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Abstract

We study the representation of the solutions of a polynomial system by triangular
sets, and concentrate on the positive-dimensional case. We reduce to dimension zero
by placing the free variables in the base field, so the solutions can be represented
by triangular sets with coefficients in a rational function field.

We give intrinsic-type bounds on the degree of the coefficients in such a triangular
set, and on the degree of an associated degeneracy hypersurface. Then we show how
to apply lifting techniques in this context, and point out the role played by the
evaluation properties of the input system.

Our algorithms are implemented in Magma; we present three applications, rele-
vant to geometry and number theory.
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1 Introduction

This article studies the triangular representation of the solutions of a polyno-
mial system. Our first focus is on complexity results and algorithms; we also
present a series of applications that were treated with these techniques. To
make things clear, let us first display a concrete example of a triangular set.

An example in Q[X1, X2]. Consider the polynomial system in Q[X1, X2]:

F1 = −X3
1X2 + 2X2

1 − 4X1X
2
2 + 2X1X2 − 2, F2 = X2

1X2 −X1 + 4X2
2 − 2X2.
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It admits the following Gröbner basis for the lexicographic order X1 < X2:

T1 = X2
1 − 2,

T2 = X2
2 − 1

4
X1.

Since T1 is in Q[X1] and T2 in Q[X1, X2], we say that (T1, T2) form a triangular
set. In particular, T1 describes the projection of the zero-set of (F1, F2) on the
X1-axis.

From the field-theoretic point of view, the system (F1, F2) generates a prime
zero-dimensional ideal, so Q → B := Q[X1, X2]/(F1, F2) defines a field ex-
tension. We let x1, x2 be the images of X1, X2 in B; then T1 is the minimal
polynomial of x1 in Q→ B and T2, seen in Q(x1)[X2], is the minimal polyno-
mial of x2 in Q(x1)→ B.

Generalization and first complexity considerations. Consider now an
arbitrary field K, K its algebraic closure, and a zero-dimensional variety W ⊂
A
n(K) defined over K. For simplicity, we take W irreducible over K; then just

as above, the ideal defining W admits the following Gröbner basis for the
lexicographic order X1 < · · · < Xn:

T1(X1),

T2(X1, X2),
...

Tn(X1, . . . , Xn),

with Tk in K[X1, . . . , Xk], and monic in Xk, for k ≤ n. We will use this as an
intuitive definition of a triangular set for the rest of this informal introduction.
Note that if W is not irreducible, its defining ideal might not have such a
triangular family of generators: several triangular sets may be necessary.

For k ≤ n, the family T1, . . . , Tk describes the projection of W on the affine
subspace of coordinates X1, . . . , Xk. In particular, as above, T1 is the mini-
mal polynomial of X1 modulo the ideal defining W. This close link between
projections and triangular representations is central in what follows.

Let us turn to complexity considerations. The product of the degrees of the
polynomials Tk in their “main variable” Πk≤n degXk Tk equals the number of
points in W, and bounds the total degree of each polynomial Tk. Thus, in
terms of degrees in the variables X1, . . . , Xn, there is not much more to say.

New questions arise when the base field K is endowed with a “size” function:
if K is a rational function field, we may consider the degree of its elements;
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if K is a number field, we can talk about the height of its elements. In this
context, it becomes natural to ask how the size of the coefficients in T1, . . . , Tn
relates to some invariants measuring the “complexity” of the variety W. In
view of the above remarks, a more accurate question is actually, for k ≤ n, the
relation between the size of the coefficients in T1, . . . , Tk and the complexity
of the projection of W on the subspace of coordinates X1, . . . , Xk.

In this article, we focus on this question in the function field case. Here is the
concrete situation from where the question originates.

Polynomial systems with parameters. A variety of problems can be
described by polynomial systems involving free variables, or parameters. In
such situations, we also often know that there are only finitely many solutions
for a generic choice of the parameters.

In other words, we are considering systems that are zero-dimensional over the
field of rational functions on some parameter space; triangular sets with ra-
tional functions coefficients can then be used to represent their solutions. The
following applications motivated this approach; they are detailed in Section 8.

• Modular equations. In Gaudry and Schost [2002], we propose a definition
of modular equations for hyperelliptic curves, with a view towards point-
counting applications. For a given curve, these equations come from the
resolution of zero-dimensional polynomial systems, as the minimal polyno-
mial of one of the unknowns. Thus, they can be obtained from a triangular
set computation, as in the introductory example.

An interesting question is that of modular equations for a curve with
generic coefficients, which can be precomputed and stored in a database.
This was already done in the elliptic case, and is now done for a first hy-
perelliptic modular equation in the Magma package CrvHyp. This naturally
raises the question of triangular sets with coefficients in a rational function
field.
• Curves with split Jacobian. Curves of genus 2 with (2,2)-split Jacobian are

of interest in number theory: over Q, torsion, rank and cardinality records
are obtained for such curves, see Kulesz [1995, 1999], Howe et al. [2000].
Roughly speaking, these curves are characterized by the presence of elliptic
quotients of degree 2 of their Jacobian.

We studied such curves in Gaudry and Schost [2001], and showed that the
elliptic quotients can be read off triangular sets coming from the resolution
of a suitable polynomial system. Classification questions require treating
this question for curves with generic coefficients, which leads again to the
problem of computing triangular sets over a rational function field.
• Implicitization. Finally, we will show that the implicit equation of a parame-

trized surface in R3 can be obtained using the triangular representation.
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Contrary to the above, this question is not a priori formalized in terms of a
parametric system. Nevertheless, this question actually reduces to the com-
putation of a minimal polynomial over the rational function field Q(x1, x2),
which can be done using triangular sets.

These examples share the following property: only a partial information, such
as a specific eliminating polynomial, is really wanted. We now see how trian-
gular sets can answer this question with good complexity.

Overview of our results. The above discussion is formalized as follows:
we consider a polynomial system F defined over a field K, depending on m
parameters P1, . . . , Pm and n unknowns X1, . . . , Xn. Geometrically speaking,
F defines a variety W of dimension m in Am+n(K) and generates a zero-
dimensional ideal, when extended over the field of rational functions on Am(K).
Then its ”generic solutions” can be represented by a family of triangular sets
with coefficients in this rational function field.

For this short overview, we assume that the generic solutions are represented
by a single triangular set T1, . . . , Tn. Using additional regularity hypotheses, we
will answer the following questions: How do the degrees in this triangular set
relate to geometric degrees? How accurately does this triangular set describe
the solutions of the parametric system F? How fast can it be computed?

• Degree bounds. The coefficients of T1, . . . , Tn are rational functions in the
free variables P1, . . . , Pm. We first show that their degrees are bounded by
intrinsic geometric degrees, that is, independently of the Bézout number of
the system F. Precisely, for k ≤ n, the coefficients of T1, . . . , Tk have degree
bounded in terms only of the degree of the projection Wk of W on the
space of coordinates P1, . . . , Pm, X1, . . . , Xk. The precise bound is of order
(degWk)

k.
• Geometric degree of the degeneracy locus. A triangular set with coefficients

in a rational function field describes generic solutions. Thus, there is an open
subset in the parameter space where none of the denominators of these ra-
tional functions vanishes, and where their specialization gives a description
the solutions of the parametric system F.

We show that the locus where the specialization fails is contained in an
hypersurface whose degree is quadratic in the geometric degree of W . Note
the difference with the above degree bounds, which are not polynomial in
this degree. The analysis of the probabilistic aspects of our algorithms are
based on this result.
• Algorithms. Triangular sets are useful for structured problems. For instance,

all the above examples can be reduced to the computation of the first k
polynomials T1, . . . , Tk, for some k ≤ n. We give probabilistic algorithms
for computing these polynomials, whose complexity is polynomial in the
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size of the output. Using the above upper bound, the complexity actually
depends on the degree of the projectionWk ofW on the space of coordinates
P1, . . . , Pm, X1, . . . , Xk, but not on the degree of W itself.

Note nevertheless that our complexity results comprise an additional fac-
tor which is exponential in n, inherent to computations with triangular sets.

Following the series of articles Giusti et al. [1995, 1997, 1998], Heintz
et al. [2000], Giusti et al. [2001], Heintz et al. [2001], our algorithms rely on
symbolic Newton lifting techniques and the Straight-Line Program repre-
sentation of polynomials. Their practical behavior matches their good com-
plexity, as they enabled to solve problems that were otherwise out-of-reach.

Comparison with primitive elements techniques. This work is in the
continuation of Schost [2003], which focuses on a representation by primitive
element techniques, the geometric resolution, in a similar context. Caution
must be taken when comparing the two approaches. They answer different
questions; as such, their complexities cannot be compared directly, since they
are stated in terms of different quantities.

We use again the above notation: the geometric object of interest is a variety
W defined by polynomials in K[P1, . . . , Pm, X1, . . . , Xn], and for k ≤ n, Wk is
its projection on the space of coordinates P1, . . . , Pm, X1, . . . , Xk.

The degree bound of the coefficients in a geometric resolution is linear in
the degree of W . This is to be compared with the results for the triangular
representation, which are not polynomial in this degree. On the other hand,
triangular sets take into account the degrees of the successive projectionsWk,
which cannot be reached using a primitive element. These degrees can be
arbitrarily smaller than the degree ofW , making the interest of the triangular
representation.

Consider now the algorithmic aspect. The algorithm in Schost [2003] computes
a parametric geometric resolution with a complexity that depends on the de-
gree of W . The algorithms proposed here compute k polynomials T1, . . . , Tk,
for any given k ≤ n; their complexity depends on the degree of the correspond-
ing projection Wk of W on the space of coordinates (P1, . . . , Pm, X1, . . . , Xk),
but not on the degree of W . Again, this suggests that triangular sets are of
interest for problems with a structure, where projections might induce degree
drops. We refer to Section 8 for a practical confirmation for several applica-
tions.

Related work. In dimension zero, a landmark paper for the triangular rep-
resentation is Lazard [1992]. Our definition of triangular sets is inspired by
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the one given there, as is the treatment of more technical questions such as
splitting and combining triangular sets.

In arbitrary dimension, several notions of triangular sets and algorithms ex-
ist, see Lazard [1991], Kalkbrener [1991], Maza [1997], Aubry [1999], Dellière
[1999], Szanto [1999]. For a comparison of some of these approaches, see Aubry
et al. [1999]; we also refer to the detailed survey of Hubert. Our choice to re-
duce the question to dimension zero over a field of rational functions yields
algorithms with good complexity, and easy to implement. Yet, our output is
not as strong as for instance that of Lazard [1991], Maza [1997], Dellière [1999]:
ours is only generically valid.

Upper bounds on the degrees of the polynomials in a triangular set were
given in Gallo and Mishra [1990] and Szanto [1999]; we recall these results
in the next section. In particular, the approach of Gallo and Mishra [1990]
inspired Theorem 1 below. We also use results from Schost [2003], which follow
notably Sabia and Solernó [1996].

Lifting techniques for polynomial systems were introduced in Trinks [1985],
Winkler [1988]. They were used again in the series of articles by Giusti, Heintz,
Pardo and collaborators, Giusti et al. [1995, 1997, 1998], Heintz et al. [2000],
Giusti et al. [2001], Heintz et al. [2001]. The conjoint use of the Straight-
Line Program representation led there to algorithms with the best known
complexity for primitive element representations. The present work is in the
continuation of the above; see also the survey of Pardo [1995] for a histori-
cal presentation of the use of Straight-Line Programs in elimination theory.
Finally, let us mention the results of Lecerf [2002], which extend lifting tech-
niques to situations with multiplicities.

We note that the article Heintz et al. [2000] precedes Schost [2003] and the
present work, and considers similar questions of parametric systems. Never-
theless, we noted in Schost [2003] that the geometric hypotheses made in that
article are not satisfied in many “real life” applications, and this is again the
case for the applications treated here.

It should be noted that our complexity statements are of an arithmetic nature,
that is, we only estimate the number of base field operations. When the base
field is the rational field, the notion of binary complexity will give a better
description of the expected computation time. We have not developed this
aspect, which requires arithmetic-geometric considerations. We refer to Krick
and Pardo [1996], Giusti et al. [1997], Krick et al. [2001] where such ideas are
presented.

This work is based on a shorter version published in Schost [2002]. The degree
bounds given here are sharper. The whole analysis of the degeneracy locus
and the subsequent error probability analyses for the algorithms are new. The
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complexity results are now precisely stated in terms of basic polynomial and
power series arithmetic.

Acknowledgements. I wish to thank L.M. Pardo for his useful remarks on
the first version of this paper.

2 Notation, Main Results

Triangular sets in dimension zero. We first define triangular sets over
a ring R. Our definition is directly inspired by that of reduced triangular
sets given in Lazard [1992]: a triangular set is a family of polynomials T =
(T1, . . . , Tn) in R[X1, . . . , Xn] such that, for k ≤ n:

• Tk depends only on X1, . . . , Xk,
• Tk is monic in Xk,
• Tk has degree in Xj less than the degree in Xj of Tj, for all j < k.

Let now K be a field, K its algebraic closure and W ⊂ An(K) a zero-dimensional
variety. Recall that W is defined over K if its defining ideal in K[X1, . . . , Xn]
is generated by polynomials in K[X1, . . . , Xn].

In this case, a family {T1, . . . ,TJ} of triangular sets with coefficients in K

represents the points of W if the radical ideal defining W in K[X1, . . . , Xn] is
the intersection of the ideals generated by T1, . . . ,TJ , and if for j 6= j′, Tj

and Tj′ have no common zero.

