
Structured FFT and TFT:
symmetric and lattice polynomials∗

Joris van der Hoeven
Laboratoire d’informatique

UMR 7161 CNRS
École polytechnique

91128 Palaiseau Cedex, France

vdhoeven@lix.polytechnique.fr

Romain Lebreton
LIRMM

UMR 5506 CNRS
Université de Montpellier II

Montpellier, France

lebreton@lirmm.fr

Éric Schost
Computer Science Department

Western University
London, Ontario

Canada

eschost@uwo.ca

ABSTRACT

In this paper, we consider the problem of efficient computa-
tions with structured polynomials. We provide complexity
results for computing Fourier Transform and Truncated
Fourier Transform of symmetric polynomials, and for mul-
tiplying polynomials supported on a lattice.

1. INTRODUCTION

Fast computations with multivariate polynomials and
power series have been of fundamental importance since
the early ages of computer algebra. The representation is
an important issue which conditions the performance in an
intrinsic way; see [24, 33, 8] for some historical references.

It is customary to distinguish three main types of repre-
sentations: dense, sparse, and functional. A dense represen-
tation is made of a compact description of the support of
the polynomial and the sequence of its coefficients. The main
example concerns block supports – it suffices to store the
coordinates of two opposite vertices. In a dense representa-
tion all the coefficients of the considered support are stored,
even if they are zero. If a polynomial has only a few non-zero
terms in its bounding block, we shall prefer to use a sparse
representation which stores only the sequence of the non-
zero terms as pairs of monomials and coefficients. Finally, a
functional representation stores a function that can produce
values of the polynomials at any given point. This can be
a pure blackbox (which means that its internal structure is
not supposed to be known) or a specific data structure such
as straight-line programs (see Chapter 4 of [4], for instance,
and [11] for a concrete library for the manipulation of poly-
nomials with a functional representation).

For dense representations with block supports, it is clas-
sical that the algorithms used for the univariate case can
be naturally extended: the naive algorithm, Karatsuba’s
algorithm, and even Fast Fourier Transforms [7, 32, 6, 30,
17] can be applied recursively in each variable, with good
performance. Another classical approach is the Kronecker

* This work has been partly supported by the Digiteo 2009-36HD

grant of the Région Ile-de-France, the ANR grant HPAC (ANR-11-
BS02-013), NSERC and the CRC program.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$15.00.

substitution which reduces the multivariate product to one
variable only; for all these questions, we refer the reader
to classical books such as [29, 14]. When the number of
variables is fixed and the partial degrees tend to infinity,
these techniques lead to softly linear costs.
After the discovery of sparse interpolation [2, 25, 26,

27, 12], probabilistic algorithms with a quasi-linear com-
plexity have been developed for sparse polynomial multipli-
cation [5]. It has recently be shown that such asymptotically
fast algorithms may indeed become more efficient than naive
sparse multiplication [20].
In practice however, it frequently happens that multi-

variate polynomials with a dense flavor do not admit a block
support. For instance, it is common to consider polynomials
of a given total degree. In a recent series of works [16, 18,
19, 22, 21], we have studied the complexity of polynomial
multiplication in this “semi-dense” setting; see also [10, 31].
In the case when the supports of the polynomials are ini-
tial segments for the partial ordering on Nn, the truncated
Fourier transform is a useful device for the design of effi-
cient algorithms.
Besides polynomials with supports of a special kind, we

may also consider what will call “structured polynomials”.
By analogy with linear algebra, such polynomials carry a
special structure which might be exploited for the design
of more efficient algorithms. In this paper, we turn our
attention to a first important example of this kind: polyno-
mials which are invariant under the action of certain matrix
groups. We consider only two special cases: finite subgroups
of Sn and finite groups of diagonal matrices. These cases
are already sufficient to address questions raised e.g. in celes-
tial mechanics [13]; it is hoped that more general groups
can be dealt with using similar ideas.
In the limited scope of this paper, our main objective is

to prove complexity results that demonstrate the savings
induced by a proper use of the symmetries. Our complexity
analyses take into account the number of arithmetic oper-
ations in the base field, and as often, we consider that
operations with groups and lattices take a constant number
of operations. A serious implementation of our algorithms
would require an improved study of these aspects.
Of course, there already exists an abundant body of work

on some of these questions. Crystallographic FFT algo-
rithms date back to [34], with contributions as recent as
[28], but are dedicated to crystallographic symmetries. A
more general framework due to [1] was recently revisited
under the point of view of high-performance code genera-
tion [23]; our treatment of permutation groups is in a similar
spirit, but to our understanding, these previous papers do

not prove results such as those we give below (and they
only consider the FFT, not its truncated version).

Also our results on diagonal groups, which fit in the gen-
eral context of FFTs over lattices, use similar techniques
as in a series of papers initiated by [15] and continued as
recently as [35, 3], but the actual results we prove are not
in those references.

2. THE CLASSICAL FFT

2.1 Notation

We will work over an effective base field (or ring) K with
sufficiently many roots of unity; the main objects are poly-
nomials K[x]8 K[x1,
 , xn] in n variables over K. For any
k = (k1,
 , kn) ∈ Nn and P ∈ K[x], we denote by xk the

monomial x1
k1 � xn

kn and by Pk the coefficient of P in xk.
The support supp (P) of a polynomial P ∈K[x] is the set of
exponents k ∈Nn such that Pk� 0.

For any subset S of Nn, we define K[x]S as the polyno-
mials with support included in S. As an important special
case, when S=Nd

n8 {0,
 , d− 1}n, we denote by K[x]d8
K[x]S the set of polynomials with partial degree less than d

in all variables.
Let ω ∈K be a primitive d-th root of unity (in Section 4,

it will be convenient to write this root e2p i/d). For any k=

(k1,
 , kn) ∈ Nn, we define ωk = (ωk1,
 , ωkn). One of our
aims is to compute efficiently the map

FFTω:

{

K[x]d � KNd
n

P � (P (ωi))i∈Nd
n

when P is a “structured polynomial”. Here, KNd
n

denotes
the set of vectors with entries in K indexed by Nd

n; in other
words, v ∈KNd

n

implies that vi∈K for all i∈Nd
n. Likewise,

KNd
n×Nd

n

denotes the set of matrices with indices in Nd
n, that

is, M∈KNd
n×Nd

n

implies that Mi,j ∈K for all i, j ∈Nd
n.

Most of the time, we will take d=2ℓ with ℓ∈N, although
we will also need more general d of mixed radices d= p1 � pℓ.

We denote by i · j the inner product of two vectors in Nn.

We also let ek8 (0,
k−1, 0, 1, 0,
 ,0), for 16k6n, be the k-
th element of the canonical basis ofKn. At last, for ℓ∈N and
k∈N2ℓ we denote by [k]ℓ the bit reversal of k in length ℓ and
we extend this notation to vectors by [k]s=([k1]s,
 , [kn]s).

