a microgrid. They
formulate a mixed-integer linear program, where the renewable en-
ergy is an input forecast using historical data. Similarly, Jabr et
al. [25] formulate a two-stage robust optimization for storage sizing
on transmission networks and Cervantes et al. [15] compute the joint
sizing of solar panels and storage using a mixed-integer stochastic
optimization problem with 24-hour planning horizon. Although we
also formulate the problem as an optimization problem, we find that
using simulations to compute sizing pairs is faster in practice.

Simulation has also been used in prior work to size solar and
storage systems. Simulations require the pre-specification of the sys-
tem operation policy. Compared to optimization approaches, these
operation policies are generally non-optimal. However, simulations
can use more-accurate, complex, non-linear storage models and the
control rules specified are easy to implement in practice. Studies
using this approach include References [12, 27, 28]. We also use
simulations in our work. In contrast to prior work, the simulations
use synthetic load and solar traces.

Analytical approaches to storage sizing treat storage as an energy
buffer analogous to a data buffer in a communication network. Re-
cently, several mathematical techniques that were originally used
in data networking have been applied to energy storage, for ex-
ample, Lyapunov optimization [34] and stochastic network calcu-
lus [26]. In particular, Lyapunov optimization technique has been
exploited by Sun et al. and Guo et al.[23, 41] for storage charg-
ing/discharging control under uncertainty. The work that is closest
to ours, by Kazhamiaka et al. [27] uses stochastic network calculus
for robust sizing of solar panels and storage. This approach is also
compared with optimization and simulation methods. Prior work
using mathematical approaches either focus on storage sizing alone
or assume the availability of rich historical data (i.e., several years of
hourly data). We instead focus on joint robust sizing of solar panels
and storage with limited access to historical trace data.

2.2 Generative Models
In renewable-energy energy systems, many operational decisions
involve uncertainty due to the intrinsic randomness of renewable
generation and load. Typically, we have access to traces of sample
paths generated by the underlying random processes and sizing has
to be robust in that the QoS constraint should be met for a large
percentage of possible sample paths or realizations. Scenario-based
methods generate many such realizations and ensure that the sizing
is suitable for all or a large percentage of them. This approach is
commonly used in energy applications such as unit commitment and
frequency regulation [24, 36, 44? ]. However, the performance of
scenario-based decisions depends on the number of scenarios and
how well they follow the distribution of real data.

Commonly-used approaches for scenario generation include time-
series approaches, probabilistic approaches, and neural network
(NN)-based approaches. These generative models are usually built
based on historical data and then used to produce synthetic samples
or scenarios. In our work, we develop generative models using all
three methods. We discuss prior work using these methods next.

In a time-series approach, models such as autoregressive mov-
ing average (ARMA) and autoregressive integrated moving average
(ARIMA), capture the time correlation between data points [19, 33].
In contrast, with a probabilistic approach, data sequences are char-
acterized by probabilistic models such as Gaussian mixture mod-
els [35, 39, 42], the Weibull distribution [14, 31, 38], and Markov
chain [27].

Unlike the previous two approaches, which require either statis-
tical or probabilistic assumptions that may not hold in practice, a
NN-based approach is data-driven. They have been found to outper-
form the other two approaches when given access to rich data in-
put [10]. NN-approaches include wavelet neural networks, Bayesian
neural networks, multi-layer perceptrons, and radial basis function
networks. A systematic review on recent developments of NN ap-
plications in solar and wind energy systems can be found in Refer-
ences [10, 43].

More recently, generative adversarial networks (GANs) [9, 22,
32] have been widely adopted for generating images in computer
vision and broadly in the machine learning community. They have
been shown to outperform several state-of-the-art machine learning
approaches in some contexts. For example, Chen et al, [17] use
GANs to generate data for multiple renewable resources, and also
to generate data conditioned on different events. Given the recent
interest in this approach, we also use GANs to generate scenarios
and compare the performance of this approach with those generated
using classical (ARMA and GMM) approaches.

3 SYSTEM MODEL
In this section, we describe the system model and formulate an
optimization problem for optimal and joint sizing of solar and stor-
age under an ideal case where the realization of solar and load is
available. We then focus on robust sizing with limited data.

3.1 Notation
The setting for our work is a commercial or residential building that
is equipped with both solar panels and an energy storage device.
Denote the capacity of the storage device by C (in kWh) and the
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Figure 1: System operation at time slot t

maximum generation capacity of solar panels by B (in kW). Let the
price of one storage cell and one solar panel be πC (in $/kWh) and
πB (in $/kW), respectively. Then the capital cost of installing the
solar panels and battery is BπB +CπC .

Consider a time-slotted system with time periods indexed by
t . Denote the length of each time slot by Tu (e.g., one hour), the
horizon (i.e., the total number of time slots under study) by T , the
energy state of the battery at the end of the t-th time slot by E(t),
and its initial energy state by U . Denote the solar power generated
at time slot t by S(t); the load power at time slot t as D(t), and the
charging and discharging powers in time slot t by Pc (t) and Pd (t),
respectively.

3.2 System Operation and Problem Formulation
We now discuss how to formulate the joint sizing problem as an
optimization problem. Recall that to solve this problem we would
need to accurately forecast hourly solar and load values for the
lifetime of the equipment, approximately 25 years. Although this is
impossible in practice, formulating the problem in this way allows
us to be precise in specifying our optimization goal.

The system operation in each time slot is depicted in Fig. 1. In
each slot, part of the solar generation, denoted by Pdir (t), can be
used directly to match (possibly partly) the load, while another part,
denoted by Pc (t), can be used to charge the battery. The storage
operation is modeled using linear Model 1∗ from [29], which has
been shown to be more accurate than the commonly used linear
model, which ignores the energy limits’ dependency on the charg-
ing/discharging power. The distinguishing feature of Model1∗ is
that the effective lower (resp. upper) bound on E(t) varies linearly
with Pd (t) (resp. Pc (t)) and B. Besides solar generation, the load
can also be supported in part or totally by storage discharging with
a power denoted by Pd (t). It is possible that there is some unmet
load, represented by δt (t), if the power from both solar and storage
is insufficient.

