
Computing in Degree 2k-Extensions of Finite Fields of
Odd Characteristic

Javad Doliskani
jdoliska@uwo.ca

Éric Schost
eschost@uwo.ca

Abstract

We show how to perform basic operations (arithmetic, square roots, computing
isomorphisms) over finite fields of the form F

q2k
in essentially linear time.

Mathematics Subject Classification 2010. Primary 11Y16, 12Y05, Secondary 68W30.

1 Introduction

Factoring polynomials and constructing irreducible polynomials are two fundamental oper-
ations for finite field arithmetic. As of now, there exists no deterministic polynomial time
algorithm for these questions in general, but in some cases better answers can be found. In
this note, we discuss algorithmic questions arising in such a special case: the construction of,
and computations with, extensions of degree n = 2k of a base field, say Fq, with q a power
of an odd prime p. In other words, we are interested with the complexity of computing in
the quadratic closure of Fq.

There exists a well-known construction of such extensions [13, Th. VI.9.1], which was
already put to use algorithmically in [17]: if q = 1 mod 4, then for any quadratic non-residue
α ∈ Fq, the polynomial X2k − α ∈ Fq[X] is irreducible for any k ≥ 0, and allows us to
construct F

q2k
. If q = 3 mod 4, we first construct a degree-two extension Fq′ of Fq, which

will thus satisfy q′ = 1 mod 4; this is done by remarking that X2 + 1 ∈ Fq[X] is irreducible,
so that we can construct Fq′ as Fq[X]/〈X2 + 1〉.

In this note, taking this remark as a starting point, we give fast algorithms for operations
such as multiplication and inversion, trace and norm computation, and most importantly
square root computation in F

q2k
(see below for our motivation), as well as isomorphism

computation.
We do not make any assumption on the way Fq is represented: the running time of our

algorithms is estimated by counting operations (+,×,÷) in Fq at unit cost. The cost of most
algorithms will be expressed in terms of the cost of polynomial multiplication. Explicitly,
we let M : N → N be such that degree n polynomials over any ring R can be multiplied in
M(n) operations in R, and such that M(n)/n is non-decreasing (this will be referred to as
super-linearity). Using the algorithm of [3], we can take M(n) = O(n log(n) log log(n)).

In view of the discussion above, we will assume that q = 1 mod 4: if this is not the case,
replacing Fq by Fq′ as explained above only induces a constant overhead, since all operations

1

(+,×,÷) in Fq′ can be done using O(1) operations in Fq. Besides, we will assume that the
non-quadratic residue α is given; otherwise, such an α can be found by testing an expected
O(1) random elements in Fq for quadratic residuosity. This remains a core non-deterministic
component of the construction, since finding α in a polynomial-time deterministic manner
is a well-known open question. Some algorithms below are non-deterministic (Las Vegas) as
well; for such algorithms, we give the expected running time.

Theorem 1. Suppose that q = 1 mod 4. Given a non-quadratic residue α ∈ Fq, for k ≥ 0
and n = 2k, the running times for computations in Fqn reported in Table 1 hold.

Operation Cost
addition / subtraction O(n)

multiplication M(n) +O(n)
inversion O(M(n))
Frobenius O(n+ log(q))

norm O(M(n))
trace 1

quadratic residuosity O(M(n) + log(q))
square root O(M(n) log(nq)) (expected)

isomorphism O(n+ log(n) log(q)) (expected)

Table 1: Costs for computations in Fqn , with n = 2k.

This paper can be seen as an analogue of [5], which discusses these questions for Artin-
Schreier extensions: the problems we consider, the techniques we use, and the applications
(dealing with torsion points of some genus 1 or 2 Jacobians; see below) are similar. More
precisely, the recursive techniques used here are similar to those in the reference in terms of
exploiting the special structure of the tower and the defining polynomials.

For some questions, such as Frobenius or isomorphism computation, we refer to the next
section for a precise description of the operation we perform; however, we mention that in
all cases, we use a polynomial basis representation for all computations. In all cases, the
combined size of input and output is O(n) elements in Fq, and using fast multiplication, all
running times reported here are quasi-linear1 in n.