2.2 The classical multivariate FFT

Let us first consider the in-place computation of a full n-
dimensional FFT of length d=2ℓ in each variable. We first
recall the notations and operations of the decimation in time
variant of the FFT, and we refer the reader to [9] for more
details. In what follows, ω is a d-th primitive root of unity.

We start with the FFT of a univariate polynomial P ∈
K[x]d. Decimation in time amounts to decomposing P into
its even and odd parts, and proceeding recursively, by means
of ℓ decimations applied to the variable x. For 06k <d, we
will write ck

0=Pk for the input and denote by cs=(ck
s)06k<d

the result after s decimation steps, for s∈ {1,
 , ℓ}.
At stage s, the decimation is computed using butterflies of

span δ8 2ℓ−s. If i ∈N2s is even and j belongs to Nδ then
these butterflies are given by

(

ciδ+j
s

c(i+1)δ+j
s

)

=

(

1 ω[i]sδ

1 −ω[i]sδ

)(

ciδ+j
s−1

c(i+1)δ+j
s−1

)

.

Putting the coefficients of all these linear relations in a
matrix B

s ∈KNd×Nd, we get cs =B
s cs−1. The matrix B

s

is sparse, with at most two non-zero coefficients on each row
and each column; up to permutation, it is block-diagonal,
with blocks of size 2. After ℓ stages, we get the evalua-

tions of P in the bit reversed order: ck
ℓ =P (ω[k]ℓ).

We now adapt this notation to the multivariate case. The
computation is still divided in ℓ stages, each stage doing one
decimation in every variable x1,
 , xn. Therefore, we will
denote by ck

0 8 Pk the coefficients of the input for k ∈ Nd

and by ck
s,t the coefficients obtained during the s-th stage,

after the decimations in x1,
 , xt are done, with s∈{1,
 , ℓ}

and t ∈ {0,
 , n}, so that ck
s−1,n = ck

s,0. We abbreviate

ck
s−18 ck

s,0 for the coefficients after s− 1 stages.
The intermediate coefficients ck

s can be seen as evaluations
of intermediate polynomials: for every s∈ {0,
 , ℓ}, i ∈N2s

n

and j ∈Nδ
n, one has

ciδ+j
s = Pj

s((ωδ)[i]s) (1)

where Pj
s =

∑

i′∈N2s
n Pi′δ+j x

i′

are obtained through an s-

fold decimation of P . Equivalently, the coefficients ck
s satisfy

ciδ+j
s =

∑

i′∈N2s
n

Pi′δ+jω
[i]s·i′δ. (2)

Thus, cj
ℓ =P (ω[j]ℓ) yields FFTω(P) in bit reversed order.

For the concrete computation of the coefficients ck
s at

stage s from the coefficients ck
s−1 at stage s − 1, we use n

so called “elementary transforms” with respect to each of
the variables x1,
 , xn. For any t ∈ {1,
 , n}, the coef-

ficients ck
s,t are obtained from the coefficients ck

s,t−1 through
butterflies of span δ = 2ℓ−s with respect to the variable
xt; this can be rewritten by means of the formula
(

ciδ+j
s,t

c(i+et)δ+j
s,t

)

=

(

1 ω[it]sδ

1 −ω[it]sδ

)(

ciδ+j
s,t−1

c(i+et)δ+j
s,t−1

)

(3)

for any i ∈ N2s
n with even t-th coordinate it and j ∈ Nδ

n.
Equation (3) can be rewritten more compactly in matrix
form cs,t = B

s,t cs,t−1 where B
s,t is a sparse matrix in

KNd
n×Nd

n

which is naturally indexed by pairs of multi-indices
in Nd

n. Setting B
s =B

s,n� B
s,1 ∈KNd

n×Nd
n

,we also obtain
a short formula for cs as a function of cs−1:

cs = B
s cs−1 (4)

Remark that the matrices B
s,1,
 ,Bs,n commute pairwise.

Notice also that each of the rows and columns of Bs,t has
at most 2 non zero entries and consequently those of B

s

contains at most 2n non zero entries. For this reason, we
can apply the matrices B

s,t (resp. B
s) within O(|Nd

n|) =
O(dn) (resp. O(n dn)) operations in K. Finally, the full n-
dimensional FFT of length d=2ℓ costs F(d,n)8 3/2 ℓ n dn=
3/2 dn log (dn) operations in K (see [14, Section 8.2]).

Example 1. Let us make these matrices explicit for poly-
nomials in n = 2 variables and degree less than d = 4, so
that ℓ = 2. We start with the first decimation in x1 whose
butterflies of span δ are captured by B

s,t with δ=2ℓ−s=21,

s=1 and t=1. It takes as input ck
0 =ck

1,08 Pk and outputs
ck
1,1 for k ∈ N4

2 = {0,
 , 3}2. For any j1 ∈ N2 = {0, 1} and
k2∈{0,
 , 3}, we let

(

c(j1,k2)
1,1

c(2+j1,k2)
1,1

)

=

(

1 1
1 −1

)

(

c(j1,k2)
1,0

c(2+j1,k2)
1,0

)

.

So, B1,1 is a 16 by 16 matrix, which is made of diagonal

blocks of
(

1 1
1 −1

)

in a suitable basis. The decimation in x2

during stage 1 is similar :
(

c(k1,j2)
1,2

c(k1,2+j2)
1,2

)

=

(

1 1
1 −1

)

(

c(k1,j2)
1,1

c(k1,2+j2)
1,1

)

for j2 ∈ N2 and k1 ∈ N4. Consequently, B1,2 is made of

diagonal blocks
(

1 1
1 −1

)

(in another basis than B
1,1). Their

product B18 B
1,2

B
1,1 corresponds to the operations

c(j1,j2)
1

c(2+j1,j2)
1

c(j1,2+j2)
1

c(2+j1,2+j2)
1

=

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

c(j1,j2)
0

c(2+j1,j2)
0

c(j1,2+j2)
0

c(2+j1,2+j2)
0

for j1, j2∈N2. Thus B1 is made of such 4 by 4 matrices on
the diagonal (in yet another basis). Note that in general, the
matrices Bs,t and B

s are still made of diagonal blocks, but
these blocks vary along the diagonal.

We can sum it all up in the two following algorithms.

Algorithm Butterfly

Input: n, degree d, stage s, index (2 i′, j) of the butterfly
with i′ ∈ N2s−1

n , j ∈ Nδ
n, root of unity ω and coefficients

c∈KN2
n

for the butterfly (cb8 c(2i′+b)δ+j
s−1 for b∈N2

n).