We now state the optimization problem. Consider an ideal case
in which the realization of {S(t),D(t)}Tt=1 and the storage parame-
ters are provided. The objective of the system is to minimize the
capital cost subject to the battery operational constraints and a QoS
constraint on the unmet load. For concreteness, suppose that we
require that the percentage of the unmet load during a fixed period
(e.g., 100 days) not exceed a pre-designed threshold denoted θ (e.g.,
5%). Such a fixed period T is called the QoS period. In practice, the
value of T is specified by consumers, and the higher the value of
T the more tolerant the system. If consumers have more stringent
requirement on the system, we can set a smaller value of T (e.g., 30
days or 10 days). Then, in the ideal case, the optimization problem
can be formulated as follows:

min BπB +CπC

s .t . Pc (t) + Pdir (t) ≤ S(t)C,∀t (1)

Pdir (t) + Pd (t) = D(t) − δ (t),∀t (2)

E(0) = U (3)

E(t) = E(t − 1) + Pc (t)ηcTu − Pd (t)ηdTu ,∀t (4)

u1Pd (t) +v1B ≤ E(t) ≤ u2Pc (t) +v2B,∀t (5)

0 ≤ Pc (t) ≤ Bαc ,∀t (6)

0 ≤ Pd (t) ≤ Bαd ,∀t (7)

Pc (t)Pd (t) = 0,∀t (8)
T∑
t=1

δ (t) ≤ θ
T∑
t=1

D(t) (9)

B,C, Pdir (t),δ (t),E(t) ≥ 0,∀t , (10)

where the optimization variables are B,C, Pc (t), Pd (t), Pdir (t),δ (t),
E(t),∀t . In constraint (4), ηc ∈ (0, 1) and ηd ∈ (1,∞) are storage
charging and discharging efficiency parameters, respectively. In
constraint (5), u1,v1,u2,v2 are coefficients in the linear storage
model. In constraints (6) and (7), αc and αd are the charging and
discharging rate limit, respectively.

3.3 Our Focus: Robust Sizing with Limited Data
The problem above is a non-linear optimization problem. To solve it,
storage parameters can be derived either from the storage specifica-
tion sheet published by the manufacturer or a experimentally-derived
measurement trace. The main challenge lies in the uncertainty of
solar and load. In other words, when we need to determine the sizing
pair B and C for a given system, we are unaware of the actual values
that will be taken by solar and load. In practice, we usually have
limited historical data, especially for load, for at most one or two
years. Predicting the values of solar and load is impractical with
such limited data.

For example, consider the QoS period as 100 days and the length
of each time slot Tu = 1 hour. Then, to carry out this optimization,
we need to forecast 2 × 24 × 100 = 4800 values for solar and load, a
challenging and error-prone task. Note that since the optimal sizing
pair depends on the realization (i.e., actual values assumed by) of
S(t) and D(t), the low quality of S(t) and D(t) estimates would
inevitably lead to a poor sizing decision.

What we propose, instead, is a robust sizing design based on
scenario generation. The main idea is to compensate for a lack of
input traces by generating many synthetic solar and load scenarios
that exhibit a variety of patterns, but nevertheless share the same
statistics as historical data. Once synthetic scenarios are produced,
we can use them to find scenario-based sizing pairs. However, it is
important to realize that because the underlying model of future data
may not be exactly the same as that of historical data, it is critical to
adopt a robust sizing approach [27] to account for model uncertainty.

We focus on a practical sizing case in which consumers only have
limited data for the following two setups:

(1) Assume that consumers have one-year of hourly data for solar
and load.

(2) Assume a more common, but even more challenging case,
in which consumers only have access to aggregate data (e.g.,
monthly/daily data).

In both cases, consumers wish to size their solar and storage system
such that the load constraint (9) can be met for any future QoS



period. For the first case, we propose three different generative
models and two direct sampling methods for generating synthetic
data, and then feed data into an existing robust sizing framework.
For the second case, we use a database of available traces to find the
closest-matching consumer for the target consumer.

Note that generative models are used to produce synthetic data,
which are then used for sizing. Thus, below we first describe the
robust sizing method in Section 4. We extend this method to accom-
modate aggregate data in Section 5. Finally, generative models for
synthetic trace generation are discussed in Section 6.

4 ROBUST SIZING WITH CHEBYSHEV
BOUNDS

As we noted in the last section, robust sizing is necessary because
solar and load observed in the future is unlikely to be identical
to historical observations. Additionally, due to the limited size of
historical data, the extracted historical model may be inaccurate. The
idea of robust sizing is to explicitly account for model uncertainty
and inaccuracy.

4.1 Sizing Curves
Instead of solving an optimization problem, we assume a storage
operating policy by which solar generation is used to maximally
support load. This operating policy may be non-optimal in the sense
of the the optimization problem in Section 3.2, but is rational and
easy to implement. Specifically, in each time slot, solar generation is
first allocated to meet load. If this is insufficient, we then discharge
storage to support load under its operational constraints (4)(7)(8).
However, if there is sufficient solar generation, the excess is used to
charge storage under the storage operational constraints (4)(6)(8).

We make the realistic assumption that that the storage capacity B
can only take one of b different values from the set {B1,B2, · · · ,Bb }
with the elements in ascending order; similarly, the size of so-
lar panels C can only take on one of c different values from the
set {C1,C2, · · · ,Cc } with the elements in ascending order. Conse-
quently, there are at most bc different combinations of the sizing
pairs (B,C). We denote a pair of solar and load traces {S(t),D(t)}Tt=1
as a scenario. Given a scenario and an operating policy, we define
a sizing curve to be the set of sizing pairs (Bs ,Cs ) on the Pareto
frontier; that is, given a particular value of B (resp. C), no smaller
value of C (resp. B) meets the QoS criterion.

