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ABSTRACT
We propose a new randomized algorithm for multiplication in the

ring of non-commutative polynomials K[𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩,
where 𝛿𝑖 = 𝑥𝑖

𝜕
𝜕𝑥𝑖

, dedicated to sparse inputs. The complexity of our

algorithm is polynomial in the input size and in an a priori sparsity
bound for the output.

CCS CONCEPTS
• Computing methodologies → Symbolic and algebraic algo-
rithms.
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Sparse multiplication, Linear differential operators, Sparse polyno-
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1 INTRODUCTION
Multiplication in a (commutative) polynomial algebra A[𝑥], for
a ring A, has been intensively studied; the best general result to

date is Cantor and Kaltofen’s FFT multiplication algorithm, which

computes the product of two polynomials of degree 𝑑 inA[𝑥] using
𝑂 (𝑑 log𝑑 log log𝑑) operations in A [6].

The question of multiplying sparse commutative polynomials,

and the related problem of sparse interpolation, have also seen

considerable interest recently, both in theory and in practice; see

for instance [1, 13–15], as well as the recent survey [21] on the

state of the art in sparse polynomial computations. Sparse multi-

variate polynomial interpolation will play an important role in the

framework of this paper.

We recently presented an algorithm for the multiplication of

sparse skew polynomials, that is, polynomials with coefficients in
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a field K, subject to the commutation rule 𝑥𝑐 = 𝜎 (𝑐)𝑥 for 𝑐 in K,
for a certain automorphism 𝜎 of K [11]. The techniques were in

part inspired by an algorithm by Caruso and Le Borgne for the

multiplication of dense skew polynomials [7].

In this paper, we turn our attention to the multiplication of sparse

differential operators; precisely, we work in the non-commutative

ring K[𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩, for some field K, where for all 𝑖 the
symbols 𝑥𝑖 and 𝛿𝑖 are subject to the commutation relation 𝛿𝑖𝑥𝑖 =

𝑥𝑖𝛿𝑖 + 𝑥𝑖 (all other pairs commute). In other words, 𝛿𝑖 is meant to

represent the Euler operator 𝑥𝑖 𝜕/𝜕𝑥𝑖 .
Our algorithm is based on an evaluation-interpolation scheme

which was first introduced by van der Hoeven [12] in the dense

univariate case. The key idea of van der Hoeven’s algorithm is to

evaluate linear differential operators at powers of 𝑥 . He proved

that the evaluations needed for the algorithm can be obtained by

computing the product of two matrices; as a result, in the univariate

case, multiplication of two linear differential operators of degree 𝑑

in 𝑥 and degree 𝑑 in 𝛿 can be reduced to 𝑑 ×𝑑 matrix multiplication.

In 2008, Bostan, Chyzak and Le Roux [5] proved that the converse

statement is also true in characteristic zero: they showed that matrix

multiplication in size 𝑑 × 𝑑 reduces to the product of two operators

of bidegree at most (𝑑,𝑑) in (𝑥, 𝛿).
In this paper, we rely on “soft-Oh" notation: 𝑂∼ (𝜙) := 𝑂 (𝜙 ·

polylog(𝜙)), for any function𝜙 , where polylogmeans log
𝑐
for some

fixed 𝑐 > 0. Going beyond the “square” case, in 2012, Benoit, Bostan

and van der Hoeven [4] gave a quasi-optimal multiplication algo-

rithm for linear differential operators. They showed that over a field

K of characteristic zero, operators in K[𝑥, 𝜕] of bidegree less than
(𝑑, 𝑟 ) in (𝑥, 𝜕) can be multiplied using 𝑂∼ (𝑑𝑟 min(𝑑, 𝑟 )𝜔−2) opera-
tions in K. Here 𝑥 and 𝜕 satisfy the commutation rule 𝜕𝑥 = 𝑥𝜕 + 1

(so that 𝜕 stands for differentiation with respect to 𝑥 ) and 𝜔 is such

that square matrix multiplication in K𝑠×𝑠 can be done in 𝑂 (𝑠𝜔 )
operations in K; the best known value to date is 𝜔 ≤ 2.373 [8, 10].

In many cases, in practice, linear operators or their products are

sparse, in the sense that the number of non-zero terms is small

compared to the maximal possible support in a given bidegree.

Hence, in this paper, our question is the following. We consider

two linear differential operators 𝐴, 𝐵 in K[𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩,
and assume 𝐴, 𝐵 are stored in the sparse representation, i.e. only
storing the non-zero terms. Given an upper bound on the sparsity

of the product 𝑃 = 𝐴𝐵, how to compute this product, in the sparse

representation?

Many results in this paper can be established over an arbitrary

field K, with a few restrictions on its size and characteristic (K
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should have sufficiently many elements and characteristic zero, or

large enough; this is explained in detail in the next sections).

The key of this paper is to use differentiation to “embed” the

exponents into the field of coefficients. The idea of differentiation

comes from [2, 16]; that of embedding the exponents in K is from

[1, 14]. We will write our operators as

𝑃 =

𝑇𝑃∑︁
𝑖=1

𝑝𝑖𝑿
𝒅𝑖
𝚫
𝒓𝑖

(1)

with all coefficients 𝑝𝑖 in K
∗
, using the symbols 𝒅𝑖 = (𝑑𝑖,1, . . . , 𝑑𝑖,𝑛),

𝒓𝑖 = (𝑟𝑖,1, . . . , 𝑟𝑖,𝑛) and

𝑿𝒅𝑖
𝚫
𝒓𝑖 = 𝑥

𝑑𝑖,1
1

· · · 𝑥𝑑𝑖,𝑛𝑛 𝛿
𝑟𝑖,1
1

· · · 𝛿𝑟𝑖,𝑛𝑛 .

If, in the expression above, we have𝑑𝑖, 𝑗 < 𝑑 and 𝑟𝑖, 𝑗 < 𝑟 throughout,

for some integers 𝑑 and 𝑟 , we say 𝑃 has bidegree less than (𝑑, 𝑟 ).
The quantity 𝑇𝑃 directly controls the memory requirements for

storing 𝑃 in sparse representation, which involves storing a list of

the 𝑇𝑃 pairs of non-zero coefficients 𝑝𝑖 and corresponding expo-

nents (𝒅𝑖 , 𝒓𝑖 ). Since each exponent (𝒅𝑖 , 𝒓𝑖 ) occupies 𝑂 (𝑛 log(𝑟𝑑))
bits, storing 𝑃 in this manner involves a list of 𝑇𝑃 elements in K
and 𝑂 (𝑇𝑃 𝑛 log(𝑟𝑑)) bits.

Collecting all terms with same exponent in𝑿 , we can also define

polynomials 𝑃𝒅 as follows: for 𝒅 in [0, 𝑑)𝑛 , write

𝑃𝒅 =
∑︁

𝑖∈{1,...,𝑇𝑃 } s.t. 𝒅𝑖=𝒅
𝑝𝑖𝒁

𝒓𝑖 ∈ K[𝑧1, . . . , 𝑧𝑛], (2)

where 𝑧1, . . . , 𝑧𝑛 are commutative variables (that will be used as

placeholders for 𝛿1, . . . , 𝛿𝑛), and where we write 𝒁𝒓 = 𝑧
𝑟1
1
· · · 𝑧𝑟𝑛𝑛 as

above. Only finitely many such polynomials are non-zero; we write

them 𝑃𝒅1
, . . . , 𝑃𝒅𝜌

, for some integer 𝜌 (all 𝒅𝑖 being taken pairwise

distinct). It follows that we can write

𝑃 =

𝜌∑︁
𝑘=1

𝑿𝒅𝑘𝑃𝒅𝑘 (𝛿1, . . . , 𝛿𝑛). (3)

This allows us to define the 𝛿-sparsity of 𝑃 as the number

𝜏 = max{#𝑃𝒅𝑘 | 1 ≤ 𝑘 ≤ 𝜌},

where #𝑃𝒅𝑘 denotes the number of non-zeros terms in 𝑃𝒅𝑘 . This

quantity will play an important role in the cost analyses of our

algorithms.

