
Drinfeld Modules with Complex Multiplication, Hasse Invariants

and Factoring Polynomials over Finite Fields

Javad Doliskani∗ Anand Kumar Narayanan† Éric Schost‡

August 26, 2018

Abstract

We present a novel randomized algorithm to factor polynomials over a finite field Fq of odd
characteristic using rank 2 Drinfeld modules with complex multiplication. The main idea is to
compute a lift of the Hasse invariant (modulo the polynomial f ∈ Fq[x] to be factored) with
respect to a random Drinfeld module φ with complex multiplication. Factors of f supported
on prime ideals with supersingular reduction at φ have vanishing Hasse invariant and can be
separated from the rest. Incorporating a Drinfeld module analogue of Deligne’s congruence,
we devise an algorithm to compute the Hasse invariant lift, which turns out to be the crux
of our algorithm. The resulting expected runtime of n3/2+ε(log q)1+o(1) + n1+ε(log q)2+o(1) to
factor polynomials of degree n over Fq matches the fastest previously known algorithm, the
Kedlaya-Umans implementation of the Kaltofen-Shoup algorithm.

Keywords Elliptic modules, Drinfeld modules, Polynomial factorization, Hasse invariant, Com-
plex multiplication

1 Introduction

Drinfeld modules of rank two are often presented as an analogue over function fields such as Fq(x)
(for a prime power q) of elliptic curves over Q; following Drinfeld’s original terminology, we will
often call them elliptic modules in this paper. In very concrete terms, a Drinfeld module over Fq(x)
is simply a ring homomorphism φ (together with some mild assumptions) from Fq[x] to the ring
of skew polynomials Fq(x){τ}, where τ satisfies the commutation relation τu = uqτ for u in Fq(x).
The rank of a Drinfeld module is the degree of φx, where as customary, we write φa := φ(a) for a
in Fq[x].

In this definition, one may replace Fq(x) by any other other field L equipped with a homo-
morphism Fq[x] → L, and in particular by a finite field of the form L = Fq[x]/f ; one may then
define the reduction of a Drinfeld module over Fq(x) modulo an irreducible f ∈ Fq[x]. Then, there
exist striking similarities between the theory of elliptic curves over Q and their reductions modulo
primes, and that of elliptic modules over Fq(x) and their reduction modulo irreducible polynomials
f . For instance, such notions as endomorphism ring, complex multiplication, Hasse invariants,
supersingularity, or the characteristic polynomial of the Frobenius, . . . can be defined in both con-
texts, and share many properties. On the other hand, while the literature on algorithmic aspects

∗Institute for Quantum Computing, University of Waterloo (javad.doliskani@uwaterloo.ca).
†Laboratoire d’Informatique de Paris 6, Pierre et Marie Curie University (Anand.Narayanan@lip6.fr)
‡Cheriton School of Computer Science, University of Waterloo (eschost@uwaterloo.ca)

1



of elliptic curves is extremely rich, this is not the case for Drinfeld modules; only recently have
they been considered under the algorithmic viewpoint (for instance, it is known that they are not
suitable for usual forms of public key cryptography [31]).

In this article, we give an algorithm for the computation of the Hasse invariant of elliptic
modules over finite fields, and show how efficient algorithms for this particular problem (and a
natural generalization thereof) can be used to factor polynomials over finite fields.

To wit, recall that the Hasse invariant hE of an elliptic curve E : y2 = x3 + Ax + B over a
finite field Fp, p > 2, can be defined as the coefficient of degree p− 1 in (x3 +Ax+B)(p−1)/2 (other
definitions set it to be 1 if this coefficient is nonzero, 0 otherwise). The definition of hE makes
it possible to compute it using a number of operations softly linear in p, but one can do better:
it is possible to compute hE without computing all previous coefficients, using the fact that the
coefficients of (x3 + Ax + B)(p−1)/2 satisfy a linear recurrence with polynomial coefficients, and
applying techniques for such recurrences due to Strassen [35] and Chudnovsky and Chudnovsky [8]
(see also [3]).

In the case of elliptic modules, we will consider φ : Fq[x] → Fq(x){τ}, such that φ(x) =
x + gφτ + ∆φτ

2, with gφ and ∆φ in Fq[x]. If f is irreducible of degree k and does not divide ∆φ,
we say that φ has good reduction at f . Then, the Hasse invariant hφ,f is defined as the coefficient

of τk in φf mod f =
∑2k

i=0 hiτ
i, with hi in Fq[x]/f for all i (all coefficients of index less than k

vanish modulo f). For an arbitrary squarefree f , using a recurrence due to Gekeler [18] (which
is somewhat similar to the one used for elliptic curves), it is possible to define a related quantity
which we will write h̄φ,f , in a way that ensures arithmetic properties needed for the factorization
algorithm below (see Eq. (4) for the definition).

As in the case of elliptic curves, one can deduce a straightforward algorithm from the definition
of h̄φ,f ; our first contribution is to show that a better algorithm exist. We will consider two
different complexity models in our runtime analysis: an algebraic model and a boolean model. In
the former we count the number of operations +,×,÷ in the field Fq, while in the latter we count
the number of bit operations, over a standard RAM (the main reason behind this dichotomy is
that some operation at the core of our algorithms, namely modular composition, admits faster
algorithms in the boolean model; we discuss this further in the next section). We denote by M
a function such that polynomials of degree n over any ring can be multiplied in M(n) base ring
operations, and such that the superlinearity conditions of [15, Chapter 8] are satisfied; we can take
M(n) ∈ O(n log n log log n) [6]. We let ω be a feasible exponent for square matrix multiplication;
we can always take ω ≤ 2.38 [10, 26]. Then, our first main result is the following theorem.

Theorem 1.1. Let φ : Fq[x]→ Fq(x){τ} be an elliptic module, such that φ(x) = x+ gφτ + ∆φτ
2,

with gφ and ∆φ in Fq[x]. Given a squarefree polynomial f of degree n, as well as gφ mod f and
∆φ mod f , one can compute h̄φ,f using

O(n(1−β)(ω−1)/2+(ω+1)/2 + M(n1+β) log qn)

operations in Fq, for any β ∈ (0, 1), or using

O(n3/2+ε(log q)1+o(1) + n1+ε(log q)2+o(1))

bit operations, for any ε > 0.

The algorithm is inspired by the baby steps / giant steps algorithms for recurrences with
polynomial coefficients of [35, 8, 3], and also borrows heavily from Kaltofen and Shoup’s baby steps
/ giant steps distinct degree factorization algorithm [23]; indeed, the structures of the algorithms

2



are similar, and the runtime reported here is the same as that in that reference. As in [23], for our
first claim, taking ω ≈ 2.375 and β ≈ 0.815, the complexity is O(n1.815 log q) operations in Fq.

We use these results to design a polynomial factorization algorithm. The resulting runtime is not
better than that in [23] (in the algebraic model) or [24] (in the boolean model); however, we believe
it is worth stating such results, since they bring a new perspective to polynomial factorization
questions.

