
Evaluation properties of symmetric polynomials

Pierrick Gaudry, LIX, École polytechnique
91128 Palaiseau, France

gaudry@lix.polytechnique.fr

Éric Schost, STIX, École polytechnique
91128 Palaiseau, France

schost@stix.polytechnique.fr

Nicolas M. Thiéry,
Laboratoire de Probabilités, Combinatoire et Statistiques,

Université Claude Bernard Lyon I, France
nthiery@users.sourceforge.net

October 21, 2004

Abstract

By the fundamental theorem of symmetric polynomials, if P ∈ Q[X1, . . . , Xn]
is symmetric, then it can be written P = Q(σ1, . . . , σn), where σ1, . . . , σn are the
elementary symmetric polynomials in n variables, and Q is in Q[S1, . . . , Sn].

We investigate the complexity properties of this construction in the straight-line
program model, showing that the complexity of evaluation of Q depends only on n
and on the complexity of evaluation of P .

Similar results are given for the decomposition of a general polynomial in a basis
of Q[X1, . . . , Xn] seen as a module over the ring of symmetric polynomials, as well
as for the computation of the Reynolds operator.

1 Introduction

Already known to Newton, the fundamental theorem of symmetric polynomials asserts
that any symmetric polynomial is a polynomial in the elementary symmetric polynomials.
To be more precise, let us define the symmetric polynomials σ1, . . . , σn by letting σi be
the coefficient of T n−i in the polynomial (T − X1) · · · (T − Xn); that is, σi = (−1)iσi,
where σ1, . . . , σn are the usual elementary symmetric polynomials (this sign convention
happens to simplify some of the subsequent developments).

Then if P ∈ Q[X1, . . . , Xn] is a symmetric polynomial in n variables, it is known
that there exists a unique polynomial Q ∈ Q[S1, . . . , Sn] such that the equality P =
Q(σ1, . . . , σn) holds. For this point, as well as for other questions related to symmetric
polynomials, our general reference will be [12].

1

From the complexity viewpoint, one may wonder what properties pass from P to Q.
For instance, the (weighted) degree is preserved. On the other hand, important features
such as sparseness are lost: Consider P = Xd

1 + Xd
2 ∈ Q[X1, X2], and the polynomial Q

such that P = Q(σ1, σ2) with σ1 = −X1−X2, σ2 = X1X2; then the number of monomials
of Q is linear in d.

This phenomenon is intimately related to the basic approach on symmetric polyno-
mials by means of rewriting techniques. Indeed, the classical proof of the fundamental
theorem involves an explicit rewriting process for a suitable elimination order [17, 5], and
such techniques do not preserve sparseness.

In this note, we adopt a different point of view, working in the straight-line program
model. Roughly speaking, a straight-line program is a sequence of basic instructions
(+,−,×) that are used to compute a given polynomial; the relevant complexity measure
of such an object is its size, i.e. the number of its instructions (see Subsection 2.1 for
definitions). The complexity of evaluation of a polynomial P is then the minimum size of
a straight-line program that computes P .

Straight-line programs have proved to be an appropriate data-structure to derive
complexity estimates in polynomial elimination theory (see references below). One of the
salient results is that the complexity of evaluation remains stable throughout elimination
processes: eliminating polynomials (e.g., Chow forms) that are obtained from polynomials
with a low complexity of evaluation also have a low complexity of evaluation. This is the
key to the algorithms with the best known complexity for polynomial system solving.

Our main goal is to present results in a similar vein for computations with symmetric
polynomials: If P is a symmetric polynomial in Q[X1, . . . , Xn] with a good complexity of
evaluation, and Q is such that P = Q(σ1, . . . , σn), then Q itself has a good complexity
of evaluation. The precise form of this result is given below. The statement involves a
quantity denoted by ∆(n), which will be defined in Subsection 3.2 as the complexity of
multiplication in a suitable algebra; for the moment, we can content ourselves with the
estimate ∆(n) ≤ 4n(n!)2.

Theorem 1. Let P in Q[X1, . . . , Xn] be a symmetric polynomial that can be computed
by a straight-line program of size L. Let Q be the unique polynomial in Q[S1, . . . , Sn]
such that P = Q(σ1, . . . , σn). Then Q can be computed by a straight-line program of size
∆(n)L + 2.

Note that the degree of P does not appear in this estimate: passing from P to Q, the
complexity of evaluation increases by a factor that only depends on n. As an application,
consider again the polynomials P = Xd

1 +Xd
2 and Q such that P = Q(−X1−X2, X1X2).

Using binary powering techniques, P can be computed by a straight-line program of size
O(log(d)). Theorem 1 then shows that this is also the case for Q; this should be compared
with the number of monomials of Q, which is linear in d.

Our interest for this topic originates from [8], where a problem of solving some poly-
nomial systems with symmetries is raised (a more general version of that question was
already discussed in [4]). To solve that particular problem, the above theorem suffices.
However, the proof techniques easily give more general results.

Let us write Q[X1, . . . , Xn]Sn for the algebra of symmetric polynomials. Then the
polynomial ring Q[X1, . . . , Xn] becomes a free module of rank n! over Q[X1, . . . , Xn]Sn .
Thus, a first generalization is to determine the coordinates of any polynomial P in a basis

2

of this free module. The proof of Theorem 1 readily gives this generalization for a stan-
dard monomial basis, but other bases are of interest, such as, for instance, the Schubert
basis. Such bases have cardinality n! and are thus commonly indexed by permutations;
we will then use this indexation below. Besides, the techniques can be generalized to
other families of algebra generators for Q[X1, . . . , Xn]Sn , such as the complete symmetric
polynomials and power sums.

