
Sparse Multiplication for Skew Polynomials
Mark Giesbrecht

Cheriton School of Computer Science

University of Waterloo

mwg@uwaterloo.ca

Qiao-Long Huang

Research Center for Mathematics and

Interdisciplinary Sciences Shandong

University

huangqiaolong@sdu.edu.cn

Éric Schost

Cheriton School of Computer Science

University of Waterloo

eschost@uwaterloo.ca

Abstract
Consider the skew polynomial ring L[x ;σ], where L is a field and

σ is an automorphism of L of order r . We present two randomized

algorithms for the multiplication of sparse skew polynomials in

L[x ;σ].
The first algorithm is Las Vegas; it relies on evaluation and

interpolation on a normal basis, at successive powers of a nor-

mal element. For inputs A,B ∈ L[x ;σ] of degrees at most d , its
expected runtime is O∼ (max(d,r)rRω−2) operations in K , where
K = Lσ is the fixed field of σ in L and R ≤ r is the size of the

Minkowski sum supp(A) + supp(B) taken modulo r ; here, the sup-
ports supp(A),supp(B) are the exponents of non-zero terms in A
and B.

The second algorithm is Monte Carlo; it is “super-sparse”, in

the sense that its expected runtime is O∼ (log(d)Srω), where S is

the size of supp(A) + supp(B). Using a suitable form of Kronecker

substitution, we extend this second algorithm to handlemultivariate

polynomials, for certain families of extensions.

Keywords
Sparse polynomials; skew polynomials; multiplication

ACM Reference Format:
Mark Giesbrecht, Qiao-Long Huang, and Éric Schost. 2020. Sparse Multi-

plication for Skew Polynomials. In International Symposium on Symbolic
and Algebraic Computation (ISSAC ’20), July 20–23, 2020, Kalamata, Greece.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3373207.3404058

1 Introduction
Skew polynomial rings were introduced by Ore [24] as a non-

commutative generalization of usual commutative polynomial rings.

They have found numerous applications, as they allow one to work

with linear differential equations, shift equations, or operators over

finite fields, in an algebraic manner.

A very common construction is the following: let K ⊂ L be finite

fields and let σ : L → L be a K-automorphism of L, that is, a power
of the qth power Frobenius automorphism, with q = #K . For an
indeterminate x over L, the ring L[x ;σ] of skew polynomials over L
is the L-vector space of finite sums A =

∑
0≤i≤d aix

i
, with all ai ’s

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20–23, 2020, Kalamata, Greece
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00

https://doi.org/10.1145/3373207.3404058

in L, endowed with the usual addition, and where multiplication

is determined by the commutation relation xc = σ (c)x for any c
in L. The degree deg(A) of A is the largest index i for which ai is
non-zero.

In particular, if σ is the qth power Frobenius automorphism itself,

L[x ;σ] is isomorphic to the ring of linearized polynomials over K
(endowed with addition and composition). Fundamental algorithms

for such rings are presented in [14]. These polynomials can be

used to construct algebraic codes [4, 5, 9, 27], have applications in

cryptography [3, 32], underlie the construction of finite Drinfeld

modules [17], etc.

In this paper, our framework is slightly more general: we assume

that L is any field endowed with an automorphism σ , we letK = Lσ ,
and we assume that σ has finite order r ; the rest of the definition is

then as above. In particular, L is a separable extension of K , with
[L : K] = r . For a list of examples that goes beyond finite fields, see

Section 1 in [6].

We are interested in the cost of multiplying such skew polyno-

mials. Given A and B in L[x ;σ] of degree at most d , the standard
“schoolbook” multiplication algorithm usesO (d2) arithmetic opera-

tions +,× in L, and O (d2) applications of powers of σ . In [25, 26],

Puchinger and Wachter-Zeh improved this to O∼ (d (ω+1)/2) arith-
metic operations in L and applications of powers of σ ; here ω is

such that over any ring, square matrix multiplication in size s can
be done in O (sω) ring operations. The best known value to date

is ω ≤ 2.373 [7, 10], giving (ω + 1)/2 ≤ 1.69, hence resulting in a

subquadratic bound in d .
However, this analysis overlooks the (non-trivial) question of

how operations in L are actually implemented. In this paper, we will

measure runtimes in terms of operations in K , using the structure

of L as a K-vector space; this will be our main cost measure, but we

will also count bit operations when warranted (when non-trivial

operations on exponents take place, for instance).

As in [6], we will use two K-bases for L. The first one, written
W = (ω0, . . . ,ωr−1), is taken such that addition, multiplication

and inversions in L use O∼ (r) operations (+,×,÷) in K ; here, the
“soft-Oh" notation indicates that we omit polylogarithmic factors

in r . For instance, if L is given as L = K[z]/f (z), for some f ∈ K[z]
of degree r , then we can take ωi to be the residue class of zi for
all i . This will be called the working basis; our convention is that

the inputs and outputs of all algorithms will be given on this basis.
The second basis will be a normal basis N = (ν0, . . . ,νr−1),

such that σ (νi) = νi+1 mod r for all i . In such a basis, addition and

application of any power of σ take linear time O (r). In our algo-

rithms, we make the following assumption about the availability of

representational data for a normal basis of L/K :

https://doi.org/10.1145/3373207.3404058
https://doi.org/10.1145/3373207.3404058

(H): the bases W and N , as well as the matricesMN →W and

MW→N of change of basis between W and N , are given.