The use of Drinfeld modules for polynomial factorization actually goes back to work of Pan-
chishkin and Potemine [29], whose algorithm was rediscovered by van der Heiden [36]. These
algorithms, along with the second author’s Drinfeld module black box Berlekamp algorithm [28]
are in spirit Drinfeld module analogues of Lenstra’s elliptic curve method to factor integers [27].
The Drinfeld module degree estimation algorithm of [28] uses Euler-Poincaré characteristics of
Drinfeld modules to estimate the factor degrees in distinct degree factorization. A feature common
to the aforementioned algorithms is their use of random Drinfeld modules, which typically don’t
have complex multiplication.

We take a different approach. To factor a squarefree polynomial f , we construct a random
elliptic module φ with complex multiplication by an imaginary quadratic extension of the rational
function field Fq(x) with class number 1. At roughly half of the prime ideals 〈g〉 in Fq[x], φ has
so-called supersingular reduction. Concretely, the properties of the quantity h̄φ,f computed modulo
f imply that for any prime factor g of f , g is a prime with supersingular reduction for φ if and only
if h̄φ,f = 0 mod g. The construction of φ ensures that this happens with non-vanishing probability.
Altogether, we obtain the following result.

Theorem 1.2. Suppose that given any squarefree polynomial f of degree n over Fq, and any
Drinfeld module φ as in Theorem 1.1, one can compute h̄φ,f in H(n, q) operations in Fq, resp.
H∗(n, q) bit operations. Suppose also that H(n1, q) + H(n2, q) ≤ H(n1 + n2, q), resp. H∗(n1, q) +
H∗(n2, q) ≤ H∗(n1 +n2, q), holds for all n1, n2 ≥ 0. Then there is a randomized algorithm that can
factor degree n polynomials over Fq in an expected

• O (̃H(n, q) + n(ω+1)/2 + M(n) log q) operations in Fq, or

• O (̃H∗(n, q)) + n1+ε(log q)2+o(1) bit operations.

The runtime reported in the first item in Theorem 1.1 imply that we can take H(n, q) =
κn1.815 log q, for a suitable constant κ. Since such a function satisfies the superlinearity assumption
of Theorem 1.2, the resulting runtime for the factoring algorithm is is O(n1.815 log q) operations
in Fq. In a boolean model, the second item in Theorem 1.1 shows that for any ε > 0, we can
take H∗(n, q) = κ∗ε(n

3/2+ε(log q)1+o(1) + n1+ε(log q)2+o(1)) bit operations, for some constant κ∗ε;
superlinearity still holds, which then implies a similar runtime for factorization.

As mentioned above, these results do not improve on the state-of-the-art for polynomial fac-
torization. Since Berlekamp’s randomized polynomial time algorithm [1], polynomial factorization
over finite fields has been the subject of a vast body of work. Among important milestones, we
mention [5, 16]; the first subquadratic algorithms are due to Kaltofen and Shoup [23], with run-
times O(n1.815 log q) operations in Fq (two algorithms are in that reference: a fast distinct degree
factorization algorithm, and an algorithm derived from the Berlekamp algorithm).

Kaltofen and Shoup already pointed out that a quasi-linear time algorithm for modular composi-
tion would yield an exponent 3/2 for polynomial factorization; Kedlaya and Umans [24] showed that
modular composition can be done in time n1+ε(log q)1+o(1) in a boolean model, and exhibited the
resulting algorithm for factoring polynomials, with runtime n3/2+ε(log q)1+o(1) + n1+ε(log q)2+o(1)

bit operations.

3



We remark that our algorithm has the property of not requiring separate distinct degree
and equal degree factorization phases. In the algebraic model, Kaltofen and Shoup’s black box
Berlekamp algorithm has a similar runtime and also bypasses the distinct degree / equal degree
factorization stages; however, we are not aware of a version of that algorithm that would feature a
runtime of n3/2+ε(log q)1+o(1) + n1+ε(log q)2+o(1) in the boolean model. As to if the exponent 3/2
in n can be lowered, this remains an outstanding open question.

The paper is organized as follows. In §2, elliptic modules are introduced; we define Hasse
invariants and give our algorithm for their computation, proving Theorem 1.1. In §3, we describe
our factoring algorithm and prove Theorem 1.2, using a few notions from function field arithmetic.

2 Computing Hasse invariant lifts of elliptic modules

2.1 Basic definitions

Let Fq[x] denote the polynomial ring in the indeterminate x, for some odd prime power q, and let L
be a field equipped with a homomorphism γ : Fq[x]→ L; typical examples for us will be L = Fq(x)
and L = Fq[x]/f , for some irreducible polynomial f in Fq[x]. Let us further consider the skew
polynomial ring L{τ}, where τ satisfies the commutation rule ∀u ∈ L, τu = uqτ . Given an integer
r > 0, a Drinfeld module of rank r over L is a ring morphism

φ : Fq[x] −→ L{τ}
x 7−→ a0 + a1τ + · · ·+ arτ

r (1)

with a0 = γ(x) and ar 6= 0.
An elliptic module is a rank-2 Drinfeld module, obtained by setting r = 2 in (1). Consider such

an elliptic module over L = Fq(x), and let γ be the inclusion Fq[x]→ Fq(x). In such a case, φ will
be written as

φ : Fq[x] −→ Fq(x){τ}
x 7−→ x+ gφτ + ∆φτ

2

for some gφ ∈ Fq[x] and nonzero ∆φ ∈ Fq[x]. For an irreducible polynomial f ∈ Fq[x], if ∆φ is
nonzero modulo f , then the reduction φ/f of φ at f is defined as the elliptic module

φ/f : Fq[x] −→ (Fq[x]/f){τ}
x 7−→ x+ (gφ mod f)τ + (∆φ mod f)τ2;

we say that φ has good reduction at f in this case. Then, the image of a ∈ Fq[x] under φ/f is
denoted by (φ/f)a. Even if ∆φ is zero modulo f , one could still obtain the reduction (φ/f) of φ at
f through minimal models of φ [17]; we refrain from addressing this case since our algorithms do
not require it.

Let φ be as above and let f ∈ Fq[x] be an irreducible polynomial not dividing ∆φ. The Hasse
invariant hφ,f ∈ Fq[x]/f of φ at f is the coefficient of τdeg(f) in the expansion

(φ/f)f =

2 deg(f)∑
i=0

hiτ
i ∈ (Fq[x]/f){τ}.

The elliptic module φ has supersingular reduction at f if hφ,f vanishes [19]; otherwise, we say that it
has ordinary reduction. If the choice of φ is clear from context, we will simply call f supersingular.

Recursively define a sequence (rφ,k)k∈N in Fq[x]N as rφ,0 := 1, rφ,1 := gφ and for k > 1,

rφ,k := gq
k−1

φ rφ,k−1 − (xq
k−1 − x)∆qk−2

φ rφ,k−2 ∈ Fq[x]. (2)

4



Gekeler [18, Eq 3.6, Prop 3.7] showed that rφ,k is the value of the normalized Eisenstein series of
weight qk − 1 on φ and established Deligne’s congruence for Drinfeld modules, which ascertains
that for any irreducible f of degree k ≥ 1 with ∆φ 6= 0 mod f , we have

hφ,f = rφ,k mod f. (3)

Hence rφ,k is in a sense a lift to Fq[x] of all the Hasse invariants of φ at primes of degree k. Using
the sequence rφ,k allows us to define a polynomial h̄φ,f for arbitrary non-irreducible polynomials f ,
by setting

h̄φ,f := gcd
(
rφ,deg(f) mod f, rφ,deg(f)+1 mod f

)
. (4)

Our definition will be justified in light of Lemma 3.1; note that unlike in the irreducible case, we
define h̄φ,f only up to a non zero Fq multiple, which will suffice for our purpose. The following
subsections give our algorithm to compute h̄φ,f for an arbitrary squarefree f , thereby proving
Theorem 1.1.