Some results in the above table are straightforward (such as addition / subtraction or
trace computation) and some are well-known (such as multiplication). Our focus in this note
is actually on square root computation, and to the best of our knowledge, this is the first
time that such results appear.

The straightforward approaches to square root extraction, using for instance Cipolla’s
or the Tonelli-Shanks algorithms [18, 4, 15] require a number of multiplications in Fqn pro-
portional to log(qn); the cost is then O(nM(n) log(q)) operations in Fq, which is at best
quadratic in n. It is possible to compute square roots faster, using fast algorithms for modu-
lar composition, which is the operation that consists in computing F (G) mod H, given some

1An algorithm is quasi-linear time in n if it has complexity O(n logk n) for a constant k.

2

univariate polynomials F,G,H. Let us denote by C(n) the cost of this operation, when
F,G,H have all degree at most n. Then, the algorithms of [11, 6] compute square roots in
Fqn using O(M(n) log(q) + C(n) log(n)) operations in Fq.

In our model, where operations in Fq are counted at unit cost, the best known bound
on C(n) is C(n) = O(

√
nM(n) + n(ω+1)/2), where 2 ≤ ω ≤ 3 is such that matrices of size m

over Fq can be multiplied in O(mω) operations [2]. Thus, depending on ω, and neglecting
logarithmic factors, the cost (with respect to n) of the corresponding square root algorithms
ranges between O(n3/2) and O(n2). We remark however that, in a boolean model (on a
RAM, using an explicit boolean representation of the elements in Fq, and counting boolean
operations at unit cost), Kedlaya and Umans gave in [12] an algorithm of cost n1+ε log(q)1+o(1)

for modular composition in Fq, for any ε > 0. In that model, algorithms such as those
in [11, 6] are thus close to linear time.

None of the algorithms mentioned above is dedicated to the specific case we consider,
where the extension degree n is a power of two; few references consider explicitly this par-
ticular case [7, 19].

The algorithm of [7] gives a quadratic residuosity test that uses O(log(n)) Frobenius
computations and multiplications in Fqn , and O(log(q)) multiplications in Fq. This reference
does not specify how to represent the extensions of Fq, and what algorithms should be used
for basic operations. Using the algorithms given below for arithmetic and Frobenius com-
putations, the cost of their quadratic residuosity test algorithm is O((M(n) + log(q)) log(n))
multiplications in Fq; this is slightly slower than our result. The authors of [7] also give
algorithms for quadratic residuosity and square root computation for degree 2k-extensions in
their later work [19]. They removed the computation overlap between quadratic residuosity
test and square root, but the algorithms still run in times quadratic in n (the quadratic
residuosity test being the bottleneck).

This work was inspired by computations with Jacobians of curves of genus 2 over finite
fields. Given a genus 2 curve C defined over Fp, the algorithm of [10] computes the cardinality
of the Jacobian J of C, following Schoof’s elliptic curve point counting algorithm [14]. This
involves in particular the computation of successive divisors of 2k-torsion in J , by means of
successive divisions by two in J . Such a division by two boils down to several arithmetic
operations, and four square root extractions; thus, the divisors we are computing are defined
over the quadratic closure of Fp, or of a small extension of Fp.

In other words, for dealing with 2k-torsion, the algorithm of [10] relies entirely on the
operations above, arithmetic operations and square root extraction. At the time of writ-
ing [10], the authors relied on a variant of the Kaltofen-Shoup algorithm [11] with running
time O(M(n) log(q) + C(n) log(n)), which was a severe bottleneck; our new algorithms com-
pletely alleviate this issue.

After proving Theorem 1 in Section 2, we present in Section 3 some experiments that con-
firm that the practical interest of our quasi-linear algorithms for the point-counting problem
above.

Acknowledgements. The authors are supported by NSERC and the Canada Research
Chairs program.

3

2 Proof of the complexity statements

In this section, we prove the results stated in Table 1. The tower of fields Fq,Fq2 , . . .Fq2k
, . . .

will be written
L0 ⊂ L1 ⊂ · · · ⊂ Lk ⊂ · · · ,

with Lk = F
q2k

for all k.