To give runtime estimates for algorithms over an abstract fieldK,
we will use a mixed algebraic / boolean complexity model, count-

ing both arithmetic operations in K and bit operations, the latter

originating mainly from exponent manipulations. However, the

algorithms rely on univariate polynomial root-finding over K, for
which no general complexity result is known, and may also require

extending K. Hence, for simplicity, in this introduction, we present

our results for finite K only, that is, for K = F𝑞 . In this case, since

all arithmetic operations in F𝑞 can be done in 𝑂∼ (log(𝑞)) bit oper-
ations, it is possible to forgo breaking down the cost in algebraic /

boolean parts, and only give the total cost in bit operations.

In the following theorem, 𝑇𝐴 and 𝑇𝐵 are the number of terms

in the sparse representation of the inputs 𝐴 and 𝐵. The algorithm

is randomized; we assume that we can obtain a random bit with

bit-cost 𝑂 (1).

Theorem 1.1. Let 𝑃,𝐴, 𝐵 be in F𝑞 [𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩, with
𝑃 = 𝐴𝐵, and suppose that the following holds:

• 𝑃,𝐴, 𝐵, have bidegree less than (𝑑, 𝑟 );
• 𝑟 ≤ char(F𝑞).

There is an algorithm that takes as input 𝐴, 𝐵 and an upper bound 𝜏
on the 𝛿-sparsity of 𝑃 , and returns 𝑃 = 𝐴𝐵 with probability at least
3

4
using an expected

𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log
2 (𝑟𝑑) log2 (𝑞))

bit operations.

Remark 1.2. The input size is 𝑂 (𝑛(𝑇𝐴 + 𝑇𝐵) log(𝑟𝑑) + (𝑇𝐴 +
𝑇𝐵) log(𝑞)) bits, so that the cost of our algorithm is polynomial in the
input size and linear in the bound 𝜏 .

In general, it is of course not obvious to give a sharp bound 𝜏 on

the 𝛿-sparsity of 𝑃 in advance. One situation where this might be

possible is when working with 𝐴, 𝐵 in Z[𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩.
In this case, we can compute 𝐴𝐵 using Chinese Remaindering

techniques, multiplying 𝐴 and 𝐵 modulo sufficiently many primes

𝑝1, 𝑝2, . . . For all but finitely many primes 𝑝 , 𝐴𝐵 mod 𝑝 has the

same number of terms as 𝐴𝐵, so after computing 𝐴𝐵 mod 𝑝1 (by

any other algorithm), we can use the 𝛿-sparsity of this product as a

bound for all others 𝐴𝐵 mod 𝑝𝑖 (of course, failure is possible, and

should be quantified).

We may also estimate the upper bound of 𝜏 using early termi-

nation as in [18], to probabilistically detect when we have enough

queries to interpolate the coefficients 𝑃𝒅𝑘 . This technique is simple

and efficient. As an alternative direction, it might be possible to

extend the approach used in Arnold and Roche’s “output sensitive”

algorithm for the multiplication of sparse commutative polynomi-

als [1]. Finally in the univariate case, that is, with 𝑛 = 1, we always

have the upper bound 𝜏 ≤ 𝑟 + 1. In this case, the runtime of our

algorithm is an expected𝑂∼ (𝑟𝑇𝐴𝑇𝐵 log
2 (𝑑) log2 (𝑞)) bit operations.

Table 1 gives a comparison of our results with other multiplica-

tion algorithms in the univariate case. Note that the costs of other

algorithms are counting arithmetic operations in fields of charac-

teristic zero, whereas ours is measured in boolean complexity over

a finite field.

Table 1: A “soft-Oh" comparison of multiplication

Algorithm Complexity

Iterative schemes [5] 𝑑𝑟 min(𝑑, 𝑟 )
Takayama [5] 𝑑𝑟 min(𝑑, 𝑟 )

van der Hoeven (𝑑 = 𝑟 ) [12] 𝑑𝜔

Benoit-Bostan-van der Hoeven [4] 𝑑𝑟 min(𝑑, 𝑟 )𝜔−2

Naive sparse 𝑟𝑇𝐴𝑇𝐵
This paper (𝜏 is known) 𝜏𝑇𝐴𝑇𝐵 log

2 (𝑟𝑑) log2 (𝑞)

Organization of the paper. In Section 2, we first present a sparse

interpolation algorithm over the commutative polynomial ring

K[𝑧1, . . . , 𝑧𝑛]. It is inspired by Prony’s algorithm, but bypasses dis-

crete logarithms, at the cost of a slightly more extensive input. In

Section 3, we use this result to design an interpolation algorithm for

sparse linear differential operators in K[𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩. In
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Section 4, combining the interpolation algorithm of Section 3 and

fast evaluation techniques, we propose our sparse multiplication al-

gorithm for linear differential operators inK[𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩;
we also briefly discuss its extension to polynomials involving shift

operators.

Conventions. As we said above, most algorithms in this paper

are written in a mixed algebraic / boolean complexity model, over

an abstract field K.
As usual, all operations +,−,× in K have unit cost. We will also

use (sometimes implicitly) the following operations: converting

𝑎 ∈ Z into its canonical image 𝜑 (𝑎) = 1 + · · · + 1 (𝑎 times) ∈ K,
and conversely taking 𝑏 in Im(𝜑) and return its canonical preimage

𝜓 (𝑏) in Z (if K has positive characteristic 𝑝 , we take𝜓 (𝑏) in [0, 𝑝)).
By convention, computing 𝜑 (𝑎) will take 1 operation in K and

𝑂 (log( |𝑎 |)) bit operations; computing 𝜓 (𝑏) will take 1 operation
in K and 𝑂 (log( |𝜓 (𝑏) |)) bit operations.

Given 𝒃 = (𝑏1, . . . , 𝑏𝑛) in K𝑛 and 𝒅 = (𝑑1, . . . , 𝑑𝑛) in N𝑛 , we will
write 𝒃𝒅 = 𝑏

𝑑1
1

· · ·𝑏𝑑𝑛𝑛 ∈ K. If 𝑑𝑖 ≤ 𝑑 holds for all 𝑖 , we can compute

𝒃𝒅 in 𝑂 (𝑛 log(𝑑)) operations in K and 𝑂 (𝑛 log(𝑑)) bit operations.
For 𝒃 as above and 𝑑 in N, we will write 𝒃𝑑 = (𝑏𝑑

1
, . . . , 𝑏𝑑𝑛) ∈ K𝑛 ;

it can be computed in 𝑂 (𝑛 log(𝑑)) operations in K, and the same

number of bit operations.

Acknowledgements. We thank the reviewers for their very helpful

remarks.