2.2 Some key subroutines

We summarize here the main results we will need; most of them are well-known, and originate from
work of von zur Gathen-Shoup [16] or Kaltofen-Shoup [23]. A key ingredient is the use of modular
composition, that is, the operation (f, g, h) 7→ f(g) mod h, since several operations related to the
Frobenius map can be computed efficiently using this as a subroutine.

For f, g, h of degree n, the best known algorithm for modular composition was for long Brent
and Kung’s result [4], with a cost of O(n(ω+1)/2) base field operations; improvements using fast
rectangular matrix multiplication followed in the work of Huang and Pan [22]. More recently,
Kedlaya and Umans showed that in a boolean model, there exist algorithms of cost close to linear:
for any ε > 0, there is an algorithm for modular composition of degree n polynomials over Fq that
takes n1+ε(log q)1+o(1) bit operations.

As of now, algorithms based on Brent and Kung’s result have been implemented on a variety
of platforms [33, 2, 20], and still outperform implementations of the Kedlaya-Umans algorithm.
As a result, we decided to give two variants of our main algorithm, using these two possible key
subroutines.

For the rest of this section, consider a squarefree polynomial f in Fq[x], define K = Fq[x]/f and
let ξ be the image of x in K. Let τ : K → K be the Fq-linear qth-power Frobenius map a 7→ aq;
since f is squarefree, τ is invertible. It will then be convenient to define ξi := τ i(ξ), for i in Z; then,
for any a in K and i in Z, a(ξi) is well-defined (as A(ξi) ∈ K, for an arbitrary lift A of a to Fq[x])
and satisfies a(ξi) = τ i(a). In particular, for any i, j in Z, the relation ξi(ξj) = ξi+j holds.

The following items describe subroutines needed in our main algorithm. With the partial
exception of the last one (see the remark below), all of them are known results.

1. Computing ξ1 = ξq is done by repeated squaring, using O(M(n) log q) operations in Fq.

2. Once ξ1 = ξq is known, any ξr, r ≥ 0, can be computed at the cost of O(log r) modular
compositions, using the relation ξi(ξj) = ξi+j stated above.

3. Given ξi (i ≥ 0), we can compute ξ−i by solving the linear equation ξ−i(ξi) = ξ. This can be
done using transposed modular composition, with a cost identical (up to a constant factor)
to that of modular composition itself [34, 12].

4. Given (a0, . . . , ak−1) in K and ξi, for some i ∈ Z, consider the question of comput-
ing (τ i(a0), . . . , τ

i(ak−1)) = (a0(ξi), . . . , ak−1(ξi)). In the boolean model, the cost is

5



kn1+ε(log q)1+o(1) bit operations, which is essentially optimal. In the algebraic model, for
k = O(n), Lemma 3 in [23] shows how to do this in O(k(ω−1)/2n(ω+1)/2) operations in Fq
instead of O(kn(ω+1)/2), by exploiting the fact that the second argument is the same for all
instances.

5. Given integers u, `,m ∈ O(n), and ξ1, one can compute (ξ−u, ξ−(u+`), . . . , ξ−(u+(m−1)`)) using

O((m(ω−1)/2 + log n)n(ω+1)/2) operations in Fq, resp. mn1+ε(log q)1+o(1) bit operations. The
latter estimate is straightforward; for the former, we follow [23, Lemma 4], which shows (in
our notation) how to compute ξ`, ξ2`, . . . , ξ(m−1)`. We work here with negative indices, but
this hardly changes the procedure.

We first compute ξ−`, at the cost of O(log `) modular compositions. Then, for k ≥ 1, assum-
ing that we know ξ−`, ξ−2`, . . . , ξ−k`, we deduce ξ−(k+1)`, ξ−(k+2)`, . . . , ξ−2k` from the relation
ξ−(k+j)` = ξ−j`(ξ−k`), by means of item 4. We repeat this process for k = 1, 2, 4, . . . , stopping
at the first power of two greater than or equal to m. At this stage, we know ξ−`, . . . , ξ−(m−1)`.
To conclude, we compute ξ−u at the cost of O(log u) modular compositions, and finally
ξ−`(ξ−u), . . . , ξ−(m−1)`(ξ−u). The total cost is O(m(ω−1)/2n(ω+1)/2) operations in Fq.

6. For u, `,m as above, given (a0, . . . , am−1) and ξ1, we finally show how to compute the product
τu+(m−1)`(am−1) · · · τu(a0). Here, we actually take all ai as 2× 2 matrices over K, since this
is what we will need below (this has no impact on the algorithm description, except that we
must account for the non-commutativity of the product). As above, in the boolean model,
the cost is easily seen to be mn1+ε(log q)1+o(1) bit operations.

To discuss the algorithm in the algebraic model, without loss of generality, we assume that
m is a power of 2, say m = 2t. First, we replace our input by (a0(ξu), . . . , am−1(ξu)). Let us
then set µ = m and ζ = ξ`. For k = 0, . . . , t− 1, we do the following: for i = 0, . . . , µ/2− 1,
replace ai by a2i+1(ζ)a2i; then let ζ = ζ(ζ) and µ = µ/2. At the end of the loop, the first
entry in the sequence is the requested output.

Computing ξ` and ξu takes O(log n) modular compositions. The initial composition by ξu
takes time O(m(ω−1)/2n(ω+1)/2), by item 4; for an index k in the main loop, the cost is
similarly O((m/2k)(ω−1)/2n(ω+1)/2); The overall runtime is thus O((m(ω−1)/2+log n)n(ω+1)/2)
operations in Fq.

Remark. The description we give for item 6 answers a question in [23, Section 3.2]: the authors
proved the existence of an algorithm to compute (in our notation) an expression of the form
a0 + τ `(a1) + · · ·+ τ (m−1)`(am−1) in O(m(ω−1)/2n(ω+1)/2) base field operations, but left the actual
description of such an algorithm as an open question (in that context, log n is negligible in front
of m(ω−1)/2, and the ai’s are actually in K). The procedure we gave above can be adapted to the
computation of such a sum, simply by replacing all products by additions in the main loop.

2.3 Efficient computation of h̄φ,f

Given a squarefree f in Fq[x] as above, with deg(f) = n, and an elliptic module φ over Fq(x),
we present an efficient algorithm to compute rφ,n mod f and rφ,n+1 mod f , thereby yielding
h̄φ,f = gcd(rφ,n mod f, rφ,n+1 mod f). The latter gcd can be computed in quasi-linear time, namely
O(M(n) log(n)) operations in Fq, so we will not discuss it further.