In this situation, all ideals (Tj) are radical by the Chinese Remainder Theo-
rem. We then relate the degrees of the polynomials in the family {T1, . . . ,TJ}
and the cardinality of W:

• If W is irreducible, the family {T1, . . . ,TJ} is actually reduced to a sin-
gle triangular set T = (T1, . . . , Tn) and the product Πk≤n degXk Tk is the
cardinality of W. Here, degXk Tk denotes the degree of Tk in the variable
Xk.
• If W is not irreducible, a family {T1, . . . ,TJ} satisfying our conditions

exists but is not unique [Lazard, 1992, Proposition 2 and Remark 1]; now
the sum

∑
j≤J Πk≤n degXk T

j
k is the cardinality of W. Hereafter, note that

the superscript in the notation T jk does not denote a j-th power.

Note that it necessary to work over the algebraically closed field K, or more
generally to impose separability conditions, to obtain equalities as above, re-
lating the degrees in the triangular sets T or {T1, . . . ,TJ} and the number of
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points in the variety W.

The basic geometric setting. We now turn to more geometric considera-
tions. All along this article, we fix a field K, K its algebraic closure, and work
in the affine space Am+n(K). We denote by P = P1, . . . , Pm the first m coor-
dinates in Am+n(K) and by X = X1, . . . , Xn the last n coordinates. We use
the notion of geometric degree of an arbitrary affine variety (not necessarily
irreducible, nor even equidimensional), introduced in Heintz [1983].

In what follows, the affine space Am+n(K) is endowed with two families of
projections. For k ≤ n, we define µk and πk as follows; hereafter, p denotes a
point in Am(K).

µk : A
m+n(K) → A

m+k(K) πk : A
m+k(K) → A

m(K)

(p, x1, . . . , xn) 7→ (p, x1, . . . , xk) (p, x1, . . . , xk) 7→ p.

Note in particular that πn maps the whole space Am+n(K) to Am(K).

The main geometric object is a m-dimensional variety W ⊂ Am+n(K). Our
first results are of an intrinsic nature, so we do not need an explicit reference
to a defining polynomial system. The assumptions onW follow the description
made in the introduction:

Assumption 1 Let {Wj}j≤J denote the irreducible components of W. We
assume that for j ≤ J :

(1) the image πn(Wj) is dense in Am(K).
(2) the extension K(P1, . . . , Pm)→ K(Wj) is separable.

Assumption 1.1 implies that the fibers of the restriction of πn to each compo-
nent of W are generically finite; this justifies treating the first m coordinates
as distinguished variables and calling them parameters. Assumption 1.2 is of
a more technical nature, and will help to avoid many difficulties; it is always
satisfied in characteristic zero.

Under Assumption 1, we can define the generic solutions of the variety W .
Let J ⊂ K[P,X] be the radical ideal defining W and JP its extension in
K(P)[X]. We call generic solutions of W the roots of JP , which are in finite
number.

We now refer to the previous paragraph, taking K = K(P), and for W the
finite set of generic solutions. Using Assumption 1.2, the ideal JP remains
radical in K[X], so the generic solutions are indeed defined over K = K(P).
Thus, they can be represented by a family of triangular sets in K(P)[X]; our
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purpose in this article is to study their complexity properties, and provide
algorithms to compute with them.

Let us immediately note some particular cases:

• If W is irreducible, a single triangular set is enough to represent its generic
solutions.
• If W is defined over K, it can be written W = ∪j≤JWj, where for all j,
Wj is defined over K, and the defining ideal of Wj is prime in K[P,X].
Then the generic solutions of each Wj are represented by a triangular set
in K(P)[X]; the generic solutions of W are represented by their reunion.

Projections of W. Before presenting the main results, we introduce some
notation related toW and its successive projections. Let k be in 1, . . . , n. First
of all, we denote by X≤k the first k variables X1, . . . , Xk; if T is a triangular
set, T≤k is the sub-family T1, . . . , Tk.

We denote by Wk ⊂ A
m+k(K) the closure of µk(W), so in particular Wn

coincides withW . It is a routine check that for all k,Wk satisfies Assumption 1
as well.

Let Jk ⊂ K[P,X≤k] be the ideal defining Wk, and JP,k its extension in
K(P)[X≤k]. Under Assumption 1.1, JP,k coincides with JP ∩K(P)[X≤k]. Thus
if the generic solutions ofW are defined by a triangular set T, JP,k is generated
by T≤k.

For p in Am(K), we denote by Wk(p) the fiber π−1
k (p) ∩ Wk and by Dk the

generic cardinality of the fibers Wk(p).

Finally, let Bk be the quotient K(P)[X≤k]/JP,k; by Assumption 1.2, the ex-
tension K(P) → Bk is a product of separable field extensions. Using the
separability, Bk has dimension Dk, by Proposition 1 in Heintz [1983].

Degree bounds. With this notation, we now present our main results. We
assume that the generic solutions of W are represented by a triangular set
T = (T1, . . . , Tn) in K(P)[X]. In view of the above remarks, this is not a
strong limitation: if this assumption is not satisfied, as soon as W is defined
over K, the following upper bounds apply to all the K-defined irreducible
components of W .

As mentioned in the preamble, the degree bounds of T in the X variables are
easily dealt with: for all k ≤ n, the product Πi≤k degXi Ti is the dimension of
Bk over K(P), that is, the generic cardinality Dk of the fibers Wk(p).
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We will thus concentrate on the dependence with respect to the P variables.
For k ≤ n, the polynomial Tk depends only on the variables X1, . . . , Xk, and
has coefficients in K(P) = K(P1, . . . , Pm). It is then natural to relate the
degrees of these coefficients to the degree of the projection of W on the space
of coordinates P1, . . . , Pm, X1, . . . , Xk, that is, Wk.

This is the object of our first theorem. In all that follows, we call degree of a
rational function the maximum of the degrees of its numerator and denomi-
nator.

Theorem 1 LetW be a variety satisfying Assumption 1, and suppose that the
generic solutions of W are represented by a triangular set T in K(P)[X]. For
k ≤ n, all coefficients in Tk have degree bounded by (2k2 + 2)k(degWk)

2k+1.

This result improves those of Gallo and Mishra [1990] and Szanto [1999] for re-
spectively Ritt-Wu’s and Kalkbrener’s unmixed representations. IfW is given
as the zero-set of a system of n equations of degree d, then Gallo-Mishra’s
bound is 2n(8n)2nd(d+ 1)4n2

and Szanto’s is dO(n2).

With this notation, the Bézout inequality (Theorem 1 in Heintz [1983]) implies
that the degree of Wk is at most dn for all k. Thus according to Theorem 1,
for k ≤ n, in a worst-case scenario the coefficients in the polynomial Tk have
degree bounded by (2k2+2)kd2kn+n. Hence the estimate is better for low indices
k than for higher indices; this contrasts with the previous results, which gave
the same bounds for all Tk.

For the worst case k = n, our estimates are within the class d 2n2+o(n2), to be
compared with Gallo and Mishra’s bound of d 4n2+o(n2). Any of these bounds
are polynomial in dn

2
; we do not know if this is sharp.

More importantly, Theorem 1 reveals that the degrees of the coefficients of
T are controlled by the intrinsic geometric quantities degWk, rather than by
the degrees of a defining polynomial system. For instance, this indicates a
good behavior with respect to decomposition, e.g. into irreducible. Also, these
degrees may be bounded a priori : in the example presented in Subsection 8.3,
the Bézout bound is 1024, but an estimate based on the semantics of the
problem gives degWk ≤ 80.

Degree of the degeneracy locus. We still assume that the generic solu-
tions of W are represented by a triangular set T = (T1, . . . , Tn) in K(P)[X].
Since the coefficients of T are rational functions, there exists an open subset
of the parameter space where they can be specialized, and give a description
of the fibers of πn. Theorem 2 below gives an upper bound on the degree of
an hypersurface where this specialization fails.
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Theorem 2 Let W be a variety satisfying Assumption 1, and suppose that
the generic solutions of W are represented by a triangular set T in K(P)[X].
There exists a polynomial ∆W ∈ K[P] of degree at most (3n degW+n2) degW
such that, if p ∈ Am(K) does not cancel ∆W :

(1) p cancels no denominator in the coefficients of (T1, . . . , Tn). We denote
by (t1, . . . , tn) ⊂ K[X] these polynomials with coefficients specialized at
p.

(2) (t1, . . . , tn) is a radical ideal. Let Zn ⊂ An(K) be the zero-set of the poly-
nomials (t1, . . . , tn); then the fiber Wn(p) is {p} × Zn ⊂ Am+n(K).

Just as Theorem 1, this result is of an intrinsic nature, since it depends only
on geometric quantities. Nevertheless, in strong contrast with the previous
result, these bounds are polynomial in the geometric degree of W .

In particular, Theorem 2 shows that the reunion of the zero-sets of all de-
nominators of the coefficients of T is contained in an hypersurface of degree
bounded polynomially in terms of the degree of W . Thus, the zero-set of any
such denominator has degree bounded by the same quantity. Theorem 1 does
not give such a polynomial bound for the degrees of the denominators. Were
the upper bounds of Theorem 1 to be sharp, this would indicate that these
denominators are (high) powers of polynomials of moderate degree.

Algorithms. The above results are purely geometric, and independent of
any system of generators. For algorithmic considerations, we now assume that
W is given as the zero-set of a polynomial system F = F1, . . . , Fn in K[P,X].
We make the additional assumption that the Jacobian determinant with re-
spect to X is invertible on a dense subset ofW . Then Assumption 1 is satisfied,
and we consider the problem of computing triangular sets that represent the
generic solutions of W .

The underlying paradigm is that solving a zero-dimensional system over K by
means of triangular sets is a well-solved task. Thus, the basic idea is first to
specialize the indeterminates P in the system F, and solve the corresponding
system in the remaining variables X, by means of triangular sets in K[X]. A
lifting process then produces triangular sets with coefficients in a formal power
series ring, from which we can recover the required information.

Our first contribution treats the case when W is irreducible: its generic so-
lutions are then represented by a single triangular set T = (T1, . . . , Tn), and
we propose a probabilistic algorithm that computes T1, . . . , Tk for any k. If
W is not irreducible, we compute the minimal polynomial of X1 modulo the
extended ideal (F1, . . . , Fn) in K(P)[X], using similar techniques.

We do not treat the general question of computing a whole family of triangular
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sets when W is not irreducible. From the practical point of view, this might
not be a strong restriction: our results cover all the applications that we had
to treat.

We use the following complexity notations:

• We suppose that F is given by a Straight-Line Program of size L, and that
F1, . . . , Fn have degree bounded by d.
• We say that f is in Olog (g) if there exists a constant a such that f is in
O(g log(g)a) — this is sometimes also expressed by the notation f ∈ O (̃g).
• M(D) denotes the cost of the multiplication of univariate polynomials of

degree D, in terms of operations in the base ring. M(D) can be taken in
O(D logD log logD), using the algorithm of Schönhage and Strassen [1971].

We denote by C0 a universal constant such that for any ring R, any integer
D and any monic polynomial T in R[X] of degree D, all operations (+,×)
in R[X]/(T ) can be done in at most C0M(D) operations, see Chapter 9
in [von zur Gathen and Gerhard, 1999].

We assume that there exists constants C1 and α such thatM(D)M(D′) ≤
C1M(DD′) log(DD′)α holds for all D,D′. This assumption is satisfied for
all commonly used multiplication algorithms.
• Ms(D,M) denotes the cost of M -variate series multiplication at precision
D. This can be taken less than M((2D + 1)M) using Kronecker’s substitu-
tion. If the base field has characteristic zero, this complexity becomes linear
in the size of the series, up to logarithmic factors; see [Lecerf and Schost,
2003, Theorem 1].

We assume that there exists a constant C2 < 1 such that Ms(D,M) ≤
C2Ms(2D,M) holds for all D and M . This is the case for all commonly
used estimates, for instance for the ones mentioned above.

Apart from the above constants, the complexities below are stated in terms
of the degrees Dk of the rational functions that appear in the output, and
the number Dn. This number was defined earlier as the generic cardinality of
the fibers Wn(p); it is thus the generic number of solutions of the parametric
system F.

Theorem 3 Assume that W is irreducible. Let p,p′ be in Km; assume that
a description of the zeros of the systems F(p,X), F(p′,X) by triangular sets
is known. For k ≤ n, let Dk be the maximum of the degrees of the coefficients
of T1, . . . , Tk. Then T1, . . . , Tk can be computed within

Olog

(
(nL+n3)(C0C1)nM(Dn)Ms(4Dk,m)+km2DnM(Dk)Ms(4Dk,m−1)

)
operations in K. The algorithm chooses 3m − 1 values in K, including the
coordinates of p and p′. If Γ is a subset of K, and these values are chosen
in Γ3m−1, then the algorithm fails for at most 50n(k2 + 2)3kd 6kn+4n|Γ|3m−2

choices.
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Theorem 4 Let p,p′ be in Km; assume that a description of the zeros of
the systems F(p,X), F(p′,X) by triangular sets which define prime ideals in
K[X] is known.

Let M1 ∈ K(P)[U ] be the minimal polynomial of X1 modulo the extended ideal
(F1, . . . , Fn) in K(P)[X], and D1 the maximum of the degrees of its coefficients.
Then M1 can be computed within

Olog

(
(nL+ n3)(C0C1)nM(Dn)Ms(4D1,m) +m2DnM(D1)Ms(4D1,m− 1)

)
operations in K. The algorithm chooses 3m − 1 values in K, including the
coordinates of p and p′. If Γ is a subset of K, and these values are chosen in
Γ3m−1, then the algorithm fails for at most 50nd4n|Γ|3m−2 choices.

These complexities are polynomial with respect to the possible number of
monomials in the output. The exponential terms (C0C1)n reflect the cost of
computing modulo a triangular set with n elements.

Using Theorem 1, the above complexities are bounded in terms only of the
degrees of the varieties Wk (for Theorem 3) and W1 (for Theorem 4). Trian-
gular sets are thus useful when a partial information is required: they avoid
taking the whole degree of the variety W into account, as would be the case
using primitive element techniques.