2 A MODIFIED PRONY ALGORITHM BASED
ON DERIVATIVES

We first consider the problem of interpolating sparse, commutative

polynomials in variables 𝑧1, . . . , 𝑧𝑛 . Consider a polynomial

𝑓 =

𝑡∑︁
𝑘=1

𝑓𝑘𝒁
𝒆𝑘 ∈ K[𝑧1, . . . , 𝑧𝑛] (4)

with 𝑓𝑘 in K∗ for all 𝑘 , where 𝒆𝑘 = (𝑒𝑘,1, . . . , 𝑒𝑘,𝑛) are pairwise

distinct integer vectors and where we write 𝒁𝒆𝑘 = 𝑧
𝑒𝑘,1
1

· · · 𝑧𝑒𝑘,𝑛𝑛

for all 𝑘 . Assuming that we are given access the values of 𝑓 and

of its derivatives at suitable points in the base field, we show how

to reconstruct the sparse representation of 𝑓 , that is, compute all

exponents 𝒆𝑘 and coefficients 𝑓𝑘 .

Prony’s algorithm [9], see also [3], makes this possible through

the use of linear system solving, univariate polynomial root-finding

and discrete logarithm extraction. In this section, we introduce a

variant of this algorithm that forgoes discrete logarithms, at the

expense of slightly stronger assumptions. We use this algorithm

in the following sections; the underlying idea is further developed

in [17].

Definition 2.1. A point 𝒃 in K𝑛 is a good point for 𝑓 as in (4) if
for all 𝑖 ≠ 𝑗 in {1, . . . , 𝑡} we have 𝒃𝒆𝑖 ≠ 𝒃𝒆 𝑗 .

Let then 𝑓 be as above, and assume that the following holds:

• the characteristic of K is greater than deg𝑧𝑖
(𝑓 ) for all 𝑖 ,

• we are given a good point 𝒃 = (𝑏1, . . . , 𝑏𝑛) ∈ K𝑛 for 𝑓 ,

• we are given a bound 𝜏 on the number of terms of 𝑓 , that is,

such that the inequality 𝑡 ≤ 𝜏 holds.

Using the notation 𝒃 𝑗 = (𝑏 𝑗
1
, . . . , 𝑏

𝑗
𝑛) introduced before, define

𝑎 𝑗 = 𝑓 (𝒃 𝑗 ), 𝑗 = 0, . . . , 2𝜏 − 1,

ℎ𝑖, 𝑗 =
𝜕𝑓

𝜕𝑧𝑖
(𝒃 𝑗 ), 𝑖 = 1, . . . , 𝑛, 𝑗 = 0, . . . , 𝜏 − 1.

Let us further write 𝑣𝑘 = 𝒃𝒆𝑘 = 𝑏
𝑒𝑘,1
1

· · ·𝑏𝑒𝑘,𝑛𝑛 , for 𝑘 = 1, . . . , 𝑡 . Then

the values 𝑎 𝑗 are given by

𝑎 𝑗 = 𝑓 (𝒃 𝑗 ) =
𝑡∑︁

𝑘=1

𝑓𝑘𝑣
𝑗

𝑘
. (5)

For𝑘 ≥ 1, define the 𝑘×𝑘 matrix𝑀𝑘 = (𝑎𝑖+𝑗 )0≤𝑖, 𝑗<𝑘 . The following
property of𝑀𝑘 is well-known.

Lemma 2.2. For 𝑘 ≥ 𝑡 ,𝑀𝑘 has rank 𝑡 .

Proof. This follows from the following factorization of𝑀𝑘 as a

product of square matrices, valid for 𝑘 ≥ 𝑡 :

𝑀𝑘 =

©­­­­­­«

1 1 · · · 1 0 · · ·
𝑣
1

𝑣
2

· · · 𝑣𝑡 0 · · ·
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

𝑣𝑘−1
1

𝑣𝑘−1
2

· · · 𝑣𝑘−1𝑡 0 · · ·

ª®®®®®®¬
·

©­­­­­­­­­­­«

𝑓
1

0 · · · · · · · · · · · ·
0 𝑓

2
0 · · · · · · · · ·
.
.
.

0 · · · · · · 𝑓𝑡 0 · · ·
0 · · · · · · · · · 0 · · ·
.
.
.

.

.

.

ª®®®®®®®®®®®¬

©­­­­­­­­­­«

1 𝑣
1

· · · 𝑣𝑘−1
1

1 𝑣
2

· · · 𝑣𝑘−1
2

.

.

.

.

.

. · · ·
.
.
.

1 𝑣𝑡 · · · 𝑣𝑘−1𝑡
0 0 · · · 0

0 0 · · · 0

ª®®®®®®®®®®¬
.

□

Define the term locator polynomial Λ(𝑧) as

Λ(𝑧) =
𝑡∏

𝑘=1

(𝑧 − 𝑣𝑘 ) = 𝑧𝑡 + 𝜆𝑡−1𝑧𝑡−1 + · · · + 𝜆1𝑧 + 𝜆0 .

Suppose that 𝑡 is known. As in the usual Prony algorithm, we can

compute the coefficients 𝜆𝑖 by solving the linear system

𝑀𝑡

©­­­­«
𝜆0
𝜆1
.
.
.

𝜆𝑡−1

ª®®®®¬
=

©­­­­«
𝑎𝑡
𝑎𝑡+1
.
.
.

𝑎2𝑡−1

ª®®®®¬
. (6)

OnceΛ is known, its roots give us the values 𝑣𝑘 . Then, using the first

𝑡 evaluations of 𝑓 , we get the following transposed Vandermonde

system for the coefficients of 𝑓 :

©­­­­«
1 1 · · · 1

𝑣1 𝑣2 · · · 𝑣𝑡
.
.
.

.

.

.
. . .

.

.

.

𝑣𝑡−1
1

𝑣𝑡−1
2

· · · 𝑣𝑡−1𝑡

ª®®®®¬
©­­­­«

𝑓1
𝑓2
.
.
.

𝑓𝑡

ª®®®®¬
=

©­­­­«
𝑎0
𝑎1
.
.
.

𝑎𝑡−1

ª®®®®¬
(7)

It remains to recover the exponents of 𝑓 . We will do it using the

following lemma, where we use the values of the partial derivatives

of 𝑓 , rather than relying on discrete logarithms.

Lemma 2.3. For 𝑖 = 1, . . . , 𝑛 and 𝑗 = 0, . . . , 𝜏 − 1, we have

𝑏
𝑗
𝑖
ℎ𝑖, 𝑗 =

𝑡∑︁
𝑘=1

𝑓𝑘𝑒𝑘,𝑖𝑣
𝑗

𝑘
.
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Proof. As

𝑓 =

𝑡∑︁
𝑘=1

𝑓𝑘𝒁
𝒆𝑘 ,

we have

𝑧𝑖
𝜕𝑓

𝜕𝑧𝑖
=

𝑡∑︁
𝑘=1

𝑓𝑘𝑒𝑘,𝑖𝒁
𝒆𝑘 .

It follows that after evaluation at 𝒃 𝑗 = (𝑏 𝑗
1
, . . . , 𝑏

𝑗
𝑛), we obtain

𝑏
𝑗
𝑖
ℎ𝑖, 𝑗 =

∑𝑡
𝑘=1

𝑓𝑘𝑒𝑘,𝑖𝑣
𝑗

𝑘
, as claimed. □

For a fixed 𝑖 in 1, . . . , 𝑛, this lemma gives the equality

©­­­­­«
1 1 · · · 1

𝑣1 𝑣2 · · · 𝑣𝑡
.
.
.

.

.

.
. . .

.

.

.

𝑣𝑡−1
1

𝑣𝑡−1
2

· · · 𝑣𝑡−1𝑡

ª®®®®®¬
©­­­­­«

𝑓1𝑒1,𝑖

𝑓2𝑒2,𝑖
.
.
.