2.1 Representing the fields Lk

The tower of fields L0,L1, . . . can be represented in two fashions, using univariate or multi-
variate representations (see as well [5], for a similar discussion for Artin-Schreier extensions).

Let α ∈ Fq be a fixed non-quadratic residue. Define the sequence of polynomials T1, T2, . . .
in indeterminates X1, X2, . . . given by

T1 = X2
1 − α and Tk = X2

k −Xk−1 for k > 1,

as well as the polynomials P1, P2, . . . given by

Pk = X2k

k − α for k ≥ 1.

The discussion in the introduction, as well as the one in [13], shows that for all k ≥ 0 we
have the equality between ideals

〈T1, . . . , Tk〉 = 〈Pk, Xk−1 −X2
k , . . . , X1 −X2k−1

k 〉, (1)

that this ideal (call it Ak) is prime, and that we have

Lk ' Fq[X1, . . . , Xk]/Ak.

For k ≥ 1, let xk be the image of Xk in the residue class ring Fq[X1, . . . , Xk]/Ak. Due to the
natural embedding of Fq[X1, . . . , Xk]/Ak into Fq[X1, . . . , Xk+1]/Ak+1, xk can be unequivocally
seen as an element of F

q2`
for ` ≥ k (and thus as an element of the quadratic closure of Fq).

On the left-hand side of (1), we have a Gröbner basis of Ak for the lexicographic order
X1 < · · · < Xk, whereas on the right we have a Gröbner basis for the lexicographic order
Xk < · · · < X1. Corresponding to these two bases of Ak, the elements of Lk can be
represented as polynomials in x1, . . . , xk of degree at most 1 in each variable (and coefficients
in Fq), or as polynomials in xk of degree less than 2k.

By default, we will use the univariate representation; an element γ of Lk will thus be
written as γ = G(xk), for some polynomial G ∈ Fq[Xk] of degree less than 2k.

We will not explicitly need to convert to multivariate polynomials, but we will often do
one step of such a conversion, switching between univariate and bivariate bases. Indeed, for
all k ≥ 1, we have

Lk ' Fq[Xk]/〈Pk(Xk)〉 ' Fq[Xk−1, Xk]/〈Pk−1(Xk−1), X
2
k −Xk−1〉.

The Fq-monomial basis of F
q2k

associated to the left-hand side is

1, xk, . . . , x
2k−1
k ,

4

whereas the one associated to the right-hand side is

1, xk−1, . . . , x
2k−1−1
k−1 , xk, xk−1xk, . . . , x

2k−1−1
k−1 xk.

The change-of-basis from the univariate basis to the bivariate one amounts to writing an
expression G(xk), with G of degree less than 2k, as

G(xk) = G0(x
2
k) + xkG1(x

2
k) = G0(xk−1) + xkG1(xk−1),

with G0 and G1 of degrees less than 2k−1. This does not require any arithmetic operation;
the same holds for the converse change-of-basis. Continuing this way on G0 and G1, we could
convert between univariate and multivariate bases without arithmetic operations if needed.

2.2 Arithmetic operations

In this subsection, we discuss the cost of arithmetic operations (+,×,÷) in Lk, for some
k ≥ 0. In all that follows, we write n = [Lk : Fq], that is, n = 2k.

Addition and subtraction take time O(n). For multiplication, using the univariate basis
leads to a cost of M(n) +O(n) operations in Fq, where the O(n) term accounts for reduction
modulo Pk (this takes linear time, since Pk is a binomial). Note that a non-trivial (and
slightly less efficient) approach using the multivariate representation is in [1].

For inversion, in the univariate basis, a natural idea is to use the fast extended GCD
algorithm for univariate polynomials [8, Ch. 11], resulting in a running time O(M(n) log(n)).
However, better can be done by using the tower structure of the fields Lk. Indeed, consider
γ = G(xk) ∈ L×k . Then, writing G(xk) = G0(xk−1) + xkG1(xk−1), we have

1

G(xk)
=

1

G0(xk−1) + xkG1(xk−1)

=
G0(xk−1)− xkG1(xk−1)

G0(xk−1)2 − xk−1G1(xk−1)2
.