We obtain results that generalize those of Theorem 1: roughly speaking, the complex-
ity of evaluation only grows by the factor ∆(n), up to an additional factor that depends
on the chosen bases. To give a precise statement, fix n ≥ 1, and consider a family
b = (b1, . . . , bn) of Q-algebra generators of Q[X1, . . . , Xn]Sn and a basis c = (cs)s∈Sn

of the Q[X1, . . . , Xn]Sn-module Q[X1, . . . , Xn]. The most general form of Theorem 1
involves some constants depending on b and c, denoted by L(b) and L(c).

Theorem 2. Let n ≥ 1, b and c be as above. Then there exists L(b) and L(c) in N with
the following property: Let P be a polynomial in Q[X1, . . . , Xn] and let (Ps)s∈Sn be the
unique polynomials in Q[B1, . . . , Bn] such that

P =
∑
s∈Sn

Ps(b1, . . . , bn)cs.

If P can be computed by a straight-line program of size L, then there exists a straight-line
program of size ∆(n)L + L(b) + L(c) + 2 which computes all the polynomials Ps.

Theorem 1 is actually a particular case of this result, when P is symmetric, b1, . . . , bn

are the symmetric polynomials σ1, . . . , σn, and c is the standard monomial basis; in this
case we have L(b) = L(c) = 0 (of course, we could incorporate the term +2 that appears
in the estimate of the theorem in either L(b) or L(c), but this would conflict with this
last statement).

Our last question of interest is the computation of the Reynolds operator, which
we treat as an application of the previous results. The Reynolds map R is a projector
Q[X1, . . . , Xn] → Q[X1, . . . , Xn]Sn , so for any P in Q[X1, . . . , Xn], there exists Q in
Q[S1, . . . , Sn] such that R(P) = Q(σ1, . . . , σn) (other choices of algebra generators for
Q[X1, . . . , Xn]Sn would do as well, of course). Based on our previous results, the last
theorem shows that if P can be computed in time L, then R(P) can be computed in time
∆(n)L, up to about n! additional operations.

Theorem 3. Let n ≥ 1, and P in Q[X1, . . . , Xn] that can be computed by a straight-line
program of size L. Let Q be the unique polynomial in Q[S1, . . . , Sn] such that R(P) =
Q(σ1, . . . , σn). Then Q can be computed by a straight-line program of size ∆(n)L + n! +
2 · 8n.

In the above theorems, we used Q for base field; we mention however that all results
extend any base ring of characteristic zero; all results that involve neither the Reynolds
operator nor the power sums actually extend to any base ring.

Related work. Many techniques used below, notably the so-called algebra of univer-
sal decomposition and the related Cauchy modules, were already used in the study of
symmetric polynomials. Explicitly, the idea of obtaining the expression of a symmetric

3

polynomial in terms of the elementary symmetric ones by reduction modulo what we call
Cauchy modules is already present in [6, 15], and is discussed in details (without using
the same denomination) in [7], together with some generalizations to other groups.

However, none of the above references mentions complexity. Our contribution is a first
exploration of the complexity-related aspects of this question, showing that evaluation
techniques give an appropriate computational model for handling symmetric polynomials.

It turns out that our basic algorithms are somehow relevant from polynomial elimi-
nation. Then, the fact that evaluation techniques are the key to good complexity results
supports ideas initiated by Giusti, Heintz, Pardo and collaborators in [11, 10, 9], who
showed that, generally speaking, straight-line programs are an appropriate data-structure
for algorithms in effective elimination theory.

Of course, we expect that our results generalize to finite groups actions, even though
several closed form formulas (e.g., explicit descriptions of the Cauchy modules) that are
available here have probably no equivalent in the more general case. Then, we might
have to rely on effective elimination theory tools.

Optimal bounds. At the moment, we do not know whether the factor ∆(n), which
grows polynomially with n!, is optimal. To put it more precisely, let us write L(A) for
the minimal size of a straight-line program that computes a polynomial A. Let then
δ(n) be the supremum of the ratios L(Q)/L(P), where P runs through the symmetric
polynomials in Q[X1, . . . , Xn] and Q is such that P = Q(σ1, . . . , σn). Theorem 1 shows
that δ(n) ≤ ∆(n) ∈ (n!)O(1); an open question is to give a non-trivial lower bound for
δ(n).

Organization of the paper. In Section 2, we define our computational model, and
give the details of our construction on the example P = Xd

1 + Xd
2 . In Section 3, we give

the proofs of Theorems 1, 2 and 3.

2 Preliminaries

2.1 Straight-line programs

From an informal point of view, straight-line programs enable us to represent polynomials
by means of a sequence of operations (+,−,×) without test nor division. Formally,
let k be a field and L ≥ 0, n ≥ 1. Following [3], we define a straight-line program
Γ in k[X1, . . . , Xn] as a sequence of polynomials G−n+1, . . . , GL in k[X1, . . . , Xn]. For
−n + 1 ≤ i ≤ 0, we take Gi = Xi+n; for i > 0, suppose that G−n+1, . . . , Gi−1 are defined.
Then, we require that one of the following holds:

• Gi = λ, with λ ∈ k.

• Gi = λ+Gai
, Gi = λ−Gai

or Gi = λGai
, with in any case λ ∈ k and −n+1 ≤ ai < i.

• Gi = Gai
+Gbi

, Gi = Gai
−Gbi

or Gi = Gai
Gbi

, with in any case −n+1 ≤ ai, bi < i.

