Learning Language Structures through Grounding

Freda Shi Toyota Technological Institute at Chicago

freda@ttic.edu

September 21, 2023 @Peking University

Conversations between Freda and ChatGPT

Here is a sentence: The cat near the children meows. How many nouns, noun phrases and verbs are there in the given sentence? What are they?

There are three nouns in the sentence: "cat," "children," and "meows."
There is one noun phrase: "the cat near the children."
There is one verb: "meows."

Large language models do not understand syntactic structures well.

Large language models do not understand discourse structures, and can be easily distracted by irrelevant context [**Shi** et al., ICML 2023].

Can you show me a picture of a cat?

I'm sorry, as an Al language model, I don't have the ability to display images...

Large language models need

- A better understanding of language structures;
- A better connection with the real world.

Learning Language Structures through Grounding

What is Grounding?

Grounding: Landing the plane of language onto the ground of experience.

A cat is standing on the lawn.

Language

What is the factorial of 5?

↓ Semantic Parser

from utils import factorial

print(factorial(5))

↓ Python Interpreter

120

Ich möchte eine Pizza bestellen

I would like to order a pizza

What are Language Structures?

The cat near the children meows.

How many nouns, noun phrases and verbs are there in the sentence? What are they?

What are Language Structures?

The cat near the children meows.

Constituency Parse Tree

Dependency Parse Tree

Syntactic Structures

Truth-Conditional Semantics

 $\lambda x.\lambda y.cat(x) \wedge children(y) \wedge near(x,y) \wedge meow(x)$

SQL

SELECT * FROM catsNearChildren WHERE meows = true;

Python

def find(cats):
 for cat in cats:
 if cat.near(children) and cat.meows:
 return cat

Semantic Structures

Learning Language Structures through Grounding

- Why do we care about learning language structures?
 Language structures can
 - Model human language processing;
 - Test or even inform linguistic theories;
 - Enable better interaction between humans and machines;
 - Improve machine learning models.
- Language structures are useful, but expensive to annotate.
 Many grounding signals exist naturally.
- Byproduct: Derived methods and analysis can benefit broader NLP community.

Learning to parse sentences through visual grounding

Learning semantic parses through execution results

Learning to parse another language through cross-lingual grounding

Part I: Learning to Parse Sentences through Visual Grounding

Question: Can visual grounding help induce linguistic structures?

Problem Formulation

Task: Visually grounded grammar induction.

Input: Captioned images.

Output: Linguistically plausible structure for captions.

A cat is standing on the lawn.

The Visually Grounded Neural Syntax Learner (VG-NSL)

Hypothesis: More visually concrete word spans are more likely to be constituents.

Joint Embedding Space: Higher similarity for matched image-constituent pairs; Lower similarity for mismatched pairs.

VG-NSI: Text Parser and Encoder

Parser Output: Predicted phrases and their vector representations.

 $P_{\Theta}(\mathbf{v}_{a\,cat}^{"})$: Probability of "a cat" to be a constituent.

V: Semantic representation of words and word spans.

 Θ : Structure of parse trees.

VG-NSL: Image Encoder

Image Encoder: Frozen ResNet (He et al., 2015) + Linear Projection.

$$\mathbf{u}_{\mathsf{img}} = \mathbf{\Phi} \cdot \mathsf{ResNet}(\mathsf{img})$$

Reward for Parser: Estimated Text Span Concreteness

VG-NSL: Joint Visual-Semantic Embedding Space

Parameters for Text Encoder: Word representations V, parser parameters Θ .

Parameters for Image Encoder: Linear projector Φ .

Joint Embedding Space: Train V and Φ – align meanings of word spans and images.

VG-NSL: Joint Embedding Space

Key Idea: Higher similarity for matched image-constituent pairs. Lower similarity for mismatched pairs.

Approach: Minimize hinge-based triplet loss (Kiros et al., 2015) between images and constituents.

$$\mathcal{L}(i,c;\mathbf{V},\mathbf{\Phi}) = \sum_{\substack{(\mathbf{i}',\mathbf{c}') \neq (i,c)}} \left[\sin(\mathbf{i}',c) - \sin(i,c) + \delta \right]_{+} + \left[\sin(i,\mathbf{c}') - \sin(i,c) + \delta \right]_{+}$$

$$sim(\cdot, \cdot) = cos(\cdot, \cdot)$$
 $[\cdot]_+ = max(0, \cdot)$

$$[\cdot]_+ = \max(0,\cdot)$$

VG-NSL: Quantify Visual Concreteness

Joint Embedding Space: Higher similarity for matched image-constituent pairs; Lower similarity for mismatched pairs.