𝑓𝑡𝑒𝑡,𝑖

ª®®®®®¬
=

©­­­­­«
𝑏0
𝑖
ℎ𝑖,0

𝑏1
𝑖
ℎ𝑖,1
.
.
.

𝑏𝑡−1
𝑖

ℎ𝑖,𝑡−1

ª®®®®®¬
. (8)

Thus, the coefficients 𝑓𝑘 and 𝑓𝑘𝑒𝑘,𝑖 are computed by solving the

systems (7) and (8); the exponents 𝑒𝑘,𝑖 , for 𝑘 = 1, . . . , 𝑡 are deduced

by division. Note that this procedure gives us the canonical image

𝜀𝑘,𝑖 = 𝜑 (𝑒𝑘,𝑖 ) in K (using the notation introduced in the discus-

sion at the end of the introduction). Under our assumption on the

characteristic of the base field, this allows us to recover the inte-

gers 𝑒𝑘,𝑖 = 𝜓 (𝜀𝑘,𝑖 ) themselves (the notation 𝜓 as well is from the

introduction).

In what follows, we assume that a root-finding algorithm is avail-

able for polynomials in K[𝑧], and we write RK (𝑡) for the expected
cost of root-finding for a polynomial of degree 𝑡 in K[𝑧] (we use
expected run-time here, since over finite fields, the fastest known

algorithms are Las Vegas).

Algorithm 2.4 (MPA - Modified Prony algorithm).

Input:
• a bound 𝜏 for the number of terms of 𝑓 as in (4)

• the values 𝑎 𝑗 = 𝑓 (𝒃 𝑗 ), for 𝑗 = 0, . . . , 2𝜏 − 1, for some 𝒃 in K𝑛

• the values ℎ𝑖, 𝑗 =
𝜕𝑓
𝜕𝑧𝑖

(𝒃 𝑗 ), for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 0, . . . , 𝜏 − 1.

Output: the polynomial 𝑓 =
∑𝑡
𝑘=1

𝑓𝑘𝑧
𝑒𝑘,1
1

· · · 𝑧𝑒𝑘,𝑛𝑛

(1) Find the rank 𝑡 of the matrix 𝑀𝜏 and solve equation (6) to

get the coefficients of the term locator polynomial Λ(𝑧).
(2) Find the roots 𝑣1, . . . , 𝑣𝑡 of Λ(𝑧).
(3) Find the coefficients 𝑓1, . . . , 𝑓𝑡 by solving the transposed Van-

dermonde system (7).

(4) For 𝑖 = 1, . . . , 𝑛, solve the transposed Vandermonde system

(8); let 𝐹1,𝑖 , . . . , 𝐹𝑡,𝑖 be the solutions

(5) For 𝑖 = 1, . . . , 𝑛 and 𝑘 = 1, . . . , 𝑡 , compute 𝜀𝑘,𝑖 = 𝐹𝑘,𝑖/𝑓𝑘 and

𝑒𝑘,𝑖 = 𝜓 (𝜀𝑘,𝑖 ) ∈ Z.
(6) Return

∑𝑡
𝑘=1

𝑓𝑘𝑧
𝑒𝑘,1
1

· · · 𝑧𝑒𝑘,𝑛𝑛 .

Proposition 2.5. Suppose that all partial degrees deg𝑧𝑖 (𝑓 ) satisfy
deg𝑧𝑖

(𝑓 ) < 𝑟 . If K has characteristic at least 𝑟 and if 𝒃 is a good
point for 𝑓 , Algorithm 2.4 returns 𝑓 using 𝑂∼ (𝑛𝜏) operations in K,
𝑂∼ (𝑛𝜏 log(𝑟 )) bit operations, and an additional cost RK (𝜏).

Proof. Since 𝑀𝜏 a Hankel matrix, we can find its rank 𝑡 us-

ing 𝑂∼ (𝜏) operations in K [19, Section 4]; then, we solve Eq. (6)

in time 𝑂∼ (𝑡) (ibid.) By definition, root-finding to compute all

𝑣1, . . . , 𝑣𝑡 costs RK (𝑡). Solving all transposed Vandermonde systems

takes𝑂∼ (𝑛𝑡) K-operations [19]; computing all 𝑒𝑘,𝑖 takes𝑂
∼ (𝑛𝑡) K-

operations and 𝑂 (𝑛𝑡 log(𝑟 )) bit operations. Using the upper bound

𝑡 ≤ 𝜏 , we obtain the claimed costs. □

Prony’s algorithm computes the exponents 𝑒𝑘,𝑖 from 𝑣1, . . . , 𝑣𝑡 ,

for which no non-trivial algorithms are known over general fields.

IfK is finite, dedicated algorithms exist, see [20] for the most recent

result to date, and references therein.

Algorithm 2.4 needs 𝒃 to be a good point for 𝑓 , but unless we

already know all the monomials of 𝑓 , we don’t know how to quickly

verify whether it is the case. As usual, we may overcome this prob-

lem by random selection; we discuss this in a slightly more general

context in the last section.

3 INTERPOLATION OF LINEAR
DIFFERENTIAL OPERATORS

Let thus 𝑃 ∈ K[𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩ be a linear operator, which
we write as in the introduction as

𝑃 =

𝑇𝑃∑︁
𝑗=1

𝑝 𝑗𝑿
𝒅 𝑗
𝚫
𝒓 𝑗

(9)

with all coefficients 𝑝 𝑗 in K
∗
. Recall that we also wrote

𝑃 =

𝜌∑︁
𝑘=1

𝑿𝒅𝑘𝑃𝒅𝑘 (𝛿1, . . . , 𝛿𝑛), (10)

for some polynomials 𝑃𝒅1
, . . . , 𝑃𝒅𝜌

in K[𝑧1, . . . , 𝑧𝑛].
The idea of our main algorithm is to combine van der Hoeven’s

approach with Prony’s algorithm. In this section, we give an algo-

rithm for the sparse interpolation of such a differential operator,

based on the modified version of Prony’s algorithm from the pre-

vious section; this will be done by applying this algorithm to all

polynomial coefficients 𝑃𝒅𝑘 as given above. We start by defining

an operation of evaluation of linear operators at points in K𝑛 .

Definition 3.1. Let 𝑃 be in K[𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩ as in (9)

and let 𝒃 be in K𝑛 . We define the evaluation of 𝑃 at the point 𝒃 as

𝑃 (𝒃) =
𝑇𝑃∑︁
𝑗=1

𝑝 𝑗𝒃
𝒓 𝑗𝑿𝒅 𝑗

=

𝜌∑︁
𝑘=1

𝑃𝒅𝑘 (𝒃)𝑿
𝒅𝑘 ∈ K[𝑥1, . . . , 𝑥𝑛] . (11)

The commutation rule 𝛿 𝑗𝑥 𝑗 = 𝑥 𝑗𝛿 𝑗 + 𝑥 𝑗 implies that 𝛿𝑖
𝑗
(𝑥𝑏

𝑗
) =

𝑏𝑖𝑥𝑏
𝑗
, so Definition 3.1 of evaluation of 𝑃 at the point 𝒃 is natural

for 𝒃 ∈ N𝑛 , as it describes the application of 𝑃 to 𝑥
𝑏1
1

· · · 𝑥𝑏𝑛𝑛 .

Since we want to use our modified Prony algorithm, we also

need access to the values of the derivatives of the polynomials 𝑃𝒅𝑘 .

This will be done through the following operation of differentiation

of linear operators.