Note that solving the optimization problem in Section 3.2 allows
us to compute an optimal sizing pair (B,C) for any scenario as the
least-cost point on the corresponding sizing curve. However, using
this approach to compute a sizing pair in practice would require us to
accurately predict the future. Instead, we adopt the recommendation
in Reference [27], which is to (a) generate a set of potential future
scenarios; (b) use simulations to find a sizing curve for each scenario;
(c) denote the least-cost point on it as the sizing pair for that scenario,
then (d) use a multivariate Chebyshev bound to find a robust optimal
sizing pair.

Note that Kazhamiaka et al. [27] study only Gaussian mixture
models (GMMs) for generating scenarios. In contrast, we discuss
several methods for scenario generation in Section 6. Moreover,
they choose the robust optimal sizing pair as the one with the least
cost from the upper right quadrant of the ellipsoid representing

the multivariate Chebyshev bound. However, in our experimental
evaluation, we found that this approach often leads to over-sized
values of B and C, and sometimes the least cost point in the upper
right quadrant is clearly under-sized compared to other points on the
ellipse (i.e., has a lower value of both B and C compared to other
points on the ellipse, and hence dominated). Therefore, we replace
the multivariate bound with a univariate Chebyshev bound on B and
C [1]1.

4.2 Univariate Chebyshev Bounds
We begin by describing how to build a univariate Chebyshev bound
on C (the univariate Chebyshev bound on B is similar). Given N
potential future scenarios, we use simulations to construct N sizing
curves denoted by Kn ,n ∈ {1, 2, · · · ,N }. For curve Kn and a value
of B as Bi , we denote the corresponding Pareto-optimal value of
C by Kn (Bi ). Conversely, if the value of C is Cj , we denote the
corresponding Pareto-optimal value of B under Kn by K−1

n (Cj ).
For a value Bi , denote the set of all Pareto-optimal values of C by

LBi , i.e.,

LBi≜{C : K−1
n (C) = Bi ,n = 1, · · · ,N }. (11)

Let NBi = |LBi |. Note that for a certain value Bi , for some sizing
curves, there may be no feasible corresponding Ci . Thus NBi ≤ N .

Using the points in LBi , we can compute a sample Chebyshev
bound on C based on Theorem 1 in [40] as follows:

p
(
|C − µC,Bi | ≥ λσC,Bi

)
≤ min

{
1,

1
NBi + 1

⌊
(NBi + 1)(N

2
Bi

− 1 + NBi λ
2)

N 2
Bi
λ2

⌋ }
, (12)

where ⌊·⌋ is the floor operator, µC,Bi is the sample mean, σC,Bi is
the unbiased estimate of standard deviation, and λ > 0 is a QoS
parameter. Under the assumption that the values of C in LBi are
i.i.d. samples under some distribution, the above inequality provides
a probability on how the random variable C can deviate from its
sample mean.

For robust design, the value of C is set to be

C∗
Bi = µC,Bi + λσC,Bi , (13)

where the value of λ is determined as the smallest one satisfying

1
NBi + 1

⌊
(NBi + 1)(N

2
Bi
1 + NBi λ

2)

N 2
Bi
λ2

⌋
≤ 1 − γ . (14)

In this approach, a parameter γ denotes a confidence measure, which
controls the level of robustness. In particular, the higher the value of
γ , the more robust the sizing design.

Following this procedure, we find C∗
Bi

for each Bi . The pairs of
points (Bi ,C∗

Bi
) are interpolated to form a curve, which we call the

Chebyshev curve onC. Similarly, we construct the Chebyshev curve
on B by considering each fixed value ofC, and then create the Cheby-
shev bound on B similar to the inequality (12). The upper envelope
of the Chebyshev curves on B and C represents the system sizings
that are robust with respect to both B and C with the confidence
measure γ . The final robust sizing pair is determined as the one with
the minimum capital cost on the upper envelope.
1Although the full text of this submission is accessible to reviewers, it has been
anonymized for double-blind reviewing.
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Figure 2: Generation of a robust sizing pair for T = 100 days:
365 sizing curves (boosting)

Consider the QoS period T equal to 100 days. As an example,
in Fig. 2, based on 365 sizing curves, we construct the Chebyshev
curves on B and C and then find a robust sizing pair on the upper en-
velope. The scenarios in Fig. 2 are generated by boosting, described
in Section 6.4. The parameter γ is set to be 0.97.

5 SIZING FOR CONSUMERS WITH
AGGREGATED DATA

Thus far, we have assumed that consumers have access to at least one
year of hourly solar and load data (i.e, 24 × 365 data points for solar
and load respectively). In practice, hourly data is rarely available.
Moreover, some consumers are only willing to provide aggregated
data (e.g., monthly/daily) due to privacy concerns. Such aggregated
data can be easily obtained from monthly electricity bills or from
utility providers’ consumer-facing websites.

Note that the main challenge is to generate synthetic hourly data
that is representative of future load patterns of the target consumer;
once this is done, the trace pair can be fed into our robust sizing
framework described in Section 4. To address this challenge, we
match aggregated load values with loads in a database of hourly load
traces, summarized here:

Step 1: Find the most similar consumer in the database. Assume
that we have a database S consisting of N consumers with hourly
solar and load data. Using the database, we find the traces most sim-
ilar to the target consumer in terms of aggregated load consumption
and solar generation respectively. To eliminate issues with scaling,
aggregated data are first normalized to lie in [0,1].