Output: the output of the butterfly d∈KN2
n

For t=1,
 , n do //decimation in xt

For b∈N2
n= {0, 1}n such that bt=0 do

r=ω[2it
′]sδ cb+et

//butterfly in one variable
db= cb+ r

db+et
= cb− r

Return db

Algorithm FFT

Input: n, degree d, ω and coefficients c0∈KNd
n

of P
Output: coefficients cℓ∈KNd

n

in bit reversed order

For s=1,
 , ℓ do //stage s

δ8 d/2s

For i′∈N2s−1

n , j ∈N2ℓ−s
n do //pick a butterfly

For b∈N2
n do cb8 c(2i′+b)δ+j

s−1

db=Butterfly(n, d, s, i′, j , cb)
For b∈N2

n do c(2i′+b)δ+j
s 8 db

Return cℓ

In the last section, we will also use the ring isomorphism

K[x]d/(x1
d− 1,
 , xn

d − 1) → [K[x]δ/(x1
δ − 1,
 , xn

δ − 1)]2
ns

P � Qs=(Qi
s(x))i∈N2s

n

with Qi
s(x) 8 ∑

j∈Nδ
n

(

∑

i′∈N2s
n Pi′δ+j ω

i·i′δ
)

(ωi x)j for

i ∈ N2s
n , and (ωi x)j = (ωi1 x1)

j1 � (ωin xn)
jn. These

polynomials generalize the decomposition of a univariate

polynomials P into P mod (xd/2− 1) and P mod (xd/2+1).
We could obtain them through a decimation in frequency,
but it is enough to remark that we can reconstruct them
from the coefficients cs thanks to the formula

Qi
s(x)=

∑

j∈Nδ
n

c[i]sδ+j
s (ωix)j. (5)

3. THE SYMMETRIC FFT

In this section, we let G ⊆ Sn be a permutation group.
The group G acts on the polynomials K[x] via the map

ϕg:

{

K[x] � K[x]
P (x1,
 , xn) � P g(x)8 P (xg(1),
 , xg(n))

.

We denote by K[x]G 8 stabG K[x] the set of polynomials
invariant under the action of G. Our main result here is
that one can save a factor (roughly) |G| when computing
the FFT of an invariant polynomial. Our approach is in the
same spirit as the one in [1], where similar statements on the
savings induced by (very general) symmetries can be found.
However, we are not aware of published results similar to
Theorem 7 below.

3.1 The bivariate case

Let P ∈ K[x1, x2] be a symmetric bivariate polynomial
of partial degrees less than d = 8, so that ℓ = 3; let also
ω∈K be a primitive eighth root of unity. We detail on this
easy example the methods used to exploit the symmetries
to decrease the cost of the FFT.

The coefficients of P are placed on a 8 × 8 grid. The
bivariate classical FFT consists in the application of butter-
flies of size δ8 2ℓ−s for s from 1 to 3, as in Figure 1. When
some butterflies overlap, we draw only the shades of all but
one of them. The result of stage s=3 is the set of evaluations
(P (ωi1, ωi2))i∈N8

2 in bit reversed order.

Figure 1. Classical bivariate FFT

We will remark below that each stage s preserves the sym-
metry of the input. In particular, since our polynomial P
is symmetric, the coefficients ck

1 at stage 1 are symmetric
too, so we only need to compute the coefficients c(k1,k2)

1 for
(k1,k2) in the fundamental domain (sometimes called asym-
metric unit) 06 k26k1< 8. We choose to compute at stage
s only the butterflies which involves at least an element of
F ; the set of indices that are included in a butterfly of span
δ=2ℓ−s that meets F will be called the extension Fδ of F .

Figure 2. Symmetric bivariate FFT

Every butterfly of stage 1 meets the fundamental domain,
so we do not save anything there. However, we save 4 out
of 16 butterflies at stage 2 and 6 out of 16 butterflies at the
third stage. Asymptotically in d, we gain a factor two in
the number of arithmetic operations in K compared to the
classical FFT; this corresponds to the order of the group.

3.2 Notation

The group G also acts on Nn with g(i)= (ig(1),
 , ig(n))
for any i ∈ Nn. This action is consistent with the action
on polynomials since ϕg(x

k) = xg−1(k). Because G acts on
polynomials, it acts on the vector of its coefficients. More
generally, if I ⊆Nn and v∈KG(I), we denote by vg∈KI the
vector defined by vi

g= vg(i) for all i∈ I. If I ⊆Nn is stable
by G, i.e. G(I) ⊆ I , we define the set of invariant vectors

KI,G by KI,G8 {v ∈KI:∀g ∈G,vg= v}.

For any two sets I , J satisfying J ⊆ I ⊆Nn, we define the
restriction vJ ∈ KJ of v ∈ KI by (vJ)j = vj for all j ∈ J .
Recall the definition of the lexicographical order 6lex : for
all i, j ∈ Nn, i <lex j if there exists k ∈ {0,
 , n − 1} such
that it = jt for any 1 6 t 6 k and ik+1 < jk+1. Finally for
any subset S ⊆ Nn stable by G, we define a fundamental
domain SG of the action of G on S by SG8 {i∈S:∀g ∈G,

i>lex g(i)} together with the projection πG:Nn→Nn such

as {πG(i)}8 G({i})∩ (Nn)G.

3.3 Fundamental domains

Let F =F [d]8 (Nd
n)G be the fundamental domain associ-

ated to the action of G on Nd
n. Any G-symmetric vector c∈

KNd
n

can be reconstructed from its restriction cF ∈KF using
the formula ci=(cF)πG(i). As it turns out, the in-place FFT
algorithm from Section 2.2 admits the important property
that the coefficients at all stage are still G-symmetric.

Lemma 2. Let P ∈K[x]d and the vectors c0,
 , cℓ∈KNd
n

be as in Section 2.2. Then if P ∈K[x]d
G, c0,
 , cℓ∈KNd

n,G.

Proof. Given P ∈K[x]d
G, k ∈Nd

n and g ∈G, we clearly
have cg(k)

0 = ck
0 . For any s ∈ {0,
 , ℓ}, i, i′ ∈N2s

n , j ∈N2ℓ−s
n

and g ∈ G ⊆ Sn, we also notice that g(i 2ℓ−s + j) =
g(i) 2ℓ−s + g(j), [g(i)]s = g([i]s) and g(i) · g(i′) = i · i′.
Hence, using Equation (2), we get

cg(i2ℓ−s+j)
s = cg(i)2ℓ−s+g(j)

s

=
∑

i′∈N2s
n

Pi′2ℓ−s+g(j)ω
[g(i)]s·i′2ℓ−s

=
∑

i′∈N2s
n

Pg(i′)2ℓ−s+g(j)ω
[g(i)]s·g(i′)2ℓ−s

=
∑

i′∈N2s
n

Pg(i′2ℓ−s+j)ω
g([i]s)·g(i′)2ℓ−s

=
∑

i′∈N2s
n

Pi′2ℓ−s+jω
[i]s·i′2ℓ−s

= ci2ℓ−s+j
s .