Definition 3.2. Let 𝑃 be in K[𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩ as in (9).
For 𝑖 = 1, . . . , 𝑛, we define the 𝑖-derivative 𝜕𝑃

𝜕𝛿𝑖
of 𝑃 as

𝜕𝑃

𝜕𝛿𝑖
=

𝑇𝑃∑︁
𝑗=1

𝑟 𝑗,𝑖𝑝 𝑗𝑿
𝒅 𝑗
𝚫
𝒓 𝑗−𝑰𝑖 ,
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where 𝑰𝑖 = (0, . . . , 0, 1, 0, . . . , 0) is the 𝑖-th unit vector (if 𝑟 𝑗,𝑖 = 0,
𝑟 𝑗,𝑖𝑿𝒅 𝑗

𝚫
𝒓 𝑗−𝑰𝑖 is zero as well).

The following property will be useful in the next section.

Lemma 3.3. Let 𝑃,𝑄, 𝑅 be in K[𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩ and 𝑖 be in
1, . . . , 𝑛. Then

• if 𝑃 = 𝑄 + 𝑅, then 𝜕𝑃
𝜕𝛿𝑖

=
𝜕𝑄

𝜕𝛿𝑖
+ 𝜕𝑅

𝜕𝛿𝑖
,

• if 𝑃 = 𝑄𝑅, then 𝜕𝑃
𝜕𝛿𝑖

=
𝜕𝑄

𝜕𝛿𝑖
𝑅 +𝑄 𝜕𝑅

𝜕𝛿𝑖
.

Proof. Additivity is clear. To prove the second property, by

additivity, it suffices to show that it holds for 𝑄 = 𝑿𝒅1
𝚫
𝒓1

and

𝑅 = 𝑿𝒅2
𝚫
𝒓2
, with 𝒅𝑘 = (𝑑𝑘,1, . . . , 𝑑𝑘,𝑛) and 𝒓𝑘 = (𝑟𝑘,1, . . . , 𝑟𝑘,𝑛) for

𝑘 = 1, 2. For any index 𝑖 , 𝑥𝑖 and 𝛿𝑖 satisfy the relations

𝛿ℓ𝑖 𝑥
𝑗
𝑖
= 𝑥

𝑗
𝑖
(𝛿𝑖 + 𝑗)ℓ for ℓ, 𝑗 ∈ N. (12)

It follows that

𝑃 = 𝑄𝑅

= 𝑿𝒅1
𝚫
𝒓1𝑿𝒅2

𝚫
𝒓2

= 𝑿𝒅1𝑿𝒅2 (∆ + d2)𝒓1𝚫𝒓2
;

from this, our definition gives

𝜕𝑃

𝜕𝛿𝑖
= 𝑟1,𝑖𝑿

𝒅1+𝒅2 (𝚫 + 𝒅2)𝒓1−𝑰𝑖𝚫𝒓2 + 𝑟2,𝑖𝑿𝒅1+𝒅2 (𝚫 + 𝒅2)𝒓1𝚫𝒓2−𝑰𝑖 .

Note that if 𝑟1,𝑖 or 𝑟2,𝑖 vanishes, some exponents in this expres-

sion are negative (but the corresponding terms vanish, as they are

multiplied by 𝑟1,𝑖 , resp. 𝑟2,𝑖 , as in Definition 3.2). Now we compute

𝜕𝑄

𝜕𝛿𝑖
𝑅 +𝑄 𝜕𝑅

𝜕𝛿𝑖
:

𝜕𝑄

𝜕𝛿𝑖
𝑅 +𝑄 𝜕𝑅

𝜕𝛿𝑖

= 𝑟1,𝑖𝑿
𝒅1
𝚫
𝒓1−𝑰𝑖𝑿𝒅2

𝚫
𝒓2 + 𝑟2,𝑖𝑿𝒅1

𝚫
𝒓1𝑿𝒅2

𝚫
𝒓2−𝑰𝑖

= 𝑟1,𝑖𝑿
𝒅1+𝒅2 (𝚫 + 𝒅2)𝒓1−𝑰𝑖𝚫𝒓2 + 𝑟2,𝑖𝑿𝒅1+𝒅2 (𝚫 + 𝒅2)𝒓1𝚫𝒓2−𝑰𝑖 ,

where the second equality is due to (12). The conclusion follows. □

Starting from the expression 𝑃 =
∑𝜌

𝑘=1
𝑿𝒅𝑘𝑃𝒅𝑘 (𝛿1, . . . , 𝛿𝑛) of (10),

we obtain

𝜕𝑃

𝜕𝛿𝑖
=

𝜌∑︁
𝑘=1

𝑿𝒅𝑘
𝜕𝑃𝒅𝑘

𝜕𝑧𝑖
(𝛿1, . . . , 𝛿𝑛) .

In particular, in terms of evaluations, we get

𝜕𝑃

𝜕𝛿𝑖
(𝒃) =

𝜌∑︁
𝑘=1

𝜕𝑃𝒅𝑘

𝜕𝑧𝑖
(𝒃)𝑿𝒅𝑘 . (13)

We can now present our interpolation algorithm. As input, we

assume that we are given a bound 𝜏 on the 𝛿-sparsity of 𝑃 , that

is, such that all 𝑃𝒅𝑘 have at most 𝜏 non-zero terms; the algorithm

does not need 𝜌 as input, it is discovered through the procedure.

The number of terms𝑇𝑃 is bounded above by 𝜌𝜏 , so that the sparse

representation of 𝑃 uses 𝑂 (𝜌𝜏) elements of K and 𝑂 (𝑛𝜌𝜏 log(𝑟𝑑))
bits.

In order to recover 𝑃 , we interpolate all 𝑃𝒅𝑘 , using the algorithm

of the previous section; in particular, we need to know values of

these polynomials, as well as of their partial derivatives. Hence, we

assume that we are given the values

𝑃 (𝒃0), 𝑃 (𝒃1), . . . , 𝑃 (𝒃2𝜏−1),

as well as

𝜕𝑃

𝜕𝛿𝑖
(𝒃0), 𝜕𝑃

𝜕𝛿𝑖
(𝒃1), . . . , 𝜕𝑃

𝜕𝛿𝑖
(𝒃𝜏−1),

for all 𝑖 , where we write 𝒃 𝑗 = (𝑏 𝑗
1
, . . . , 𝑏

𝑗
𝑛) as before, for some 𝒃 in

K𝑛 . Note that these “values” are polynomials in K[𝑥1, . . . , 𝑥𝑛]; by
coefficient extraction, using (11) and (13), they give us the evalua-

tions of the polynomials 𝑃𝒅𝑘 and their derivatives.

Algorithm 3.4 (ILDO - Interpolation of linear differential

operators).

Input:
• a bound 𝜏 for the 𝛿-sparsity of 𝑃 ∈ K[𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩
• 2𝜏 evaluations 𝑃 (𝒃 𝑗 ) given in sparse representation, for 𝑗 =

0, . . . , 2𝜏 − 1, for some 𝒃 in K𝑛

• 𝑛𝜏 evaluations
𝜕𝑃
𝜕𝛿𝑖

(𝒃 𝑗 ) given in sparse representation, for

𝑖 = 1, . . . , 𝑛 and 𝑗 = 0, . . . , 𝜏 − 1.

Output: the sparse representation of 𝑃

Step 1: Let {𝒅1, . . . , 𝒅𝜌 } be the union of the exponent sets of

all 𝑃 (𝒃 𝑗 ), 𝑗 = 0, . . . , 2𝜏 − 1, so that we can write

𝑃 (𝒃 𝑗 ) = 𝑐 𝑗,1𝑿
𝒅1 + · · · + 𝑐 𝑗,𝜌𝑿𝒅𝜌 , 𝑗 = 0, . . . , 2𝜏 − 1.

