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A Minimal Pair
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Syntactic Structures

S

/\
T NP VP

A cat near the children meow I |
A cat PP meows
A cat near the children meows /\

\/ near NP
/\

the children

Dependency Constituency



Syntactic Structures

* Languages are highly structured
* The explicit structures are almost never given (to native speakers)

In the real world, we learn and use language in grounded settings

s e\ y A cat is standing on the lawn.
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How did we learn our first language?

A cat is standing on the lawn.

A cat, as a whole,
means something concrete

A cat is sleeping
There is a cat sleeping on the ground




How did we learn our first language?

Our Observation Definition of Constituent
A cat, as a whole, A cat, as a whole,
means something concrete functions as a single unit in sentences
~— —

Our Hypothesis
More visually concrete word spans are more likely to be constituents



Visually Grounded Grammar Induction

* Input: captioned images
* Output: linguistically plausible structure for captions
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[Shi*, Mao*, Gimpel, Livescu. Visually grounded neural syntax acquisition. ACL 2019]
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The Visually Grounded Neural Syntax Learner (VG-NSL)

Hypothesis: more visually concrete word spans are more likely to be constituents
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VG-NSL: Text Parser and Encoder

Caption A cat is standing on the lawn
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VG-NSL: Text Parser and Encoder

((a cat) (on (the lawn))) Repeat the score-sample-combine
process forn — 1 times
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VG-NSL: Text Parser and Encoder

©®: Parameters for structure V: Parameters for word meanings
Caption A cat is standing on the lawn.
Parser l Text
Constituency Parse Tree Encoder
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VG-NSL: Image Encoder
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VG-NSL: Image Encoder

Frozen

ResNet152  —— Linear Projection
(He et al., 2015)

/ Trainable Parameter
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ResNet Image Linear

Representation Projection
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VG-NSL: Joint Embedding Space

Model parameters: ®--text structure; &, V--visual/textual semantics

Text
Encoder

Joint Embedding Space

Image
Encoder
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VG-NSL: Joint Embedding Space

* Key idea: high similarity for matched image-constituent pairs,
low similarity for mismatched pairs

* Approach: minimize the hinge-based triplet loss (Kiros et al., 2015)
,C (icI), Cv)
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sim(-,-) = cos(-, -) -] 0 : margin score
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VG-NSL: Quantify Visual Concreteness

* Joint embedding space: High similarity <> stronger correspondence

image 7 another image 7’ candidate
constituents

on the

{(c;i,i") = sim (i, cv) — sim (Vs cv)

—0.8 sim (i, acat) = 0.1  sim (g, acat) = (.9

0 sim (7%, onthe)=(.2  sim (i4, onthe) = ().2

* |dea: smaller £(c) <> ¢ is more concrete
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VG-NSL: Training the Parser

Joint Embedding Space

Text Image
Encoder Encoder
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Reward for parser: Estimated text span concreteness
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VG-NSL: Training the Parser

« {(c;1,1") = sim(i, cv) — sim(is, cv ) quantifies visual abstractness
of word spans, and we can define concreteness similarly

concreteness(c; 7,4') = [sim(is,cv) — sim(ig, cv) + 6]

* REINFORCE (Williams, 1992)

ﬁ +— 6 —|— Z p@(c)‘concreteness(c; i, i’)l
i\i',c N

parser parameters learning rate reward

* After training, the parser can parse sentences without images
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VG-NSL: Head-Initiality as Abstract-Initiality

((A cat) on) (the lawn) (A cat) (on (the lawn))

Fact #1: On is the head of on the lawn

Fact #2: English is strongly head-initial
Many other Indo-European languages are head-initial as well

Fact #3: In visually grounded settings, most abstract words are function words
(e.g., prepositions, determiners, complementizers)

Empirical Solution (mimic the head-initial property with abstractness):
Discourage abstract words from combining to the front

concreteness(c)
d(c) = A>0
reward(c) A - abstractness(crignt) + 1 ( )
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VG-NSL: English Results

* Text-only models: PRPN (Shen et al., 2018), ON-LSTM (Shen et al., 2019)
* Evaluated on MSCOCO (Lin et al., 2014)

F{ score (1) Self F; score across 5 random seeds (1)
89.8
54.4 °
52.5
69.3
45.5 60.3
W PRPN = ON-LSTM  m VG-NSL (ours) ® PRPN = ON-LSTM m VG-NSL (ours)
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VG-NSL: Multilingual Results

 Extension to multiple languages, evaluated on Multi3oK (Elliott et al., 2017)

French German
38.1 38.3
34.9
31.5
27.5 27.7
.
PRPN ON-LSTM  VG-NSL PRPN ON-LSTM  VG-NSL

(ours) (ours)
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VG-NSL: Estimated Concreteness

* Normalized concreteness € [0, 1]

cat on ground while young wood who wet

@®Turney et al., 2011 -=Brysbaert et al., 2014 =+Hessel et al., 2018 - VG-NSL+HI (ours)
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VG-NSL: Discussion

* VG-NSL’s concreteness-based bottom-up parser is good at
capturing NPs and PPs, but less good at capturing VPs

Recall per Category (1) PP 66.5
NP 74-6

* Follow-up work: more sophisticated inductive biases (e.g., PCFG)
and other modalities (e.g., video)
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Other Work on Grounded Grammar Induction
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VG-NSL: Discussion

* Motivation of grammar induction/unsupervised parsing
* Understanding quantitatively how much syntax is encoded in data

* Arguing for or against the poverty of the stimulus (Chomsky, 1980)
* Byproduct: methods derived could benefit other tasks )
* Modeling human language acquisition <