Candidate
Constituent c
a cat
on the

$$\ell(c;i,i') = \sin(i',c) - \sin(i,c)$$
 Value of ℓ $\sin(-2,a cat) = 0.2 \quad \sin(-2,a cat) = 0.9$ $\ell = -0.7$ $\sin(-2,a cat) = 0.4 \quad \sin(-2,a cat) = 0.4$

Key Idea: Smaller $\ell(c) \iff c$ is more visually concrete. Quantify visual concreteness of word spans using loss values.

VG-NSL: Concreteness as Rewards for Text Parser

REINFORCE (Williams, 1992) as the gradient estimator for parsing parameter Θ :

$$\Theta \leftarrow \Theta + \eta \cdot \nabla_{\Theta} \sum_{(i,c)} p_{\Theta}(c) \text{concreteness}(c;i)$$
 $\eta : \text{learning rate}$

VG-NSL: Results on the MSCOCO (Lin et al., 2014) Dataset

Text-Only Models: {
 PRPN: Shen et al., 2018
 ON-LSTM: Shen et al., 2019

5 Runs: Same hyperparameters Different random seeds

Overview 0000000

VG-NSL: Results on the Multi30K (Elliott et al., 2016) Dataset

Question: Can visual grounding help induce linguistic structures?

Answer: Yes, on syntactic (constituency) parsing.

Joint Syntax and Semantics Induction through Visual Grounding

Dataset: CLEVR (Johnson et al., 2017).

Question: How many cubes are there?

Answer: 4.

Question answering accuracy (\uparrow) on program-depth generalization:

81.6 (prior SotA) \rightarrow 98.5

Question: Can visual grounding help induce linguistic structures?

Answer: Yes, on semantic parsing.

Part I: Learning Syntactic/Semantic Parses through Visual Grounding

Question: Can visual grounding help induce linguistic structures?

Approach: Propose the task of visually grounded grammar induction.

Answer: Yes, on syntactic (constituency) parsing [SMGL, ACL 2019].

Answer: Yes, on semantic parsing [MSWLT, NeurIPS 2021].

Part II: Learning Semantic Structures through Execution

Question: Can execution results, as grounding signals, help learn semantic structures? **Answer:** Yes, on semantic parsing without program supervision [MSWLT, NeurIPS 2021].

Problem Formulation

Task: Convert natural language to code, leveraging execution (grounding) of programs. **Input**: Command in natural language.

Output: Corresponding program.

Example Input: Write a Python function that counts lowercase letters in a string. **Example Output:**

```
def count(string):
                           import collections
                                                                def count(s):
    cnt = 0
                           def count(s):
                                                                    return len([
    for ch in string:
                               cnt = collections.Counter(s)
                                                                         c for c in s
        if ch.islower():
                               return sum(
                                                                         if c.islower()
            cnt += 1
                                   cnt[c] for c in cnt
                                                                     1)
    return ont
                                    if c.islower()
```

Background: Codex

Transformer-based generative model for code (Chen et al., 2021).

• Training: Model probability of natural language and GitHub code snippets.

$$\max_{\Theta} \prod_{\mathbf{x}} P_{\Theta}(\mathbf{x}) \qquad \qquad \Theta : \text{Model parameters.}$$

$$x : \text{Training example.}$$

$$P_{\Theta}(\mathbf{x}) = \prod_{i=1}^{|x|} P_{\Theta}(x_i \mid x_1, \dots, x_{i-1}) \qquad \qquad x_i : i^{\text{th}} \text{ token of } \mathbf{x}.$$

• Inference: Generate code conditioned on natural language description.

$$P_{\Theta}(\mathbf{x} \mid x_1, \dots, x_c) = \prod_{i=c+1}^{c+L} P_{\Theta}(x_i \mid x_1, \dots, x_{i-1})$$

 x_1, \ldots, x_c : Natural language description.

L: Maximum decoding step.

Natural Language to Code: Decoding Method

Task: Generate code conditioned on natural language description.

Example Input: Write a Python function that counts lowercase letters in a string.