Thus, cg(k)
s =ck

s for all k∈Nd
n, whence c0,
 ,cℓ∈KNd

n,G. �

This lemma implies that for the computation of the FFT
of a G-symmetric polynomial P , it suffices to compute the
projections cF

0 ,
 , cF
ℓ .

In order to apply formula (4) for the computation of cF
s as

a function of cF
s−1, it is not necessary to completely recon-

struct cs−1, due to the sparsity of the matrix B
s. Instead,

we define the δ-expansion of the set F by F ={k⊞ǫ δ:k∈F ,

ǫ∈N2
n}, where i⊞ j stands for the “bitwise exclusive or” of i

and j. For any k∈Nd
n, the set {k⊞ǫ δ:ǫ∈N2

n} describes the
vertices of the butterfly of span δ that includes the point k.
Thus, Fδ is indeed the set of indices of cs−1 that are involved
in the computation of cs via the formula cs=B

s cs−1.

Lemma 3. For any δ ∈ {1, 2, 4,
 , 2ℓ−1}, let F[δ] =
{k ⊞ ǫ: k ∈ F , ǫ ∈ Nδ

n}, so that Fδ ⊆ F[2δ]. Then we have

F[δ]= δ F [d/δ]+Nδ
n.

Proof. Assume that i ∈ F [d/δ]. Then clearly, δ i ∈ F ,
whence δ i + Nδ

n ⊆ F[δ]. Conversely, if i ∈ F[δ], then there
exists a j ∈ F with j = i ⊞ ǫ and ǫ ∈ Nδ

n. Let k = ⌊j/δ⌋.
For any g ∈ G, we have g(k) = ⌊g(j)/δ⌋ 6lex ⌊j/δ⌋ = k.

Consequently, ⌊j/δ⌋ ∈F [d/δ], whence i∈ δ ⌊j/δ⌋+Nδ
n. �

For the proof of the next lemma, for (j, k) ∈ {1,
 , n}2,
define ∆j,k= {i∈Nn: ij= ik} and Υ=Nd

n \
⋃

k� j
∆j,k.

Lemma 4. There exists a constant C (depending on n)

such that
∣

∣

∣
|F [d]| −

dn

|G|

∣

∣

∣
6Cdn−1.

Proof. With the notation above, we have |∆j,k∩Nd
n|=

dn−1. Taking C=
(

n

2

)

, it follows that
∣

∣

∣

(

⋃

k� j
∆j,k

)

∩Nd
n
∣

∣

∣6

C dn−1. On the other hand, the orbit of any element in Υ
under G contains exactly |G| elements and one element in F .
In other words, |F ∩Υ|= |Υ|/|G| and so 06 |F |− |Υ|/|G|6
C dn−1. Finally, 0 6 (dn − |Υ|)/|G| 6 C/|G| dn−1 which
implies −C/|G| dn−16 |F | − dn/|G|6Cdn−1. �

3.4 The symmetric FFT

Let cFδ

s−1 be the restriction of cs−1 to Fδ and notice that
KFδ is stable under B

s, i.e. Bs(KFδ) ⊆ KFδ. Therefore the

restriction B
K

Fδ

s of the mapB
s:KNd

n

→KNd
n

to vectors in KFδ

is a K-algebra morphism from KFδ to KFδ. By construction,

we now have cFδ

s =B
K

Fδ

s cFδ

s−1. This allows us to compute cF
s

as a function of cF
s−1 using

cF
s = (B

K
Fδ

s ξδ(cF
s−1))F (6)

where ξδ(cF
s−1) denotes the δ-expansion cFδ

s−1 of cF
s−1.

Remark 5. We could have saved a few more operations by
only computing the coefficients cF

s . To do so, we would have
performed just the operations of a butterfly corresponding
to vertices inside F . However, the potential gain of com-
plexity is only linear in the numbers of monomials dn.

The formula (6) yields a straightforward way to compute
the direct FFT of a G-symmetric polynomial:

Algorithm Symmetric-FFT

Input: n, d and coefficients cF
0 ∈KNd

n

of P ∈K[x]d
G in F

Output: cF
ℓ ∈KNd

n

in bit reversed order

For s=1,
 , ℓ do
δ8 d/2s

For i′∈N2s−1

n , j ∈N2ℓ−s
n s.t. 2 i′ δ+ j ∈Fδ do

For b∈N2
n do cb8 cπG((2i′+b)δ+j)

s−1

db=Butterfly(n, d, s, i′, j , cb)
For b∈N2

n do cπG((2i′+b)δ+j)
s 8 db

Return cℓ

Remark 6. The main challenge for an actual implementa-
tion of our algorithms consists in finding a way to iterate on
sets like Fδ without too much overhead. We give a hint on
how to iterate over F in Lemma 8 (see also [23] for similar
considerations).

The inverse FFT can be computed classically by unrolling
the loops in the inverse order and inverting the operations
of the butterflies. The main result of this section is then the
following theorem, where F(d, n) denotes the cost of a full
n-dimensional FFT of multi-degree d.

Theorem 7. For fixed n and G, and for d→∞, the direct
(resp. inverse) symmetric FFT can be computed in time

T(d, n) =
1

|G|
F(d, n)+O(dn).

Proof. At stage s of the computation, the ratio between
the computation of cF

s as a function of cF
s−1 and cs

as a function of cs−1 is |F2ℓ−s|/|Nd
n|, so that

T(d, n)

F(d, n)
6

|F
2
ℓ−1|+ |F

2
ℓ−2|+� + |F2|

ℓ |Nd
n|

. Lemmas 3 and 4 thus imply |Fδ| 6

|F[2δ]| 6 |F [d/(2δ)]| (2 δ)n 6 dn/|G| + 2 C δ dn−1, whence
T(d, n)

F(d, n)
6

ℓ dn/|G|+2Cdn

ℓ dn
=

1

|G|
+

2C

ℓ
. The result follows for

d→∞. �

Finally, the following lemma gives a description of
an “open” subset of F , characterized only by simple inequal-
ities. Although we do not describe implementation questions
in detail here, we point out that this simple characteriza-
tion would naturally be used in order to iterate over the
sets Fδ, possibly using tree-based techniques as in [18].

Lemma 8. Let Π be the set of (j, k)∈{1,
 , n}2 such that
j < k and ∃g ∈G such that g(i) = i for i6 j and g(j) = k.
For (j , k)∈{1,
 , n}2, define Hj,k={i∈Nn: ij> ik}. Then

F ∩Υ =
⋂

(j,k)∈Π

Hj,k∩Nd
n.