Our strategy to compute rφ,n mod f and rφ,n+1 mod f is to first phrase the recurrence in matrix
form with entries being polynomials modulo f . We then observe that solving the recurrence amounts
to computing the product of a carefully constructed sequence of matrices twisted by the Frobenius

6



action. The final step is to construct a polynomial with matrix coefficients, whose evaluations allow
us to rapidly compute the aforementioned product; the evaluations are then computed using a fast
multipoint evaluation algorithm.

The overall structure of the algorithm is similar to the distinct degree factorization algorithm
of [23], with the polynomial matrix described above being akin to the “interval polynomial” used
in that algorithm. Another inspiration for our algorithm is computation with simpler recurrences,
that go back to Strassen’s deterministic integer factorization algorithm [35] and Chudnovsky and
Chudnovsky’s algorithm for linear recurrences with polynomial coefficients [8]. These baby-steps
/ giant steps techniques allow one to compute the nth term in a sequence defined by such a
recurrence, for instance u0 = 1, un+1 = (n + 1)un, in O (̃

√
n) base field operations. These ideas

were subsequently refined and applied to the computation of the Hasse-Witt matrix of hyperelliptic
curves in [3].

With K = Fq[x]/f and ξ as before, we have to compute ρn := rφ,n(ξ) and ρn+1 := rφ,n+1(ξ),
where the sequence rφ,k is from (2); equivalently,

ρ0 = 1, ρ1 = γ, ρk = γq
k−1

ρk−1 − (ξq
k−1 − ξ)δqk−2

ρk−2, (5)

with γ = gφ(ξ) ∈ K and δ = ∆φ(ξ) ∈ K. Computing all terms ρ0, ρ1, . . . , ρn+1 takes Ω(n2)
operations in Fq, since merely writing down each ρi involves Θ(n) operations. The algorithm in
this section takes subquadratic time.

In the case of elliptic curves, the Hasse invariant is obtained as the element of index (p−1)/2 in
an order-2 recurrence with polynomial coefficients. Seeing the similarity with Eq. (5), it is natural
to adapt these ideas to our context. This is however not entirely straightforward. Indeed, given
ρk−1 and ρk−2, computing ρk now boils down to applying powers of the Frobenius endomorphism,
together with a few polynomial multiplications / additions.

The recurrence (5) can be written as[
ρk−1
ρk

]
=

[
0 1

(ξ − ξqk−1
)δq

k−2
γq

k−1

] [
ρk−2
ρk−1

]
.

Let as before τ : K → K be the Fq-linear qth-power Frobenius map, and define the following
sequence of matrices in M2(K):

Ak :=

[
0 1

(ξ − ξqk+1
)δq

k
γq

k+1

]
=

[
0 1

(ξ − τk+1(ξ))τk(δ) τk+1(γ)

]
;

then, we have [
ρk−1
ρk

]
= Ak−2Ak−3 · · ·A0

[
1
γ

]
.

Given integers m ≤ m′, we show how to compute the product

Bm,m′ := Am′−1 · · ·Am ∈ M2(K),

for then we can read off ρn and ρn+1 from B0,n

[
1
γ

]
. We need the extra flexibility of starting the

product at index m in the algorithm; concretely, we will rely on the relation Bm′,m′′Bm,m′ = Bm,m′′ ,
for any integers m ≤ m′ ≤ m′′.

Extend the mapping τ to the (non-commutative) polynomial ring M2(K)[Y ] by leaving Y fixed
and acting on the coefficient matrices entry-wise. Let further

A :=

[
0 1

−τ(ξ)δ τ(γ)

]
+

[
0 0
δ 0

]
Y ∈ M2(K)[Y ],

7



and for M∈M2(K)[Y ] and ζ ∈ K, let M(ζ) denote the image of M under the substitution

Y 7−→ Dζ =

[
ζ 0
0 ζ

]
;

in particular, M 7→M(ζ) is a ring homomorphism, since Dζ is in the center of M2(K). Then, for
any k ≥ 0, we have

Ak = τk(A)(ξ).

Choose an integer ` ≤ n+ 1 and define

B := τ `−1(A) · · · τ(A)A ∈ M2(K)[Y ],

so that in particular B(ξ) = A`−1 · · ·A1A0. More generally, we use the fact that for all integers i, j,
we have

Ai+j = τ i+j(A)(ξ) = τ i
(
τ j(A)(ξ−i)

)
to deduce that for all i ≥ 1,

τ i(B(ξ−i)) = Ai+`−1 · · ·Ai+1Ai = Bi,i+`.

In particular, for any integer m, B0,m` can be computed as the product of the matrices

τ (m−1)`
(
B(ξ−(m−1)`)

)
, . . . , τ `

(
B(ξ−`)

)
,B
(
ξ
)
;

more generally, for any integers m,u, we have

Bu,u+m` = τu+(m−1)`(B(ξ−(u+(m−1)`))
)
· · · τu+`

(
B(ξ−(u+`))

)
τu
(
B(ξ−u)

)
.

Suppose that we know B0,u, for some u < n. As in [23], let β be an arbitrary constant in (0, 1),
and define ` = d(n−u)βe, m = b(n−u)/`c. Then, v = u+m` satisfies v ≤ n and n− v ≤ (n−u)β.
The discussion above suggests Algorithm 1 for computing Bu,v, from which we can deduce B0,v =
Bu,vB0,u.

Algorithm 1 Main subroutine for the Hasse invariant

Input: f squarefree in Fq[x], δ, γ ∈ K = Fq[x]/f , integers u, n, with u < n
Output: Bu,v as defined above
1. Let ` := d(n− u)βe and m := b(n− u)/`c
2. Compute B = τ `−1(A) · · · τ(A)A
3. Compute ξ−(u+i`) = τ−(u+i`)(ξ) for 0 ≤ i < m
4. Compute βi = B(ξ−(u+i`)) for 0 ≤ i < m

5. return the product τu+(m−1)`(βm−1) · · · τu(β0)

Correctness of the algorithm follows from the preceding remarks. We will give two different
runtime analyses, in respectively the algebraic and boolean model, where the main difference lies
in the cost of modular composition.

• In the whole algorithm, we compute once ξ1 = τ(ξ); the cost is O(M(n) log(q)) operations in
Fq.

8



• A first solution for Step 2 is to compute τ(A), . . . , τ `−1(A) (using `−1 successive applications
of the Frobenius) and multiply the results. The successive applications of τ are done using
repeated squaring, and the subsequent multiplications using a 2 × 2 matrix version of the
subproduct tree [15, Chapter 10]. Multiplication of 2 × 2 polynomial matrices in degree
k over K takes O(M(kn)) operations in K (using Kronecker substitution), so the cost is
O(`M(n) log q + M(`n) log `) operations in Fq.
An alternative is to perform Step 2 recursively: given τ i−1(A) · · · A, it takes one application
of τ i (resp. of τ) and one matrix multiplication in M2(K)[Y ] to compute τ2i−1(A) · · · A, resp.
τ i(A) · · · A. The power-of-τ map is computed using the iterated Frobenius algorithm of von
zur Gathen and Shoup [16]. In the algebraic model, the cost of modular composition makes
this solution inferior to the one in the previous paragraph. In the boolean model, since ξq is
known, the cost becomes `n1+ε(log q)1+o(1) bit operations.

• Items 5 and 6 in the previous subsection show that Step 3 and 5 can be done using
O(m(ω−1)/2n(ω+1)/2) operations in Fq, resp. mn1+ε(log q)1+o(1) bit operations.