Therefore, computing an inverse in Lk amounts to O(1) additions and multiplications in Lk,
and one inversion in Lk−1. This gives a recursive algorithm with cost T (k) = T (k − 1) +
O(M(2k)); the super-linearity of M implies that the running time is O(M(2k)) = O(M(n))
operations in Fq.

2.3 Frobenius computation

Let γ be in Lk, and let r = qd for some positive integer d. We explain here how to compute
γr ∈ Lk; as above, we write n = 2k.

We start with the case γ = xk: writing r = nu + v with 0 ≤ v < n, and using the
fact that xnk = α, we obtain xrk = αuxvk. The constant αu = αu mod (q−1) can be computed
in O(log(q)) multiplications in Fq by repeated squaring. Although our focus is on counting
Fq-operations, we also mention how to compute u mod (q − 1) and v efficiently: first of
all, we compute ρ = r mod n(q − 1) by repeated squaring; then, u mod (q − 1) and v are
respectively the quotient and remainder in the division of ρ by n. They can be computed with

5

a boolean cost polynomial (and actually, quasi-linear) in log(d) log(nq), since the bottleneck
is an exponentation with exponent O(d log(q)), modulo an integer of bit size O(log(nq)).

For a general γ of the form γ = G(xk), writing G(xk) = gn−1x
n−1
k + · · · + g1xk + g0, we

have

γr = gn−1(x
r
k)n−1 + · · ·+ g1(x

r
k) + g0

= gn−1(α
uxvk)n−1 + · · ·+ g1(α

uxvk) + g0.

Knowing αu and v, computing γr amounts to compute the first n powers of αuxvk and
substituting them in G. Since xnk = α, these powers are all monomials in xk, and can be
computed successively in O(n) multiplications in Fq. Therefore, computing the Frobenius
takes a total of O(n+ log(q)) operations in Fq.

2.4 Trace, norm and quadratic residuosity test

The norm NLk/Fq and the trace TLk/Fq are easy to compute, using transitivity. Indeed, for
γ ∈ Lk, we have

NLk/Fq(γ) = NL1/Fq(NL2/L1(· · ·NLk/Lk−1
(γ)))

and
TLk/Fq(γ) = TL1/Fq(TL2/L1(· · ·TLk/Lk−1

(γ))).

Write as before γ = G(xk) and G = G0(xk−1) + xkG1(xk−1). Then, we have

NLk/Lk−1
(γ) = G0(xk−1)

2 − xk−1G1(xk−1)
2

and
TLk/Lk−1

(γ) = 2G0(xk−1),

since in the quadratic extension Lk of Lk−1 generated by x2k − xk−1, the norm (resp. trace)
of γ is the product (resp. sum) of γ and its conjugate γ′ = G0(xk−1)− xkG1(xk−1).

To compute the norm of γ, this gives a recursive algorithm using one recursive call and
O(1) multiplications in each extension; using the super-linearity of M (as for inversion), the
total is O(M(n)) operations in Fq. For the trace, by transitivity, we obtain TLk/Fq(γ) = ng0
where g0 is the constant term of G; this could also have been deduced from the fact that
the trace of γ = G(xk) in the extension Lk = Fq[Xk]/〈Pk〉 is the coefficient of Xn−1

k in
GP ′k mod Pk. At any rate, the trace is computed using 1 multiplication in Fq

Finally, to check if γ is a quadratic residue we compute γ(q
n−1)/2 = NLk/Fq(γ)(q−1)/2; this

takes O(M(n) + log(q)) operations in Fq (using repeated squaring for the exponentiation).
Let us briefly comment on alternative derivations of the norm and the trace; they are

slightly less efficient, but these ideas will allow us to compute square roots in the next
subsection (the underlying idea is not new; it appears for instance in [9, 7]). Fix n and γ as
above and for m ≥ 0, define

Nm(γ) = γ1+q+q2+···+qm−1

to be the m-norm of γ. Similarly, the m-trace of γ is defined to be Tm(γ) = γ+γq+· · ·+γqm−1

(this is called a pseudo-trace in [5]). For m = n, we recover the standard norm and trace.