Proof. Assume that i ∈ Υ does not lie in F . Then
g(i) >lex i for some g ∈ G. Let j ∈ {1,
 , n} be min-
imal with k = g(j) � j, whence k > j and (j, k) ∈ Π.
Since ij � ik, it follows that ik > ij, so i � Hj,k. Inversely,
assume that i ∈ Nd

n does not lie in
⋂

(j,k)∈Π
Hj,k, so that

there exists (j , k) ∈ Π with i � Hj,k. Let g ∈ G be such
that g(i)= i for i6 j and g(j)= k. Then, g(i)>lex i. �

4. THE LATTICE FFT

In this section, we deal with polynomials supported on
lattices; our main result is an algorithm for the multiplica-
tion of such polynomials using Fourier transforms.

The first subsection introduces the main objects we will
need (a lattice Λ and its dual Γ); then, we will give an algo-
rithm, based on Smith normal form computation, for the
FFT on what we will call a basic domain , and we will finally
deduce a multiplication algorithm for the general case.

The techniques we use, based on Smith normal form com-
putation, can be found in several papers, originating from
[15]; in particular, the results in Section 4.2 are essentially
in [35] (in a more general form).

4.1 Lattice polynomials

Assume that K admits a primitive k-th root of unity for
any order k > 1, which we will denote by e2p i/k. Let Λ be a
free Z-submodule of Zn of rank n, generated by the vectors
λ1,
 , λn ∈Nn. Then K[x]Λ= {P ∈K[x]: supp P ⊆Λ} is a
subring of K[x], and we will call elements of K[x]Λ lattice
polynomials . First, we show that these polynomials are the
invariant polynomial ring for a diagonal matrix group.

The set Qn acts on K[x] via , for any γ=(γ1,
 , γn)∈Qn,
the isomorphism ϕγ of K[x] given by ϕγ: P (x1,
 , xn) �
P (e2p iγ1 x1,
 , e2p iγn xn). Note that ϕγ+v = ϕγ for any

v ∈Zn. The action of ϕγ on the monomial xλi is given by

ϕγ(xλi)= e2p i(λi·γ)xλi.
In particular, all elements of K[x]Λ are invariants under

the action of ϕγ if and only if

Λ
t γ ∈ Zn, (7)

where Λ∈Nn×n is the matrix with columns λ1,
 ,λn, that
is Λi,j = (λj)i. Let Γ be the dual (or reciprocal) lattice of
Λ, that is the set of all γ ∈ Qn satisfying Equation (7). A
basis of Γ is given by the columns of Γ= Λ

t −1∈Qn×n.
Let G be the group of actions {ϕγ: γ ∈ Γ}. It is gener-

ated by {ϕγi
}16i6n, where γi are the columns of Γ. From

Equation (7), we deduce that G is the diagonal matrix group
of all actions ϕγ which leave K[x]Λ invariant. Conversely,
because monomials are mapped to monomials by elements
of G, the ring of invariants is spanned by the monomials xλ

with λt Γ ∈ Zn, i.e. λ belongs to the dual of Γ. Since the
dual of the dual of a lattice is the lattice itself, we deduce
that λ ∈ Λ and K[x]Λ = K[x]G. Note that only Γ modulo
Zn×n matters to determine the group G.

Example 9. Consider the lattice Λ generated by λ1 =

(2, 0) and λ2 = (1, 1), and let Λ =
(

2 1
0 1

)

. The lattice

polynomials K[x]Λ are the polynomials K[x1
2, x1 x2, x2

2].

We have Γ =
(

1/2 0
−1/2 1

)

, so G is the group generated by

ϕγ1
: P (x1, x2) � P (−x1, −x2) and ϕγ2

= Id. The lattice

polynomials K[x]Λ =K[x1
2, x1 x2, x2

2] are those polynomials
invariant under the symmetry P (x1, x2)� P (−x1,−x2).

4.2 The lattice FFT on a basic domain

Given d=(d1,
 ,dn), we define

K[x]d = {P ∈K[x]:degx1
(P)<d1,
 , degxn

(P)<dn}

K[x]Λ,d = K[x]Λ∩K[x]d.

For i∈{1,
 ,n}, let pi>0 be minimal such that xi
pi∈K[x]Λ.

We call the block Np8 Np1
× � ×Npn

a basic domain for
Λ. In this subsection, we consider the computation of the
FFT at order p of a polynomial P ∈K[x]Λ,p.

In what follows, we set ωi = e2p i/pi for each i, so that we
have to show how to compute the set of evaluations P (ωk)=
P (ω1

k1,
 ,ωn
kn) for k∈Np. If we proceeded directly, we would

compute more evaluations than the number of monomials of
P , which is |Λ ∩Np|. We show how to reduce the problem
to computing exactly |Λ∩Np| evaluations.
For any γ=(γ1,
 , γn)∈Γ, notice that

P (ωk) = P (e2p ik1/p1,
 , e2p ikn/pn)

= P (e2p i(k1/p1+γ1),
 , e2p i(kn/pn+γn)).

Therefore we would only need to consider the evaluations
with multi-indices in (1/p1 Z,
 , 1/pn Z) modulo Γ. There
are only |Λ∩Np| such evaluations but, as in Section 3.4, we
would have to expand the fundamental domain of evalua-
tions at each stage of the FFT to compute the butterflies.
Instead, we propose a more direct method with no domain

expansion. We show that, regarding the evaluations, polyno-

mials P in K[x]Λ can be written Q(xλ1
′

,
 ,xλn
′

) where λ1
′ ,
 ,

λn
′ is a basis of Λ and the evaluation can be done directly

in this rewritten form.

We introduce the notation k
p
∈ {0,
 , p − 1} for the

remainder of k ∈ Z by p ∈N∗. If k = (k1,
 , kn) ∈ Zn and
p= (p1,
 , pn)∈ (N∗)n, we let k p8 (k1

p1,
 ,kn
pn). This

notation is motivated by the remark that xλ(ωk) depends
only on the class of λ and k modulo (p1Z,
 , pnZ).

Lemma 10. There exists a basis (λ1
′ ,
 , λn

′) of Λ and a
basis (k1,
 ,kn) of Zn such that

yi(ω
kj) = e2p iδi,j/qi (8)

where yi = xλi
′p

, the qi’s are positive integers satisfying q1 Q
q2 Q
 Q qn and δi,j=1 if i= j and 0 otherwise.

Proof. Let us consider the lattice of the exponents of
(xλi(ωk))16i6n for k∈Nn. If k=(k1,
 ,kn)∈Nn, then

xλi(ωk)= e2p i[(k1/p1,
 ,kn/pn)·λi]=e2p i[k·((λi)1/p1,
 ,(λi)n/pn)].