Specifically, let the monthly aggregated data be provided by a
target consumer U . Denote the normalized load consumption and
solar generation of consumer U in the m-th month as lu,m , and
su,m , respectively. Analogously, denote the normalized load con-
sumption and solar generation of consumer i ∈ S as li,m , and si,m ,
respectively. Then, the most similar consumer is defined as:

Vl = argmin
i ∈S

∑
m∈M

|li,m − lu,m | (load) (15)

Vs = argmin
i ∈S

∑
m∈M

|si,m − su,m | (solar), (16)

where M is the set of all months.
Step 2: Generate synthetic hourly data. After obtaining the most

similar consumers Vl and Vs , we generate synthetic hourly data
based on a generative model (see Section 6) of Vl and Vs .

Step 3: Adjust the magnitude of synthetic hourly data for the
target consumer. Specifically, the generated hourly data in the m-th

month in Step 2 is multiplied by l ′u,m/l ′Vl ,m
, where the superscript ′

indicates the original un-normalized data. That is, the hourly scaling
factors are approximated by the monthly ones. As another example,
for daily aggregated load data, the generated hourly data on the d-th
day of the m-th month in Step 2 are multiplied by l ′u,dm/l ′Vl ,dm

,
where l ′u,dm is the un-normalized load on the d-th day of the m-th
month.

6 SYNTHETIC TRACE GENERATION
In this section we introduce three generative models for generat-
ing synthetic solar and load traces: autoregressive moving-average
(ARMA) models, Gaussian mixture models (GMMs), and generative
adversarial networks (GANs). For comparison, we also consider two
simple direct sampling (boosting) methods. We choose to model
solar and load separately (as opposed to jointly) to reduce model
complexity. The three generative models are very different in nature.
For ARMA, we parameterize one model per month, i.e., twelve mod-
els for one year. For GMMs, we parameterize one model per clock
time (e.g., 9am or 11pm) per season, i.e., 96 models for solar and
double that for load, which we explain in Section 6.2. For GANs,
we parameterize a unique model for one year.

6.1 Autoregressive Moving-Average Models
The time series of solar generation and load are generally non-
stationary due to diurnality, seasonality, and long-term trends [27].
For a non-stationary time series {X (t)}, a classical decomposition
model of X (t) can be represented by:

X (t) =m(t) + s(t) + Y (t), (17)

where m(t) is a slowly changing trend component, s(t) is a seasonal
component with a period d that satisfies

∑d
j=1 s(j) = 0, and Y (t) is a

stationary random noise with mean zero [13]. What we suggest is to
characterize {Y (t)} using ARMA models, which have been widely
used for modeling stationary time series data in energy applications.
In particular, an ARMA(p, q) model describes the following type of
time series:

Y (t) =

p∑
i=1

ϕiY (t − i) + ϵ(t) +

q∑
i=1

θiϵ(t − i),

where ϵt is white noise.
To extract ARMA models from real data, we first divide data into

a small number of periods (e.g., seasons or months), and then we
build an ARMA model for each period. To get the stationary times
series {Y (t)}, we need to first remove the deterministic components
m(t) and s(t).

First consider the removal of the seasonal component s(t). The
periods of a time series can be easily observed in the frequency
domain by plotting the periodogram [5]:

I (ωk ) =
1
T

����� T∑
t=1

x(t) exp{−2π (t − 1)ωk i}

�����2 ,
where {x(t)} are the observations of the time series, ωk = k/T ,k =
1, · · · , [T /2] with [·] denoting the largest integer less than or equal
to the number inside, and i is the imaginary unit.

As an example, in Fig. 3, we show the periodogram of one-year
hourly data of solar and load downloaded from the Pecan Street
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Figure 3: Periodogram of one-year hourly solar and load data

Dataport (in Austin, TX) [4]. The dominant period can be calculated
by 1/ωk , where ωk corresponds to the frequency leading to the
dominant peak in the spectral density I (ωk ). Based on this analysis,
for solar data, we find the dominant period to be 24 hours (the daily
cycle). For load data, the dominant peak is derived as one year.
Nevertheless, since we focus on having access to only one-year of
historical data, we revert to the secondary-peak period of 24 hours.

To remove the seasonal component, we use a moving average
technique. Specifically, let d = 2q, i.e., q = 12. We first estimate the
trend component as follows:

m̂(t) = (0.5x(t − q) + x(t − q + 1) + · · · + 0.5x(t + q))/d,

where q < t ≤ T − q. Next, we estimate the seasonal component
s(t). For each k = 1, · · · ,d, consider the de-trended data points
{x(k + jd) − m̂(k + jd),q < k + jd ≤ T − q, j = 1, · · · ,d}, and
denote their average by wk . Then the seasonal component sk can be
estimated as follows:

ŝk =

{
wk − 1

d
∑d
i=1wi , k = 1, · · · ,d,

ŝk−d , k > d,
(18)

which can be verified to satisfy the constraints in equation (17). The
de-seasonalized data {d(t)} can be obtained as

d(t) = x(t) − ŝ(t), t = 1, · · · ,T .

We then remove the trend component from the de-seasonalized
data {dt } by exponential smoothing. Specifically, we re-estimate the
trend component of {dt } as follows:

m̂(t) = αx(t) + (1 − α)m̂(t − 1), (19)

and m̂(1) = x(1). The parameter α ∈ (0, 1) needs to be tuned based
on data. The estimate of the residual time series that we model is
ŷ(t) = x(t) − m̂(t) − ŝ(t).

To determine the values of p and q in ARMA, a common practice
is to try different combinations of (p,q) and choose the one with
the minimum Bayesian information criterion (BIC) or Akaike in-
formation criterion (AIC). To generate synthetic time sequence, we
first use the derived ARMA model to generate the noise time series
{y(t)}, then add m̂t and ŝt back to yt to get the final time sequence.