6

Writing
ζm = γq+q2+···+qm ,

we have Nm(γ) = γζm−1. The element ζm can be computed efficiently by means of the
formulas

ζ1 = γq and ζm =

{
ζm/2ζ

qm/2

m/2 if m is even

ζ1ζ
q
m−1 if m is odd.

(2)

(We could compute Nm(γ) directly using a similar recurrence, but we will reuse the ζm in the
next subsection.) Computing ζ1 is done by means of one Frobenius computation. Deducing
ζm from either ζm/2 or ζ(m−1)/2 takes O(1) Frobenius and multiplications. Thus, the total
for ζm, and thus Nm(γ), is O(log(m)) Frobenius and multiplications in Lk, which amounts
to O(M(n) log(m) + log(q) log(m)) operations in Fq.

If needed, the m-trace can be computed similarly to the m-norm by the following recur-
sion:

T1 = γ and Tm =

{
Tm/2 + T qm/2

m/2 if m is even

T1 + T q
m−1 if m is odd.

Therefore, Tm(γ) can be computed using O(log(m)) Frobenius and additions, hence the
overall running time O(n log(m) + log(q) log(m)).

2.5 Taking square roots

In this subsection, we review the idea presented in [6] to compute square roots, and adapt
it to our situation, where computing a Frobenius is cheap.

Let δ ∈ L×k be given, assume that δ is a square and let γ ∈ Lk be an (unknown) square
root of it. Define β ∈ Fq as the (unknown) quantity

β = TLk/Fq(γ) =
n−1∑
i=0

γq
i

= γ(1 + γq−1 + γq
2−1 + · · ·+ γq

n−1−1)

= γ(1 + δ(q−1)/2 + δ(q
2−1)/2 + · · ·+ δ(q

n−1−1)/2)

= γη,

(3)

with
η = 1 + δ(q−1)/2 + δ(q

2−1)/2 + · · ·+ δ(q
n−1−1)/2.

We may assume η 6= 0; otherwise, we can replace δ by δ′ = δc2 for a random element c ∈ L×k .

We expect to have TFq/Fq′
(γc) 6= 0 after O(1) trials: There are q2

k
/q values of c for which

the trace is zero, and hence the probability of having a non-zero trace is 1 − (q2
k
/q)/q2

k
=

1 − 1/q ≥ 1/2. Squaring both sides of Eq. (3) results in the quadratic equation β2 = δη2

over Fq.
Provided η is known, β can be deduced from this quadratic equation, and finally γ as

γ = βη−1. Computing β from the above quadratic equation takes an expected O(log(q))
operations in Fq [8, Ch. 14.5], so that computing η is the key to computing γ efficiently. This
can be done as follows.

7

Let λ ∈ Lk be defined by λ = δ(q−1)/2; then, η is given by

η = 1 + λ+ λ1+q + λ1+q+q2 + · · ·+ λ1+q+q2+···+qn−2

.

For m ≥ 0, define
εm = λq + λq+q2 + · · ·+ λq+q2+···+qm ,

so that η = 1+λ+λεn−2, and recall as well the definition of ζm = λq+q2+···+qm . Then, similar
to the recurrence relation given in (2) for ζ, the following holds for ε:

ε1 = λq and εm =

{
εm/2 + ζm/2ε

qm/2

m/2 if m is even

εm−1 + ζm if m is odd
(4)

Computing λ takes O(M(n) log(q)) operations in Fq; then, we obtain the initial values ζ1
and ε1 using O(1) Frobenius. Assume, inductively, that we have computed εm, ζm. Then,
using Eqs. (2) and (4), ζ2m and ε2m, or ζ2m+1 and ε2m+1, can be computed using O(1)
Frobenius and O(1) multiplications in Fqn . Therefore, εn, and altogether η = 1 + λ+ λεn−2
can be computed using O(M(n) log(q) + M(n) log(n)) = O(M(n) log(nq)) operations in Fq.
We have seen that deducing β takes an expected O(log(q)) operations in Fq, and the cost of
computing γ is negligible compared to the computation of η. Thus, the overall running time
is an expected O(M(n) log(nq)) operations in Fq.