We define the lattice ∆ spanned by the columns of ∆ =

Λ
t

1/p1 0 0
0 � 0
0 0 1/pn

, that is ∆i,j = (λi)j/pj. We want to

take the Smith normal form of ∆ but the coefficients of ∆
are not necessarily integers. So we multiply the matrix by
ℓ8 LCM(p1,
 , pn), take the Smith normal form and divide
by ℓ. Therefore there exists Ht , K ∈ GLn(Z) and integers
dn Q
 Q d2 Q d1 such that

Ht ∆K=

d1/ℓ 0 0
0 � 0
0 0 dn/ℓ

. (9)

Let us prove that Zn ⊆∆. By definition of p1,
 , pn, there

exists S ∈ Zn×n such that Λ S =

p1 0 0
0 � 0
0 0 pn

 . Thus we

have St Λ
t

1/p1 0 0
0 � 0
0 0 1/pn

= Id, implying that ∆ St = Id and

our result. Because Zn ⊆ ∆, we have di Q ℓ and by setting
qi8 ℓ/di∈N∗, we get q1 Q q2 Q
 Q qn.

With a geometrical point of view, the equality of Equa-
tion (9) gives the existence of the two required bases. The
columns of K give the basis (k1,
 , kn) of Zn and the
columns of Λ′ 8 Λ H give the basis (λ1

′ ,
 , λn
′) of Λ. To

sum up, we have

Λ
t ′

1/p1 0 0
0 � 0
0 0 1/pn

K =

1/q1 0 0
0 � 0
0 0 1/qn

 (10)

which is the matricial form of Equation (8). �

Proposition 11. The following ring morphism Φ

K[y]/(y1
q1− 1,
 , yn

qn − 1) � K[x]/(x1
p1− 1,
 , xn

pn − 1)

yi � xλi
′p

is well-defined, injective and its image is K[x]Λ,p. Moreover,
if P =Φ(Q) then

P (ωℓ1k1+� +ℓnkn) = Q(e2p iℓ1/q1,
 , e2p iℓn/qn). (11)

Proof. First, we prove that Φ is well defined. For this
matter we have to check that Φ(yi

qi − 1) = xqiλi
′p

− 1 = 0
modulo (x1

p1 − 1,
 , xn
pn − 1). It is sufficient to prove that

qiλi
′ p

∈ (p1Z,
 , pnZ), which follows from Equation (10).

Then we prove Equation (11). Let Q∈K[y] and P (x)8
Φ(Q)(x). As a consequence of Lemma 10, one has

P (ωℓ1k1+� +ℓnkn) = Q(e2p iℓ1/q1,
 , e2p iℓn/qn).

Now, we prove that Φ is injective. Indeed if Q ∈K[y] sat-

isfies Φ(Q) = 0 then for all k ∈Nn, one has Φ(Q)(ωk) = 0.
Using Equation (11), we get that for all ℓ1,
 , ℓn ∈ Z,

Q(e2p iℓ1/q1,
 , e2p iℓn/qn) = 0. As a result, Q belongs to the
ideal generated by (y1

q1− 1,
 , yn
qn − 1).

Finally it is trivial to see that the image of Φ is included
in K[x]Λ,p. Reciprocally, let xλ ∈ K[x]Λ,p. We write λ =
∑

i=1

n
ℓi λi

′ p
with ℓi ∈ Z and define λ̄ =

∑

i=1

n
ℓi

qi λi
′ p

.

Now because the lattice q1 λ1
′ Z ⊕ � ⊕ qn λn

′ Z is included

in (p1Z,
 , pnZ), we have that Φ
(

y(ℓ1
q1,
 ,ℓn

qn)
)

= xλ̄ = xλ

modulo (x1
p1− 1,
 , xn

pn − 1). �

In particular, the FFT of P is uniquely determined by
its restriction to evaluations of the form P (ωk) with k =
ℓ1 k1+� +ℓn kn and ℓ=(ℓ1,
 , ℓn)∈Nq. Notice that Propo-
sition 11 implies that the number q1 � qn of evaluations
equals the numbers |Λ∩Np| of monomials in K[x]Λ,p.
We define the lattice FFT of P to be the vector of values

(P (ωℓ1k1+� +ℓnkn))ℓ∈Nq
. We have thus shown that the com-

putation of the lattice FFT of P reduces to the computation
of an ordinary multivariate FFT of order q.

4.3 The general lattice FFT multiplication

Assume that d ∈ (N∗)n is such that pi Q di for each i

and consider the computation of the FFT at order d of a
lattice polynomial P ∈ K[x]Λ,d. In practice, one often has
di= pi 2

ℓi, and this is what we will assume from now on. For
simplicity, we also suppose that ℓ1=� = ℓn and denote by ℓ

this common value. The results are valid in general but we
would have to do more decimations in some variables than
in others, which would not match the notations of Section 2.
We give here an algorithm for the multiplication of two

polynomials P1, P2∈K[x]Λ,d/2.

We start by doing ℓ FFT stages. These stages preserve the
lattice Λ, because the butterflies have a span which belongs
to Λ. Therefore we compute only the butterflies whose ver-
tices are in Λ.
After these ℓ stages, we twist the coefficients thanks to

Formula 5 and obtain the polynomials Qℓ = (Qi
ℓ), for i ∈

N2ℓ
n . As explained in Section 2.2, up to a minor modification

(here, the partial degrees are not all the same), these poly-
nomials reduce our multiplication to 2nℓ multiplications in
K[x]Λ,p/(x1

p1− 1,
 , xn
pn −1). Thanks to Proposition 11, we

are able to perform these latter multiplications as multipli-
cations in K[y]q/(y1

q1− 1,
 , yn
qn − 1).

Algorithm Lattice-partial-FFT

Input: n, d, ω and coefficients c0∈KNd
n

of P ∈K[x]Λ,d

Output: the coefficients cℓ∈KNd
n

For s=1,
 , ℓ do //ℓ decimation steps in each variable
δ8 d/2s

For i′∈N2s−1

n , j ∈Λ∩Nd/2s
n do //a butterfly in Λ

For b∈N2
n do cb8 c(2i′+b)δ+j

s−1

db=Butterfly(n, d, s, i′, j , cb)
For b∈N2

n do c(2i′+b)δ+j
s 8 db

Return cℓ

Algorithm Lattice-FFT-multiplication

Input: n, d, ω and P1, P2∈K[x]Λ,d

Output: the coefficients product P1P2

For i=1, 2 do
cℓ=Lattice-partial-FFT(n, 2d, ω, ((Pi)k)k∈N2d

n)

Let Qi8 Qℓ∈ (K[x]Λ,p)
N

2ℓ
n

obtained from cℓ

Transform Qi as a vector of K[y]q using Proposition 11

Multiply Q=Q1 Q2 in (K[y]/(y1
q1− 1,
 , yn

qn − 1))N2ℓ
n

Transform Q as a vector of K[x]Λ,p using Proposition 11

Recover cℓ from Q∈ (K[x]Λ,p)
N

2ℓ
n

c0=Lattice-partial-FFT−1(n, 2d, ω, (c[k] ℓ
ℓ)k∈N2d

n)
Return c0

As for symmetric polynomials, the inverse algorithm Lat-

tice-partial-FFT−1 is obtained by reversing the loops and
inverting the butterflies of Lattice-partial-FFT.