6.2 Gaussian Mixture Models
The distribution of a GMM can be represented by

∑I
i πiN(µi ,σ

2
i ),

where I is the number of Gaussian components, πi is the probability
associated with the i-th Gaussian component, µi is the mean and
σ 2
i is the variance of the i-th Gaussian component. Empirical dis-

tributions of solar and load data usually exhibit multiple peaks as
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Figure 4: Empirical distribution of normalized load on a
working-day and solar power in the Fall season, from 12−13pm

exhibited in Figure 4, consistent with a mixture model such as a
GMM. In addition, GMMs have been extensively used for solar and
load modeling in prior work [8, 11, 35, 39, 42].

For data modeling, we divide the annual historical data of solar
and load into four seasons (i.e., spring, summer, fall, and winter).
For each season we then build a GMM for each hour. Using this
method, we implicitly assume independence between time slots. For
load data, we additionally separate working days and non-working
days since load consumption during working days is generally higher.
Therefore, there will be 24×4 = 96 GMMs for solar, and 2×24×4 =
192 GMMs for load. Such GMMs are also used in Reference [27] to
generate solar and load data.

6.3 Generative Adversarial Networks
GANs have been widely applied in computer vision and machine
learning areas for generating images [9, 22, 32, 37]. We now present
a brief sketch of their working. The original GANs proposed in [22]
are composed of two adversarial players: a generator (denoted by G)
and a discriminator (denoted by D), playing a minmax game. The
input of G are samples from a prior distribution denoted by pz (e.g.,
Gaussian), and the output G(z;θд) are generated samples in the real
data space, where θд denote the network parameters. Denote the
underlying distribution of historical data by pdata. Unlike GMMs,
GANs do not explicitly learn the expression of pdata. Denote the
distribution of the generated samples as pд . In contrast, the input
of D can be either real samples or generated samples from G, and
the output D(x ;θd ) is the probability of the sample coming from the
real data distribution pdata, where θd denote the network parameters.
The objective of G is to fool D by producing realistic samples, and
the corresponding optimization is formulated as follows:

min
G

Ez [log(1 − D(G(z)))]. (20)

In contrast, D aims to reject samples coming from G. The networks
ofG and D are usually deep neural networks, and are simultaneously
trained with the overall objective function as follows:

min
G

max
D

V (D,G) = Ex [logD(x)] + Ez [log(1 − D(G(z)))].

For illustration, in Fig. 5, we show a schematic diagram of GANs
for generating synthetic data. It can be proved that at the Nash
equilibrium pд = pdata. That is, G can produce samples exactly
following the data distribution pdata, and thus D cannot distinguish
between generated samples and real samples.



Figure 5: Architecture of GANs for generating synthetic data.

The above GANs were proposed by Goodfellow et al. [22]. It
was shown that it can suffer from ‘mode collapse,’ which causes low
output diversity. This is undesirable in our case, since we hope to
simulate as many patterns of historical data as possible. The objective
of G in the expression (20) can be understood as minimizing the
Jensen-Shannon divergence betweenpdata andpд . In [9], Wasserstein
GANs (WGANs) is proposed in which the objective ofG is replaced
by an approximation of Earth-Mover (EM) distance or Wasserstein-
1. Among several other advantages, with WGANs, the phenomenon
of mode collapse can be largely reduced.

There are several approaches to improving the performance of
GANs [21]. For example, we can assign a label for each training
sample so that the underlying distribution can be learned in a super-
vised fashion [32]. In our case, such labels can be monthly-based.
Chen et al.[17] apply conditional GANs to energy applications to
generate event-based scenarios for wind and solar. However, to en-
sure a satisfactory performance, a large amount of training data may
be required.

6.4 Direct Sampling Methods
In contrast to the generative models discussed so far, we now present
two simple direct sampling methods, by which the sample sequences
are directly collected from historical data without help of any gener-
ative models. Unlike generative models, these can only produce a
limited number of scenarios.

The first method is boosting. In this approach, for a paired one-
year historical data of solar and load, we first construct a circular
data sequence by joining their two ends. Then, starting from the
beginning of each day, we collect a block of T days to form a
scenario. Another direct sampling method is to only collect non-
overlapping data without boosting, which we call a non-boosting
method. As an example, if the QoS period T is equal to 100 days,
there will be 365 scenarios for boosting and 3 scenarios for non-
boosting in one year.

7 NUMERICAL EVALUATION
Since our sizing method cannot be directly compared to previous
sizing approaches, in this section, we compare the performance of
ARMA, GMMs, GANs, and the direct sampling methods in our
sizing problem. We use four years (2013-2016) of data representing
paired solar generation and load for 19 homes obtained from the
Pecan Street Dataport [4]. We set the unit capital cost of solar panels,
πC , to be USD 2.5/W, and the unit capital cost of storage, πB , to
be USD 460/kWh [7]. The battery model parameters, which are
summarized in Table 1, are calculated by following the calibration
steps in [29], and correspond to Lithium-Nickel-Manganese-Cobalt
battery chemistry [2, 3]. For every simulation, the initial energy state
of the battery is set to be 50% of its maximum capacity.

We consider the QoS period to be 100 days and set θ = 5%, i.e.,
the total amount of the unmet load should not exceed 5% of the total

Table 1: Battery model parameters
Parameter αc αd u1 u2 v1 v2 ηc ηd

Value 1 1 0.053 −0.125 0 1 0.99 1.11

load during 100 consecutive days. Since we focus on sizing with
one-year historical data, the experiment is implemented using leave-
three-out strategy. That is, the synthetic data produced by either
the generative models or the direct sampling methods are based on
one-year training data, and then fed to the robust sizing framework.
The resultant sizing pair is then tested on the other three years2.

The value of the confidence measure γ in equation (14) is set to
be 0.97. For each testing year, we treat the data sequence of solar
and load as circular by joining its two ends, and then check the QoS
constraint (9) for all blocks of 100 days. Thus, given a testing year
with 365 days, there are 365 scenarios to check.

The generative models are built separately for solar and load. The
parameters of each generative model are set as follows.