Finally, note that we could give an alternative formulation for the estimates
of probabilities. Referring for instance to Theorem 4, a probability of success
greater than 1−ε can be obtained as soon as all random choices are made in a
subset Γ of cardinality greater than 50nd4n/ε, assuming a uniform probability
distribution.

Organization of the paper. Section 3 presents some auxiliary results for
a primitive element representation, the geometric resolution, that are used
later. In Section 4, we prove Theorem 1. Section 5 gives technical results that
are used in Section 6 for proving Theorem 2. Our algorithms are presented in
Section 7, and their applications are detailed in Section 8.

3 Geometric Resolutions

Our complexity results rely on another representation of the solutions of a
polynomial system, the geometric resolution. We introduce this notion in Sub-
section 3.1. In Subsection 3.2, we present the complexity results that are used
later; Subsection 3.3 is devoted to prove one of them.
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3.1 Definition

The geometric resolution is a representation of a zero-dimensional variety by
means of primitive element techniques. It was introduced under this denom-
ination in Giusti et al. [1995, 1997, 1998, 2001]. See also Gianni and Mora
[1989], Alonso et al. [1996], Rouillier [1999] for the use of primitive elements
and related techniques for polynomial systems.

We first give the definition in a general setting. Let K be any field and J a
radical zero-dimensional ideal of K[X1, . . . , XN ]. Then a geometric resolution
of the extension K→ K[X1, . . . , XN ]/J, if it exists, consists in:

• a primitive element U =
∑N
i=1 uiXi of the extension K→ K[X1, . . . , XN ]/J,

• its monic minimal polynomial Q ∈ K[U ],
• a parametrization of the variables Xi in terms of the primitive element.

In the separable case, when Q has no multiple root, it factors over an algebraic
closure of K as Π(U − U(p)), where p runs over the zero-set of J.

We use two different kinds of parametrizations for the algebraic variables. The
first one takes the form

Q′(U)X1 = V1(U), . . . Q′(U)XN = VN(U);

it makes sense as soon as Q′ is invertible modulo Q, i.e. in the separable case.
The second type has the form

X1 = W1(U), . . . XN = WN(U).

Even if the latter parametrization seems more natural, better complexity
bounds are obtained for the former kind, as we will soon see. In any case,
the polynomials Q, Vi and Wi have coefficients in the base field K.

Let us return to our specific problem, and consider again the m-dimensional
variety W ⊂ A

m+n(K). With the notation of the introduction, we will use
geometric resolutions in the following contexts:

• We use the denomination parametric resolution when the base field is the
rational function field K(P), that is, to describe some generic solutions. We
give complexity results for this situation in the next subsection.
• Given k ≤ n and a point p in Am(K) such that the fiber Wk(p) is finite,

we may consider a geometric resolution of the points in Wk(p). This means
that we will consider polynomials q, w1, . . . , wk in K[U ], such that q has no
multiple root, and such that the X-coordinates of the points in Wk(p) are
defined by q(U) = 0 and X1 = w1(U), . . . , Xk = wk(U).

14



3.2 Application to Parametric Situations

Our first complexity statement concerns the existence and the complexity of
a parametric resolution for the varieties Wk (see Section 2 for the definition);
we use it in the next section for proving Theorem 1. It is a slight extension of
Proposition 2 in Schost [2003], which itself is inspired by Giusti et al. [1995]
and Sabia and Solernó [1996].

Recall that for k ≤ n, Bk is the quotient algebra K(P)[X≤k]/JP,k, where JP,k
is the extension of the ideal defining Wk in K(P)[X]; Dk is the dimension of
Bk as a K(P)-vector space.

Proposition 1 Let k be in 1, . . . , n. There exists (u1, . . . , uk) in Kk such that
U =

∑k
i=1 uiXi is a primitive element of Bk. Moreover, for any such primitive

element, there exist polynomials Qk, V1, . . . , Vk in K(P)[U ] such that:

• Qk has degree Dk and V1, . . . , Vk have degree less than Dk.
• Qk is the minimal polynomial of U in Bk, and has no multiple root.
• The following relations hold in Bk:

Q′k(U)X1 = V1(U), . . . Q′k(U)Xk = Vk(U).

• Let Qk,V1, . . . ,Vk be the polynomials Qk, V1, . . . , Vk multiplied by the LCM
of all denominators of their coefficients. Then the total degrees of these
polynomials, seen in K[P, U ], are bounded by degWk.

A parametric resolution describes generic solutions, as it has coefficients in the
rational function field K(P); thus it can be specialized on an open subset of
the parameter space. The following proposition gives an upper bound on the
degree of an hypersurface where the specialization fails. This result is used in
Section 6 for proving Theorem 2.

Proposition 2 Let U =
∑n
i=1 uiXi be a primitive element of Bn, Qn its min-

imal polynomial and W1, . . . ,Wn the polynomials in K(P)[U ] of degree less
than Dn such that the following relations hold in Bn:

X1 = W1(U), . . . Xn = Wn(U).

There exists a polynomial δW in K[P] of degree at most (2nDn + n2) degW
such that, if p ∈ Am(K) does not cancel δW :

(1) p cancels no denominator in the coefficients of Qn,W1, . . . ,Wn. We let
qn, w1, . . . , wn be these polynomials with coefficients specialized at p.

(2) The polynomials qn, w1, . . . , wn form a geometric resolution for the fiber
Wn(p).

(3) For k ≤ n, the fiber Wk(p) has Dk points.
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(4) For k ≤ n, Wk(p) coincides with the projection µk (Wn(p)).

The last part of this section is devoted to prove this proposition.

3.3 Proof of Proposition 2

The following proposition is a particular case of Proposition 1 in Schost [2003],
which follows Proposition 1 in Sabia and Solernó [1996]. It leads to Corollary 1,
which itself gives the proof of Proposition 2.

Proposition 3 Let k be in 1, . . . , n. For i ≤ k, let ϕi be the map

ϕi : A
m+k(K) → A

m+1(K)

(p, x1, . . . , xk) 7→ (p, xi),

and let Mi ∈ K[P, U ] be a squarefree polynomial defining the closure of ϕi(Wk).
Consider the polynomial Mi in K[P][U ] and let Ni ∈ K[P] be its leading coef-
ficient. Then Gi = Mi/Ni ∈ K(P)[U ] is the monic minimal polynomial of Xi

in Bk.

Corollary 1 Let k in 1, . . . , n, U =
∑k
i=1 uiXi a primitive element of Bk, Qk

its minimal polynomial and W1, . . . ,Wk the polynomials in K(P)[U ] of degree
less than Dk such that the following relations hold in Bk:

X1 = W1(U), . . . Xk = Wk(U).

There exists a polynomial δk in K[P] of degree at most (2Dk + k) degWk such
that, if p ∈ Am(K) does not cancel δk:

• p cancels no denominator in the coefficients of Qk,W1, . . . ,Wk. We let
qk, w1, . . . , wk be these polynomials with coefficients specialized at p.

• The fiber Wk(p) is finite and has Dk points; qk, w1, . . . , wk is a geometric
resolution for this fiber. In particular, qk has no multiple root.

Proof. Let us first exclude the infinite fibers. We use the same notations as
in Proposition 3: for i ≤ k, Gi is the minimal polynomial of Xi in Bk. Then
Gi can be written Mi/Ni, where Mi is primitive in K[P][U ], and Ni ∈ K[P] is
its leading coefficient. Using the previous proposition, Ni has degree at most
degWk.

Let N ∈ K[P] be the product of all Ni, for i ≤ k; then N has degree at
most k degWk. Corollary 14.6 and the proof of Theorem 14.4 in [Eisenbud,
1996] show that if p does not cancel N , then the fiber Wk(p) is finite. Then
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by Proposition 1 in Heintz [1983], this fiber has at most Dk points. We now
suppose that we are in this situation.

Let f be a polynomial in the ideal Jk ⊂ K[P,X≤k] defining Wk. Then
f belongs to the extension JP,k ⊂ K(P)[X≤k] so there exist polynomials
(g1, . . . , gk+1) in K(P)[X≤k] such that f =

∑k
i=1 gi(Xi −Wi(U)) + gn+1Qk(U).

Let us now suppose that p cancels no denominator in the coefficients of
Qk,W1, . . . ,Wk. Then p cancels no denominator in the previous equality. Spe-
cializing the variables P at p shows that f(p,X≤k) is in the ideal (qk(U), X1−
w1(U), . . . , Xk − wk(U)). Thus the zero-set of these polynomials is contained
in the fiber Wk(p).

Finally, suppose that p does not cancel the discriminant of Qk, which is a non-
zero polynomial by Proposition 1. Then qk has Dk distinct roots; sinceWk(p)
has cardinality at most Dk, we conclude that qk, w1, . . . , wk is a geometric
resolution for the fiber Wk(p), as requested.

With the notations of Proposition 1, p satisfies the last conditions if it does
not cancel the determinant δ of the Sylvester matrix associated to Qk and its
derivative. We take δk = Nδ; the degree estimates of Proposition 1 conclude
the proof of the corollary. �

We now conclude the proof of Proposition 2. Let δW be the product of all δk,
for k ≤ n. The estimates Dk ≤ Dn and degWk ≤ degWn prove points 1, 2, 3 of
the proposition. To prove the last point, we note that the projection µk(Wn(p))
is contained in Wk(p) for all p; thus it is enough to exhibit conditions under
which their cardinalities coincide.

Let U be a linear form
∑n
i=1 uiXi which generates Bn, Qn its minimal poly-

nomial and W1, . . . ,Wn the polynomials in K(P)[U ] such that the relations
X1 = W1(U), . . . , Xn = Wn(U) hold in Bn.

Consider also k ≤ n, U′ =
∑k
i=1 u

′
iXi a linear form which generates Bk and

Qk its minimal polynomial. Then Qk is the minimal polynomial of
∑k
i=1 u

′
iWi

modulo Qn and has degree Dk.

Let p be in Am(K) and suppose that p cancels neither δk nor δn. Then by
Corollary 1, Wk(p) has cardinality Dk. We now prove that the projection
µk(Wn(p)) has cardinality Dk, which will prove Proposition 2. To this effect,
we apply Corollary 1 twice.

• Applied for index k, this shows that p cancels no denominator in the coef-
ficients of Qk, and that the specialized polynomial qk has Dk distinct roots.
• For index n, Corollary 1 shows that p cancels no denominator in the co-

efficients of Qn,W1, . . . ,Wn and the specialized polynomials qn, w1, . . . , wn
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form a geometric resolution for the fiberWn(p). Let Ξ be the characteristic
polynomial of

∑k
i=1 u

′
iWi modulo Qn. Then p cancels no denominator in the

coefficients of Ξ; specializing these coefficients at p yields the characteristic
polynomial χ of

∑k
i=1 u

′
iwi modulo qn.

We now conclude the proof. Since Qk is the square-free part of Ξ and qk has
Dk distinct roots, χ has Dk distinct roots. But this number of roots is precisely
the cardinality of µk(Wn(p)), so the proposition is proven. �

4 Degree Bounds: Proof of Theorem 1

In this section, we suppose that the generic solutions of W are represented
by a triangular set T = (T1, . . . , Tn) in K(P)[X]. For k ≤ n, recall that
Wk ⊂ Am+k(K) is the closure of the projection µk(W). We now prove that all
coefficients in Tk have degree bounded by (2k2 + 2)k(degWk)

2k+1.

The proof goes as follows: we first apply Proposition 1 to Wk, deducing the
existence of a suitable parametric resolution. Applying Proposition 4 given
below, we obtain Bézout equalities of low degree relating this parametric reso-
lution and the triangular set (T1, . . . , Tk). Inspired by [Gallo and Mishra, 1990],
we conclude by turning these relations into a linear system for the coefficients
of (T1, . . . , Tk), from which Theorem 1 follows.

First, we present the Bézout identities we will use. The following proposition
is Lemma 5 in Krick et al. [1997]; similar results can be seen in Giusti et al.
[1997], originating from Giusti et al. [1995].

Proposition 4 Let K be a field, and let (F1, . . . , Fk) be a regular sequence in
K[X1, . . . , Xk]. Let d be a bound on the degrees of the polynomials F, and δ the
maximum of the degrees of the varieties V(F1, . . . , Fk), for i = 1, . . . , k − 1.

For i = 0, . . . , k − 1, let Bi
k be the quotient

K[X1, . . . , Xk]/(F1, . . . , Fk−i).

Assume that the extension K[X1, . . . , Xi]→ Bi
k is integral and that the jacobian

of (F1, . . . , Fk−i) with respect to (Xi+1, . . . , Xk) is a non-zero divisor in Bi
k.

Then if H belongs to (F1, . . . , Fk), there exists polynomials (S1, . . . , Sk) in
K[X1, . . . , Xk] such that

H = S1F1 + · · ·+ SkFk

and, for i = 1, . . . , k, degSiFi ≤ 2k2dδ + δmax{degH, d}.
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With this proposition, we can prove Theorem 1. As before, we denote by Jk
and JP,k the ideal defining Wk in K[P,X≤k] and its extension in K(P)[X≤k].
By Proposition 1, there exist u1, . . . , uk in K, and a family of polynomials
Qk, V1, . . . , Vk in K(P)[U ] such that the ideal JP,k is generated by

(Qk(U), Q′k(U)Xk − Vk(U), . . . , Q′k(U)X1 − V1(U)) ,

where U is the linear form
∑k
i=1 ukXk. Without loss of generality, we can

assume that the coefficient uk is not zero. Then, the following family generates
the ideal JP,k as well:

R : (Qk(U), Q′k(U)Xk−1 − Vk−1(U), . . . , Q′k(U)X1 − V1(U)) .

We will consider the following families Ri in K(P)[X≤k], for 0 ≤ i ≤ k − 2:

Ri : (Qk(U), Q′k(U)Xk−1 − Vk−1(U), . . . , Q′k(U)Xi+1 − Vi+1(U)) ,

and Rk−1 = (Qk(U)). We now check the hypotheses of Proposition 4 for Ri,
with K = K(P).