• Step 4 can be done using multipoint evaluation [15]. We are evaluating a 2 × 2 polynomial
matrix of degree at most ` at m points. We first build the subproduct tree at the given points,
then reduce each entry of the matrix modulo the root polynomial of the tree, and apply the
“going down the tree” procedure of [15, Chapter 10]. Altogether, this takes O(M(mn) logm+
M(`n)) operations in Fq.

Altogether, in the algebraic model, we obtain the following result.

Proposition 2.1. Algorithm 1 can be implemented so as to run in

O((n− u)(1−β)(ω−1)/2n(ω+1)/2 + M((n− u)βn) log qn)

operations in Fq, where ω is the matrix multiplication exponent.

In the boolean model, we set β = 1/2. Then, each of the steps 2, 3, 4 and 5 can each be performed
in n3/2+ε(log q)1+o(1) bit operations, whereas the initial computation of ξq takes n1+ε(log q)2+o(1)

bit operations. To summarize, we have the following result.

Proposition 2.2. Algorithm 1 can be implemented so as to run in

O((n− u)1/2n1+ε(log q)1+o(1) + n1+ε(log q)2+o(1))

bit operations.

To conclude the proof of Theorem 1.1, we apply the previous results with input u = 0 and
n, and obtain B0,v, for v as defined previously. If v = n, we are done, otherwise we re-enter the
algorithm with input v and n (so that n − v ≤ nβ), and so on. Starting from Proposition 2.1, we
see that the cost of the first call dominates the overall runtime, so the first item in Theorem 1.1 is
proved. Using Proposition 2.2, the situation is similar, up to the total contribution of the second
term in the sum, since a factor log log n appears; however, we can absorb it in the 1 + ε exponent
and the second claim in Theorem 1.1 follows.

9



3 A polynomial factoring algorithm

We can now give our elliptic module algorithm for polynomial factorization. As input, we are given
f ∈ Fq[x] of degree n; without loss of generality, we may assume that f is squarefree [25, 37], that
is, does not contain a square of an irreducible polynomial as a factor.

Let φ : Fq[x] → Fq(x){τ} be an elliptic module over Fq(x) and suppose that gcd(f,∆φ) = 1.
The following lemma is the key of our algorithm.

Lemma 3.1. Let g be an irreducible factor of f . Then φ has supersingular reduction at g if and
only if h̄φ,f mod g = 0.

Proof. First, note that by assumption, φ has good reduction at g. Let k := deg(g) and n := deg(f)
and for j ≥ 0 let rφ,j ∈ Fq[x] be the sequence as in recurrence (2), defined with respect to φ.

Assume φ has supersingular reduction at g, that is, hφ,g = 0 (recall that this is a polynomial

defined modulo g). By Deligne’s congruence, rφ,k mod g = 0. Since g divides xq
k−x, the recurrence

relation (2) implies rφ,k+1 mod g = 0. Since this recurrence has order 2, this further yields

rφ,j mod g = 0, j ≥ k. (6)

In particular, rφ,n mod g = 0 and rφ,n+1 mod g = 0; this implies h̄φ,f mod g = 0, since g divides f .
Conversely, assume h̄φ,f mod g = 0. To prove that φ has supersingular reduction at g, using

Deligne’s congruence, it suffices to show rφ,k mod g = 0. Since h̄φ,f mod g = 0 and g divides f , we
have rφ,n mod g = rφ,n+1 mod g = 0. In particular, if g = f , we are done, since then k = n.

Else, let m be the smallest positive integer greater than k such that rφ,m mod g = 0 and
rφ,m+1 mod g = 0; such an m exists, since then k < n. From the recurrence (2),

rφ,m+1 mod g = gq
m

φ rφ,m −
(
xq

m − x
)

∆qm−1

φ rφ,m−1 mod g;

hence, (
xq

m − x
)

∆qm−1

φ rφ,m−1 mod g = 0.

Since φ has good reduction at φ, we may conclude that either rφ,m−1 mod g = 0 or k divides
m. If rφ,m−1 = 0 mod g, then by the minimality of m, we may conclude m − 1 = k, that is, rφ,k
mod g = 0, proving our claim. If k divides m, then m− k ≥ k (since m > k). By [11, Lemma 2.3],

rφ,m mod g = rφ,kr
qk

φ,m−k mod g, rφ,m+1 mod g = rφ,kr
qk

φ,m+1−k mod g,

implying either rφ,k mod g = 0 (proving our claim) or rφ,m+1−k mod g = rφ,m−k mod g = 0.
Since m − k ≥ k, for the latter case to not contradict the minimality of m, m − k has to equal k,
implying rφ,k mod g = 0, thereby proving our claim.

This suggests that we could use an elliptic module φ in a polynomial factorization algorithm
to separate supersingular primes from those that are not. For most elliptic modules, the density
of supersingular primes is too small for this to work. However, for a special class, elliptic modules
with complex multiplication, the density of supersingular primes is 1/2.

Let L = Fq(x)(
√
d) be a quadratic extension of Fq(x), for some polynomial d in Fq[x]. We

say that L is imaginary if the prime (1/x) ∈ Fq(x) at infinity does not split in L; this is in
particular the case if d is squarefree of odd degree (in which case the prime at infinity ramifies [30,
Proposition 14.6]).

An elliptic module φ over Fq(x) is said to have complex multiplication by an imaginary quadratic
extension L/Fq(x) if EndFq(x)(φ) ⊗Fq [x] Fq(x) is isomorphic to L, where EndFq(x)(φ) is the ring of

10



endomorphisms of φ, that is, the ring of all elements of Fq(x){τ} that commute with φx. For φ
with complex multiplication by L/Fq(x) and an irreducible polynomial f ∈ Fq[x] such that 〈f〉 is
unramified in L/Fq(x), f is supersingular if and only if it 〈f〉 is inert in L/Fq(x).

This suggests the following strategy to factor a monic squarefree polynomial f ∈ Fq[x]. Say f
factors into monic irreducibles as f =

∏
i fi. Pick an elliptic module φ with complex multiplication

by some imaginary quadratic extension L/Fq(x) and compute h̄φ,f . By Lemma 3.1, we get that

gcd(h̄φ,f , f) =
∏

〈fi〉 inert in L/Fq(x)

fi (7)

is a factor of f . Since for every degree, roughly half the primes of that degree are inert in L/Fq(x),
the factorization thus obtained is likely to be non trivial. Repeating the process for the resulting
factors leads to a complete factorization of f .

It remains to construct elliptic modules with complex multiplication. Our strategy is to pick an
a ∈ Fq at random and construct an elliptic module φ with complex multiplication by the imaginary
quadratic extension Fq(x)(

√
d) of discriminant d := x − a. From [13] (see also [32, Theorem 6]),

the elliptic module φ′ with
gφ′(x) :=

√
d+
√
d
q
, ∆φ′ := 1

has complex multiplication by Fq(x)(
√
d). However, φ′ has the disadvantage of not being defined

over Fq[x], since gφ′ is not in Fq[x]. We construct an alternate φ that is isomorphic to φ′ but defined
over Fq[x]. There is a notion of J-invariant for elliptic modules (see e.g. [18]); the J-invariant of φ′

is

Jφ′ :=
gq+1
φ′

∆φ′
= d

q+1
2

(
1 + d

q−1
2

)q+1
.