• ARMA: For each training year, we build an ARMA model for
each month. We set q = 1 and the maximum value of p to be
10. The best combination of (p,q) is chosen as the one with
the minimum BIC. The value of α in the equation (19) is set
as 0.4 using cross-validation.

• GMMs: The models are built based on the description in Sec-
tion 6.2. To determine the number of Gaussian components
I in each GMM, we test the value of I from 1 up to 4 and
choose the one that leads to the minimum BIC.

• GANs: We use the same parameter setup as that in [17], in
which GANs are applied to generate wind and solar data. The
model architecture is inspired by deep convolutional GANs
[37] and WGANs [9]. To fit the structure of convolutional
layers, we feed data with a 10 min resolution. We additionally
assign a label to each training sample based on months for
supervised learning. For each training year, the real data (i.e.,
input to D) are formed by normalized data collected from 19
homes in the Pecan Street dataset.

Note that generative models based on ARMA and GMMs can be fit
using data only for the target consumer. In contrast, GANs generally
require a large amount of data for good performance, which is more
than can be obtained from the target customer alone. To give GANs
a better chance, we augmented the training data used for GANs
with more data (19 homes). This gives GANs an extra advantage in
terms of training data input. Essentially, GANs are trying to learn a
general pattern of normalized data for all homes. Once the training
is completed, the synthetic traces are unnormalized for the target
consumer with respect to its maximum 10 min. amount.

With the generative models we can produce as many ‘future’
traces as we need. A large number of scenarios is preferred so
that a variety of solar and load patterns can be captured. In our
experiment, we gradually increased the number of scenarios until
the improved performance is negligible. Concretely, we generate
500 annual hourly traces for solar and load respectively, and thus we
have 500 annual scenarios. For each annual scenario, we randomly
pick a block of 100 days, so we have 500 scenarios in total. For the
direct sampling methods, we generate the maximum allowed number
of scenarios. That is, there are 365 scenarios for the boosting method
and 3 scenarios for the non-boosting method.

2This is much more stringent than the analysis in Reference [27], which used a leave-
one-out approach.



7.1 Comparison of Generative Models
We first compare the performance of generative models in terms of
how well they can capture certain characteristics of the training data.
The figures we show are based on one home in 2016. We carried out
the analysis for 10 other homes, which have similar performance
results; these are elided for reasons of space.

In Figs. 6 and 7, we compare synthetic hourly data with the real
hourly data in the dataset for both load and solar traces. Visually, the
synthetic data show similar peaks and bottoms to those of real data
and while exhibiting slightly different behaviour. We can clearly
see that for solar power, basically all generative models exhibit
diurnality. In particular, the data generated by ARMA is observed
to be the most similar to the real data. Concretely, based on Fig. 6,
the average Euclidean distance between the real data point and the
point generated by ARMA, GMMs, and GANs is 0.02, 0.04, and
0.05 respectively.

In Fig. 8, we show the statistical comparison for load. Fig. 8
(1) shows the empirical cumulative distribution function (CDF) for
one-year hourly data. The curves for ARMA and GMMs are visually
similar to the CDF computed for real data, while the curve of GANs
deviates from that of real data. In Fig. 8 (2)(3), we check the sample
autocorrelation for hourly and daily data. For a time series {X (t)},
the autocorrelation with respect to lag k measures the correlation
between X (t) and X (t + k). Note that the curve of ARMA closely
resembles that of the real data for both hourly and daily data, while
GANs have the highest deviation. In particular, for the daily case,
the sample autocorrelation of GANs is negative at the beginning and
then quickly approaches zero, which is not observed in the real data.
This indicates that our GANs do not adequately capture the daily
autocorrelation behaviour.

In Fig. 9 we compare the same statistics for solar. We can see
that all generative models are capable of characterizing the CDF of
the training data. Regarding the sample autocorrelation for hourly
data, the curves of all generative models resemble that of real data,
with GANs deviating a bit at the peaks. The comparison for the daily
case is similar to load. Again, the sample autocorrelation of GANs
is observed to approach zero quickly. The large statistical deviation
from the training data indicates that GANs may under-fit the data.

7.2 Sizing with Complete Hourly Data
We first assume that the target consumer has complete hourly data
for solar and load, and we wish to size for the next year. Note that the
only difference between the columns in Table 3 is how the synthetic
traces are generated. That is, once the synthetic traces are obtained,
they are fed into the same robust sizing framework, as described
in Section 4. For the non-boosting method, since there are only 3
scenarios, we simply derive 3 scenario-based sizing pairs by solving
the optimization problem in Section 3.2. Hence, the robust sizing
pair is then chosen as the one with the highest capital cost. In Table
3 we show the results of one typical home. The conclusion is similar
for the 10 other homes that we evaluated.

In Table 3, the different methods of synthetic trace generation are
compared on (a) the capital cost of the system using robust sizing and
(b) the total number of the failed tests (i.e.,

∑T
t=1 δ (t)/

∑T
t=1 D(t) >

θ ) in the three testing years (i.e., the years not listed in column
1). Note that both ARMA and boosting approaches result in zero
failed tests, i.e., the sizing sufficiently satisfied the load constraint

for every test scenario. However the cost of the system sized with
the boosting approach is much higher. For example, for training year
2013, the cost using boosting is 12% higher than ARMA, and for the
training year 2015, is 25% higher. We also notice that GMMs tend to
under-size and thus generally result in a high number of failed tests.
The performance of systems sized with GAN-generated scenarios
performance is similarly poor. We attribute this to its under-fitting
of the training data. Unsurprisingly, the non-boosting method leads
to the highest number of failed tests due to the insufficient number
of scenarios in the training phase.