In this situation, we say that Γ computes G−n+1, . . . , GL and has size L. If F1, . . . , Fm

are polynomials in k[X1, . . . , Xn], then we say that F1, . . . , Fm can be computed by a

4

straight-line program of size L (or in time L) if there exists a straight-line program
that computes polynomials G−n+1, . . . , GL such that {F1, . . . , Fm} is included in the set
{G−n+1, . . . , GL}.

The following lemma gives a basic property of the straight-line model, which is useful
in the sequel.

Lemma 1 (Composition of straight-line programs). Let a = (a1, . . . , an) be polyno-
mials in k[X1, . . . , Xm] and let b = (b1, . . . , bm) be polynomials in k[Y1, . . . , Ys]. If a (resp.
b) can be computed in time La (resp. in time Lb), then a1(b1, . . . , bm), . . . , an(b1, . . . , bm)
can be computed in time La + Lb.

Proof. Let Γ (resp. Λ) be a straight-line program of size La (resp Lb) which com-
putes a (resp. b), and let G−m+1, . . . , GLa (resp. H−s+1, . . . , HLb

) be the associ-
ated polynomials. For i = 1, . . . , La, define Ki = Gi(b1, . . . , bm). Then the sequence
H−s+1, . . . , HLb

, K1, . . . , KLa satisfies our requirement.

2.2 A detailed example

We now show the use of the straight-line program representation for handling symmetric
polynomials, by computing the symmetrized form of the polynomial P = X8

1 + X8
2 ∈

Q[X1, X2]. Let us thus consider a sequence of instructions that computes P :

G1 = X2
1 ; G2 = G2

1; G3 = G2
2; H1 = X2

2 ; H2 = H2
1 ; H3 = H2

2 ;

so that P = G3 + H3 = X8
1 + X8

2 . We now show how to compute the unique polynomial
Q ∈ Q[S1, S2] such that P = Q(−X1 −X2, X1X2).

Let us introduce two new indeterminates S1 and S2 and the ideal I generated by
S1− (−X1−X2) and S2−X1X2 in Q[S1, S2][X1, X2]. Our strategy is to compute the co-
ordinates of the polynomials Gi and Hi in the Q[S1, S2]-algebra K = Q[S1, S2][X1, X2]/I.
From this, we will recover the polynomial Q.

The monomials (1, X1) form a basis of K as a Q[S1, S2]-algebra and the relation
X2

1 + S1X1 + S2 = 0 holds in K. We deduce that for all A0, A1, B0, B1 in Q[S1, S2], the
multiplication law in K is given by the following rule:

(A0 + A1X1)(B0 + B1X1) = (A0B0 − S2A1B1) + (A1B0 + A0B1 − S1A1B1)X1.

This multiplication can be written using the following straight-line program Γ, which uses
Karatsuba’s trick to lower the number of multiplications:

Γ

∣∣∣∣∣∣
V1 = A0B0; V2 = A1B1; V3 = A0 + A1; V4 = B0 + B1;
V5 = V3V4; V6 = V5 − V1; V7 = V6 − V2; V8 = S2V2;
V9 = −S1V2; V10 = V1 − V8; V11 = V7 + V9.

Then V10 and V11 are respectively the polynomials (A0B0−S2A1B1) and (A1B0 +A0B1−
S1A1B1); note that Γ performs 11 operations.

For i = 1, 2, 3, let us write Gi mod I = Gi,0 + Gi,1X1, with Gi,0 and Gi,1 in Q[S1, S2].
Using Γ, we first design a straight-line program that computes the polynomials Gi,0

5

and Gi,1, for i = 1, 2, 3. To this effect, let us take G0,0 = 0 and G0,1 = 1, so that
G0,0 + G0,1X1 = X1. Since G1 = X2

1 , we can adapt Γ to obtain G1,0 and G1,1:

V1,1 = 0; V1,2 = 1; V1,3 = 1; V1,4 = 1;
V1,5 = V1,3V1,4; V1,6 = V1,5 − V1,1; V1,7 = V1,6 − V1,2; V1,8 = S2V1,2;
V1,9 = −S1V1,2; G1,0 = V1,1 − V1,8; G1,1 = V1,7 + V1,9.

Iterating the process, we obtain G2,0, G2,1 and G3,0, G3,1 in a similar fashion.

V2,1 = G2
1,0; V2,2 = G2

1,1; V2,3 = G1,0 + G1,1; V2,4 = G1,0 + G1,1;
V2,5 = V2,3V2,4; V2,6 = V2,5 − V2,1; V2,7 = V2,6 − V2,2; V2,8 = S2V2,2;
V2,9 = −S1V2,2; G2,0 = V2,1 − V2,8; G2,1 = V2,7 + V2,9;

V3,1 = G2
2,0; V3,2 = G2

2,1; V3,3 = G2,0 + G2,1; V3,4 = G2,0 + G2,1;
V3,5 = V3,3V3,4; V3,6 = V3,5 − V3,1; V3,7 = V3,6 − V3,2; V3,8 = S2V3,2;
V3,9 = −S1V3,2; G3,0 = V3,1 − V3,8; G3,1 = V3,7 + V3,9.