• By Proposition 1, Q′k is invertible modulo Qk so each equation Q′k(U)Xi −
Vi(U) can be written Xi−Wi(U) modulo Qk(U), for some polynomial Wi in
K(P)[U ]. This shows that Ri is a regular sequence.
• For i in 0, . . . , k − 1, we define the ring Bi

k as K(P)[X≤k]/Ri. Since the
coefficient uk is not zero, we deduce that for i in 0, . . . , k − 1, Bi

k is an
integral extension of K(P)[X1, . . . , Xi].
• Finally, the jacobian determinant of Ri with respect to Xi+1, . . . , Xk is a

constant multiple of (k− 1− i)-th power of Q′k(U), so it is invertible in Bi
k.

Thus, the hypotheses of Proposition 4 are satisfied; then we need some degree
estimates to apply this proposition. Since the variables P are in the base
field K = K(P), we estimate all degrees in terms of the variables X≤k only.
By Proposition 1, the degrees of all polynomials in R are bounded by Dk ≤
degWk. The varieties V(Ri) are cylinders built upon zero-dimensional varieties
of degree at most degWk over K, so their degree is at most degWk.

The polynomials in R are in K(P)[U ], but we need equalities involving poly-
nomials in K[P][U ]. Let thus Qk,V1, . . . ,Vk be the polynomials Qk, V1, . . . , Vk
multiplied by the LCM of the denominators of their coefficients. These poly-
nomials satisfy the same properties as Qk, V1, . . . , Vk. In particular, for i ≤ k,
there exist S0,i, . . . , Sk−1,i in K(P)[X≤k] such that the following equality holds
in K(P)[X≤k]:

Ti = S0,iQk(U) +
k−1∑
j=1

Sj,i
(
Q′k(U)Xi −Vi(U)

)
(1)
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Let us fix i, and apply Proposition 4. Our conventions on the elements of a
triangular set show that the degree of Ti in X≤k is at most degWk. Propo-
sition 4 then shows that the degree in X≤k of each summand in (1) can be
taken at most 2k2(degWk)

2 + (degWk)
2 = (2k2 + 1)(degWk)

2.

The conclusion is now similar to that of Gallo and Mishra [1990]. Writing
Ti = Xdi

i +Ri, with degXj Rj < dj for all j ≤ i, identity (1) can be rewritten

Xdi
i = −Ri + S0,iQk(U) +

k−1∑
j=1

Sj,i
(
Q′k(U)Xi −Vi(U)

)
.

This can be rewritten as a linear system in the coefficients of Ri, S0,i, . . . , Sk−1,i.

Let G be the number of monomials in k variables of degree at most (2k2 +
1)(degWk)

2, and G′ ≤ G the number of unknown coefficients in Ri. Then we
write the system Mu = v, where u is the vector of the kG + G′ unknown
coefficients of Ri, S0,i, . . . , Sk−1,i and v is the zero vector, except for one entry
equal to 1, corresponding to the coefficient of Xdi

i . The matrix M has G
rows and kG + G′ columns, and its entries are either the constant 1, or the
coefficients of Qk,Q

′
k,V1, . . . ,Vn. These are polynomials in P of degree at

most degWk, by Proposition 1.

The coefficients of Ri are uniquely determined, due to our degree constraints
for a triangular set. Consequently, by Rouché-Fontené’s Theorem, these co-
efficients can be expressed as quotients of determinants of size at most G,
with entries that are polynomials in P of degree at most degWk. Then their
numerators and denominators have degree at most G degWk.

This concludes the proof of Theorem 1: since G is bounded from above by
((2k2 + 1)(degWk)

2 + 1)k, G degWk is bounded by (2k2 + 2)k(degWk)
2k+1. �

5 Preliminaries for Theorem 2

This section is devoted to present intermediate results that are used in Sec-
tion 6 for proving Theorem 2; they are independent of our general discussion
on the variety W and its generic solutions. In Subsection 5.1, we discuss a
notion of specialization of a Greatest Common Divisor defined modulo a tri-
angular set in K(P)[X]. In Subsection 5.2, we define the operations of splitting
and recombining triangular sets, following [Lazard, 1992].
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5.1 Specializing Greatest Common Divisors

Let T = (T1, . . . , Tn) be a triangular set in K(P)[X]; we let B be the quo-
tient K(P)[X]/T and suppose that B is a field. Thus, the notion of GCD
of two polynomials in B[U ] is well-defined; we now inspect its specialization
properties.

Let thus p be a point in Am(K) which cancels no denominator in the coef-
ficients of T. We denote by t the polynomials T, where all coefficients are
specialized at p, and let b be the quotient K[X]/t. We suppose that t defines

a radical ideal, so b is the product of fields b ' KD, for some integer D.

The following proposition exhibits conditions under which the GCD of two

polynomials in B[U ] specializes well. Since b is the product of fields KD, we
denote by ψ` the `-th coordinate map b→ K, for ` ≤ D; it extends to a map
b[U ]→ K[U ].

Proposition 5 Let F,G be polynomials in B[U ], with G monic, and H ∈
B[U ] their monic GCD. Suppose that p ∈ Am(K) cancels no denominator
in the coefficients of F,G. Denote by f, g in b[U ] the polynomials F,G with
coefficients specialized at p. Then:

(1) p cancels none of the denominators of the coefficients of H; h then de-
notes the polynomial H with all coefficients specialized at p.

(2) For ` ≤ D, the degree of gcd(ψ`(f), ψ`(g)) is at least the degree of H.

Suppose that for ` ≤ D, the degree of gcd(ψ`(f), ψ`(g)) is the degree of H.
Then:

3. For ` ≤ D, ψ`(h) equals gcd(ψ`(f), ψ`(g)).
4. Let Q,R in B[U ] be the cofactors for the Bézout equality QF +RG = H.

Then p cancels none of the denominators of the coefficients of Q,R. Let
q, r in b[U ] denote these polynomials with coefficients specialized at p.
Then for ` ≤ D, ψ`(q), ψ`(r) are the cofactors for the Bézout equality of
ψ`(f), ψ`(g).

Proof. We use a classical local-global argument; thus, we suppose without
loss of generality that p = 0, and proceed to work in the power series ring
K[[P]] and its fraction field K((P)) instead of the rational function field K(P).
We let S denote the reduction modulo the maximal ideal of K[[P]]; S extends
to specialization maps K[[P]][U ]→ K[U ] and K[[P]]n → Kn.

We use below Theorems 6.26 and 6.55 from von zur Gathen and Gerhard
[1999] in the ring K[[P]][U ]. These results are stated for a prime ideal in an
Euclidean base ring, but they extend verbatim to the UFD K[[P]] and its
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maximal ideal. We start by proving two auxiliary results.

Lifting the coordinate functions. Let x1, . . . ,xD be the D distinct roots
of t in Kn. Then for ` ≤ D, the polynomials ψ`(f), ψ`(g) are obtained by
specializing P at 0 and X at x` in F,G. Using the points x`, we proceed to
lift the splitting of b into a splitting of B.

By assumption, none of the denominators in T vanishes at zero, so we denote
by T the image of these polynomials in K[[P]][X]. Since b is a product of
field extensions and K is algebraically closed, we deduce that the jacobian
determinant of t is invertible in b, so Hensel’s Lemma applies. We obtain the
existence of X1, . . . ,XD in K[[P]]n that cancel T, and such that S(X`) = x`

for ` ≤ D.

Enumeration shows that these are all the roots of T in an algebraic closure of
K((P)), thus K((P))[X]/T is the product of D copies of K((P)). For ` ≤ D,
let Ψ` be the field embedding B → K((P)) that maps (X mod T) to X`. It
extends to a map B[U ]→ K((P))[U ].

An interpolation result. Let z be in B. Let us suppose that all values
Ψ`(z) are in the subring K[[P]] of K((P)). We now prove that no coefficient of
z on the canonical basis of B vanishes at zero; this result is used twice below.

The coefficients of z are obtained as follows. We denote by z = [z1, . . . , zD]t

the column vector of the coordinates of z in the canonical basis, and Ψ(z)
the column vector [Ψ1(z), . . . ,ΨD(z)]. Then these vectors are related by the
relation Vz = Ψ(z), where we now describe the matrix V.

The matrix V is a generalized Vandermonde Matrix associated to X1, . . . ,XD,
see Mourrain and Ruatta [2002]. Its entries are the values taken by X1, . . . ,XD

on all monomials of the canonical basis; thus its determinant is in K[[P]].
Since the entries of Ψ(z) are in K[[P]], it is enough to prove that the constant
term of det(V) is non zero to conclude. This term is the determinant of the
analogous Vandermonde matrix associated to the points x1, . . . ,xD in Kn.
But by Proposition 4.6 in Mourrain and Ruatta [2002], this determinant is
not zero, q.e.d.

Concluding the proof. For ` ≤ D, Ψ`(H) is gcd(Ψ`(F ),Ψ`(G)), since
Ψ` embeds B into K((P)). Our assumptions on F,G show that Ψ`(F ) and
Ψ`(G) are in the subring K[[P]][U ] of K((P))[U ], thus so is their monic GCD.
Using the above interpolation result, this proves the first statement of the
proposition.
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By construction, S(Ψ`(F )) = ψ`(f) and S(Ψ`(G)) = ψ`(g). Since Ψ`(G) is
monic, Theorem 6.26 in von zur Gathen and Gerhard [1999] shows that the de-
gree of gcd(ψ`(f), ψ`(g)) is at least the degree of gcd(Ψ`(F ),Ψ`(G)) = degH.
This proves the second statement.

We suppose now that gcd(ψ`(f), ψ`(g)) has degree d for all `. Using again The-
orem 6.26 in von zur Gathen and Gerhard [1999], we see that gcd(ψ`(f), ψ`(g))
is the specialization S(Ψ`(H)). Since none of the coefficients of H vanishes at
zero, this can be obtained by first letting P = 0 in H, then evaluating at x`.
This is our third statement.

Finally, for ` ≤ D, the equality Ψ`(Q)Ψ`(F )+Ψ`(R)Ψ`(G) = Ψ`(H) holds. Us-
ing our assumption on the degree of gcd(ψ`(f), ψ`(g)), Theorem 6.55 in von zur
Gathen and Gerhard [1999] shows that Ψ`(Q),Ψ`(R) are in K[[P]][U ], and that
their images by S are the cofactors for the Bézout equality of ψ`(f), ψ`(g). Ap-
plying again the above interpolation result concludes the proof. �

5.2 Splitting and Combining Triangular Sets

Our second, and last, intermediate result presents the basic ways of splitting
and combining triangular sets. The first paragraph closely follows [Lazard,
1992], and we give it again for completeness. In a second time, as a corollary
of Proposition 5, we show how to specialize the process of combining two
triangular sets; this result is used in Subsection 6.3. In the sequel, superscripts
do not indicate powers.

The general case. Let K be a field, X = X1, . . . , Xn and T a triangular
set in K[X]. Let us fix k ≤ n and suppose that Bk = K[X≤k]/T≤k is a field.
We now define the splitting of T as a family of triangular sets T1, . . . ,TJ in
K[X]; it is denoted by Split(T).

Let us write Tk+1 = ΠJ
j=1Tk+1,j the factorization of Tk+1 into irreducibles in the

polynomial ring Bk[Xk+1] (with repetitions allowed). We can then define Tj,
for j ≤ J . For i ≤ k, we take T ji = Ti. For index k + 1, we take T jk+1 = Tk+1,j.

For i > k + 1, we define T ji as Ti with coefficients reduced modulo Tk+1,j.

In the converse direction, let T1 and T2 be two triangular sets in K[X], and
suppose that there exists k ≤ n such that:

• T1
≤k = T2

≤k and Bk = K[X≤k]/T
1
≤k is a field;

• T 1
k+1 and T 2

k+1 are coprime in Bk[Xk+1];
• for i > k + 1, T 1

i and T 2
i have the same degree in the variable Xi (recall

that they are monic in Xi by definition).
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Then we say that T1 and T2 can be combined. We define their combination,
the triangular set T, as follows: Ti = T 1

i = T 2
i for i ≤ k and Tk+1 = T 1

k+1T
2
k+1.

For i > k+1, we now define Ti using an explicit form of the Chinese Remainder
Theorem.

Let us consider T 1
i and T 2

i as multivariate polynomials in Xk+2, . . . , Xn with
coefficients in Bk[Xk+1]. With this point of view, let M be any monomial
in Xk+2, . . . , Xn and c1 and c2 its coefficients in respectively T 1

i and T 2
i . Let

U1, U2 be the Bézout coefficients, so that U1T
1
k+1 +U2T

2
k+1 = 1. Then we define

c(M) = c2U1T
1
k+1 + c1U2T

2
k+1 and Ti is the sum of the terms c(M)M , taken

for all monomials M .

Under the above assumptions, T is a triangular set: for i > k + 1, the poly-
nomials T 1

i and T 2
i have the same degree in Xi and are monic in Xi, so that

Ti is monic in Xi as well (for i ≤ k + 1, this is obviously also the case). The
ideal generated by T is the sum of those defined by T1 and T2; splitting T
gives back T1 and T2.

Application to parametric situations. We now consider the particular
case K = K(P). Let T1,T2 be triangular sets in K(P)[X] and suppose that
T1,T2 can be combined, for some k ≤ n. Let T be their combination, as
defined above. Let p be in Am(K), which cancels no denominator in the co-
efficients of T1,T2, and denote t1, t2 these triangular sets with coefficients
specialized at p.

The next proposition shows how the recombination can be specialized at the
point p; we will use it in Subsection 6.3. The proof is a direct consequence
of point 4 in Proposition 5, and the definition of T given in the previous
paragraph.