We now consider the degree to which the different scenario-
generation techniques meet the load in the testing years. For each
testing year, denote the value of

∑T
t=1 δ (t)/

∑T
t=1 D(t) as the per-

centage of the unmet load. In Fig. 10, given one training year, we
additionally show the empirical CDF of the percentage of the un-
met load for all testing years with the vertical dashed line in each
sub-figure representing the upper bound θ . Recall that θ = 5% in
our experiment setup. Consider the event that the percentage of the
unmet load is less than or equal to θ , i.e., the QoS constraint is
satisfied. For ARMA and boosting, the corresponding event proba-
bility is 1. In fact, the percentage of the unmet load for these two is
generally below 2% in the testing years 2013 and 2016. For GMMs
and GANs, the failed tests all come from the testing year 2015, and
the corresponding probability is around 0.7. For non-boosting, the
corresponding probability is low with the value around 0.4 or 0.7.
This result further demonstrates that an ARMA-based synthetic trace
generation approach is superior to the others that we studied.

7.3 Sizing with Aggregated Data
We now consider sizing with access only to the target customer’s ag-
gregated data. The database for selecting a similar consumer consists
of 19 homes located in Austin, Texas, USA, which are randomly
chosen from the Pecan Street dataset. Note that in practice a large
database including consumers with different consumption patterns
is preferred. Thus, given a target consumer we can find a more ac-
curate similar consumer. We assume that the hourly solar data of
the target consumer is always available (i.e., only the load trace is
coarse-grain), since hourly solar data can be obtained using sys-
tems such as the System Advisor Model (SAM) [6], which collate
publicly-available weather data.

We consider two levels of aggregation: monthly and daily. In the
monthly case, we only have 12 data points for the target consumer,
each representing the aggregated monthly load consumption. For
the daily case, we have 365 data points each representing the daily
consumption. Since we found ARMA to have the best sizing perfor-
mance in terms of the capital cost and the number of failed tests, we
use ARMA to generate synthetic data.

For both monthly and daily data, the total number of failed tests
is zero in all three testing years. In Fig. 11, we use the x-axis to
denote the training year, and the y-axis to denote the capital cost. For
comparison, we also list the cost under the complete hourly data.

Note that with the monthly data, the corresponding costs are 2%
to 14% higher than those computed with hourly data. This can be
understood as the cost of having incomplete information. As the time
resolution of aggregated data is increased to daily, it is interesting to
find that the corresponding costs are actually 1-4% lower than with
hourly data. Recall that in Step 3 in Section 5, to create synthetic
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Figure 6: Comparison with synthetic load data and real load data
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Figure 7: Comparison with synthetic solar data and real solar data
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Figure 8: Comparison of generative models for load (1) empirical CDF; (2)(3) Sample autocorrelation for hourly and daily data
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Figure 9: Comparison of generative models for solar (1) empirical CDF; (2)(3) Sample autocorrelation for hourly and daily data

data for the target consumer, we multiply the generated hourly data
on the same day by the same scaling factor. Thus, the resultant
adjusted synthetic data may be smoother than the actual data. This
may explain a lower value of sizing in the daily case. We additionally
implemented experiment on weekly and bi-weekly data, and there
is no clear increasing or decreasing trend regarding the capital cost
when compared to the cost with hourly data.

8 DISCUSSION AND FUTURE WORK
Our work empirically evaluated several synthetic trace generation
techniques in the context of robust sizing of solar and storage. Based
on prior work [17], we began our work with high hopes for GAN-
based synthetic trace generation. However, in the end, we were

disappointed with the approach. To begin with, GANs need to be
carefully trained and the architectures of G and D can affect the
algorithm performance. However, there are only very loose guide-
lines in making architectural decisions such as the number of hidden
layers and the use of convolutional layers. However, for model-based
methods such as ARMA, we can build a model based solely on data
from the target consumer using well-known standard procedures.

Recall that GANs are model-free in that we do not need to spec-
ify the model parameters of the underlying data. However, a large
amount of training data may be required for a satisfying performance.
Although we did provide the GAN-based approach with an extra
advantage by giving it access to more data, the statistics (especially



Table 2: Comparison when training with one year complete hourly data, testing on three years
ARMA GMMs GANs Boosting Non-boosting

Training year Cost Failed tests Cost Failed tests Cost Failed tests Cost Failed tests Cost Failed tests
2013 55765 0 42216 95 55472 0 62401 0 31649 352
2014 49494 0 41013 97 40464 98 51740 0 29521 514
2015 52577 0 36298 82 39998 179 65916 0 44153 0
2016 52343 0 38390 146 64021 0 57308 0 27504 770
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Figure 10: Empirical CDF of percentage of unmet load
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for the long term) obtained from the generated samples deviate sig-
nificantly from that of the historical data. We did find that GAN
performance improved when the amount of input data increased.
However, its performance was always worse than an ARMA-based
approach in our experiments. It is possible that by using a different
network architecture the performance of the GAN-based approach
can be improved. However, such investigation is beyond the scope of
our paper. Also, we point out that the comparison among generative
models is data dependent. Based on our experiment, a model-based
method such as ARMA seems to be advantageous. Comparing the
generative models on other datasets is left as future work. Our ex-
pectation is that neural network-based approaches are commonly
useful in more complex applications such as image generation, and
classical time-series models may be good enough.

Second, in our experimental evaluation, we fixed the QoS period
to be 100 days. In Fig. 2, we see that for this period, each scenario
results in a distinct sizing curve. In contrast, when given a long QoS
period, the variation of sizing curves diminishes. For example, in
Fig. 12, for the QoS period equal to 365 days, we show the closely-
spaced sizing curves and the robust sizing pair under ARMA with
500 different scenarios. In practice, the length of the QoS period
is left to the consumer. For the shorter the QoS period, the more
restrictive the sizing constraints. Generative models are especially
useful when the QoS period is short because there may be substantial
diversity of load and solar patterns for shorter durations.
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Figure 12: Generation of a robust sizing pair for T = 365 days:
500 sizing curves (ARMA)

Third, for the joint sizing with aggregated data, we use a Man-
hattan distance to measure the similarity between consumers (Eq.
(15)(16)), which is linear with the difference of two points. Another
common choice of distance is Euclidean distance, which is quadratic
with the difference. To find a similar consumer with a smaller dis-
tance, we can enlarge the database by collecting complete data from
more consumers, which is left as future work.