Let us analyze the cost of this algorithm. It starts with
ℓ stages of classical n-dimensional FFT, computing only
the butterflies whose vertices are in Λ. This amounts to
3

2
n ℓ |Λ∩Nd

n| arithmetic operations in K. The second part

is made of the transformations of Equation 5 and Propo-
sition 11. Since we consider that operations with the lattice
Λ take time O(1), these transformations take time O(|Λ ∩
Nd

n|). Finally, the componentwise multiplication of (K[y]/

(y1
q1 − 1,
 , yn

qn − 1))N2ℓ
n

costs 2nℓ
M(q1,
 , qn) where

M(d) stands for the arithmetic complexity of polynomials
multiplication in K[x]d. So our multiplication algorithms
cost T(d) 8 3/2 n ℓ |Λ ∩ Nd

n| + 2nℓ
M(q) + O(|Λ ∩ Nd

n|).
By contrast, a symmetry-oblivious approach would consist
in doing ℓ stages of classical n-dimensional FFT and then
2nℓ multiplications in K[x]/(x1

p1 − 1,
 , xn
pn − 1). The

cost analysis is similar to the one before and the classical
approach’s cost is F(d)8 3/2n ℓ dn+2nℓ

M(p)+O(dn).

The ratio dn/|Λ ∩ Nd
n| is exactly the volume vol(Λ) of

the lattice, defined by vol(Λ) 8 det (Λ) ∈ Z. Under the
superlinearity assumption for the function M, we get that
vol(Λ)M(q)6M(p) and we deduce the following theorem.

Theorem 12. For a fixed lattice Λ and d→∞, the direct
(resp. inverse) lattice FFT can be computed in time

T(d) =
1

vol(Λ)
F(d)+O(dn).

5. THE SYMMETRIC TFT

To conclude this paper, we briefly discuss the extensions
of the previous results to the Truncated Fourier Transform
(TFT). With the notation of Section 2, let I ⊆ Nd

n be an
initial segment subset of Nd

n: for i, j ∈Nd
n, if i ∈ I and j 6

i, then j ∈ I . Given P ∈K[x]I, the TFT of P is defined to

be the vector P̂ ∈KI defined by P̂i=P (ω[i]ℓ), where ω is a
root of unity of order d.

In [17, 18], van der Hoeven described fast algorithms for
computing the TFT and its inverse. For a fixed dimension
n, the cost of these algorithms is bounded by O(|I | log |I |+
dn) instead of O(dn log dn). In this section we will outline
how a further acceleration can be achieved for symmetric
polynomials of the types studied in Sections 3 and 4.

5.1 The symmetric TFT

For each δ ∈ {1,
 , 2ℓ}, let I[δ] = {i ⊞ ǫ: i ∈ I , ǫ ∈ Nδ
n}.

The entire computation of the TFT and its inverse can be
represented schematically by a graph Γ. The vertices of the
graph are pairs (s, i) with s ∈ {0,
 , ℓ} and i ∈ I[2ℓ−s].

The edges are between vertices (s, i) and (s + 1, j) with
i = j ⊞ (2ℓ−s−1 ǫ) and ǫ ∈ N2

n. The edge is labeled by a
constant that we will simply write cs,i,j such that

Pj
s+1 =

∑

i

cs,i,jPi
s. (12)

For a direct TFT, we are given Pi
0 on input and “fill out” the

remaining values Pi
s for increasing values of s using (12). In

the case of an inverse TFT, we are given the Pi
ℓ with i ∈ I

on input, as well as the coefficients Pi
0 = 0 with i ∈Nd

n \ I .
We next “fill out” the remaining values Pi

s using the special
algorithm described in [18].

Now let G be as in Section 3 and assume that I is stable
under G. Then each of the I[δ] is also stable under G. Fur-
thermore, any i ∈ I lies in the orbit of some element of
I ∩ F under the action of G. Let (I ∩ F)[δ] = {i ⊞ ǫ:
i ∈ I ∩ F , ǫ ∈Nδ

n}. Given a G-symmetric input polynomial
on input, the idea behind the symmetric TFT is to use the
restriction Γ′ of the above graph Γ by keeping only those
vertices (s, i) such that i∈ (F ∩I)[2ℓ−s]. The symmetric TFT
and its inverse can then be computed by intertwining the
above “filling out” process with steps in which we compute
Pg(i)

s = Pi
s for all i ∈ Nd

n and g ∈ G such that Pi
s is known

but not Pg(i)
s .

The computational complexities of the symmetric TFT
and its inverse are both proportional to the size |Γ′| of Γ′.
For many initial domains I of interest, it can be shown that
|Γ′| ∼ |Γ|/|G|, as soon as d gets large. This is for instance
the case for I=Σk= {i∈Nd

n: i1+� + in6 k}, when k→∞,
and where ℓ = ⌈log2 k⌉. Note that Σk is stable under any
permutation group. Indeed, using similar techniques as in
the proof of Theorem 7, we first show that |(Σk ∩ F)[δ] −
(Σk)[δ]/|G||=O(δ dn−1), and then conclude in a similar way.

5.2 The lattice TFT

Let us now consider the case of a polynomial P ∈K[x]Λ∩I,
with Λ as in Section 4. In order to design a fast “lattice
TFT”, the idea is simply to replace I by a slightly larger set
J which preserves the fundamental domains. More precisely,
with p1,
 , pn as in Section 4, we take

J = {(p1 i1+ j1,
 , pn in+ jn): i∈K, j ∈Np}

K = {(⌊i1/p1⌋,
 , ⌊in/pn⌋): i∈ I}.

A lattice TFT of order (p1 2ℓ1,
 , pn 2ℓn) can then be

regarded as |Λ∩Np| TFTs at order (2ℓ1,
 , 2ℓn) and initial
segment K, followed by |K | TFTs lattice FFTs on a fun-
damental domain. Asymptotically speaking, we thus gain
a factor |Np|/|Λ ∩ Np| with respect to a usual TFT with
initial segment J . In the case when I = Σk = {i ∈ Nd

n:
i1+� + in6 k}, we finally notice that |J | ∼ |I | for k→∞.

6. CONCLUSION

Let us quickly outline possible generalizations of the
results of this paper.

It seems that the most general kinds of finite groups for
which the techniques in this paper work are finite subgroups
G of Πn Un, where Πn is the group of n × n permuta-
tion matrices and Un the group of diagonal matrices whose
entries are all roots of unity. Indeed, any such group G

both acts on the sets K[x] and on the torus Un, where
U={e2p i/n: i, n∈N}. Even more generally, the results may
still hold for closed algebraic subgroups G generated by an
infinite number of elements of ΠnUn.

Many other interesting groups can be obtained as con-
jugates G′ = T−1 G T of groups G of the above kind. For
certain applications, such as the integration of dynamical
systems, the change of coordinates T can be done “once and
for all” on the initial differential equations, after which the
results of this paper again apply.