We will show that we can write

𝜕𝑃

𝜕𝛿𝑖
(𝒃 𝑗 ) =𝑚𝑖, 𝑗,1𝑿

𝒅1 + · · · +𝑚𝑖, 𝑗,𝜌𝑿
𝒅𝜌 , 𝑗 = 0, . . . , 𝜏 − 1.

Step 2: Let 𝑃𝒅𝑘 = MPA(𝜏, [𝑐 𝑗,𝑘 | 𝑗 = 0, . . . , 2𝜏 − 1], [𝑚𝑖, 𝑗,𝑘 | 𝑖 =
1, . . . , 𝑛, 𝑗 = 0, . . . , 𝜏 − 1]), for 𝑘 = 1, . . . , 𝜌 .

Step 3: Return
∑𝜌

𝑘=1
𝑿𝒅𝑘𝑃𝒅𝑘 (𝛿1, . . . , 𝛿𝑛).

Proposition 3.5. Suppose that 𝑃 has bidegree less than (𝑑, 𝑟 ). If
K has characteristic at least 𝑟 and if 𝒃 is a good point for all 𝑃𝒅𝑘 , Algo-
rithm 3.4 returns 𝑃 using𝑂∼ (𝑛𝜌𝜏) operations inK,𝑂∼ (𝑛𝜏𝜌 log(𝑟𝑑))
bit operations, and an additional cost 𝜌RK (𝜏).

Proof. Write (temporarily) 𝑃 =
∑𝜎
𝑘=1

𝑿𝒆𝑘𝑃𝒆𝑘 (𝛿1, . . . , 𝛿𝑛), so
that for 𝑗 = 0, . . . , 2𝜏 −1, 𝑃 (𝒃 𝑗 ) = ∑𝜎

𝑘=1
𝑃𝒆𝑘 (𝒃 𝑗 )𝑿𝒆𝑘

. We now prove

that the union of exponent sets of all 𝑃 (𝒃 𝑗 ) is precisely {𝒆1, . . . , 𝒆𝜎 },
so that 𝜎 is indeed equal to the quantity 𝜌 computed in the algo-

rithm; this will also establish the claim made at Step 1 in the pseudo-

code on the derivatives of 𝑃 . The only non-trivial direction is to

observe that every 𝒆𝑘 shows up in the exponent set of at least one

𝑃 (𝒃 𝑗 ), that is, that not all 𝑃𝒆𝑘 (𝒃 𝑗 ) can vanish, for 𝑗 = 0, . . . , 2𝜏 − 1.

Since any 𝑃𝒆𝑘 has at most 𝜏 terms, this follows e.g. from the cor-

rectness of Prony’s algorithm.

From this, correctness of the algorithm follows, so we can focus

on its runtime. By assumption, all inputs 𝑃 (𝒃 𝑗 ) and 𝜕𝑃
𝜕𝛿𝑖

(𝒃 𝑗 ) have
degree less than𝑑 and at most 𝜌 terms. In particular, at Step 1, taking

the union of the exponent sets of all 𝑃 (𝒃 𝑗 ) takes 𝑂∼ (𝑛𝜏𝜌 log(𝑑))
bit operations.

By Proposition 2.5, each call to algorithm MPA takes 𝑂∼ (𝑛𝜏)
operations in K, 𝑂∼ (𝑛𝜏 log(𝑟 )) bit operations, as well as an extra

cost RK (𝜏); the conclusion follows. □



ISSAC’ 21, July 18–22, 2021, Saint Petersburg, Russia Giesbrecht, Huang and Schost

4 SPARSE MULTIPLICATION OF LINEAR
DIFFERENTIAL OPERATORS

We can now present our sparse multiplication algorithm for linear

differential operators. Given

𝐴 =

𝑇𝐴∑︁
𝑖=1

𝑎𝑖𝑿
𝒅𝑖
𝚫
𝒓𝑖

and 𝐵 =

𝑇𝐵∑︁
𝑖=1

𝑏𝑖𝑿
𝒆𝑖
𝚫

s𝑖
(14)

where all 𝑎𝑖 , 𝑏𝑖 are in K
∗
, and all 𝒅𝑖 , 𝒓𝑖 , 𝒆𝑖 , 𝒔𝑖 are vectors in N𝑛 , the

aim is to compute the product 𝑃 = 𝐴𝐵 in sparse representation.

This is done by evaluation and interpolation at the powers of a

point 𝒃 ∈ K𝑛 . The interpolation algorithmwas given in the previous

section; what remains is to determine the cost of computing the

required “values” (recall that these are actually polynomials in

K[𝑥1, . . . , 𝑥𝑛]). We start by computing the values of 𝑃 = 𝐴𝐵.

Proposition 4.1. Assume 𝐴, 𝐵 are given as in (14), and that 𝑃 =

𝐴𝐵 has bidegree less than (𝑑, 𝑟 ). Then, for 𝒃 in K𝑛 and 𝜏 in N>0, we
can compute 𝑃 (𝒃𝑘 ), for 𝑘 = 0, . . . , 2𝜏 − 1 using 𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟 ))
operations in K and 𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟𝑑)) bit operations.

Proof. For 1 ≤ 𝑖 ≤ 𝑇𝐴 and 1 ≤ 𝑗 ≤ 𝑇𝐵 , let 𝐴𝑖 = 𝑎𝑖𝑿𝒅𝑖
𝚫
𝒓𝑖

and

𝐵 𝑗 = 𝑏 𝑗𝑿𝒆 𝑗
𝚫
𝒔 𝑗
. Then, for 𝑘 ≥ 0,

𝑃 (𝒃𝑘 ) =
∑︁
𝑖, 𝑗

(𝐴𝑖𝐵 𝑗 ) (𝒃𝑘 ) .

Computing 𝒃𝑘 , for 𝑘 = 0, . . . , 2𝜏 − 1, costs 𝑂∼ (𝑛𝜏) K-operations.
Next, we analyze the cost of computing (𝐴𝑖𝐵 𝑗 ) (𝒃𝑘 ) for fixed 𝑖, 𝑗, 𝑘 .
Due to Eq. (12), we have

(𝐴𝑖𝐵 𝑗 ) (𝒃𝑘 ) = 𝑎𝑖𝑏 𝑗 (𝒃𝑘 )𝒔 𝑗 (𝒃𝑘 + 𝒆 𝑗 )𝒓𝑖𝑿𝒅𝑖+𝒆 𝑗 .

Computing (𝒃𝑘 )𝒔 𝑗 (𝒃𝑘 + 𝒆 𝑗 )𝒓𝑖 costs𝑂∼ (𝑛 log(𝑟 )) K-operations and
𝑂 (𝑛 log(𝑟𝑑)) bit operations. Computing the exponent 𝒅𝑖 + 𝒆 𝑗 costs
𝑂 (𝑛 log(𝑑)) bit operations, and multiplying by 𝑎𝑖𝑏 𝑗 costs an extra

𝑂 (1) K-operations.
Since there are 𝑇𝐴𝑇𝐵 pairs 𝐴𝑖 , 𝐵 𝑗 and 𝑂 (𝜏) exponents 𝑘 to con-

sider, the total cost is 𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟 )) operations in K, as well
as 𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟𝑑)) bit operations. □

Our interpolation algorithm also needs to know the values of the

derivatives of 𝑃 . The following elementary lemma will be useful.