We are now almost done: we have obtained polynomials G3,0 and G3,1 in Q[S1, S2]
such that G3 = X8

1 = G3,0 + G3,1X1 holds modulo I. Starting from X2 = −S1 −X1, we
can use the same techniques to obtain polynomials H3,0 and H3,1 such that H3 = X8

2 =
H3,0 + H3,1X1 holds modulo I. The sum G3 + H3 being symmetric, it equals G3,0 + H3,0

modulo I, so that G3,0 + H3,0 is the polynomial Q we are looking for.
Computing Q requires 2× 3× 11 + 3 = 69 operations (+,−,×). Had we considered

the polynomial X16
1 + X16

2 instead, the cost would be 91, due to an additional squaring
in K. Similarly, treating the polynomial X2k

1 + X2k

2 would require 22k + 3 instructions.
In particular, in view of Waring’s formula, this shows that given X1 + X2 and X1X2, one
can evaluate the sum

Xd
1 + Xd

2 =

bd/2c∑
j=0

(−1)j d

d− j

(
n− j

j

)
(X1X2)

j(X1 + X2)
d−2j

within O(log(d)) arithmetic operations, whereas the sum has a number of terms linear in
d.

The following section provides with a generalization of this process; Subsection 3.5
also shows how to save a constant factor (here, that would be 2), using the Reynolds
operator.

3 Proof of the main results

Let us denote by E the set of multi-indices

E = {α = (α1, . . . , αn) | 0 ≤ αi < n− i + 1, 1 ≤ i ≤ n};

then the set of monomials XE = {Xα = Xα1
1 · · ·Xαn

n | α = (α1, . . . , αn) ∈ E} form a basis
of the Q[X1, . . . , Xn]Sn-module Q[X1, . . . , Xn], which we call the standard monomial basis.
The key result of this section is the following proposition, which contains Theorem 1 as a
special case when P is symmetric, and is the basis to Theorems 2 and 3. The statement
involves the quantity ∆(n), which is defined below in Subsection 3.2.

6

Proposition 1. Let P be in Q[X1, . . . , Xn] and let (Pα)α∈E be the unique polynomials in
Q[S1, . . . , Sn] such that the equality

P =
∑
α∈E

Pα(σ1, . . . , σn)Xα1
1 · · ·Xαn

n (1)

holds. Suppose that P can be computed by a straight-line program of size L. Then there ex-
ists a straight-line program of size ∆(n)L+2 which computes all the polynomials (Pα)α∈E.

The basic setting of the proof, the so-called algebra of universal decomposition, is
introduced in Subsection 3.1; the notation ∆(n) is then defined in Subsection 3.2. The
proof of Proposition 1 is given in Subsection 3.3; in Subsection 3.4 and 3.5, we finally
deduce Theorems 2 and 3 as corollaries.

3.1 The Cauchy modules

To make effective the Q[X1, . . . , Xn]Sn-algebra structure on Q[X1, . . . , Xn], we consider
two sets of indeterminates S1, . . . , Sn and X1, . . . , Xn and work in the polynomial ring
Q[S1, . . . , Sn][X1, . . . , Xn], taking Q[S1, . . . , Sn] for base ring. We then introduce the
following polynomials in Q[S1, . . . , Sn][X1, . . . , Xn]:

Fi : Si − σi(X1, . . . , Xn), i = 1, . . . , n.

Let I be the ideal (F1, . . . , Fn) ⊂ Q[S1, . . . , Sn][X1, . . . , Xn]. Then, the quotient K =
Q[S1, . . . , Sn][X1, . . . , Xn]/I is a free Q[S1, . . . , Sn]-algebra of rank n!, called the universal
decomposition algebra in [1] (see also [6]), and which is isomorphic to the Q[X1, . . . , Xn]Sn-
algebra Q[X1, . . . , Xn].

We next define a family of polynomials (T1, . . . , Tn) which are better suited to com-
putations. We first set

T1(X1) = Xn
1 + S1X

n−1
1 + · · ·+ Sn−1X1 + Sn.

We then inductively define T2, . . . , Tn by the following “divided difference” relation:

Ti+1(X1, . . . , Xi+1) =
Ti(X1, . . . , Xi−1, Xi+1)− Ti(X1, . . . , Xi−1, Xi)

Xi+1 −Xi

, 1 ≤ i < n.

It is immediate to check that, for 1 ≤ i ≤ n, Ti belongs to Q[S1, . . . , Sn][X1, . . . , Xi] and
is monic of degree n − i + 1 in Xi. These polynomials are sometimes called the Cauchy
modules, see [6, 15]; see also [13, 12] for more on divided differences.

The ideal I = (F1, . . . , Fn) equals (T1, . . . , Tn), see [6, Theorem 6]. Furthermore,
as mentioned above, the standard monomials XE form a Q[S1, . . . , Sn]-basis of K. We
deduce that the polynomials Pα given in Equation (1) are also characterized by the
relation

P mod (T1, . . . , Tn) =
∑
α∈E

PαXα1
1 · · ·Xαn

n .

This decomposition is the basis of all following developments.

7

3.2 Complexity of the multiplication in K

We can now define the quantity ∆(n), as a mean to estimate the complexity of the
multiplication in K. Let

A =
∑
α∈E

AαXα1
1 · · ·Xαn

n , B =
∑
α∈E

BαXα1
1 · · ·Xαn

n

be two polynomials with new indeterminates A = (Aα)α∈E and B = (Bα)α∈E as respec-
tive coefficients. Thus, the base ring is now Q[A,B,S], where we write for conciseness S =
S1, . . . , Sn, and A and B are in Q[A,B,S][X1, . . . , Xn]. There exist unique polynomials
C = (Cα)α∈E in Q[A,B,S] such that the following equality holds in Q[A,B,S][X1, . . . , Xn]:

AB mod (T1, . . . , Tn) =
∑
α∈E

CαXα1
1 · · ·Xαn

n .