2.6 Computing embeddings

We finally consider the problem of computing embeddings and isomorphisms between two
different “towers” defining the quadratic closure of Fq. Consider Lk = Fq[Xk]/〈Pk〉 and
L′j = Fq[Yj]/〈Qj〉, k, j positive integers, where we write

Pk = X2k

k − α and Qj = Y 2j

j − β,

for some non-quadratic residues α, β in Fq. Assuming for instance that k ≤ j, Lk can be
identified as a subfield of L′j; we show how to compute an embedding φ : Lk ↪→ L′j efficiently.
As before, we denote by xk the image of Xk in Lk, and by yj the image of Yj in L′j; we write
n = 2k and m = 2j.

The idea is straightforward: we first find a root ρ of Pk in L′j; then, the mapping φ :
Lk → L′j given by φ(G(xk)) = G(ρ) mod Qj is well-defined and gives an isomorphism of Lk

onto its image. To find the root ρ of Pk in L′j, one has to take k successive square roots of
α in L′j. For this, we could use the algorithm of the previous subsection, but since we start
from α ∈ Fq, better can be done.

Let us look at a slightly more general question: given µ ∈ Fq and an even integer ` ≥ 0,
compute a square root of µy`j:

• if µ is a square in Fq, say µ = ν2, νy
`/2
j is a square root of µy`j;

• else, µ/β is a square in Fq, say µ/β = ν2; then νy
2j−1+`/2
j is a square root of µy`j.

8

Since we start with ` = 0, we can repeat the process at least j times, and thus in particular
at least k times; the cost is thus that of O(k) = O(log(n)) quadratic residuosity tests, square-
root computations and arithmetic operations in Fq; this uses an expected O(log(q) log(n))
operations in Fq. Since the root ρ we obtain is of the form ρ = µy`j for some ` < m,
computing G(ρ) mod Qj, for some G of degree less than n (and thus than m), takes O(m)
multiplications in Fq (as was the case for Frobenius computation).

For isomorphism computation, taking k = j, and thus m = n, gives the claimed bound
O(n+ log(q) log(n)) operations in Fq.

3 Experiments

We conclude this section with experiments using an implementation of our algorithms based
on NTL [16]. All running times are obtained on an Intel Xeon CPU. In all cases, we start
from the base field Fp.

First, we consider square root computation. For computing square roots in an extension
Fpn , without assumption on n, we used in [6] modular polynomial composition, resulting
in the running time O(M(n) log(p) + C(n) log(n)). In cases where n is a power of two, the
results in this paper are superior in terms of complexity; Figure 1 confirms that this is also
the case in practice. In that figure, we take the “random” prime p = 3489756093814709256
34534573457497 already used in [6], and different values of the extension degree n, that are
always powers of two; see below for the reasons behind our choice of such a large value of p.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ti
m

e
(s

e
c
)

extension degree

Old
New

Figure 1: The new square root algorithm vs. the one in [6]

Table 2 gives timings (in seconds) for the genus 2 point-counting application described
in the introduction. The table describes the various ingredients involved in computing suc-

9

cessive 2k-torsion divisors in the Jacobian of the (randomly chosen) curve C:

y2 = x5 + 67412365472663169119085380769732137727x4

+132706051439871719391705031627238584248x3

+150906984006321211274278480789580538770x2

+5602222826077482782805347307759926224x
+157456212652423046465778673243920804193.

over Fp with p = 2127−1 (this 127 bit prime is the one used in the records described in [10]).
Once these divisors are known, they are used to compute the cardinality of the Jacobian
J of C modulo 2k (more exactly, we compute the image modulo 2k of the characteristic
polynomial of the Frobenius endomorphism on J); this last step is not detailed here, we will
refer to it as the search step.