Lemma 4.2. Let 𝒃 be in K𝑛 and 𝒓 = (𝑟1, . . . , 𝑟𝑛) in N𝑛 , with 𝑟𝑖 ≤ 𝑟

for all 𝑖 , for some 𝑟 in N. Then we can compute all 𝑟𝑖𝒃𝒓−𝑰𝑖 , for 𝑖 =
1, . . . , 𝑛, using𝑂∼ (𝑛 log(𝑟 )) operations inK, and the same asymptotic
number of bit operations (if 𝑟𝑖 = 0, then 𝑟𝑖𝒃𝒓−𝑰𝑖 is by definition 0 as
well).

Proof. Let𝑀𝑖 = 𝑟𝑖𝒃𝒓−𝑰𝑖 , for 𝑖 = 1, . . . , 𝑛. Without loss of gener-

ality, we can assume that 𝑟𝑖 > 0 for all 𝑖 (if 𝑟𝑖 = 0, then𝑀𝑖 = 0, and

𝑏𝑖 plays no role in the computation of the other𝑀𝑗 ’s).

If there are at least two zero elements in (𝑏1, . . . , 𝑏𝑛), then all𝑀𝑖

vanish, and we are done in this case.

Suppose that there exists one index, say 𝑘 , for which 𝑏𝑘 = 0.

For 𝑖 ≠ 𝑘 , 𝑀𝑖 = 0. For index 𝑘 , if 𝑟𝑘 > 1, then 𝑀𝑘 = 0 by defi-

nition, and we are done. Otherwise, 𝑟𝑘 = 1 and 𝑀𝑘 = 𝑟𝑘𝒃
𝒓−𝑰𝑘 =

𝑟𝑘𝑏
𝑟1
1
𝑏
𝑟2
2
· · ·𝑏𝑟𝑘−1

𝑘−1𝑏
𝑟𝑘+1
𝑘+1 · · ·𝑏𝑟𝑛𝑛 , and it can be computed in the pre-

scribed time.

Finally, suppose that no 𝑏𝑘 vanishes. We compute 𝑀 = 𝒃𝒓 =

𝑏
𝑟1
1
· · ·𝑏𝑟𝑛𝑛 in 𝑂∼ (𝑛 log(𝑟 )) operations in K, and the same number

of bit operations; then, we return all 𝑟𝑖𝑀/𝑏𝑖 , 𝑖 = 1, . . . , 𝑛. □

We can now analyze the cost of evaluating the derivatives of 𝑃 .

Proposition 4.3. Assume 𝐴, 𝐵 are given as in (14), and that
𝑃 = 𝐴𝐵 has bidegree less than (𝑑, 𝑟 ). Then, for 𝒃 in K𝑛 and 𝜏 in
N>0, we can compute 𝜕𝑃

𝜕𝛿𝑖
(𝒃𝑘 ), for 𝑖 = 1, . . . , 𝑛 and 𝑘 = 0, . . . , 𝜏 − 1

using 𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟 )) operations in K and 𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟𝑑))
bit operations.

Proof. As for Proposition 4.1, we can just consider one term in

each of𝐴 and 𝐵, respectively; without loss of generality, we consider

terms 𝐴1 = 𝑎𝑿𝒅
𝚫
𝒓
and 𝐵1 = 𝑏𝑿𝒆

𝚫
𝒔
, so 𝐴1𝐵1 = 𝑎𝑏𝑿𝒅

𝚫
𝒓𝑿𝒆

𝚫
𝒔
.

By Lemma 3.3, we have

𝜕(𝐴1𝐵1)
𝜕𝛿𝑖

=
𝜕𝐴1

𝜕𝛿𝑖
𝐵1 +𝐴1

𝜕𝐵1

𝜕𝛿𝑖
, 𝑖 = 1, . . . , 𝑛.

For 𝑖 in 1, . . . , 𝑛, this implies

𝜕(𝐴1𝐵1)
𝜕𝛿𝑖

(𝒃𝑘 ) =

𝑎𝑏𝑟𝑖 (𝒃𝑘 + 𝒆)𝒓−𝑰𝑖 (𝒃𝑘 )𝒔𝑿𝒅+𝒆 + 𝑎𝑏𝑠𝑖 (𝒃𝑘 + 𝒆)𝒓 (𝒃𝑘 )𝒔−𝑰𝑖𝑿𝒅+𝒆 .

Fix 𝑘 in 0, . . . , 𝜏 − 1. Then, by Lemma 4.2, it takes 𝑂∼ (𝑛 log(𝑟 ))
operations inK, and the same number of bit operations, to compute

all 𝑟𝑖 (𝒃𝑘 + 𝒆)𝒓−𝑰𝑖 and 𝑠𝑖 (𝒃𝑘 )𝒔−𝑰𝑖 , for 𝑖 = 1, . . . , 𝑛, and the same

hold for (𝒃𝑘 )𝒔 and (𝒃𝑘 + 𝒆)𝒓 . It takes 𝑂 (𝑛 log(𝑑)) bit operations
to compute 𝒅 + 𝒆, so overall, the cost for fixed 𝑘 is 𝑂∼ (𝑛 log(𝑟 ))
operations in K and 𝑂∼ (𝑛 log(𝑟𝑑)) bit operations. Taking all terms

in 𝐴 and 𝐵 into consideration, the conclusion follows. □

Algorithm 4.4 (Multiplication of two linear differential

operators).

Input:
• two linear differential operators𝐴, 𝐵 ∈ K[𝑥1, . . . , 𝑥𝑛]⟨𝛿1, . . . , 𝛿𝑛⟩
as in (14)

• a 𝛿-sparsity bound 𝜏 for 𝑃 = 𝐴𝐵

• a point 𝒃 in K𝑛

Output: the sparse representation of the product 𝑃 = 𝐴𝐵.

Step 1: For 𝑘 = 0, . . . , 2𝜏 − 1, compute (𝐴𝐵) (𝒃𝑘 ).
Step 2: For 𝑖 = 1, . . . , 𝑛 and𝑘 = 0, . . . , 𝜏−1, compute

𝜕 (𝐴𝐵)
𝜕𝛿𝑖

(𝒃𝑘 ).
Step 3: Return ILDO(𝜏, 𝒃, ((𝐴𝐵) (𝒃𝑘 )𝑘=0,...,2𝜏−1),

( 𝜕 (𝐴𝐵)
𝜕𝛿𝑖

(𝒃𝑘 )𝑖=1,...,𝑛,𝑘=0,...,𝜏−1)).

Proposition 4.5. Suppose that 𝐴, resp. 𝐵, has 𝑇𝐴 terms, resp. 𝑇𝐵
terms, and that 𝑃 has bidegree less than (𝑑, 𝑟 ). If K has characteristic
at least 𝑟 and if 𝒃 is a good point for all 𝑃𝒅𝑘 , Algorithm 4.4 returns 𝑃
using 𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟 )) operations in K, 𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟𝑑)) bit
operations and an extra cost 𝑇𝐴𝑇𝐵RK (𝜏).

Proof. Correctness of the algorithm is clear from the previous

discussion; we now analyze runtime.