In this context, Caruso and Le Borgne [6] give a Las Vegas algorithm

for multiplication in L[x ,σ] of expected costO∼ (drω−1) operations
in K when d ≥ r ; for d ≤ r , they propose another algorithm, whose

cost isO (dω−2r2) operations inK . Note that this paper also assumes

that in the basis W , the application of σ takes quasi-linear time,

that is, O∼ (r) operations in K . This is a reasonable assumption

when K and L are finite fields, as [8]
1
show that any finite field

extension of a finite field admits a basis in which the operations

addition, multiplication, division and application of σ cost O∼ (r)
operations in K .

However, in our context, we show that this assumption can be

dropped. This gives the advantage of more flexibility in choosing

the working basis, so we will not make such an assumption.

Note that we will not address the problem of finding a normal

basis; this has been widely studied, and we refer the reader to [11,

15, 16, 19] and references therein.

The previous discussion assumes that the input A and B are

“dense polynomials”, that is, given by the array of all their coeffi-

cients; in this case, in degree d , input and output size are Θ(dr)
elements in K , so Caruso and Le Borgne’s result of O∼ (drω−1) op-
erations in K is close to optimal (and would be optimal if we could

take ω = 2). In this current paper, we revisit this question, taking

into account the “sparsity” of A and B. Following [2], we define

the following, for a polynomial A =
∑t
i=1 aix

ei
, in L[x ;σ] with

0 ≤ e1 < · · · < et and all ai non-zero:

• the sparsity #A is the number t in the expression above;

• the support supp(A) is the set of exponents {e1, . . . ,et } ⊂ N.

For two polynomials A and B, we have the inequalities

#(AB) ≤ #S(A,B) ≤ #A · #B,

where S(A,B) is the Minkowski sum

S(A,B) := {eA + eB | eA ∈ supp(A),eB ∈ supp(B)}. (1.1)

A strict inequality #(AB) < #S(A,B) occurs only in the presence of

coefficient cancellations. We will often write S := #S(A,B). Recall-
ing that r is the order of σ , we will also define

Sr (A,B) := {(eA+eB) mod r | eA ∈ supp(A),eB ∈ supp(B)}. (1.2)

After we discuss reductionmodulo central elements, wewill see that

Sr (A,B) contains the support of the polynomialAB mod (xr −1). If
we write R := #Sr (A,B), this means that we have #(AB mod (xr −
1)) ≤ R; note also the inequalities R ≤ r and R ≤ S .

In this paper, we give two randomized algorithms for multiplying

skew polynomials in L[x ;σ]. The first one is Las Vegas; for inputs
of degree at most d , it uses an expected O∼ (max(d,r)rRω−2) oper-
ations in K , where R is as above. This algorithm is based on Caruso

and Le Borgne’s [6]; as in that reference, the whole multiplication

procedure reduces to several instances of multiplication modulo

xr −1. Whereas the original algorithm usesO∼ (rω) operations inK
for this task, ours takes O∼ (r2Rω−2) operations. Altogether, since
R ≤ r , our runtime is asymptotically never worse than that in [6],

and can be better in many cases. Apart from this, Puchinger and

1
We thank the anonymous referee for pointing this out.

Wachter-Zeh’s algorithm performs the same computation with com-

plexityO∼ (d (ω+1)/2r) operations. As stated in [6], the algorithm in

[25, 26] is faster than the one in [6] for polynomials of small degree

d ≤ r2/(5−ω)
. As d ≤ r2/(5−ω) ≤ r , in this case, our complexity is

O∼ (r2Rω−2). So unless d ≤ min(r2/(5−ω) ,r2/(ω+1)R (2ω−4)/(ω+1)),
our new algorithm is faster. The precise statement is as follows.

Theorem 1.1. Let L be a field with automorphism σ of finite or-
der r and K = Lσ , and assume we have representational data (H)
for L/K as above. Given A,B ∈ L[x ;σ] of degrees at most d , there
is a Las Vegas algorithm to compute AB with an expected cost of
O∼ (max(d,r)rRω−2) operations in K and O∼ (max(d,r)) bit oper-
ations, where R ≤ r is the cardinality of the set Sr (A,B) defined
in (1.2).

The second algorithm comes in two stages, one of which isMonte

Carlo and the other Las Vegas. Overall, for a given probability of

failure, its expected runtime is now polynomial in log(d), r and S ,
where S is the cardinality of the set S(A,B) defined in (1.1). Due

to this logarithmic dependence in the degree d , we will call this
algorithm supersparse.

The algorithm is inspired by the work of Arnold and Roche [2]

on the multiplication of sparse commutative polynomials. We first

compute S(A,B); once it is known, we compute at least half the

coefficients of the productAB throughmultiplication modulo a well-

chosen central polynomial of the form xpr − 1. After a logarithmic

number of iterations, this gives us the whole product AB.