Now let φ be the elliptic module defined by

gφ = Jφ′ , ∆φ = Jqφ′

The J-invariants of φ and φ′ are the same, which implies that φ′ and φ are isomorphic. Further, φ
is defined over Fq[x]. In summary, φ has complex multiplication by Fq(x)(

√
d) and is defined over

Fq[x].

Remark. When q is even, the construction of Schweizer [32, Theorem 6] gives the required elliptic
modules with complex multiplication. Pick an (a, b) ∈ F×q × Fq at random and set d = ax+ b. The
elliptic module φ with J-invariant

Jφ =
(

1 + d+ . . .+ d2
m−2

+ d2
m−1
)q+1

/a

has complex multiplication by the ring Fq[x][w] in the Artin-Schreier extension Fq(x)(w), where
w2 + w = d. We can take φ to be the elliptic module defined by

gφ = Jφ, ∆φ = Jqφ,

ensuring φ is defined over Fq[x]. For a further discussion of characteristic 2, see Remark 3 below.

We now state our randomized algorithm to factor polynomials over finite fields using elliptic modules
with complex multiplication.

11



Algorithm 2 Polynomial factorization

Input: Monic squarefree f ∈ Fq[x] of degree n
Output: The irreducible factors of f
1. If f is irreducible then output f and return
2. Remove the linear factors of f and output them
3. Pick a ∈ Fq uniformly at random and compute
d := x− a,

J := d
q+1
2

(
1 + d

q−1
2

)q+1
mod f ,

gφ := J mod f and ∆φ := Jq mod f
4. Compute γ := gcd(h̄φ,f , f) and recursively factor γ and f/γ.

The irreducibility test in Step 1 can be performed in O(n(ω+1)/2(log n)2+M(n) log q) operations
in Fq [15], or n1+ε(log q)2+o(1) bit operations. In Step 2, all the linear factors of f are found and
removed using a root finding algorithm; it takes an expected O(M(n) log n log(nq)) operations in
Fq [15], or n1+ε(log q)2+o(1) bit operations (this step needs only be done once in the whole algorithm).

In Step 3, we choose a ∈ Fq at random and construct a Drinfeld module φ with complex
multiplication by Fq(x)(

√
x− a). The primes that divide ∆φ are precisely {(x−b), b ∈ Fq,

√
b− a /∈

Fq} ∪ {x − a}. Hence, we might have run into issues of bad reduction if f had linear factors; it
is to prevent this that we performed root finding in Step 2. The computation of gφ and ∆φ takes
O(M(n) log q) operations in Fq.

As mentioned in Eq. (7), gcd(h̄φ,f , f) is the product of all irreducible factors of degree greater
than 1 of f that are supersingular with respect to φ. Thus, our algorithm separates the irreducible
factors supported at the supersingular primes from those supported at the ordinary primes. In the
following, we show that for an elliptic module chosen randomly as in Step 3, the splitting of f in
Step 4 is random enough to ensure that the recursion depth is O(log n).

We assume as in the statement of Theorem 1.2 that h̄φ,f is computed using H(n, q) operations
in Fq, resp. H∗(n, q) bit operations. Since the expected depth of the recursion is logarithmic, using
the superlinearity assumptions on H, resp. H∗ made in that theorem, the runtime of the algorithm
is then an expected

• O (̃H(n, q) + n(ω+1)/2 + M(n) log q) operations in Fq, or

• O (̃H∗(n, q)) + n1+ε(log q)2+o(1) bit operations;

this proves Theorem 1.2.
In the following lemma, we establish the claim above on the probability of finding a nontrivial

factor of f . For the lemma to apply to the algorithm, we need to assume
√
q ≥ 12(n + 2). This

assumption can be made without loss of generality: if
√
q < 12(n + 2), we might choose to factor

over a slightly larger field Fq′ where q′ is the smallest power of q such that
√
q′ > 12(n + 2) and

still recover the factorization over Fq (c.f. [28, Remark 3.2]). Further, the running times are only
affected by logarithmic factors in n.

Lemma 3.2. Suppose that f is not irreducible, without linear factors, and that 12(n + 2) ≤ √q.
Let φ be an elliptic module with complex multiplication by the imaginary quadratic extension
Fq(x)(

√
x− a), where a ∈ Fq is chosen at random. Then, with probability at least 1/4, the factor h

computed at Step 4 of the algorithm is non-trivial.

Proof. Suppose that f admits two distinct monic irreducible factors f1 and f2, of respective degrees
k1, k2 > 1. We prove that with probability at least 1/4, exactly one of f1 or f2 is supersingular
with respect to a randomly chosen φ, as constructed above.

12



Since k1, k2 are greater than 1, none of 〈f1〉, 〈f2〉 ramify in Fq(x)(
√
x− a). Therefore, the

probability that exactly one of 〈f1〉, 〈f2〉 is supersingular with respect to φ is the same as the
probability that exactly one of them splits in Fq(x)(

√
x− a)/Fq(x).

For i = 1, 2, let Ki := Fq(x)(αi) be the hyperelliptic extension of Fq(x) obtained by adjoining a
root αi of y2 − fi. Depending on the values of q and k1, k2, by quadratic reciprocity over function
fields [7], one of the following alternative holds:

(a) exactly one of 〈f1〉, 〈f2〉 splits in Fq(x)(
√
x− a) if and only if x − a splits in exactly one of

K1,K2;

(b) exactly one of 〈f1〉, 〈f2〉 splits in Fq(x)(
√
x− a) if and only if x − a either splits in K1 and

K2, or splits in none of them.

We are in case (a) if q = 1 mod 4 or k1 = k2 mod 2, and in case (b) for all other values of the
parameters. Since f1, f2 are distinct, K1 and K2 are linearly disjoint over Fq(x). Further, K1K2 is
Galois over Fq(x) with

Gal(K1K2/Fq(x)) ∼= Gal(K1/Fq(x))×Gal(K2/Fq(x)) ∼= Z/2Z⊕ Z/2Z.

For 〈x− a〉 to be neither totally split nor totally inert (case (a)), the Artin symbol

(〈x− a〉,K1K2/Fq(x)) ∈ Gal(K1K2/Fq(x))

has to be either (0, 1) or (1, 0) under the isomorphism Gal(K1K2/Fq(x)) ∼= Z/2Z⊕ Z/2Z; case (b)
occurs when its value is either (0, 0) or (1, 1). Applying the effective Chebotarev density theorem
over function fields [14, Proposition 6.4.8], for any η = (η1, η2) ∈ Z/2Z⊕ Z/2Z, we obtain that the
number Nη of degree 1 primes in Fq(x) that are unramified in K1K2 and of symbol η satisfies∣∣∣Nη −

q

4

∣∣∣ ≤ 1

2

(
(4 + g(K1K2))q

1/2 + 4q1/4 + (4 + g(K1K2))
)

where g(K1K2) is the genus of K1K2. Taking into account the prime at infinity, we obtain that in
case (a), the number N(a) of degree one primes {〈x− a〉, a ∈ Fq} that are neither totally inert nor
totally split in K1K2, and that in case (b), the number N(b) of degree one primes {〈x− a〉, a ∈ Fq}
that are either totally inert or totally split in K1K2 satisfy

N(a) ≥ N(0,1) +N(1,0) − 1, N(b) ≥ N(0,0) +N(1,1) − 1.