The cost ∆(n) of the multiplication modulo (T1, . . . , Tn) is formally defined as the minimal
size of a straight-line program that computes the polynomials C; note in particular that
∆(n) ≥ n!. The example of Subsection 2.2 is a particular case of this construction, which
showed that ∆(2) ≤ 11.

The following lemma then gives the basic way to make use of this notion.

Lemma 2. Let a = (aα)α∈E and b = (bα)α∈E be in Q[S1, . . . , Sn] and write

a =
∑
α∈E

aαXα1
1 · · ·Xαn

n , b =
∑
α∈E

bαXα1
1 · · ·Xαn

n .

Let us define the polynomials c = (cα)α∈E in Q[S1, . . . , Sn] by:

ab mod (T1, . . . , Tn) =
∑
α∈E

cαXα1
1 · · ·Xαn

n .

If both families of polynomials a and b can be computed by a straight-line program Γ of
size L, then there exists a straight-line program of size L + ∆(n) that computes the same
polynomials as Γ as well as the polynomials c.

Proof. The polynomials c are obtained by evaluating the polynomials C at (a,b,S); thus,
by Lemma 1, their complexity of evaluation is at most the sum of those of C, a and b.

We shall now give estimates for the function ∆. Our first estimate relies on an iterated
version of Euclidean division:

Proposition 2. For n ≥ 1, the inequality ∆(n) ≤ 4n(n!)2 holds.

We will use the fact that the coefficients of the polynomials T1, . . . , Tn have a low
complexity of evaluation: see for instance [17, Theorem 1.2.7] for a proof of the following
lemma (which actually gives a more precise statement).

Lemma 3. All coefficients of all polynomials T1, . . . , Tn are in {1, S1, S2, . . . , Sn}.

8

Proof of the proposition. The proof is an inductive process; to prepare the induction,
for 1 ≤ i ≤ n, we define the quotient Ki = Q[S][X1, . . . , Xi]/(T1, . . . , Ti), so that Kn

is the quotient K defined above. To simplify the notation, for 1 ≤ i ≤ n, denote
di = degXi

Ti = n − i + 1. Then for all i, Ki is a free Q[S]-algebra of rank d1 · · · di.
Let Ei be the set

{α = (α1, . . . , αi) | 0 ≤ αj < dj, 1 ≤ j ≤ i};

then the set of all monomials {Xα1
1 · · ·Xαi

i | α = (α1, . . . , αi) ∈ Ei} is a Q[S]-basis of Ki.
For any i ∈ 1, . . . , n, let Ai = (Aα)α∈Ei

and Bi = (Bα)α∈Ei
be some indeterminates.

Using them as coefficients, we define

Ai =
∑
α∈Ei

AαXα1
1 · · ·Xαi

i , Bi =
∑
α∈Ei

BαXα1
1 · · ·Xαi

i

and the polynomials Ci = (Cα)α∈Ei
in Q[Ai,Bi,S] as follows:

AiBi mod (T1, . . . , Ti) =
∑
α∈Ei

CαXα1
1 · · ·Xαi

i .

We now establish the following claim: There exists a straight-line program of size
4i(d1 · · · di)

2 that computes the polynomials Ci. Taking i = n proves the lemma.

The proof of this claim comes by induction. First, let us consider i = 1, and let A1

and B1 be as above. We first multiply A1 and B1 as plain polynomials in Q[S][X1]: this
requires to perform 2d2

1 operations on their coefficients [18], either additions or multi-
plications. In a second time, we reduce the product A1B1 modulo T1; this requires 2d2

1

additional operations, involving the coefficients of both A1B1 and T1, see again [18]. This
prove our claim for i = 1.

Let us now perform the inductive step: we assume that the induction claim holds for
index i − 1, and prove it for index i. Let thus Ai and Bi be as above; we now estimate
the cost of computing all coefficients of their product modulo (T1, . . . , Ti).

To this effect, we first consider Ai and Bi as univariate polynomials in Ki−1[Xi], and
multiply them as such. This requires 2d2

i operations in Ki−1, either additions or multipli-
cations. An addition in Ki−1 requires to perform d1 · · · di−1 operations on the coefficients.
Using an analogue of Lemma 2 for the quotient Ki, we deduce that a multiplication in
Ki−1 requires at most 4i−1(d1 · · · di−1)

2 operations. Thus, all coefficients of the product
AiBi in Ki−1[Xi] can be evaluated using at most 2× 4i−1(d1 · · · di)

2.
We finally reduce AiBi modulo Ti. Thus, we must see Ti as a polynomial in Ki−1[Xi];

note that all coefficients of Ti are already reduced modulo (T1, . . . , Ti−1), so no additional
reduction is needed. Then reducing AiBi modulo Ti requires 2d2

i operations in Ki−1,
involving the coefficients of AiBi and Ti. Due to Lemma 3, no operation is required to
compute the coefficients of Ti, so we deduce as above that each operation takes at most
4i−1(d1 · · · di−1)

2 operations, concluding the proof.

To conclude this subsection, we mention some improved bounds for the function ∆. To
this effect, let us introduce the function M : N → N, such that M(d) is the complexity of
univariate polynomial multiplication in degree d (the precise definition is similar to that
of the function ∆ above). Thus, M(d) = 2d2 for the naive multiplication algorithm, but
one can take M(d) ∈ O(d log d log log d) using FFT multiplication [18].

9

Using this notation, one can prove the following result: there exists a universal con-
stant C such that ∆(n) ∈ O(CnM(n!)). We do not offer a proof of this claim, as it
is rather technical, using Kronecker’s substitution to reduce to operations on univariate
polynomials. The closest reference we are aware of is Lemma 2.2 in [19], where a similar
question is treated in the case of n = 2 variables.