Example Output:

```
\mathbf{x_2}
                                                                                                    X_3
                                      def count(string):
                                                                                       def count(s):
                                         cnt = 0
                                                                                          return len([
  def count(s):
    return len(s)
                                         for ch in string:
                                                                                             c for c in s
                                             cnt += ch.islower()
                                                                                             if c.islower()
                                         return ont
                                                                                          1)
P_{\Theta}(\mathbf{x}_1 \mid \ldots) = 0.4
                                         P_{\Theta}(\mathbf{x}_2 \mid ...) = 0.3 P_{\Theta}(\mathbf{x}_3 \mid ...) = 0.3
                                                                  \mathbf{x}_2 \stackrel{\text{execution}}{\Longleftrightarrow} \mathbf{x}_3
    s_i: Execution results of x_i.
P_{\Theta}(\mathbf{s}_1 \mid \ldots) = 0.4 P_{\Theta}(\mathbf{s}_2 \mid \ldots) = P_{\Theta}(\mathbf{s}_3 \mid \ldots) = 0.3 + 0.3 = 0.6
```

Key Idea: Consider program semantics (i.e., execution results)-based equivalent classes.

Empirical Solution

Hypothesis: Codex assigns higher probability to correct execution results.

Approach: Rank programs with $P_{\Theta}(\mathbf{s} \mid \ldots)$.

$$P_{\Theta}(\mathbf{s} \mid \ldots) = \sum_{\mathbf{x}} P_{\Theta}(\mathbf{x}, \mathbf{s} \mid \ldots) = \sum_{exec(\mathbf{x}) = \mathbf{s}} P_{\Theta}(\mathbf{x} \mid \ldots)$$

x: Program.

s: Execution results.

Input: Write a Python function that counts lowercase letters in a string.

Step 1: Sample $\sim P_{\Theta}(\mathbf{x} \mid \ldots)$

Step 2: Synthesize input cases

Input 1: "hello"

Input 2: "Hello"

Step 3: Execute

Step 4: Estimate $P_{\Theta}(\mathbf{s} \mid \ldots)$

Step 5: Select a program \mathbf{x}^* with semantics $\mathbf{s}^* = \arg\max_{\mathbf{s}} P_{\Theta}(\mathbf{s})$

for test

Results: Natural Language to Python Translation (Austin et al., 2021)

Question: Can execution results, as grounding signals, help learn semantic structures? **Answer**: Yes, execution result–based method improves natural language to Python translation.

Part II: Learning Semantic Structures through Execution

Question: Can execution results, as grounding signals, help learn semantic structures?

Answer: Yes, on semantic parsing without program supervision [MSWLT, NeurIPS 2021].

Answer: Yes, on natural language to code translation [SFGZW, EMNLP 2022].

•00000

Part III: Towards Language-Universal NLP through Cross-Lingual Grounding

Question: Can we transfer NLP models to another language through cross-lingual grounding?

Problem Formulation

Task: Zero-shot cross-lingual dependency parsing.

Input: Sentences and dependency parse trees in source language;

Translated sentences in target language;

Word correspondence between parallel sentences.

Output: Dependency parse trees in target language.

Key Idea: Leverage the nature of trained source dependency parser that it can capture "unannotated" dependency relations.

Target Language Parser Training after Arc Distribution Projection

Input: Sentences and dependency parse trees in source language;

Translated sentences in target language;

Word correspondence between parallel sentences. Multilingual Models

Output: Dependency parse trees in target language.

Zero-Shot Cross-Lingual Dependency Parsing: Results

Metric: Unlabeled attachment score (UAS, \uparrow). Source language: English (95.8 UAS on English).

Question: Can we transfer NLP models to another language through cross-lingual grounding? **Answer:** Yes, through substructure (arc) distribution projection.

Part III: Towards Language-Universal NLP through Cross-Lingual Grounding

Question: Can we transfer NLP models to another language through cross-lingual grounding? **Approach:** (1) Train a source language parser;

- (2) Project the source parser prediction to the target language;
- (3) Train a target language parser to fit projected distribution.

Answer: Yes, through substructure (arc) distribution projection [SGL, ACL 2022].

Thanks!

Daniel Fried

Mirac Suzgun

Josh Tenenbaum

Sida Wang

Jiajun Wu

- Armen Aghajanyan
- Xinyun Chen
- Hyung Won Chung David Dohan
- Dipanian Das

- Markus Freitag
- Lingyu Gao
- Vikram Gupta Yuning Jiang
- Mike Lewis
- Lei Li Jessy Lin
- Kanishka Misra
- Sebastian Ruder
- Mrinmava Sachan

- Nathan Scales Nathanael Schärli
- Bowen Shi
- Suraj Srivats
 - Jian Sun

Luke Zettlemoyer

- Yi Tav Shubham Toshniwal
- Soroush Vosoughi
- Fric Wallace
- Xuezhi Wang

Denny Zhou

- Jason Wei
- Tete Xiao
- Scott Yih
- Ruiai Zhong
- Hao 7hou