The previous inequalities imply

N(a), N(b) ≥
1

2
q −

(
(4 + g(K1K2))q

1/2 + 4q1/4 + (5 + g(K1K2))
)

≥ 1

2
q − 3(4 + g(K1K2))q

1/2.

Using the Riemann-Hurwitz genus formula [30, Theorem 7.16], we now prove g(K1K2) ≤ k1+k2−2.
Indeed, after replacing Fq by a suitable algebraic extension Fq′ , the formula reads 2g(K1K2)− 2 =
4(0 − 2) +

∑
α(e(α) − 1), where the sum is over all points α ∈ P3(Fq′) lying on the projective

closure C of the curve V (y21 − f1(x), y22 − f2(x)) at which the first-factor projection C → P1(Fq′)
ramifies (here, e(α) is the ramification index). All roots of either f1 or f2 (which are all pairwise
distinct) give two such points, each of them with ramification index 2; the contribution of the point
at infinity in P1(Fq′) is at most 4 − 1 = 3, so that we have 2g(K1K2) − 2 ≤ −8 + 2(k1 + k2) + 3,
which implies our claim.

13



Using the inequality k1 + k2 ≤ n, we deduce

N(a), N(b) ≥
1

2
q − 3(n+ 2)q1/2,

so that in either case, the probability of finding a non-trivial factorization of f is at least 1/2 −
3(n+ 2)/q1/2. Since 12(n+ 2) ≤ q1/2, this probability is at least 1/4.

Remark. There is an obstruction to an even characteristic analogue of Lemma 3.2 being true. Let
q be even and suppose φ is an elliptic module with complex multiplication by the ring Fq[x][w] in
an Artin-Schreier extension, where (a, b) ∈ F×q × Fq is chosen at random and w2 +w = ax+ b. Let
f have distinct monic irreducible factors f1, f2 of respective degrees k1 > 1, k2 > 1. Since k1, k2 are
greater than 1, none of 〈f1〉, 〈f2〉 ramify in Fq(x)(w). Therefore, the probability that exactly one of
〈f1〉, 〈f2〉 is supersingular with respect to φ is the same as the probability that exactly one of them
splits in Fq(x)(w)/Fq(x). The latter is equivalent to exactly one of the two equations

w2 + w = ax+ b mod f1(x), w2 + w = ax+ b mod f2(x) (8)

possessing a solution w ∈ Fq[x]. Analogous to the proof of Lemma 3.2, one may look to reciprocity
laws for Artin-Schreier extensions to phrase this condition in terms of polynomial congruences
involving f1 and f2 modulo ax + b. However, the reciprocity law (due to Hasse [21], see also
[9, Theorem 4.2]) dictates that the existence of solutions to the equations (8) depends not on
congruences modulo ax + b but only on the (k1 − 1)th degree (resp. (k2 − 1)th) coefficient of f1
(resp. f2) and the parity of the degrees k1 and k2. In particular, by [9, Theorem 4.2] or [9,
Example 4.1], if k1 and k2 have the same parity and the (k1 − 1)th coefficient of f1 equals the
(k2 − 1)th degree coefficient of f2, then for no (a, b) ∈ F×q × Fq does exactly one of the equations in
(8) has a solution. Hence, our algorithm cannot distinguish the factors f1 and f2. It remains an
open question as to if our algorithmic framework can be modified to handle this situation.

On the other hand, we may argue that this is the only obstruction. Say f1 = xk1 +c1x
k1−1 + · · ·

and f2 = xk2+c2x
k2−1+· · · , where c1 6= c2. Pick an elliptic module φ with complex multiplication by

the ring Fq[x][w] in an Artin-Schreier extension, where a ∈ F×q is chosen at random and w2+w = ax.
By [9, Example 4.1], w2 + w = x mod f1(x) has a solution w ∈ Fq[x] if and only if TrFq/F2

(ac1) =
0, where TrFq/F2

is the trace from Fq to F2. Likewise, w2 + w = x mod f1(x) has a solution
w ∈ Fq[x] if and only if TrFq/F2

(ac2) = 0. For our algorithm to separate f1 and f2, it suffices
for TrFq/F2

(a(c1 + c2)) to equal 1 with constant probability. Since c1 6= c2, c1 + c2 6= 0 and
TrFq/F2

(a(c1 + c2)) does equal 1 with probability at least 1/2.

4 Implementation and example

We implemented Algorithms 1 and 2 in C++ using NTL [33]; the implementation source code
can be found at https://github.com/javad-doliskani/supersingular_drinfeld_factoring.
After running the algorithm on 103 random input polynomials, we observed that the splitting
gcd(h̄φ,f , f) is almost always nontrivial when f is reducible; this confirms the behavior expected
from theory.

We also observed that in practice one does not need to impose the condition
√
q ≥ 12(n + 2)

for splitting a polynomial of degree n over Fq; this remedies the need for working in an auxiliary
extension over Fq. Recall that Lemma 3.2 uses that assumption to bound from below the probability
of finding a non-trivial factorization; we expect that the recursion depth be logarithmic in n also
for smaller values of q. At worst, one may first attempt splitting f over Fq and in case of repeated
failures, we may then switch to factorization over an extension; this was not implemented.

14

https://github.com/javad-doliskani/supersingular_drinfeld_factoring


In terms of runtime, our algorithm is slower that NTL’s built-in factorization routine, by what
is roughly a constant factor; this is not entirely surprising, since working with 2×2 matrices induces
a non-negligible overhead for our algorithm. To show the behaviour of the algorithm in practice,
we give in this section an example output of Algorithm 2 on input a small degree polynomial.

Example. Consider the randomly selected squarefree polynomial

f = 2 + 6x+ 5x3 + 4x4 + 6x5 + 2x7 + 3x8 + 3x9 + x10

in F7[x]. The algorithm starts by checking for linear factors; f has none. So, in the next step it
generates the random supersingular elliptic module φ given by choosing d = 1 + x and computing

gφ = 3 + 3x+ 5x3 + x4 + x5 + x6 + 6x7 + 5x8 + 5x9,
∆φ = 4x+ 4x2 + 5x3 + 3x4 + 5x5 + 6x6 + 5x7 + 4x8 + 2x9.

This means φ has complex multiplication by the imaginary quadratic extension F7(x)(
√
x+ 1) of

F7(x). After computing h̄φ,f , we find γ = gcd(h̄φ,f , f) = 1 + 4x+ x2 + 4x3 + x4; this is the product
of the factors of f that are supersingular with respect to φ. Now, γ does not pass the irreducibility
check, so the process is repeated for γ. The next randomly generated supersingular elliptic module
is built by choosing d = 5 + x and computing

gφ̃ = 6 + x+ 5x2 + 5x3,

∆φ̃ = 4 + x+ 6x2 + 4x3.