Finally, in this paper, we have focused on sizing with limited data
(i.e., one-year historical data). Extending the proposed generative
models on a different amount of historical data is left as future work.

9 CONCLUSION
We considered the robust and joint sizing of solar panels and storage
using a synthetic trace-based robust sizing approach to mitigate lim-
ited historical data. We studied several trace generation models, i.e,
ARMA, GMMs, GANs, as well as two direct sampling methods. The
generated scenarios are then fed into a prior robust sizing framework.
We found that an ARMA-based synthetic trace generation approach
performed well, meeting the QoS criteria in all cases. Moreover,
the greater the degree of aggregation, the more conservative the
sizing. Thus, the techniques discussed in our work provide a robust
foundation for sizing solar and storage systems in practical settings.



REFERENCES
[1] [n. d.]. Comparison of Different Approaches for Solar PV and Storage Sizing. ([n.

d.]). https://www.dropbox.com/s/kmakva799hrrj9j/Comparison_sizing.pdf?dl=0
[2] 2016. Li-ion Polymer Cell, Kokam. (2016). li-NMC cell specifications.
[3] 2016. LIR18650 cell, EEMB. (2016). li-NMC cell specifications.
[4] 2019. Pecan Street Dataport. (2019). https://dataport.cloud/
[5] 2019. Periodogram. (2019). https://en.wikipedia.org/wiki/Periodogram
[6] 2019. System Advisor Model. (2019). https://sam.nrel.gov/
[7] 2019. Tesla. (2019). https://www.tesla.com/powerwall
[8] Shahrouz Alimohammadi and Dawei He. 2016. Multi-stage algorithm for uncer-

tainty analysis of solar power forecasting. In Power and Energy Society General
Meeting (PESGM), 2016. IEEE, 1–5.

[9] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein gen-
erative adversarial networks. In International Conference on Machine Learning.
214–223.

[10] Rasit Ata et al. 2015. Artificial neural networks applications in wind energy
systems: a review. Renewable and Sustainable Energy Reviews 49, 534-562
(2015).

[11] Viorel Badescu. 2014. Modeling solar radiation at the earth’s surface. Springer.
[12] Ted KA Brekken, Alex Yokochi, Annette Von Jouanne, Zuan Z Yen, Hannes Max

Hapke, and Douglas A Halamay. 2011. Optimal energy storage sizing and control
for wind power applications. IEEE Transactions on Sustainable Energy 2, 1
(2011), 69–77.

[13] Peter J Brockwell and Richard A Davis. 2002. Introduction to time series and
forecasting. Vol. 2. Springer.

[14] AN Celik. 2003. Assessing the suitability of wind speed probabilty distribution
functions based on wind power density. Renewable Energy 28, 10 (2003), 1563–
1574.

[15] Jairo Cervantes and Fred Choobineh. 2018. Optimal sizing of a nonutility-scale
solar power system and its battery storage. Applied Energy 216 (2018), 105–115.

[16] SX Chen, Hoay Beng Gooi, and MingQiang Wang. 2012. Sizing of energy storage
for microgrids. IEEE Transactions on Smart Grid 3, 1 (2012), 142–151.

[17] Yize Chen, Yishen Wang, Daniel Kirschen, and Baosen Zhang. 2018. Model-
free renewable scenario generation using generative adversarial networks. IEEE
Transactions on Power Systems 33, 3 (2018), 3265–3275.

[18] Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan. 2010. The role of
energy storage with renewable electricity generation. (2010).

[19] Ergin Erdem and Jing Shi. 2011. ARMA based approaches for forecasting the
tuple of wind speed and direction. Applied Energy 88, 4 (2011), 1405–1414.

[20] Yashar Ghiassi-Farrokhfal, Fiodar Kazhamiaka, Catherine Rosenberg, and Srini-
vasan Keshav. 2015. Optimal design of solar PV farms with storage. IEEE
Transactions on Sustainable Energy 6, 4 (2015), 1586–1593.

[21] Ian Goodfellow. 2016. NIPS 2016 tutorial: Generative adversarial networks. arXiv
preprint arXiv:1701.00160 (2016).

[22] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[23] Yuanxiong Guo, Miao Pan, Yuguang Fang, and Pramod P Khargonekar. 2013.
Decentralized Coordination of Energy Utilization for Residential Households in
the Smart Grid. IEEE Trans. Smart Grid 4, 3 (2013), 1341–1350.

[24] Guannan He, Qixin Chen, Chongqing Kang, Qing Xia, and Kameshwar Poolla.
2017. Cooperation of wind power and battery storage to provide frequency
regulation in power markets. IEEE Transactions on Power Systems 32, 5 (2017),
3559–3568.
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A ADDITIONAL NUMERICAL EVALUATION
In Section 7.2, we have compared the sizing results between the
proposed generative models and the direct sampling methods for
one consumer with a high consumption profile. In this part, we
additionally include numerical results for another consumer with
a low consumption profile. Again, the ARMA-based approach is
observed to have the best performance in terms of the capital cost
and the number of unmet QoS constraints in the testing years.
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Table 3: Comparison when training with one year complete hourly data, testing on three years

ARMA GMMs GANs Boosting Non-boosting
Training year Cost Failed tests Cost Failed tests Cost Failed tests Cost Failed tests Cost Failed tests

2013 37986 0 39175 0 33799 0 40302 0 23903 426
2014 42852 0 47209 0 25709 185 44208 0 22560 631
2015 38582 0 47528 0 22999 410 40318 0 33711 0
2016 48122 0 49400 0 31690 19 48200 0 21002 549
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Figure 13: Empirical CDF of percentage of unmet load
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