Proposition 6 Assume that the triangular sets t1
≤k+1 and t2

≤k+1 define radical

ideals in K[X≤k+1] with no common solution. Then p cancels none of the
denominators of the coefficients of T. If t denotes the triangular set T with
all coefficients specialized at p, then t generates the sum of the ideals generated
by t1, t2, so in particular it generates a radical ideal.

6 Specialization Properties: Proof of Theorem 2

We now return to our original complexity questions: we consider again the va-
rietyW , that satisfies Assumption 1, and suppose that its generic solutions are
represented by a triangular set T = (T1, . . . , Tn). We now consider bounding
the degree of a degeneracy hypersurface associated to T:
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There exists a polynomial ∆W ∈ K[P] of degree at most (3n degW+n2) degW
such that, if p ∈ Am(K) does not cancel ∆W :

(1) p cancels no denominator in the coefficients of (T1, . . . , Tn). We denote
by (t1, . . . , tn) these polynomials with coefficients specialized at p.

(2) (t1, . . . , tn) is a radical ideal. Let Zn ⊂ An(K) be the zero-set of the poly-
nomials (t1, . . . , tn); then Wn(p) equals {p} × Zn ⊂ Am+n(K).

The proof consists in specializing all steps of a conversion algorithm from a
geometric resolution to a triangular set. In Subsection 6.1, we give such an
algorithm, which computes the triangular set T from a parametric resolution
associated to W . The algorithm works over the base field K(P), and applies
when W is irreducible. In Subsection 6.2, we show how to specialize all steps
of this algorithm at a point p in Am(K), under suitable geometric conditions.
In Subsection 6.3, we drop the irreducibility assumption and quantify the
geometric conditions, giving the proof of Theorem 2.

6.1 A Conversion Algorithm

Let J the ideal definingW , and JP its extension in K(P)[X]. By assumption,
JP is generated by the triangular set T. Let Bn be the quotientK(P)[X]/T. As
described in Section 2, for k ≤ n, we define the quotient Bk as K(P)[X≤k]/T≤k
and denote by Dk its dimension. We suppose that W is irreducible, so the
field extensions K(P) → Bn is separable, by Assumption 1, thus so are all
intermediate extensions.

Propositions 1 and 2 show that K(P)→ Bn admits the parametric resolution
Q(U) = 0 and X1 = W1(U), . . . , Xn = Wn(U), where U is a linear combination
of the variables X; we now show how to compute the triangular set T starting
from Q,W1, . . . ,Wn. Consider the following sequence:

(1) Initialization: let A0 = K(P), R0 = Q, S0 = 0.
(2) Loop: for k in 1, . . . , n do
• Let Sk = MinimalPolynomial(Wk) in Ak−1[U ]/Rk−1(U).
• Let Ak = Ak−1[Xk]/Sk(Xk), and xk the image of Xk in Ak.
• Let Rk = gcd(xk −Wk(U), Rk−1(U)) in Ak[U ].

Proposition 7 shows that this algorithm computes the polynomials Tk. Actu-
ally, we must take into account the polynomials Rk as well; for consistency we
also take T0 = 0 and B0 = K(P).

Proposition 7 For k = 0, . . . , n, the following holds:

(1) Sk = Tk, so that Ak coincides with the quotient Bk defined above.
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(2) Rk is the minimal polynomial of U over the subfield Bk of Bn, so Bn =
Bk[U ]/Rk(U).

Proof. Let us denote by Pk the above assertions. Their validity for k = 0
is immediate. For k = 1, . . . , n, we prove that Pk−1 implies Pk. This is an
immediate consequence of the following lemma.

Lemma 1 Let A→ B be a separable field extension, such that B = A[U ]/R,
with R irreducible, and denote by u the image of U in B. Let W be in A[U ],
x = W (u) in B and P the minimal polynomial of x over A. Let C = A[X]/P
be the subfield A(x) ⊂ B. Then the minimal polynomial of u over C is the
GCD of R(U) and W (U)− x in C[U ].

Proof. Let S ∈ C[U ] be the minimal polynomial of u over C. Since R(u) = 0,
S divides R. Similarly, since x = W (u), S divides W − x, so S divides the
GCD of (R,W − x) in C[U ]. To conclude, it is enough to show that S and
gcd(R,W−x) have the same degree. From the field inclusions A→ C → B, we
deduce that the degree of S is degR/ degP . Let us prove that gcd(R,W − x)
has degree degR/ degP too.

Let χ be the characteristic polynomial of W in B; since P is irreducible,
χ is a power of P . We consider an algebraic closure A of A and write the
factorizations in A[U ]:

R =
degR∏
k=1

(U − uk), χ =
degR∏
k=1

(X −W (uk)), P =
degP∏
j=1

(X − wj).

Then all wj are distinct since B is separable, so for j in 1, . . . , degP , there
are precisely degR/ degP roots uk of R such that W (uk) = wj. Let now C be

the quotient A[X]/P . Then C is not a field, but a product of fields ΠdegP
j=1 Cj.

All Cj are isomorphic to A, and the image of X in Cj is wj.

Let us embed C = A[X]/P into one of these fields, for instance C1. Then the
GCD of R and W − x has the same degree when it is considered in C[U ] or
C1[U ], and we conclude the proof by estimating its degree in C1[U ]. Indeed,
the degree of gcd(R,W −x) in C1[U ] is the number of roots uk of R, such that
W (uk) = w1. By the remarks above, this number is degR/ degP . �

We can then prove Proposition 7. Assuming Pk−1, we see that Ak−1 is the
subfield Bk−1 = K(P)(x1, . . . , xk−1), and that Bn is Bk−1[U ]/Rk−1(U). Thus
the minimal polynomial of Wk in Bk−1[U ]/Rk−1(U) is indeed Tk; this prove
point 1 for Pk. Applying the above lemma concludes the proof, taking Bk−1 →
Bk → Bn for the fields A→ C → B mentioned in the lemma. �

26



6.2 Step-by-step Specialization of the Algorithm

Let p be in Am(K). We now prove that each step of the previous algorithm can
be specialized at p: under suitable geometric conditions, none of the denomi-
nators that appear vanishes at p, and specializing the variables P at p gives
the requested output. We refer to Section 2 for the definition of the notation
used here, notably of the projections µk.

Proposition 8 Assume that p ∈ Am(K) is such that:

(1) p cancels no denominator in the coefficients of Q,W1, . . . ,Wn. We de-
note by q, w1, . . . , wn the polynomials of K[U ] obtained by specializing all
coefficients in Q,W1, . . . ,Wn at p.

(2) For k ≤ n, the fiber Wk(p) has Dk points.
(3) The polynomials q, w1, . . . , wn form a geometric resolution for the fiber
Wn(p).

(4) For k ≤ n, Wk(p) coincides with the projection µk (Wn(p)).

Then p cancels no denominator in (T1, . . . , Tn). Denote by (t1, . . . , tn) the
polynomials (T1, . . . , Tn) with coefficients specialized at p. Then (t1, . . . , tn) is
a radical ideal. Let Zn ⊂ A

n(K) be the zero-set of (t1, . . . , tn); then Wn(p)
equals {p} × Zn.

Proof. Let us first recall how the polynomials T = (T1, . . . , Tn) are obtained.
Let B0 = K(P) and R0 = Q. Then, using Proposition 7, for k ≤ n, Tk, Bk, Rk

are defined as follows:

• Tk is the minimal polynomial of Wk in Bk−1[U ]/Rk−1(U);
• Bk is the quotient field Bk−1[Xk]/Tk(Xk);
• Rk is the GCD of xk −Wk(U) and Rk−1(U) in Bk[U ].

We now prove that each step of this algorithm can be specialized at p, in
a suitable sense: for k in 1, . . . , n, all coefficients in T1, . . . , Tk, Rk will be
specialized at p, which will define a quotient bk analogous to Bk. The quotient
bk will not be a field; hence, some care is needed as to giving a precise meaning
to notions such as minimal polynomial or GCD over bk.

More precisely, we prove the following properties by induction. Properties An

and Bn are enough to prove the proposition, but we actually need to handle
the last property to make the recursion work. In the sequel, superscripts do
not indicate powers.

Ak : p cancels no denominator in the coefficients of T1, . . . , Tk; then t1, . . . , tk
denote these polynomials with coefficients specialized at p.

Bk : The ideal (t1, . . . , tk) of K[X≤k] is radical. Let Zk ⊂ Ak(K) be its zero-
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set; then Wk(p) coincides with {p} × Zk.
We let bk be the quotient K[X≤k]/(t1, . . . , tk). Then bk is the product of

Dk copies of K, by Hypothesis 2. For j ≤ Dk, we denote by φj the j-th
coordinate function bk → K. This function maps X1, . . . , Xk to some values
x

(j)
1 , . . . , x

(j)
k , and we denote by p

(j)
k the point of Wk(p) with coordinates

(p, x
(j)
1 , . . . , x

(j)
k ). The map φj also extends to a map between polynomial

rings bk[U ]→ K[U ].
Ck : p cancels no denominator in the coefficients of Rk. We let rk ∈ bk[U ]

denote this polynomial with coefficients specialized at p, and for j ≤ Dk,
let rk,j be φj(rk) in K[U ]. Then rk,j is Π(U −U(p)), the product being taken

on all points p in Wn(p) such that µk(p) = p
(j)
k .

The validity for k = 0 is obvious; we now suppose that Ak−1,Bk−1,Ck−1 are
satisfied, and prove their validity at step k. By assumption, we come equipped
with a quotient bk−1 = K[X≤k−1]/(t1, . . . , tk−1), which is a product of Dk−1

copies of K. For j ≤ Dk−1, we denote by φj the j-th coordinate map bk−1 → K
and its extension bk−1[U ]→ K[U ].

Proof of Ak. Let χ be the characteristic polynomial of Wk in the quotient
Bk−1[U ]/Rk−1(U). Our hypotheses show that p cancels no denominator in the
coefficients of χ. Since χ is a power of the minimal polynomial Tk of Wk,
p cancels no denominator in the coefficients of Tk. This proves Ak; we let
tk ∈ bk−1[U ] be the polynomial Tk with all coefficients specialized at p.

Proof of Bk. By definition, Rk−1 divides Tk(Wk) in Bk−1[U ]. Let S ∈
Bk−1[U ] be the quotient, satisfying the equality Tk(Wk) = Rk−1S. Then p
cancels no denominator in the coefficients of S, and we let s be S with coeffi-
cients specialized at p. Then the equality tk(wk) = rk−1s holds in bk−1[U ]. For
j ≤ Dk−1, let tk,j, wk,j, sj in K[U ] be the images of tk, wk, s by φj. The relation
tk,j(wk,j) = rk−1,jsj shows that all roots of rk−1,j cancel tk,j(wk,j).

Let Zk ⊂ Ak(K) be the zero-set of (t1, . . . , tk). We first prove that {p} × Zk
contains the fiber Wk(p). Let pk = (p, x1, . . . , xk) be a point in Wk(p); we
thus want to prove that (t1, . . . , tk) vanish at (x1, . . . , xk).

By Hypothesis 4, there exist p inWn(p) such that µk(p) = pk. Since µk−1(p) is

in Wk−1(p), there exists j ≤ Dk−1 such that (x1, . . . , xk−1) = (x
(j)
1 , . . . , x

(j)
k−1).

In particular, (x1, . . . , xk−1) cancel (t1, . . . , tk−1). By Hypothesis 3, wk (U(p))
equals xk. Then by property Ck−1, rk−1,j vanishes at U(p), so by the above
discussion, tk,j vanishes at xk. Thus {p} × Zk contains Wk(p).

We finally prove that these sets coincide. For j ≤ k, tj has the same degree as
Tj, so the quotient K[X≤k]/(t1, . . . , tk) has the same dimension as the quotient
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K(P)[X≤k]/(T1, . . . , Tk). This dimension is Dk, so it equals the cardinality of
Wk(p) by Hypothesis 2. We deduce that {p}×Zk equalsWk(p) and (t1, . . . , tk)
is radical. This proves Bk.

Setting up the new quotient. Let bk be the quotient

bk = K[X1, . . . , Xk]/(t1, . . . , tk) = bk−1[Xk]/tk ' K
Dk .

For ` ≤ Dk, let us denote by ψ` the `-th coordinate function bk → K. This
function maps X1, . . . , Xk to some values x

(`)
1 , . . . , x

(`)
k , such that the coordi-

nates of the corresponding point in Wk(p) are (p, x
(`)
1 , . . . , x

(`)
k ). It extends to

a map bk[U ]→ K[U ]. From now on we consider the polynomial rk−1 in bk[U ],
and its images rk−1,` = ψ`(rk−1) in K[U ]. Similar notations hold for wk and
wk,`.

Proof of Ck. We now turn to the last step, the specialization of the GCD
computation. Let ` ≤ Dk and (p, x

(`)
1 , . . . , x

(`)
k ) the coordinates of the corre-

sponding point in Wk(p). The definition of rk−1 shows that rk−1,` factors as
the product Π(U−U(p)), taken on all points inWn(p) whose first coordinates

are (p, x
(`)
1 , . . . , x

(`)
k−1). Let rk,` be the GCD of wk,`(U) − x

(`)
k and rk−1,`(U).

Then rk,` is the product Π(U − U(p)), taken on all points p in Wn(p) such

that µk(p) = (p, x
(`)
1 , . . . , x

(`)
k ).

We apply Proposition 5, that describes the specialization properties of GCD’s.
The first part of the proposition shows that for all `, the degree of rk,` is at
least the degree of Rk. We now proceed to prove that these degrees are actually
equal.

Using the above characterization, the product of the polynomials rk,` for ` ≤
Dk is Π(U−U(p)), taken on all points inWn(p). By hypothesis 2, it has degree
Dn. On the other hand, since there are Dk polynomials rk,`, their product has
degree at least Dk degRk by the previous reasoning, with equality if and only
if they all have degree degRk. But the definition of Dk and Rk shows that
Dk degRk = Dn. Thus all polynomials rk,` necessarily have degree degRk.