It is classical that the FFT of a polynomial with real coef-
ficients can be computed twice as fast (roughly speaking) as
a polynomial with complex coefficients. Real polynomials
can be considered as symmetric polynomials for complex
conjugation: P (z̄) = P (z). Some further extensions of our
setting are possible by including this kind of symmetries.

On some simple examples, we have verified that the ideas
of this paper generalize to other evaluation-interpolation
models for polynomial multiplication, such as Karatsuba
multiplication and Toom-Cook multiplication.

We intend to study the above generalizations in more
detail in a forthcoming paper.

7. REFERENCES
[1] L. Auslander, J. R. Johnson, and R. W. Johnson. An equivariant

Fast Fourier Transform algorithm. Drexel University Technical
Report DU-MCS-96-02, 1996.

[2] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse
multivariate polynomial interpolation. In STOC ’88: Proceedings

of the twentieth annual ACM symposium on Theory of com-

puting, pages 301–309, New York, NY, USA, 1988. ACM Press.

[3] R. Bergmann. The fast Fourier transform and fast wavelet trans-
form for patterns on the torus. Applied and Computational Har-

monic Analysis, 2012. In Press.

[4] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic com-

plexity theory. Springer-Verlag, 1997.

[5] J. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-
linear polynomial equations faster. In Proc. ISSAC ’89 , pages
121–128, Portland, Oregon, A.C.M., New York, 1989. ACM Press.

[6] D.G. Cantor and E. Kaltofen. On fast multiplication of poly-
nomials over arbitrary algebras. Acta Informatica, 28:693–701,
1991.

[7] J.W. Cooley and J.W. Tukey. An algorithm for the machine cal-
culation of complex Fourier series. Math. Computat., 19:297–301,
1965.

[8] S. Czapor, K. Geddes, and G. Labahn. Algorithms for Computer

Algebra. Kluwer Academic Publishers, 1992.

[9] P. Duhamel and M. Vetterli. Fast Fourier transforms: a tutorial
review and a state of the art. Signal Process., 19(4):259–299,
April 1990.

[10] R.J. Fateman. What’s it worth to write a
short program for polynomial multiplication.
http://www.cs.berkeley.edu/~fateman/papers/shortprog.tex,
2010.

[11] T. S. Freeman, G. M. Imirzian, E. Kaltofen, and Y. Lak-
shman. DAGWOOD a system for manipulating polynomials given
bystraight-line programs. ACM Trans. Math. Software, 14:218–
240, 1988.

[12] S. Garg and É. Schost. Interpolation of polynomials given by
straight-line programs. Theoretical Computer Science, 410(27-
29):2659–2662, 2009.

[13] M. Gastineau and J. Laskar. TRIP 1.2.26. Trip reference manual,
IMCCE, 2012. http://www.imcce.fr/trip/.

[14] J. von zur Gathen and J. Gerhard. Modern Computer Algebra.
Cambridge University Press, 2-nd edition, 2002.

[15] A. Guessoum and R. Mersereau. Fast algorithms for the multi-
dimensional discrete Fourier transform. IEEE Transactions on

Acoustics, Speech and Signal Processing, 34(4):937 – 943, 1986.

[16] J. van der Hoeven. Relax, but don’t be too lazy. JSC , 34:479–
542, 2002.

[17] J. van der Hoeven. The truncated Fourier transform and applica-
tions. In J. Gutierrez, editor, Proc. ISSAC 2004 , pages 290–296,
Univ. of Cantabria, Santander, Spain, July 4–7 2004.

[18] J. van der Hoeven. Notes on the Truncated Fourier Transform.
Technical Report 2005-5, Université Paris-Sud, Orsay, France,
2005.

[19] J. van der Hoeven. Newton’s method and FFT trading. JSC ,
45(8):857–878, 2010.

[20] J. van der Hoeven and G. Lecerf. On the bit-complexity of
sparse polynomial multiplication. Technical report, HAL, 2010.
http://hal.archives-ouvertes.fr/hal-00476223, accepted for
publication in JSC.

[21] J. van der Hoeven and G. Lecerf. On the complexity of blockwise
polynomial multiplication. In Proc. ISSAC ’12 , pages 211–218,
Grenoble, France, July 2012.

[22] J. van der Hoeven and É. Schost. Multi-point evaluation in higher
dimensions. Technical report, HAL, 2010. http://hal.archives-

ouvertes.fr/hal-00477658, accepted for publication in AAECC.

[23] J. Johnson and X. Xu. Generating symmetric DFTs and equi-
variant FFT algorithms. In ISSAC’07 , pages 195–202. ACM,
2007.

[24] S. C. Johnson. Sparse polynomial arithmetic. SIGSAM Bull.,
8(3):63–71, 1974.

[25] E. Kaltofen and Y. N. Lakshman. Improved sparse multivariate
polynomial interpolation algorithms. In ISSAC ’88: Proceedings

of the international symposium on Symbolic and algebraic com-

putation, pages 467–474. Springer Verlag, 1988.

[26] E. Kaltofen, Y. N. Lakshman, and J.-M. Wiley. Modular rational
sparse multivariate polynomial interpolation. In ISSAC ’90: Pro-

ceedings of the international symposium on Symbolic and alge-

braic computation, pages 135–139, New York, NY, USA, 1990.
ACM Press.

[27] E. Kaltofen, W. Lee, and A. A. Lobo. Early termination in Ben-
Or/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm.
In ISSAC ’00: Proceedings of the 2000 international sympo-

sium on Symbolic and algebraic computation, pages 192–201,
New York, NY, USA, 2000. ACM Press.

[28] A Kudlicki, M. Rowicka, and Z. Otwinowski. The crystallographic
Fast Fourier Transform. recursive symmetry reduction. Acta

Cryst., A63:465–480, 2007.

[29] V. Pan and D. Bini. Polynomial and matrix computations.
Birkhauser, 1994.

[30] V. Y. Pan. Simple multivariate polynomial multiplication. J.

Symb. Comput., 18(3):183–186, 1994.

[31] D. S. Roche. Chunky and equal-spaced polynomial multiplication.
J. Symbolic Comput., 46(7):791–806, 2011.

[32] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser
Zahlen. Computing, 7:281–292, 1971.

[33] D. R. Stoutemyer. Which polynomial representation is best? In
Proceedings of the 1984 MACSYMA Users’ Conference: Sch-

enectady, New York, July 23–25, 1984 , pages 221–243, 1984.

[34] L. F. Ten Eyck. Crystallographic Fast Fourier Transform. Acta

Cryst., A29:183–191, 1973.

[35] A. Vince and X. Zheng. Computing the Discrete Fourier Trans-
form on a hexagonal lattice. Journal of Mathematical Imaging

and Vision, 28:125–133, 2007.