3.3 Proof of Proposition 1

We can now give the proof of Proposition 1. To this effect, recall that the polynomials Pα

in Equation (1) can also be defined as the unique polynomials in Q[S1, . . . , Sn] satisfying
the equality

P mod (T1, . . . , Tn) =
∑
α∈E

PαXα1
1 · · ·Xαn

n

in Q[S1, . . . , Sn][X1, . . . , Xn].
First, we note that the coefficients of all variables Xi on the standard monomial basis

of K can be computed by a straight-line program of size 2. Indeed, only the variable
Xn rewrites non-trivially: since Tn = X1 + · · · + Xn + S1 (see [17]), Xn rewrites as
−S1 −X1 − · · · −Xn−1. Thus, we need only compute −1 and −S1.

Let now Γ be a straight-line program of size L that computes P . We suppose that Γ
computes the sequence of polynomials G−n+1, . . . , GL in Q[X1, . . . , Xn], where for −n +
1 ≤ i ≤ 0, Gi = Xi+n. We define the polynomials Gi,α as the unique polynomials in
Q[S1, . . . , Sn] such that the equalities

Gi mod (T1, . . . , Tn) =
∑
α∈E

Gi,αXα1
1 · · ·Xαn

n

hold in Q[S1, . . . , Sn][X1, . . . , Xn], for −n + 1 ≤ i ≤ L. Using an induction on L, we
conclude by proving that all polynomials Gi,α, can be computed by a straight-line program
of size ∆(n)L + 2. This is enough to prove Proposition 1.

If L = 0, then the construction of the above paragraph concludes. Suppose now that
Γ has size L+1, and let Γ′ be the straight-line program made by keeping only the first L
operations of Γ. Then by the induction assumption, there exists a straight-line program
of size ∆(n)L + 2 that computes the coefficients Gi,α for −n + 1 ≤ i ≤ L. By definition,
the polynomial GL+1 takes one of the following forms:

1. GL+1 = λ, with λ ∈ Q;

2. GL+1 = λ + Gai
, GL+1 = λ − Gai

or GL+1 = λGai
, with −n + 1 ≤ aL+1 ≤ L and

λ ∈ Q;

3. GL+1 = GaL+1
+GbL+1

, GL+1 = GaL+1
−GbL+1

or GL+1 = GaL+1
GbL+1

, with −n+1 ≤
aL+1, bL+1 ≤ L.

The non-trivial case of the multiplication GL+1 = GaL+1
GbL+1

is handled by Lemma 2; all
others are immediate.

10

3.4 Proof of Theorem 2

To complete the proof of Theorem 2, we rely on Proposition 1 as an intermediate result;
then it suffices to estimate the overhead induced by the base changes.

Let b = (b1, . . . , bn) be Q-algebra generators of Q[X1, . . . , Xn]Sn , and let c = (cs)s∈Sn

be a basis of the free Q[X1, . . . , Xn]Sn-module Q[X1, . . . , Xn]. Then any polynomial P
can be written uniquely as

P =
∑
s∈Sn

Ps(b1, . . . , bn)cs; (2)

we now relate the complexity of evaluation of P to that of the polynomials Ps. To this
effect, we introduce two alternative representations of P , by means of some polynomials
Pα and P̃s:

P =
∑
α∈E

Pα(σ1, . . . , σn)Xα1
1 · · ·Xαn

n , P =
∑
s∈Sn

P̃s(σ1, . . . , σn)cs. (3)

Proposition 1 relates the complexity of evaluation of P to that of the polynomials Pα.
Using this result, we will first estimate the complexity of the polynomials P̃s, and then
deduce that of the polynomials Ps.

Change of Q[X1, . . . , Xn]Sn-module basis. Let M be the n! × n! matrix of change
of basis from the standard monomial basis into c; the coefficients of this matrix are
symmetric polynomials, which we choose to represent as polynomials in σ1, . . . , σn. Then
the polynomials P̃s are obtained from the polynomials Pα by matrix-vector multiplication
with the matrix M .

Let `(c) be the size of a straight-line program that evaluates all entries of M . Propo-
sition 1 states that if P can be computed in time L, then all polynomials Pα can be
computed in time ∆(n)L + 2. Thus, the polynomials P̃s can be computed in time
∆(n)L+2+`(c)+n!(2n!−1), where the last term is the cost for matrix-vector product in
size n!×n!. Thus, the quantity L(c) = `(c) + n!(2n!− 1) satisfies the claim of Theorem 2
relative to c.

Note that if M has entries in Q, only the term n!(2n!−1) remains; if c is the standard
monomial basis, then M is the identity matrix, and we can completely dispense with the
term n!(2n!− 1), so that L(c) can be taken 0 in this case.

As an example, we evaluate L(c) in the case of the Schubert basis, introduced in [14].
Schubert polynomials are naturally indexed by Sn. We first define the permutation
δ = [n, n − 1, . . . , 1], and the associated Schubert polynomial Xδ = Xn−1

1 Xn−2
2 · · ·Xn−1.

Next, to any elementary transposition τi = (i, i + 1) of Sn, we associate the divided
difference operator ∂i which maps f ∈ Q[X1, . . . , Xn] to (f − τif)/(xi − xi+1). Let now
s be any permutation, and consider a decomposition of s−1δ as a product ∂i1 · · · ∂ir of
elementary transpositions. The Schubert polynomial Xs is defined as ∂i1 · · · ∂ir(Xδ); it
happens to be independent of the choice of the factorization.