We can then apply the first and third points of Proposition 5: p cancels no de-
nominator in Rk; if rk denotes this polynomial with all coefficients specialized
at p, then ψ`(rk) = rk,`. This is precisely the content of assertion Ck. �
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6.3 Dropping the Irreducibility Condition

Up to now, we assumed thatW was irreducible. We now drop this assumption,
and prove Theorem 2:

There exists a polynomial ∆W ∈ K[P] of degree at most (3n degW+n2) degW
such that, if p ∈ Am(K) does not cancel ∆W :

(1) p cancels no denominator in the coefficients of (T1, . . . , Tn). We denote
by (t1, . . . , tn) these polynomials with coefficients specialized at p.

(2) (t1, . . . , tn) is a radical ideal. Let Zn ⊂ An(K) be the zero-set of the poly-
nomials (t1, . . . , tn); then Wn(p) equals {p} × Zn ⊂ Am+n(K).

The proof relies on Proposition 9 below. The fact that W is not irreducible
anymore requires further work, and the introduction of new objects associated
to W and its irreducible components.

• Recall that the generic solutions of W are represented by the triangular set
T in K(P)[X].
• We write W = ∪j≤JWj, where Wj is irreducible, and for j ≤ J , let Tj be

the triangular set in K(P)[X] that represents the generic solutions of Wj.
• For k ≤ n and j ≤ J , we denote by Wj

k the closure of µk(Wk). Not all Wj
k

may be distinct; we let Jk ≤ J be the number of distinct varieties among
them. We suppose without loss of generality thatW1

k , . . . ,W
Jk
k are a system

of representatives of the distinct varieties among W1
k , . . . ,WJ

k .
• For p in Am(K) and j ≤ J , we define Wj

k(p) as the fiber π−1
k (p) ∩Wj

k.

Proposition 9 Assume that p ∈ Am(K) is such that:

(1) For k ≤ n, and j, j′ ≤ Jk with j 6= j′, Wj
k(p) ∩Wj′

k (p) is empty.
(2) p satisfies the assumptions of Proposition 8 for all varieties Wj, j ≤ J .

Then p cancels no denominator in the coefficients of (T1, . . . , Tn). Denote by
(t1, . . . , tn) these polynomials with coefficients specialized at p. Then the ideal
(t1, . . . , tn) is a radical ideal. If Zn ⊂ An(K) denotes its zero-set,Wn(p) equals
{p} × Zn.

Before proving the proposition, we deduce the proof of Theorem 2; this simply
amounts to quantify all conditions given in the proposition.

• For k ≤ n and j, j′ ≤ Jk, with j 6= j′, Hypothesis 1 is satisfied if p avoids
a hypersurface of degree at most degWj

k degWj′

k . Taking all k, j, j′ into
account, we bound the sum of these degrees by n(degW)2.
• For j ≤ J , using Propositions 2 and 8, Hypothesis 2 is satisfied when p

avoids a hypersurface of degree at most (2n degWj + n2) degWj. The sum
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of these degrees is bounded by (2n degW + n2) degW .

This concludes the proof of Theorem 2. Thus, we can concentrate on proving
Proposition 9 above. We use the notions of splitting and combining triangular
sets, introduced in Subsection 5.2.

Starting from T, the following process computes the family {T1, . . . ,TJ}. Let
F0 be {T}. For k = 1, . . . , n, we define inductively the families of triangular
sets Fk as follows: Fk is the reunion of the families Split(S), for S in Fk−1.
Note that at step k, the splitting is done by factoring the k-th polynomial
of each triangular set in S. Then the following property is straightforward to
prove for k ≤ n:

Fk has precisely Jk elements, which we denote by T1,k, . . . ,TJk,k. Besides, up
to reordering, we can assume that for j ≤ Jk, the generic solutions of Wj

k are
represented by the ideal generated by Tj,k

≤k in K(P)[X≤k].

The idea for proving Proposition 9 is to go all the way back from {T1, . . . ,TJ}
to T, since Proposition 8 will enable to specialize the coefficients of all poly-
nomials in {T1, . . . ,TJ}. To this effect, we prove the following properties by
decreasing induction on k. Note that properties A0 and B0 do prove Proposi-
tion 9.

Ak : For j ≤ Jk, p cancels no denominator in the coefficients of the polynomi-
als in Tj,k. We let tj,k be the polynomials in Tj,k with coefficients specialized
at p.

Bk : Let Zj
k be the zero-set of tj,k in An(K) and Zk their reunion for j =

1, . . . , Jk. Then Wn(p) is {p} × Zk ⊂ Am+n(K).

Ck : For j 6= j′, the ideals generated by tj,k≤k and tj
′,k
≤k in K[X≤k] are radical

and have no common zero.

Let us first take k = n. By Hypothesis 2, we can apply Proposition 8 to the
varieties Wj, j ≤ J , obtaining properties An and Bn. Property Cn is then
a consequence of Hypothesis 1. Thus, the induction is initiated; let us now
assume that Ak+1, Bk+1 and Ck+1 hold, and study step k.

Consider j ≤ Jk, and the triangular set Tj,k in Fk. By definition, the result of
Split(Tj,k) is a family of triangular sets that all belong to Fk+1. Without loss
of generality, we assume that these are T1,k+1, . . . ,TN,k+1, for some integer N .
Then Tj,k is obtained by successively recombining T1,k+1, . . . ,TN,k+1 using the
Chinese Remainder Theorem, see Subsection 5.2.

By assumption Ak+1, p cancels no denominator in T1,k+1, . . . ,TN,k+1; we de-
note t1,k+1, . . . , tN,k+1 these triangular sets with coefficients specialized at p.
Let us first consider the recombination of t1,k+1 and t2,k+1. We have t1,k+1

≤k =

t2,k+1
≤k and by assumption Ck+1, t1,k+1

≤k+1 and t2,k+1
≤k+1 generate radical ideals with
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no common zero in K[X≤k+1]. Thus we can apply Proposition 6 to recombine
them.

Iterating this argument, we see that p cancels no denominator in Tj,k, and
denote by tj,k its specialization. Then tj,k defines a radical ideal, which is the
sum of those generated by t1,k+1, . . . , tN,k+1.

Taking all j into account, we deduce Ak and Bk. Let us prove Ck; for simplicity,
we show that t1,k

≤k and t2,k
≤k are coprime inK[X≤k]. We know that T1,k

≤k defines the

generic solutions ofW1
k . Since t1,k

≤k is the specialization of T1,k
≤k at p, it describes

the fiberW1
k(p). The similar reasoning holds forW2

k , so the conclusion follows
from Hypothesis 1. �

7 Lifting Techniques

We have now proven our various degree estimates, and turn to algorithmic
considerations. Thus, we have to be more specific on the definition of the
geometric objects: the input is now a polynomial system F = F1, . . . , Fn in
K[P,X]. For complexity statements, we suppose that F is given by a Straight-
Line Program of size L, and that d is a bound on the degrees of the polynomials
F.

LetW ⊂ Am+n(K) be the zero-set of F. We assume that the jacobian determi-
nant of F with respect to X is invertible on a dense subset ofW . Then Lazard’s
lemma (see [Boulier et al., 1995, Lemma 2] and [Morrison, 1999, Proposition
3.2]) implies that W satisfies Assumption 1. Thus its generic solutions are
represented by a family of triangular sets; in this section, we present some
algorithms for computing with these triangular sets.

We first treat the case when W is irreducible; then its generic solutions are
represented by a single triangular set T in K(P)[X]. Theorem 3 below gives
an algorithm for computing this triangular set by lifting techniques. See the
introduction for the genesis of such ideas.

Recall that M(D) denotes the complexity of univariate polynomial multipli-
cation in degree D over any ring andMs(D,M) the complexity of M -variate
power series multiplications truncated in total degree D. The constants C0, C1

are defined in the introduction; Dn is the generic number of solutions of the
systems F(p,X), for p in Am(K).

Assume that W is irreducible. Let p,p′ be in Km; assume that a description of
the zeros of the systems F(p,X), F(p′,X) by triangular sets is available. For
k ≤ n, let Dk be the maximum of the degrees of the coefficients of T1, . . . , Tk.
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Then T1, . . . , Tk can be computed within

Olog

(
(nL+n3)(C0C1)nM(Dn)Ms(4Dk,m)+km2DnM(Dk)Ms(4Dk,m−1)

)
operations in K. The algorithm chooses 3m − 1 values in K, including the
coordinates of p and p′. If Γ is any subset of K, and these values are chosen
in Γ3m−1, then the algorithm fails for at most 50n(k2 + 2)3kd 6kn+4n|Γ|3m−2

choices.

In the general case, we show to recover an eliminating polynomial for the
variable X1 using these techniques. Precisely, let J be the ideal (F1, . . . , Fn),
JP its extension inK(P)[X] andB the quotientK(P)[X]/JP . Then Theorem 4
addresses the question of computing the minimal polynomial M1 of X1 in B.

Let p,p′ be in Km; assume that a description of the zeros of the systems
F(p,X), F(p′,X) by triangular sets which define prime ideals in K[X] is
known. Let D1 be the maximum of the degrees of the coefficients of M1. Then
M1 can be computed within

Olog

(
(nL+ n3)(C0C1)nM(Dn)Ms(4D1,m) +m2DnM(D1)Ms(4D1,m− 1)

)
operations in K. The algorithm chooses 3m − 1 values in K, including the
coordinates of p and p′. If Γ is a subset of K, and these values are chosen in
Γ3m−1, then the algorithm fails for at most 50nd4n|Γ|3m−2 choices.

This section is organized as follows. Some basic algorithms are described in
Subsection 7.1. In Subsection 7.2, we treat the irreducible case; the minimal
polynomial computation is addressed in Subsection 7.3.

7.1 Sketch of the Algorithms and Additional Subroutines

The algorithms underlying Theorems 3 and 4 can be sketched as follows:

(1) Choose a generic value p in Km and compute a family of triangular sets
that represent the solutions of the specialized system F(p,X).

(2) Apply a lifting process, to compute triangular sets with coefficients in the
power series ring centered at p.

(3) When the precision of the power series is high enough, use a rational
reconstruction process to recover triangular sets with coefficients in K(P).

We now give more details on some of these points: the computation of a trian-
gular set in K[X], the complexity of an operation (+,×) modulo a triangular
set, and the complexity of the rational reconstruction of a rational function.
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Initial resolution. The first task is to compute a family of triangular
sets r1, . . . , rQ in K[X] that represent the solutions of the specialized system
F(p,X). In Subsection 7.3.2, we also ask that all triangular sets r1, . . . , rQ

define prime ideals in K[X].

This routine is called Solve(F,p). To this effect, we may use zero-dimension-
al solving procedures of Lazard [1992], Dellière [1999], Aubry et al. [1999] . . .
Since the complexities of such algorithms are not well known, we do not take
the cost of this phase into account in the complexity estimates. Note that the
cost of the lifting phase is predominant in practice.

Computing modulo a triangular set. Let T = (T1, . . . , Tn) be a trian-
gular set with coefficients in a ring R. The quotient B := R[X]/T is built as
the succession of n monogeneous extensions of R. We use this point of view
to estimate the complexity of an operation in B.

With the notation of Section 2, all operations (+,×) modulo a single polyno-
mial of degree D require at most C0M(D) base ring operations. We deduce
that for any triangular set T = (T1, . . . , Tn) in R[X1, . . . , Xn], the operations

(+,×) can be done modulo T in at most Cn
0 Πk≤nM

(
degXkTk

)
operations in

R. See also [Langemyr, 1990] for similar considerations.

Rational reconstruction. In the end of the lifting process, we need to
recover some rational functions in K(P) = K(P1, . . . , Pm) from their power
series expansion. We now present our solution to deal with this question.

If r is a power series in K[[P1, . . . , Pm]] of precision 2D + 1, we look for a
rational function p/q, with q(0) 6= 0 and p, q of degree at most D, of which
r is the power series expansion. Finding such a rational function, if it exists,
amounts to solve a linear system for the coefficients of p and q. When m = 1,
a faster solution exists, based on Padé approximant computations. In [Schost,
2003, Proposition 6], we introduced a probabilistic extension of this algorithm:

Proposition 10 Suppose that there exist (p, q) of degrees at most D, such that
r is the Taylor expansion of p/q at precision 2D+1, and q(0) 6= 0. We can com-
pute p/q by a probabilistic algorithm within Olog (m2M(D)Ms(2D,m− 1))
operations in K. The algorithm chooses m − 1 values in K. The choices that
lead to an error belong to an hypersurface of Am−1(K) of degree at most
2D(2D + 1)2.
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7.2 The Irreducible Case

In this subsection, we assume that W is irreducible, so its generic solutions
are represented by a triangular set T = (T1, . . . , Tn). For fixed k ≤ n, we now
show how to compute (T1, . . . , Tk) by lifting techniques. We first present the
elementary lifting step; then we give the full algorithm. The complexity and
probability analyses will prove Theorem 3.

7.2.1 The Basic Lifting Step

Let p be a point in the parameter space Km, such that:

H1 : The jacobian determinant of F(p,X) with respect to X is invertible on
all solutions of the system F(p,X).

H2 : p does not cancel the polynomial ∆W defined in Theorem 2.

Up to a change of variables, we can assume that p = 0. Let A be the m-
variate power series ring K[[P]] and m its maximal ideal. Using Theorem 2,
hypothesis H2 shows that all coefficients in T admit power series expansions
in A; for κ ≥ 0, we denote by T mod m2κ the triangular set obtained by
reducing all coefficients of T modulo m2κ .

In this paragraph, we show how to compute the sequence T mod m2κ . The
initial value is t = T mod m, which we assume to know.