In Table 2, the degree ek is the degree of the field extension over which the successive
divisors are defined. There are two main rows: the first one gives the timings for computing
all required square roots (which give us the required 2k-torsion divisors); the second row gives
the timing for the search step, which involves arithmetic operations in the current extension
of Fp. For a more precise profiling, each of the two main rows is divided into three subrows
labelled with I, II, and III: I denotes the original Gaudry and Schost implementation [10];
II and III denote the same implementation but using the algorithm in [6] and the one in
Section 2.5 respectively. All square root algorithms in this table are probabilistic.

In previous implementations, square root computation was a clear bottleneck; with our
new algorithm, it has now become a minor component of the running time.

index 2k
26 27 28 29 210 211 212 213 214 215 216 217

degree ek 25 26 27 28 29 210 211 212 213 214 215 216

square
roots

I 0.2 0.4 1.2 3.5 11 33 109 365 1262 4466 16246 60689
II 0.2 0.5 1.2 2.9 8 23 73 232 734 2309 7368 23604
III 0.1 0.2 0.5 1.1 2 5 11 25 53 114 246 523

search step
I 0.5 1.1 2.8 6.5 14 32 73 164 368 816 2020 4827
II 0.4 1.0 2.3 5.4 12 27 62 139 309 657 1609 3740
III 0.4 0.9 2.0 4.5 11 24 53 119 267 598 1402 3297

Table 2: Timings for lifting 2k-torsion

References

[1] A. Bostan, M. F. I. Chowdhury, J. van der Hoeven, and É. Schost. Homotopy
methods for multiplication modulo triangular sets. Journal of Symbolic Computation,
46(12):1378–1402, 2011.

[2] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series.
Journal of the Association for Computing Machinery, 25(4):581–595, 1978.

10

[3] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica, 28(7):693–701, 1991.

[4] M. Cipolla. Un metodo per la risoluzione della congruenza di secondo grado. Napoli
Rend., 9:153–163, 1903.

[5] L. De Feo and É. Schost. Fast arithmetics in Artin-Schreier towers over finite fields.
Journal of Symbolic Computation, 47(7):771–792, 2012.

[6] J. Doliskani and É. Schost. Taking roots over high extensions of finite fields. Mathematics
of Computation, 2012. To appear.

[7] W. Feng, Y. Nogami, and Y. Morikawa. A fast square root computation using the
Frobenius mapping. In Information and Communications Security, volume 2836 of
Lecture Notes in Computer Science, pages 1–10. Springer, 2003.

[8] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, second edition, 2003.

[9] J. von zur Gathen and V. Shoup. Computing Frobenius maps and factoring polynomials.
Comput. Complexity, 2(3):187–224, 1992.

[10] P. Gaudry and É. Schost. Genus 2 point counting over prime fields. Journal of Symbolic
Computation, 47(4):368 – 400, 2012.

[11] E. Kaltofen and V. Shoup. Fast polynomial factorization over high algebraic extensions
of finite fields. In ISSAC’97, pages 184–188. ACM, 1997.

[12] K. S. Kedlaya and C. Umans. Fast polynomial factorization and modular composition.
SIAM J. Computing, 40(6):1767–1802, 2011.

[13] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer-Verlag, New
York, third edition, 2002.

[14] R. Schoof. Elliptic curves over finite fields and the computation of square roots mod p.
Mathematics of Computation, 44:483–494, 1985.

[15] D. Shanks. Five number-theoretic algorithms. In Proceedings of the Second Manitoba
Conference on Numerical Mathematics, pages 51–70, 1972.

[16] V. Shoup. A library for doing number theory (NTL). http://www.shoup.net/ntl/.

[17] V. Shoup. Fast construction of irreducible polynomials over finite fields. Journal of
Symbolic Computation, 17(5):371–391, 1994.

[18] A. Tonelli. Bemerkung über die Auflösung quadratischer Congruenzen. Göttinger
Nachrichten, pages 344–346, 1891.

[19] Feng Wang, Yasuyuki Nogami, and Yoshitaka Morikawa. An efficient square root com-
putation in finite fields GF (p2

d
). IEICE Trans. Fundam. Electron. Commun. Comput.

Sci., E88-A(10):2792–2799, October 2005.

11