The Schubert polynomials form a basis of the Q[X1, . . . , Xn]Sn-module Q[X1, . . . , Xn];
their definition shows that the matrix that expresses the Schubert polynomials in terms of
the standard monomial basis has integer entries; it is triangular, with {0, 1} entries, and
its inverse matrix M also has integer entries. Thus, L((Xs)s∈Sn) is at most n!(2n! − 1).
However, M being a very sparse matrix, we expect that a much better bound could be
found.

11

Change of algebra generators. We now conclude the proof of Theorem 2. Since b

forms a basis of the algebra of symmetric polynomials, there exist unique polynomials
S1, . . . ,Sn in Q[B1, . . . , Bn] such that σi = Si(b1, . . . , bn) for i = 1, . . . , n. Then comparing

Equations (2) and (3), we deduce that Ps = P̃s(S1, . . . ,Sn) for all s.
Let then L(b) be the size of a straight-line program Γ that evaluates S1, . . . ,Sn. By

the previous paragraphs, we know that the polynomials P̃s can be computed in time
∆(n) + L(c) + 2. By composition with Γ, we deduce that the polynomials Ps can be
computed in time ∆(n) + L(c) + L(b) + 2. This concludes the proof of Theorem 2.

We illustrate this construction with two well-known examples, the complete symmetric
polynomials h = (h1, . . . , hn) and the symmetric power sums p = (p1, . . . , pn), which are
respectively defined by:

hi =
∑

α1+···+αn=i

Xα1
1 · · ·Xαn

n and pi =
n∑

j=1

X i
j;

note that hi and pi are actually defined for any i ≥ 0.
We now give bounds on L(h) and L(p). To this effect, one could use the Newton

relations; however, better can be done. We let M : N → N denote the complexity of
multiplying univariate polynomials (see Subsection 3.2).

Lemma 4. We have L(h) ∈ O(M(n)) and L(p) ∈ O(M(n)).

Proof. Recall that the symmetric polynomials σ, h, and p can be encoded via their
respective generating series in Q[X1, . . . , Xn][[z]] (where we write σ0 = 1):

S(z) =
n∑

i=0

σiz
i =

n∏
i=1

(1−Xiz).

H(z) =
∑
i≥0

hiz
i =

n∏
i=1

1

1−Xiz

P (z) =
∑
i≥1

pi

i
zi.

These generating series satisfy the relations:

S(z) =
1

C(z)
; S(z) = exp(−P (z)).

Hence, using Newton iteration for inverse and exponential of power series [2, 16, 18],
one can compute the first n + 1 coefficients of S(z) from those of H(z) or P (z) by a
straight-line program of size O(M(n)).

3.5 Reynolds operator

The Reynolds operator is a Q[X1, . . . , Xn]Sn-linear projection Q[X1, . . . , Xn] → Q[X1, . . . , Xn]Sn ,
and as such, is a quite important tool in the study of symmetric polynomials. For P in
Q[X1, . . . , Xn], R(P) is given by the formula

R(P) =
1

n!

∑
s∈Sn

s · P =
1

n!

∑
s∈Sn

P
(
Xs(1), . . . , Xs(n)

)
.

12

Since R(P) is symmetric, there exists a unique polynomial Q ∈ Q[S1, . . . , Sn] such that
R(P) = Q(σ1, . . . , σn): our goal is now to relate the complexity of evaluation of Q to
that of P .

A brute-force use of the definition would consist in applying Proposition 1 to all
conjugates of P ; this would induce a loss of a factor n! in complexity. Luckily enough,
one can essentially read off a straight-line program for Q from the straight-line program
giving the coefficients Pα of P on the standard monomial basis. Indeed, since R is a
Q[X1, . . . , Xn]Sn-module morphism, we have, writing for short Xα = Xα1

1 · · ·Xαn
n :

R(P) = R

(∑
α∈E

Pα(σ1, . . . , σn)Xα

)
=
∑
α∈E

Pα(σ1, . . . , σn)R(Xα).

Furthermore, R(Xα) does not depend on the order of the exponents in α = (α1, . . . , αn).
Let then F denote the set of all partitions in E, that is, those elements that form weakly
decreasing sequences. The previous sum can be rewritten as

R(P) =
∑
µ∈F

((∑
α∈E,α permutation of µ

Pα(σ1, . . . , σn)

)
R(Xµ)

)
.

Now, let us suppose that P can be computed in time L, so that all Pα can be computed in
time ∆(n)L+2 by Proposition 1. Let next D(n) be the size of a straight-line program that
computes the polynomials R(Xµ) in terms of σ1, . . . , σn. Still denoting Q the polynomial
such that R(P) = Q(σ1, . . . , σn), the above formula shows that, knowing all Pα and
R(Xµ), Q can be computed for n! additional operations, that is, in total time ∆(n)L +
n! + D(n) + 2. Thus, to conclude the proof of Theorem 3, it suffices to give an upper
bound on D(n). This is the object of the upcoming lemma.

Lemma 5. For n ≥ 1, the inequality D(n) ≤ 2(8n − 1) holds.

Proof. To a partition µ ∈ F , we associate the monomial symmetric function mµ; these
functions form a vector-space basis of Q[X1, . . . , Xn]Sn . Now, R(Xµ) coincides with mµ

up to a non-zero constant factor; we will start by considering the mµ functions. We
use induction, following the standard (SAGBI) rewriting process of monomial symmetric
functions in terms of elementary symmetric functions w.r.t. the degree lexicographic term
order.