By definition of T, there exists a n×n matrix A with entries in K(P)[X] such
that F = AT, where T is seen as the column-vector [T1, . . . , Tn]t, and F as
[F1, . . . , Fn]t. Since all polynomials in T are monic in their main variable, all
denominators in the entries of A admit power series expansions in A. Thus,
we can now consider F,T,A with entries in A[X]. Using Theorem 2, we then
rephrase hypotheses H1 and H2 as follows:

H′1 : The jacobian determinant of F with respect to X is invertible in K[X]/t.
H′2 : There exists a n×n matrix A with entries in A[X] such that the equality

F = AT holds.

Our main result is the following proposition. We denote Lift(T,F) the sub-
routine which performs the underlying computations.

Proposition 11 Suppose that hypotheses H′1 and H′2 hold for the triangular
set T. Let κ > 0, and suppose that T mod m2κ is known. Then T mod m2κ+1

can be computed within

O
(
(nL+ n3)Cn

0Ms(2
κ+1,m)Πk≤nM

(
degXkTk

))
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base field operations.

Proof. The proof follows from an explicit formula given in Schost [2003].
Stating this result requires some new notation.

• Let Aκ = A/m2κ+1
and τ = (τ1, . . . , τn) be a triangular set in Aκ[X] such

that τ = T mod m2κ . We denote by Qκ the quotient Aκ[X]/(τ1, . . . , τn).
• Let Fκ be the image of F in Qκ[X], Jac(τ) and Jac(Fκ) the jacobian ma-

trices of τ and F computed in the matrix algebra over Qκ.

In [Schost, 2003, Proposition 4], we prove the following points. First, Jac(Fκ)
is invertible in the matrix algebra over Qκ. Let δ = (δ1, . . . , δn) be the product
Jac(τ)Jac(Fκ)

−1Fκ and δ̃ its canonical preimage in Aκ[X]. In this situation,
T mod m2κ+1

is given by τ + δ̃ in Aκ[X].

We now complete the complexity analysis. From the previous subsection, the
operations (+,×) in Qκ require Cn

0 Πk≤nM
(
degXkTk

)
operations in Aκ. All

operations in Aκ requireMs(2
κ+1,m) base field operations, so the operations

(+,×) in Qκ take Cn
0Ms(2

κ+1,m)Πk≤nM
(
degXkTk

)
operations in K.

Let us now estimate how many operations in Qκ are necessary. Algorithm
Lift requires to compute Fκ, Jac(Fκ) and Jac(τ), to invert Jac(Fκ) and
matrix-vector multiplications. Computing Fκ and Jac(Fκ) amounts to eval-
uate the system F and its jacobian in Qκ. Using the algorithm of Baur and
Strassen [1983], this takes O(nL) operations in Qκ, where L is the complexity
of evaluation of the system F.

The inverse of Jac(Fκ) is computed by induction on κ by Hensel’s Lemma.
Thus the only inversion is done for κ = 0, and can be done inK[X]/t, according
to Proposition 11: all other inverses are obtained by matrix multiplication over
Qκ and take O(n3) operations in Qκ. The other costs are negligible before the
previous quantities, concluding the complexity analysis. �

7.2.2 Main Algorithm

The main algorithm follows the lines given in Subsection 7.1. We choose a
generic point p in Km, so the specialization of T at p gives a description of
the solutions of the system F(p,X). We require that Solve(F,p) outputs a
single triangular set r, which is thus the specialization of T at p. Then, we
apply the above lifting process to r. We use an additional subroutine denoted
Stop, which is described below.
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Computing a triangular set by lifting techniques
Input: The system F, p,p′ in Km
Output: The polynomials T1, . . . , Tk.
r← Solve(F,p)
r′ ← Solve(F,p′)
while not(Finished) do

r← Lift(r,F)
Finished,T1, . . . , Tk ← Stop(r, r′)

end while

return T1, . . . , Tk

The subroutine Stop first tries to compute a rational reconstruction of all the
coefficients in r1, . . . , rk, yielding polynomials R1, . . . , Rk. Even if the recon-
struction is possible, it might not coincide with T1, . . . , Tk, if we have stopped
the lifting too early. Thus we use a witness value p′: we compute a description
r′ = r′1, . . . , r

′
n of the solutions of the system F(p′,X). Stop tests if the spe-

cialization of R1, . . . , Rk at p′ is r′1, . . . , r
′
k. If the reconstruction is possible and

the test is passed, Stop outputs true and R1, . . . , Rk; else it returns false.

Complexity analysis. Let Dk be the maximal degree in P of the coef-
ficients in T1, . . . , Tk. Then the lifting must be run to precision 2p+1, with
p = dlog2(Dk)e, so that 2p+1 ≤ 4Dk. From Proposition 11, the cost of the

last lifting step is within O
(
(nL+ n3)Cn

0Ms(4Dk,m)Πk≤nM
(
degXkTk

))
op-

erations in K. We now use our assumptions on the functions M and Ms to
deduce a simpler estimate on the total cost.

• Since the inequality M(D)M(D′) ≤ C1M(DD′) log(DD′)α holds for all

D,D′, Πk≤nM
(
degXkTk

)
is bounded by Cn

1M(Πk≤ndegXkTk), up to loga-
rithmic factors.
• Since there exists C2 < 1 such that Ms(D,M) ≤ C2Ms(2D,M) holds for

all D,M , the whole cost of the lifting is equivalent to the cost of the last
step.

Recall that Πk≤ndegXkTk coincides with the generic degree Dn; then using
the above remarks, the whole cost of the lifting phase is seen to be within
Olog ((nL+ n3)(C0C1)nM(Dn)Ms(4Dk,m)) .

It remains to study the cost of the rational reconstruction. There are at most
kDn coefficients to reconstruct. From Proposition 10, each reconstruction costs
Olog (m2M(Dk)Ms(4Dk,m− 1)) operations in K; this concludes the com-
plexity analysis.
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Probability analysis. The algorithm chooses 3m−1 values in the base field:
the 2m coordinates of the points p and p′, and m−1 values γ for the rational
reconstruction. Suppose that these values are chosen in the box Γ3m−1, where
Γ is a given subset of K. We now estimate the number of choices that lead
to success, using Zippel-Schwartz’ Lemma from Zippel [1979] and Schwartz
[1980].

Recall that this lemma states that given any subset Γ of K, the number of
zeros of a `-variate polynomial of degree D in Γ` ⊂ K` is at most D|Γ|`−1.

• Let us first suppose that the point p does not cancel the polynomial ∆W
from Theorem 2, and that the jacobian determinant of F is invertible ev-
erywhere on the fiber above p. Then by Proposition 11, the lifting can be
initiated.

By Theorem 2 and Zippel-Schwartz’s Lemma, the first condition excludes
at most (3n(degW)2 + n2 degW)|Γ|m−1 values of p, which give rise to
(3n(degW)2 +n2 degW)|Γ|3m−2 points in Γ3m−1. Similarly, the second con-
dition excludes at most nd degW|Γ|3m−2 points, since the intersection ofW
with the zero-set of the jacobian determinant has degree at most nd degW .

• We suppose that p′ does not cancel the polynomial ∆W , so r′ is the spe-
cialization of T at p′. As above, this excludes at most (3n(degW)2 +
n2 degW)|Γ|3m−2 points.

• We then exclude the possibility that the lifting stops too early. This is the
case if for some κ < dlog2(Dk)e, the reconstruction of all rational functions
in r is possible, yielding a triangular set R 6= T, whose specialization at p′

nevertheless coincides with r′.

Let us fix p. Then the coefficients of T and R are rational functions of
degrees at most Dk and 2κ−1, so the points p′ where their specializations
coincide are contained in an hypersurface of Am(K) of degree at most Dk +
2κ−1.

Taking all possible κ < dlog2(Dk)e into consideration shows that for fixed
p, p′ must avoid an hypersurface in Am(K) of degree at most Dk(dlog2(2Dk+
1)e+2), which excludes Dk(dlog2(2Dk +1)e+2)|Γ|m−1 values of p′. Letting
p and γ vary, this removes at most Dk(dlog2(2Dk + 1)e + 2)|Γ|3m−2 points
in Γ3m−1.

• The algorithm can now only fail at the last rational reconstruction. Let us fix
p. By Proposition 10, each rational reconstruction requires to choose m− 1
values outside of an hypersurface of degree at most 4Dk(2Dk + 1)2. Since
there are at most kDn such reconstructions to perform, this discriminates
at most 4kDnDk(2Dk + 1)2|Γ|m−2 values of γ. Letting p and γ vary, this
removes at most 4kDnDk(2Dk + 1)2|Γ|3m−2 points in Γ3m−1.
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We sum all these estimates, and use the inequalities Dn ≤ degW ≤ dn

and Dk ≤ (2k2 + 2)kd2kn+n from Theorem 1. After some rewriting and sim-
plifying, we see that the above restrictions discriminate at most 50n3(k2 +
2)3kd6kn+4n|Γ|3m−2 points in Γ3m−1. This concludes the probability analysis of
Theorem 3.

7.3 Computing a Minimal Polynomial

We now drop the irreducibility assumption made above. Recall that we denote
by J the ideal (F1, . . . , Fn) and by JP its extension in K(P)[X]. Let M1 ∈
K(P)[U ] be the minimal polynomial of X1 modulo JP . In this subsection, we
show how to compute M1 by lifting techniques, thus proving Theorem 4.

We first relate this minimal polynomial to triangular sets. Write the decom-
position of W = ∪j≤JWj, corresponding to the prime decomposition of J in
K[P,X] and let Tj be the triangular set that describes the generic solutions
of Wj, for j ≤ J . The first polynomials T 1

1 , . . . , T
J
1 may not be all distinct;

without loss of generality, we assume that T 1
1 , . . . , T

K
1 are representatives of

the distinct polynomials among them, for some K ≤ J .

By construction, T1, . . . ,TK define prime ideals in K(P)[X], so T 1
1 , . . . , T

K
1

are irreducible in K(P)[X1]. Since they are pairwise distinct, they are pairwise
coprime in both K(P)[X1] and K(P)[X1]. We deduce that their product is M1.

Our lifting process does not yield directly the triangular sets Tj. Indeed, the
input is a resolution of a specialization of F: its irreducible components may
not be the traces of those of W , since specialization may induce additional
factorizations. Thus, we first address the question of lifting in presence of
factorization, and deduce the proof of Theorem 4 in a second time.

7.3.1 Factorized Lifting

We fix some j ≤ J and let Tj be the triangular set which describes the generic
solutions of Wj. Let p be a point in Km such that:

H1 : p does not cancel the polynomial ∆Wj from Theorem 2.
H2 : The jacobian determinant of F(p,X) with respect to X is invertible on

all solutions of the system F(p,X).

For simplicity, we drop the superscript in Tj, writing T instead. We assume
without loss of generality that p = 0 and let t be the specialization of T
at 0. The following proposition shows that the lifting techniques apply to
any factor of t, which is required to prove Theorem 4. We use the notation
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of Subsection 7.2.1, writing A for the power series ring K[[P]] and m for its
maximal ideal.

Proposition 12 Let r be a triangular set in K[X] such that the ideal generated
by r contains t. Then there exists a triangular set R in A[X] such that the
specialization R mod m is r, and the ideal generated by R contains T. The
approximations R mod m2κ can be computed with the complexity given in
Proposition 11.

Proof. We first deduce the last statement from the existence of the triangular
set R. Indeed, suppose that R is such that R mod m = r, and T = BR for
some matrix B. Since Hypotheses H′1 and H′2 hold for T, these equalities show
that they hold for R too, so Proposition 11 applies, as requested. Thus, we
concentrate on proving the existence of the triangular set R, and begin by
treating a particular case.

A particular case. Let us first suppose that there exists k ≤ n such that the
following holds. Let B denote A[X≤k−1]/T≤k−1 and n the ideal of B induced by
m+(T1, . . . , Tk−1). Thus, the quotient B/n is K[X≤k−1]/t≤k−1. Our assumption
is:

• r≤k−1 = t≤k−1;
• there exists a polynomial qk in B/n [Xk] such that tk = qkrk holds in
B/n [Xk];
• for j in k+ 1, . . . , n, we see tj as a polynomial in the variables Xk+1, . . . , Xj

with coefficients in B/n [Xk], and assume that rj is obtained by reducing
all these coefficients modulo rk.

Since A is complete with respect to the m-adic topology, B is complete with
respect to the n-adic topology. Hypotheses H′1 and H′2 imply that the derivative
of tk with respect to Xk is invertible in B/n [Xk]/(tk). Hensel’s Lemma then
shows that there exists Qk and Rk in B such that Tk = QkRk holds in B[Xk]
and rk = Rk mod n. The polynomial Rk is defined in B[Xk], but we may
identify it to its canonical preimage in A[X1, . . . , Xk] ⊂ A[X1, . . . , Xn].

For j < k, we define Rj = Tj. For j > k, we define Rj as follows. We see Tj as
polynomial in the variables Xk+1, . . . , Xj with coefficients in B[Xk], and define
Rj by reducing all these coefficients modulo Rk. As such, this polynomial is
a multivariate polynomial in Xk+1, . . . , Xj with coefficients in A[X1, . . . , Xk]
modulo T1, . . . , Tk−1, Rk, but as above, we may identify it with its canonical
preimages in A[X1, . . . , Xn]. Through this identification, r = R mod m.

We then prove the existence of a matrix B such that the equality T = BR
holds, by successively constructing its lines.
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• For j < k, we have Tj = Rj, so we take a line composed only of 0’s, with 1
at entry j.
• Let us now take j = k. The equality Tk = QkRk in B[Xk] can be rewritten in
A[X1, . . . , Xk] as Tk = QkRk + Sk, where Sk is in the ideal (T1, . . . , Tk−1) =
(R1, . . . , Rk−1). This enables to define the k-th line of B.
• Finally, we take j > k. Then Rj is such that Rj = Tj with all coeffi-

cients reduced modulo Rk in B[Xk]. Thus, Tj = Rj + sj, where sj is in
the ideal generated by Rk in B[Xk, . . . , Xj]. From the definition of B, this
can be rewritten as Tj = Rj + Sj in A[X1, . . . , Xj], where Sj is in the ideal
(T1, . . . , Tk−1, Rk) = (R1, . . . , Rk).