We then split γ as γ̃ = gcd(h̄φ̃,γ , γ) = 4 + 6x + x2, and γ/γ̃ = 2 + 5x + x2 which are both

irreducible; again, this means that γ̃ is supersingular and γ/γ̃ is ordinary with respect to φ̃. Finally,
f/γ = 2 + 5x+ 6x2 + 3x3 + 6x4 + 6x5 + x6 which is also irreducible. The complete factorization of
f is then

f(x) = (4 + 6x+ x2)(2 + 5x+ x2)(2 + 5x+ 6x2 + 3x3 + 6x4 + 6x5 + x6).

Acknowledgements. We thank the reviewer of a first version of this paper for useful remarks,
which led us to this revised version. Doliskani is partially supported by NSERC, CryptoWorks21,
and Public Works and Government Services Canada. Narayanan is supported by NSF grant #CCF-
1423544, Chris Umans’ Simons Foundation Investigator grant and European Union’s H2020 Pro-
gramme under grant agreement number ERC-669891.

References

[1] E. R. Berlekamp, Factoring polynomials over finite fields, Bell System Tech. J., 46 (1967),
pp. 1853–1849.

[2] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user lan-
guage, Journal of Symbolic Computation, 24 (1997), pp. 235–265.

[3] A. Bostan, P. Gaudry, and É. Schost, Linear recurrences with polynomial coefficients and
application to integer factorization and Cartier-Manin operator, SIAM Journal on Computing,
36 (2007), pp. 1777–1806.

[4] R. P. Brent and H. T. Kung, Fast algorithms for manipulating formal power series, Journal
of the Association for Computing Machinery, 25 (1978), pp. 581–595.

15



[5] D. Cantor and H. Zassenhaus, A new algorithm for factoring polynomials over finite fields,
Mathematics of Computation, 36 (1981), pp. 587–592.

[6] D. G. Cantor and E. Kaltofen, On fast multiplication of polynomials over arbitrary
algebras, Acta Informatica, 28 (1991), pp. 693–701.

[7] L. Carlitz, The arithmetic of polynomials in a Galois field, American Journal of Mathemat-
ics, 54 (1932), pp. 39–50.

[8] D. V. Chudnovsky and G. V. Chudnovsky, Approximations and complex multiplication
according to Ramanujan, in Ramanujan revisited (Urbana-Champaign, Ill., 1987), Academic
Press, Boston, MA, 1988, pp. 375–472.

[9] K. Conrad, Quadratic reciprocity in characteristic 2. http://www.math.uconn.edu/

~kconrad/blurbs/ugradnumthy/QRchar2.pdf.

[10] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Jour-
nal of Symbolic Computation, 9 (1990), pp. 251–280.

[11] G. Cornelissen, Deligne’s congruence and supersingular reduction of Drinfeld modules,
Archiv der Mathematik, 72 (1999), pp. 346–353.

[12] L. De Feo, J. Doliskani, and É. Schost, Fast arithmetic for the algebraic closure of finite
fields, in ISSAC’14, ACM, 2014, pp. 122–129.

[13] D. R. Dorman, On singular moduli for rank 2 Drinfeld modules, Compositio Mathematica,
80 (1991), pp. 235–256.

[14] M. D. Fried and M. Jarden, Field arithmetic, vol. 11 of Ergebnisse der Mathematik und
ihrer Grenzgebiete., Springer, third ed., 2008.

[15] J. Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University Press, New
York, NY, USA, 1999, http://portal.acm.org/citation.cfm?id=304952.

[16] J. Gathen and V. Shoup, Computing Frobenius maps and factoring polynomials, Compu-
tational Complexity, 2 (1992), pp. 187–224.

[17] E.-U. Gekeler, On finite Drinfeld modules, Journal of Algebra, 141 (1991), pp. 187–203.

[18] E.-U. Gekeler, Frobenius distributions of Drinfeld modules over finite fields, Transactions of
the American Mathematical Society, 360 (2008), pp. 1695–1721.

[19] D. Goss, Basic Structures of Function Field Arithmetic, Springer, 1996.

[20] W. B. Hart, Fast library for number theory: An introduction, in ICMS’10, Springer, 2010,
pp. 88–91. http://flintlib.org.

[21] H. Hasse, Theorie der relativ-zyklischen algebraischen funktionenkorper insbesondere bei
endlichem konstantenkorper, J. Reine Angew. Math, 172 (1934), pp. 37–44.

[22] X. Huang and V. Y. Pan, Fast rectangular matrix multiplication and applications, Journal
of Complexity, 14 (1998), pp. 257–299.

[23] E. Kaltofen and V. Shoup, Subquadratic-time factoring of polynomials over finite fields,
Mathematics of Computation, 67 (1998), pp. 1179–1197.

16

http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/QRchar2.pdf
http://www.math.uconn.edu/~kconrad/blurbs/ugradnumthy/QRchar2.pdf
http://portal.acm.org/citation.cfm?id=304952
http://flintlib.org


[24] K. Kedlaya and C. Umans, Fast polynomial factorization and modular composition, SIAM
Journal on Computing, 40 (2011), pp. 1767–1802.

[25] D. Knuth, The Art of Computer Programming, Seminumerical Algorithms, Addison-Wesley,
1997.

[26] F. Le Gall, Powers of tensors and fast matrix multiplication, in ISSAC’14, ACM, 2014,
pp. 296–303.

[27] H. W. Lenstra, Factoring integers with elliptic curves, Annals of Mathematics, 126 (1987),
pp. 649–673.

[28] A. K. Narayanan, Polynomial factorization over finite fields by computing Euler-Poincaré
characteristics of Drinfeld modules. http://arxiv.org/abs/1504.07697, 2015.

[29] A. Panchishkin and I. Potemine, An algorithm for the factorization of polynomials using
elliptic modules, in Mathematical Institute of AN BSSR, Minsk, Proceedings of the Conference
Constructive methods and algorithms in number theory, 1989, p. 117.

[30] M. Rosen, Number Theory in Function Fields, Springer, 2002.

[31] T. Scanlon, Public key cryptosystems based on Drinfeld modules are insecure, Journal of
Cryptology, 14 (2001), pp. 225–230.

[32] A. Schweizer, On singular and supersingular invariants of drinfeld modules, Annales de la
Facult des sciences de Toulouse : Mathmatiques, 6-2 (1997), pp. 319–364.

[33] V. Shoup, NTL: A library for doing number theory. http:/www.shoup.net/ntl.

[34] V. Shoup, Fast construction of irreducible polynomials over finite fields, Journal of Symbolic
Computation, 17 (1994), pp. 371–391.

[35] V. Strassen, Einige Resultate über Berechnungskomplexität, Jber. Deutsch. Math.-Verein.,
78 (1976/77), pp. 1–8.

[36] G. J. van der Heiden, Factoring polynomials over finite fields with Drinfeld modules, Math-
ematics of Computation, 73 (2004), pp. 317–322.

[37] D. Y. Y. Yun, On square-free decomposition algorithms, in SYMSAC’76, ACM, 1976, pp. 26–
38.

17

http://arxiv.org/abs/1504.07697
http:/www.shoup.net/ntl

	Introduction
	Computing Hasse invariant lifts of elliptic modules
	Basic definitions
	Some key subroutines
	Efficient computation of ,f

	A polynomial factoring algorithm
	Implementation and example