Let µ = (µ1, . . . , µn−1) ∈ F be fixed, let k be the number of non-zero parts in it,
and ν the unique partition such that Xµ factors as XνX1 · · ·Xk. Consider the expansion
of the product mνσk in the monomial basis, where σk is the kth elementary symmetric
polynomial:

mνσk =
∑

η

cηmη,

for some cη in N. The leading term of this product is the product of the leading terms of
its operands, namely XνX1 · · ·Xk = Xµ. Let now η be a partition appearing in the right
hand side: it follows from the previous remark that η ≤deglex µ. Furthermore, ηi ≤ µi,
whenever µi > 0, and otherwise, ηi ∈ {0, 1}. It is then straightforward to check that:

(i) either η is right away in F ,

13

(ii) or mη is of the form mη = X1 · · ·Xnmη′ with η′ in F .

Define c′η = cη for all η in case (i), and c′η = 0 otherwise. Define also dη′ = cη, for all η, η′

as in case (ii), and dη′ = 0 otherwise. Then, finally, cµ = 1 and altogether, mµ can be
written as

mµ = mνσk −
∑

η∈F, η <deglex µ

c′ηmη − σn

∑
η′∈F, η′ <deglex µ

dη′mη′ ,

where the two sums
Furthermore, by considering the maximal possible number of monomials in σk, we see

that the total number Nµ of terms appearing with a non-zero coefficient in the two sums
can be bounded by 2n. We now switch to the R(Xµ) themselves, and re-introduce our
symmetric functions σk; this yields:

R(Xµ) = γνR(Xν)σk −
∑

η∈F,η <deglex µ

c′′ηR(Xη)− σn

∑
η′∈F η′<deglex µ

d′η′R(Xη′
),

for some constants γν , c′′η and d′η′ . Counting the operations appearing in the right-
hand side expression, we see that a straight-line program computing all polynomials
{R(Xη), η ∈ F, η <deglex µ} can be extended to further compute R(Xµ), for an additional
cost of 2Nµ+3 operations. So, there exists a straight line program of size

∑
µ∈F (2Nµ+3),

which computes R(Xµ) for all µ ∈ F .
Now, F is in bijection with the Dyck paths of length 2n, so that the cardinality of F

is given by the n-th Catalan number C(n) = 1
n+1

(
2n
n

)
. The estimate (2 · 2n + 3)C(n) ≤

2(8n − 1) proves the lemma.

References

[1] N. Bourbaki. Éléments de mathématique. Algèbre. Chapitres 1 à 3. Hermann, Paris,
1970.

[2] R. P. Brent. Multiple-precision zero-finding methods and the complexity of ele-
mentary function evaluation. In Analytic computational complexity (Proc. Sympos.,
Carnegie-Mellon Univ., Pittsburgh, Pa., 1975), pages 151–176. Academic Press, New
York, 1976.

[3] P. Bürgisser, M. Clausen, and A. M. Shokrollahi. Algebraic complexity theory, volume
315 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 1997.

[4] A. Colin. Solving a system of algebraic equations with symmetries. Journal of Pure
and Applied Algebra, 117/118:195–215, 1997.

[5] D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. Undergraduate
Texts in Mathematics. Springer-Verlag, 1997.

[6] L. Ducos and C. Quitté. Algèbre de décomposition universelle. Technical report,
Université de Poitiers, 1996.

[7] W. Feit. A method for computing symmetric and related polynomials. Journal of
Algebra, 234:540–544, 2000.

14

[8] P. Gaudry and É. Schost. Construction of secure random curves of genus 2 over
prime fields. In EUROCRYPT, volume 3027 of Lecture Notes in Computer Science,
pages 239–256. Springer, 2004.

[9] M. Giusti, K. Hägele, J. Heintz, J.-E. Morais, J.-L. Montaña, and L.-M. Pardo.
Lower bounds for Diophantine approximation. Journal of Pure and Applied Algebra,
117/118:277–317, 1997.

[10] M. Giusti, J. Heintz, J.-E. Morais, J. Morgenstern, and L.-M. Pardo. Straight-line
programs in geometric elimination theory. Journal of Pure and Applied Algebra,
124:101–146, 1998.

[11] M. Giusti, J. Heintz, J.-E. Morais, and L.-M. Pardo. When polynomial equation
systems can be solved fast? In Proceedings of AAECC 11, volume 948 of Lecture
Notes in Computer Science, pages 205–231. Springer-Verlag, 1995.

[12] A. Lascoux. Symmetric functions and combinatorial operators on polynomials, vol-
ume 99 of CBMS Regional Conference Series in Mathematics. Published for the
Conference Board of the Mathematical Sciences, Washington, DC, 2003.

[13] A. Lascoux and P. Pragacz. S-function series. Journal of Physics. A. Mathematical
and General, 21(22):4105–4114, 1988.

[14] A. Lascoux and M.-P. Schützenberger. Polynômes de Schubert. Comptes Rendus des
Séances de l’Académie des Sciences. Série I. Mathématique, 294(13):447–450, 1982.

[15] N. Rennert and A. Valibouze. Calcul de résolvantes avec les modules de Cauchy.
Experimental Mathematics, 8(4):351–366, 1999.

[16] A. Schönhage. The fundamental theorem of algebra in terms of computational com-
plexity. Technical report, University of Tübingen, 1982.

[17] B. Sturmfels. Algorithms in invariant theory. Texts and Monographs in Symbolic
Computation. Springer-Verlag, 1993.

[18] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, 1999.

[19] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polyno-
mials. Computational Complexity, 2(3):187–224, 1992.

15