This enables to complete the definition of B, from which the proposition fol-
lows.

The general case. Let k be the least integer such that rk 6= tk; if r = t, we
take k = n+ 1. We prove by induction on k that if T satisfies hypotheses H′1,
H′2, and t = T mod m belongs to the ideal generated by r, then there exists a
triangular set R such that r = R mod m, and a n× n matrix B with entries
in A[X] such that T = BR. We call this property Pk; Pn+1 is obvious, so we
suppose that k ≤ n and that P is proved for k + 1, . . . , n+ 1.

Since tk is in the ideal generated by r, we deduce that rk divides tk in the
polynomials ring over K[X≤k−1]/t≤k−1. We then define a triangular set s in
K[X] as follows. We take s1, . . . , sk = r1, . . . , rk, and for j > k we define sj as
tj with all coefficient reduced modulo sk. Thus T and s satisfy the hypotheses
of the previous paragraphs, which enables to define a triangular set S and a
matrix B such that T = BS and s = S mod m.

The triangular set S satisfies hypotheses H′1 and H′2. For j > k, sj − tj is
in the ideal generated by r. Since tj is in this ideal, sj is in this ideal too.
Consequently, we can apply our induction argument on S and r, since now s
and r coincide at least up to index k. This shows the existence of a triangular
set R and a matrix B′ such that S = B′R, and R mod m = r. Thus, T =
BB′R. This shows Pk, which proves the proposition. �

7.3.2 Main Algorithm

The main algorithm follows again the lines given Subsection 7.1; we start by
choosing a generic enough point in the parameter space. Precisely, we let p be
a point in Km such that:

H1 : p does not cancel the polynomial δW from Proposition 2.
H2 : p cancels none of the polynomials ∆Wj from Theorem 2.
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H3 : the jacobian determinant of F with respect to X is invertible on all
solutions of the system F(p,X).

From these hypotheses, we deduce that T1, . . . ,TJ can be specialized at p,
and that the specializations t1, . . . , tJ describe the solutions of F(p,X). Un-
fortunately, there is no guarantee that the routine Solve(F,p) will precisely
compute these specializations, since undesired factorizations may occur. We
now show how to bypass this difficulty.

Let r1, . . . , rQ triangular sets that describe the solutions of F(p,X), and define
prime ideals in K[X]. Then for all i, there exists j such that tj is in the ideal
defined by ri. Using hypotheses H2 and H3, Proposition 12 shows that the lift-
ing process can be applied to ri, yielding a triangular set Ri in K[[P]][X]. The
following proposition shows that these are enough to compute the polynomial
M1.

Proposition 13 Reorder r1, . . . , rQ so that r1
1, . . . , r

q
1 are representatives of

the distinct polynomials among r1
1, . . . , r

Q
1 , for some q ≤ Q. Then Πi≤qR

i
1 =

M1 in K[[P]][X1].

Proof. We first show that R1
1, . . . , R

Q
1 are irreducible in K[[P]][X1]. Suppose

that Ri
1 = GH in K[[P]][X1]. Since Ri

1 is monic, we may suppose that G
and H are monic. Then ri1 = (G mod m)(H mod m). Since ri1 is irreducible,
it follows that for instance G mod m is a unit. Since G is monic, G is the
constant 1, so Ri

1 is irreducible.

The polynomials R1
1, . . . , R

q
1 are all pairwise distinct, hence pairwise coprime,

since they are irreducible. Since each of them divides one of the polynomials
T j1 , each of them divides M1. Thus Πi≤qR

i
1 divides M1. The degree of Πi≤qR

i
1

is the degree of Πi≤qr
i
1, i.e. the cardinality of µ1(Wn(p)). Using hypothesis H1

and Proposition 2, we see that it coincides with the generic degree D1, that
is, the degree of M1. Thus, Πi≤qR

i
1 = M1. �

This is the basis of the following algorithm. The subroutine Stop computes
the product of all polynomials ri1, and if possible, a rational reconstruction of
all coefficients of the product. This gives a polynomial M , on which we apply
a probabilistic check: as before, we test whether M specializes on the minimal
polynomial of X1 for a randomly chosen witness p′. As in the previous subsec-
tion, this routine is denoted by Stop; the computation of minimal polynomial
of X1 for the specialization value p′ is denoted by MinimalPolynomial(F,p′).
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Computing a minimal polynomial
Input: The system F, two points p,p′

Output: The minimal polynomial M1.
r1, . . . , rq ← Solve(F,p)
m′ ← MinimalPolynomial(F,p′)
while not(Finished) do

for i in 1, . . . , q do
ri ← Lift(ri,F)

Finished,M1 ← Stop(r1, . . . , rq,m′)
end while

return M1

The complexity and probability analyses strictly follow those of Subsection 7.2.
The only notable differences are that we now take hypotheses H1, H2 and H3

into account, and that the coefficients of M1 are of degree bounded by dn,
according to Proposition 3. We leave the details of the computation to the
reader.

8 Applications

To conclude this article, we present three applications of our algorithms, com-
ing from geometry, number theory and cryptography.

The algorithms are implemented in Magma. They outperformed the built-
in functions on all these examples, so we rather focus on comparing times
with the approach through primitive element techniques presented in Schost
[2003]. This confirms the advantage of triangular techniques for problems such
as presented here, where only a partial information is required.

For all these examples, the probabilistic aspect was not a problem. When
verification was possible, it never revealed an error. Further, in many situa-
tions, problem-specific arguments can show that the output is correct once it
is computed.

All computations were done on a Compaq XP/1000 EV6 from the MEDICIS
resource center, see http://www.medicis.polytechnique.fr/.
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8.1 Implicitization

Let ϕi = Ni/Di (i = 1, 2, 3) be a triple of rational functions in Q(X1, X2).
Take D = lcm(D1, D2, D3) and let ϕ be the map

ϕ : R2 − V (D) → R
3

x 7→ (ϕ1(x), ϕ2(x), ϕ3(x)) .

We suppose that ϕ is not degenerate, in the sense that its image has dimension
2 as a constructible set. Then the problem of implicitization consists in com-
puting an equation M defining the closure V of the image of ϕ. This question
has attracted a lot of attention, notably because of its relevance for Computer
Aided Geometric Design, see Cox [2001], d’Andréa [2001], Ruatta [2002], Busé
et al. [2002], Busé and Jouanolou [2002] and references therein.

Many of these solutions are based on suitable resultant formulas. We here
propose a solution that inherits the good complexity of the above algorithms,
applies in all generality and is quite practical. We note the obvious general-
ization to n-space; nevertheless we stick to dimension 2 for simplicity.

Consider the polynomial system

F = {Di(X1, X2)Yi −Ni(X1, X2) (i = 1, 2, 3), D(X1, X2)Z − 1}

in Q[Y1, Y2, Y3, X1, X2, Z], let W ⊂ A6(C) be its zero-set and V the projection
of W on the subspace of coordinates Y1, Y2, Y3. What we are looking for is an
equation defining the closure of V .

Without loss of generality, we suppose that the projection of V is dense in
the space A2(C) of coordinates Y1, Y2; then Sard’s Theorem shows that the
Jacobian determinant of F with respect to Y3, X1, X2, Z is invertible on all
points of W above some open subset of A2(C). Since W is irreducible, this
Jacobian determinant is thus invertible on a dense subset of W , so we can
apply the previous results.

Let us see the equation M in Q[Y1, Y2][Y3]. By Proposition 3, the minimal
polynomial of Y3 modulo the ideal generated by F in C(Y1, Y2)[Y3, X1, X2, Z]
is M , divided by its leading coefficient. Thus, we can apply Theorem 4 and
use the underlying algorithm to compute M .

From the practical viewpoint, the additional variable Z introduced for ap-
plying Rabinovicz’ trick burdens the computation. Referring to the proof of
Proposition 11, the special shape of the system F shows that the lifting phase
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can be done using only the system

F̃ = {Di(X1, X2)Yi −Ni(X1, X2) (i = 1, 2, 3)}

in Q[Y1, Y2, Y3, X1, X2]. This reflects the local nature of lifting techniques.

We illustrate the method on an example from invariant theory [Bershenko-
Kogan, 2000], with

ϕ1 =
1

3

X1X
2
2 +X2

2 +X2 +X2
1X2 − 6X1X2 +X1 +X2

1

X1X2

,

ϕ2 =−1

9

(X2 − 1 +X1)(−X2 − 1 +X1)(−X2 + 1 +X1)

X1X2

,

ϕ3 =
1

36

(X1 + 1)2(X2 + 1)2(P (X1) + P (X2) +X1X
3
2 −X2

1X
2
2 +X2X

3
1 )2

X2
1X

2
2 (X1 +X2 + 1)4

and P (X) = X + 2X2 +X3. In Schost [2003], we treated this example using a
minimal polynomial computation modulo a parametric geometric resolution,
that is, primitive element techniques; this took 7 minutes. The time now drops
to 20 seconds using triangular sets.

8.2 Genus 2 Curves with (2,2)-split Jacobian

Genus 2 curves with Jacobian (2,2)-isogeneous to a product of elliptic curves
appear frequently in number theory: rank and torsion records are obtained for
such curves, see Kulesz [1995, 1999], Howe et al. [2000]. In Gaudry and Schost
[2001], we give an explicit classification of such situations, using the algorithms
presented here. We now describe part of the necessary computations.

Isomorphism classes of genus 2 (resp. elliptic) curves are classified by their
Igusa invariants j1, j2, j3 (resp. by their j-invariant). There exists a polynomial
T (J1, J2, J3) such that a genus 2 curve has (2,2)-split Jacobian if and only if
its Igusa invariants cancel T ; then the j-invariants of the underlying elliptic
curves are the roots of a polynomial of degree 2, whose coefficients are rational
functions of j1, j2, j3. We are thus looking for this polynomial, together with
the polynomial T .

A genus 2 curve with (2,2)-split Jacobian admits the equation

y2 = x6 + ax4 + bx2 + 1;

its Igusa invariants are then rational functions J1(a, b), J2(a, b), J3(a, b). The
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underlying elliptic curves are isomorphic to the curves

y2 = x3 + ax2 + bx+ 1;

their j-invariant is a rational function J(a, b). Let thus F be the system ob-
tained in Q[j1, j2, j3, j, a, b, Z] after canceling denominators in

{j − J(a, b), j1 − J1(a, b), j2 − J2(a, b), j3 − J3(a, b)}

and removing the zero-set of the denominators of J, J1, J2, J3 by using Rabi-
novicz’ trick with the variable Z. Just as in the previous subsection, we note
that the lifting can done without using the variable Z.

We take j1, j2 for parameters, and work in Q(j1, j2)[j3, j, a, b, Z] modulo the
ideal generated by F. This ideal is prime of dimension zero, so its solutions are
represented by a triangular set in Q(j1, j2)[j3, j, a, b, Z]. The first polynomial
T1 ∈ Q(j1, j2)[j3] is the relation T mentioned above, which was already known
to Mestre [1990]. As requested, the second polynomial T2 ∈ Q(j1, j2)[j3, j]
gives j in terms of j1, j2, j3 when the denominators of its coefficients do not
vanish.

We use the algorithm of Subsection 7.2. The polynomial T1 is computed in
22 seconds, and T1, T2 in 140 seconds. As a comparison, using the algorithm
of Schost [2003], computing a representation by primitive element requires
more than 400 seconds. This illustrates again the interest of the “triangular”
approach, when only a partial information is wanted.

8.3 Modular Equations

In Gaudry and Schost [2002], modular equations for hyperelliptic curves are
defined. Over a finite base field, they aim at simplifying the problem of point-
counting in the Jacobian of such curves, a question of first importance for
hyperelliptic cryptosystems, see Gaudry [2000].

In fixed genus, modular equations are univariate polynomials indexed by a
prime `. Given a hyperelliptic curve C and a prime `, the `-th modular equation
partly describes the structure of the `-torsion divisors in the Jacobian of C;
its factorization pattern gives information on the cardinality of the Jacobian
of C modulo `.

The `-torsion divisors form a finite group G`, and are solutions of an algebraic
system, in suitable coordinates. Introducing a well-chosen function t` on G`,
the modular equation becomes the minimal polynomial Ξ` of t` modulo G`.

Computing Ξ` for a generic curve is done using the algorithm of Subsection 7.3.
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We treated the 3-torsion in genus 2; the corresponding system has 3 equations
in 3 unknowns X1, X2, X3 and 3 parameters P1, P2, P3 which parameterize
curves of genus 2. The output Ξ3 ∈ Q(P1, P2, P3)[T ] is computed within 4.5
hours; for comparison, it takes more than 20 hours to compute a representa-
tion by a primitive element. The polynomial Ξ3 is now used within Magma’s
hyperelliptic curves package CrvHyp.
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D. Eisenbud. Commutative Algebra with a view toward Algebraic Geometry,
volume 150 of Graduate Texts in Mathematics. Springer, 1996.

G. Gallo and B. Mishra. Efficient algorithms and bounds for Wu-Ritt charac-
teristic sets. In Proceedings of MEGA’90, volume 94 of Progress in Mathe-
matics, pages 119–142. Birkhäuser, 1990.
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cryptologie. PhD thesis, École polytechnique, 2000.
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P. Gaudry and É. Schost. Modular equations for hyperelliptic curves.
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Paris VI, 1997.

J.-F. Mestre. Construction de courbes de genre 2 à partir de leurs modules.
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