By Proposition 4.1, Step 1 takes𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟 )) operations in
K and𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟𝑑)) bit operations. By Proposition 4.3, Step 2
uses 𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟 )) operations in K and 𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟𝑑))
bit operations as well.
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Finally, by Proposition 3.5, the cost of Step 3 is 𝑂∼ (𝑛𝜌𝜏) op-
erations in K, 𝑂∼ (𝑛𝜏𝜌 log(𝑟𝑑)) bit operations, and an extra cost

𝜌RK (𝜏). Because of the commutation rule

𝑿𝒅1
𝚫
𝒓1𝑿𝒅2

𝚫
𝒓2 = 𝑿𝒅1𝑿𝒅2 (∆ + d2)𝒓1𝚫𝒓2 ,

we have 𝜌 ≤ 𝑇𝐴𝑇𝐵 , so the runtime above is𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵) operations
in K, 𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟𝑑)) bit operations, and an extra 𝑇𝐴𝑇𝐵RK (𝜏)
to account for root-finding. □

The previous algorithm needs 𝒃 to be a good point for all poly-

nomials 𝑃𝒅𝑘 . Assuming that 𝒃 is chosen at random, we quantify

the probability that this be the case. Recall that we write

𝑃 =

𝜌∑︁
𝑘=1

𝑿𝒅𝑘𝑃𝒅𝑘 (𝛿1, . . . , 𝛿𝑛),

where each 𝑃𝒅𝑘 is a polynomial of the form

𝑃𝒅𝑘 =
∑︁

1≤𝑖≤𝑡𝑘
𝑝𝑖,𝑘𝒁

𝒓𝑖,𝑘 ∈ K[𝑧1, . . . , 𝑧𝑛],

for some integer 𝑡𝑘 , non-zero coefficients 𝑝𝑖,𝑘 and pairwise distinct

exponents 𝒓𝑖,𝑘 . Then, a point 𝒃 ∈ K𝑛 satisfies our condition if it

cancels none of the polynomials

Γ𝑘 =
∏

1≤𝑖< 𝑗≤𝑡𝑘
(𝒁𝒓𝑖,𝑘 − 𝒁𝒓 𝑗,𝑘 ) ∈ K[𝑧1, . . . , 𝑧𝑛] .

Proposition 4.6. Suppose that 𝑃 has bidegree less than (𝑑, 𝑟 ) and
𝑇𝑃 non-zero terms. For a subset 𝑆 of K, the probability that 𝒃 chosen
uniformly at random in 𝑆𝑛 is a good point for all 𝑃𝒅𝑘 is at least

1 − 𝑛𝑟𝑇𝑃 (𝑇𝑃 − 1)
2|𝑆 | .

Proof. For a fixed 𝑘 , since Γ𝑘 has degree less than 𝑛𝑟𝑡𝑘 (𝑡𝑘 −1)/2,
by the DeMillo-Lipton-Schwartz-Zippel lemma, there exist no more

than 𝑛𝑟𝑡𝑘 (𝑡𝑘 − 1) |𝑆 |𝑛−1/2 𝑛-uples 𝒃 that cancel it in 𝑆𝑛 .

Since 𝑡1 + · · · + 𝑡𝜌 = 𝑇𝑃 , the number of 𝑛-uples 𝒃 that cancel one

of Γ1, . . . , Γ𝑘 in 𝑆𝑛 is at most 𝑛𝑟𝑇𝑃 (𝑇𝑃 − 1) |𝑆 |𝑛−1/2. □

Note that ifK is a finite field, Proposition 8 in [24] gives a slightly

sharper bound 1 − 𝑟𝑇𝑃 (𝑇𝑃−1)
2 |𝑆 | , if we take 𝑆 = K∗ (so |𝑆 | = |K| − 1).

Still working with K finite, say K = F𝑞 , we can now give the

proof of Theorem 1.1. In view of the previous remark, to ensure a

success rate of at least
3

4
, we want our base field to have cardinality

at least 2𝑟𝑇𝑃 (𝑇𝑃 − 1) + 1.

If 𝑞 ≥ 2𝑟𝑇𝑃 (𝑇𝑃 − 1) + 1, then we randomly choose 𝒃 from F∗𝑛𝑞 ;

sincewe assume that we can get a random bit in time𝑂 (1), this costs
𝑂∼ (𝑛 log(𝑞)) bit operations. We can then invoke Proposition 4.5,

taking into account that all operations in K = F𝑞 take𝑂∼ (𝑛 log(𝑞))
bit operations. Root-finding in degree 𝜏 in F𝑞 takes an expected

𝑂∼ (𝜏 log2 (𝑞)) bit operations, so the overall runtime becomes an

expected 𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟𝑑) log(𝑞) + 𝜏𝑇𝐴𝑇𝐵 log
2 (𝑞)), as claimed.

If 𝑞 < 𝑟𝑇𝑃 (𝑇𝑃 − 1) + 1, we will work in suitable extension K =

F𝑞 ⊂ F𝑞𝑢 , where the latter field is represented as F𝑞 [𝑥]/⟨Φ(𝑥)⟩,
for a degree-𝑢 irreducible polynomial Φ over F𝑞 . With this rep-

resentation, arithmetic operations in F𝑞𝑢 can be done in 𝑂∼ (𝑢)

arithmetic operations in K, and thus in𝑂∼ (𝑢 log(𝑞)) bit operations.
To guarantee 𝑞𝑢 ≥ 2𝑟𝑇𝑃 (𝑇𝑃 − 1) + 1, we choose

𝑢 = ⌈ log(2𝑟𝑇𝑃 (𝑇𝑃 − 1) + 1)
log(𝑞) ⌉ ∈ 𝑂 ( log(𝑟𝑇𝑃 )

log(𝑞) ); (15)

note that the big-O estimate holds precisely because of our assump-

tion 𝑞 < 𝑟𝑇𝑃 (𝑇𝑃 − 1) + 1.

In [23], Shoup proved that finding an irreducible polynomial Φ
with degree 𝑢 over F𝑞 costs an expected 𝑂∼ (𝑢2 log(𝑞) + 𝑢 log2 (𝑞))
bit operations. In view of (15), this is𝑂∼ (log2 (𝑟𝑇𝑃 )+log(𝑟𝑇𝑃 ) log(𝑞)).
Note that when the characteristic of F𝑞 is fixed, we may use Shoup’s

deterministic algorithm [22] instead.

Overall, the runtime of the algorithm becomes an expected

𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟𝑑) log(𝑞′) + 𝜏𝑇𝐴𝑇𝐵 log
2 (𝑞′)) bit operations, with

log(𝑞′) = 𝑢 log(𝑞) ∈ 𝑂 (log(𝑟𝑇𝑃 )). Since 𝑇𝑃 ≤ 𝜏𝑇𝐴𝑇𝐵 , the cost is

𝑂∼ (𝑛𝜏𝑇𝐴𝑇𝐵 log(𝑟𝑑)2 log2 (𝑞)) bit operations. The proof is complete.

Remark 4.7. Consider the ring K[𝑥1, . . . , 𝑥𝑛]⟨𝑆1, . . . , 𝑆𝑛⟩, with
𝑆𝑖𝑥𝑖 = (𝑥𝑖 + 1)𝑆𝑖 ; here, 𝑆𝑖 stands for the shift operator

𝑓 (𝑥1, . . . , 𝑥𝑛) ↦→ 𝑓 (𝑥1, . . . , 𝑥𝑖−1, 𝑥𝑖 + 1, 𝑥𝑖+1, . . . , 𝑥𝑛).

Inspired by a remark due to van der Hoeven in [12], we may define the
“adjoint” evaluation of 𝑿𝒅𝑺𝒓 at 𝒃 as 𝒃𝒅𝑺𝒓 , where 𝑺 = (𝑆1, . . . , 𝑆𝑛)
and 𝒃 is in K𝑛 (compare with the evaluation of 𝑿𝒅

𝚫
𝒓 at 𝒃 being

𝒃𝒓𝑿𝒅 ). This analogy may be exploited in a straightforward way to
adapt our algorithm to this setting.
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