* Pretrained text models are less desirable due to corpus-size mismatch

* Pretrained speech models are okay in terms of developmental plausibility
* HuBERT-960hr gives reasonable performance
* Even the 60K-hour Libri-light data is acceptable: 60,000/24/365 = 6yrs

* Humans learn languages in grounded settings
* Much of humans’ early exposure to language is in speech
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The Audio-Visual Syntax Learner (AV-NSL)

Spoken Caption j—{ifi—s— -veliglibe-

Word Recognizer J]

S ci: _*.-------L----------

Co :
C3: % # W mmmmm

P
L

+

Speech
Encoder

’ *,_,_ EEEEEEREEEEEEEEEDR

Joint Embedding Space
Image
Encoder
@=sssssssssnsEnEEEpEEEEEEEEEEE
snnn@
snnnnl
nennnnni
@ csspunnnnnnnnn
e

Reward for parser: Estimated text span concreteness

Image

»Mat‘ched

e

Mismatched

Lai*, Shi*, Peng*, et al. Audio-Visual Neural Syntax Acquisition. ASRU 2019
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AV-NSL: Word Recognition/Segmentation

Spoken Caption j—{ifi—s— -veliglibe-

Word Recognizer J]
I I I
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AV-NSL: Word Recognition/Segmentation

* How should we obtain word segments from a spoken utterance?

* Segmentation with forced alignment: Template-based matching
between text and speech (e.g., MFA; McAuliffe et al., 2007)

* Humans learn to listen and speak before learning to read and write
* Unsupervised word recognition/segmentation is desirable
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AV-NSL: Word Recognition/Segmentation

* Word segmentation emerges from VG-HUBERT [CLS] token’s
attention weights (Peng and Harwath, 2022)

a pair of peoplestand onadark ' beachflying a kite

* Insert tokens in long gaps (threshold tuned w/o supervision)

{1 Hahuinl B o |

a pair of peoplestand onadark beachflying a kite
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AV-NSL: Word Recognition/Segmentation

* Word segmentation with minimum Bayes’ risk (MBR) decoding

* Collect multiple word segmentation proposals with different
hyperparameters (e.g., threshold for inserting new segment)

S — F.(S.S negative Bayes’ risk
argmgxz 1 (S, g y

boundary

B H Bl B B precision/recall
: II : | I] within +20ms

"a pair of peoplestand onadark = beachflying a kite

a pair of peoplestand onadark beachflying a kite
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AV-NSL: Word Recognition/Segmentation

* Hyperparameters searched: Boundary F; (1)
, 34.09
e Threshold to be considered as a -
long-enough gap (for segment insertion)
* Threshold to filter out frames that 31-07
receive less attention —
* VG-HUBERT Iayer index ™ Prev. SotA  ®Seg. Ins + MBR (ours)
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AV-NSL: Speech Span Encoders

VG-HUBERT (Peng and Harwath, 2022) as the speech span encoder

Speech
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AV-NSL: Evaluation

* Text-based segmentation: F; score (same as text parsing)
* What if the word segmentation doesn’t align with the text?
* Prior work (Roark et al., 2006): project speech to the text domain

* Our proposal: use a structured alignment—based intersection-
over-union ratio to measure the similarity between speech
constituency parse trees

TNl
* loU between two spans: ToU (1, I5) = EENRRF
111 U I
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AV-NSL: Evaluation with Structured Average IoU

* Align two constituency parse trees over the same spoken utterance
* Each node aligns with at most one node in the other tree

* If node a (in tree 1) and b (in tree 2) are aligned
* Any descendant of a may align with a descendant of b or remain unaligned, and vice versa
* Any ancestor of a may align with an ancestor of b or remain unaligned, and vice versa

1
STRUCTALOU (T, 72) = arg max S IoU (t1 4,t2.4)
T ATl ||\7; (z,WEA o

+ This can be cafcifatddvithin O (n?m?) time
. . standing] NT . “F .
* StructaloU is highiy corfelated with F; sce e word segmentation
iS present the/Ewn stand ing on the-lawn

[Shi, Gimpel, Livescu. Structured Tree Alignment for Evaluation of Constituency Parsing. Work in Progress]
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AV-NSL: Results

* Right-branching trees serve as a strong baseline for European languages

* There is still a gap between the current state and a decent grammar induction
model from visually grounded speech

StructaloU score (w/o gold word segmentation 1)

0.546

0.487

. |
F—

wRBT(en) = AV-NSL(en) ®™RBT(de) mAV-NSL (de)
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Joint Syntax and Semantics Induction

* Combinatory categorial grammar induction in visually grounded settings

CLEVR (Johnson et al., 2017) count(filter(ALL, cube))
//\
g count(filter(ALL, cube)) 0
/\ /\
count(-) filter(ALL,cube) are there
Question: How many cubes are there? — T~ |
How many cubes

Answer: 4

Question answering accuracy (1) on program-depth generalization:
81.6 (prior SotA) — 98.5

[Mao, Shi, Wu, Levy, Tenenbaum. Grammar-Based Grounded Lexicon Learning. NeurIPS 2021]
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Looking ahead...

* Language is never text in isolation

* Computational linguistics research should benefit more from
state-of-the-art machine learning techniques, including (and especially)
computer vision, speech, and robotics

* Grounding in NLP does not necessarily mean vision-text models---
other grounding forms include but are not limited to
* Execution results of programs, semantic parses of natural language
* Sentences with shared semantics but in different languages
* Knowledge bases
* A metaphor for grounding © \

Language

- >

Experience
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