Theorem 1.2. Let L be a field with automorphism σ of finite
order r and K = Lσ , and assume we have representational data (H)
for L/K as above. Given A,B ∈ L[x ;σ] of degrees at most d , and
µ ∈ (0,1), there is an algorithm to compute AB with probability at
least 1 − µ, using an expected O∼ (log(d)Srω) operations in K and
O∼ (log(d)S (r + log(1/µ))) bit operations, where S is the cardinality
of the set S(A,B) defined in (1.1).

We also present a multivariate version of this algorithm whose

cost is summarized as follows. Let L[x1, . . . ,xn ;σ1, . . . ,σn] be a

multivariate skew polynomial ring, with the relations xia = σi (a)xi
and xix j = x jxi , where each σi is an automorphism of L.

Theorem 1.3. Let L be a field with automorphism σ of finite
order r , K = Lσ and σi = σei for 0 ≤ e1, . . . ,en < r , and as-
sume we have the representation data (H) for L/K . Given A,B ∈
L[x1, . . . ,xn ;σ1, . . . ,σn] of total degree at most D, and µ ∈ (0,1),
there is an algorithm to computeAB with probability at least 1−µ, us-
ing an expectedO∼ (nrωS logD) operations inK plusO∼ (n2S logD+
nSr logD+nS logD log(1/µ)+S log r log(1/µ)) bit operations, where
S = #S(A,B).

For historical perspective and comparison, algorithms to com-

pute sparse multiplication of usual commutative polynomials has

seen considerable research recently, both in theory and in practice.

New algorithms for polynomials with at most t terms have been

developed to keep the time proportional to the worst-case output

size,O (t2), and low space complexity, both in theory and in practice

[18, 22, 23]. This is particularly important for multivariate polyno-

mials [30]. The aforementioned work of Arnold & Roche [2] adapts

to the potential even smaller output size, and when the support is

know [31] demonstrate greater improvements. See the excellent

recent survey of [28] on the state of the art in sparse polynomial

computation.

2 Sparse multiplication
In this section, we give a Las Vegas algorithm for the multiplication

of sparse skew polynomials, proving Theorem 1.1. Our algorithm

is based on Caruso and Le Borgne’s [6]. As in that reference, the

key operation is an evaluation-interpolation based multiplication

algorithm modulo xr − 1; the main difference is that the number

of evaluations in our algorithm depends on the sparsity of the

product. To build the main algorithm upon this special case, we

will follow [6] with few modifications.

2.1 Preliminaries
2.1.1. Division modulo central elements. For a non-zero Z
in the center of L[x ;σ], and forA in L[x ;σ], there are uniqueQ ,F ∈
L[x ;σ] such thatA = QZ+F = ZQ+F , with F = 0 or deg F < degZ ;
we write F = A mod Z . This makes the canonical morphism

ε : L[x ;σ] → L[x ;σ]/⟨Z ⟩,
A 7→ A mod Z ,

an endomorphism of K-algebras.
Since σ has order r , the equality xr c = σ r (c)xr = cxr holds for

all c in L. As a result, any polynomial of the form Z = B (xr), where
B ∈ K[x], is in the center of L[x ;σ] (actually, all central elements

are of this form, but we won’t need this). We will only use the very

particular casesZ = xr −a andZ = xr −1, for which we have simple

explicit formulas for the remainders. In particular, for the latter, if

we consider a skew polynomial C = c1x
e1 + · · · + cSx

eS ∈ L[x ;σ],
with all ci in L, then we have

C mod (xr − 1) = c1x
e1 mod r + · · · + cSx

eS mod r , (2.1)

with ei mod r in {0,1, . . . ,r − 1} for all i .

2.1.2. Scalar extension. Given A,B ∈ L[x ;σ], to compute the

productAB, we first compute different reductionsAB mod xr −ai ,
where ai ∈ K , then recover AB from these reductions by Chinese

remainder algorithm. The number of reductions we need depends

on the degree of the productAB. If it is large, as in [6], there may not

be enough elements in ground field K , so we may have to replace

K by an extension K ′/K of sufficiently large cardinality. We write

s := [K ′ : K], and we assume that K ′ is given as K[ξ]/д(ξ), for
some degree-s irreducible д ∈ K[ξ]; in particular, all operations

+,×,÷ in K ′ take O∼ (s) operations in K .
We will then define L′ := L ⊗K K ′; L′ still has dimension r over

K ′, but it does not have to be a field; it is in general a product of

fields. The extension of σ to L′ is the automorphism σ ′ := σ ⊗K id;

it still has order r and admits K ′ as its fixed set.

The K-bases W = (ω0, . . . ,ωr−1) and N = (ν0, . . . ,νr−1) of L
extend to K ′-bases W ′ = (ω ′

0
, . . . ,ω ′r−1) and N ′ = (ν ′

0
, . . . ,ν ′r−1)

of L′, withω ′i = ωi⊗K 1 andν
′
i = νi⊗K 1 for all i . In the newworking

basis W ′
, addition, multiplication, and the inversion of invertible

elements still take O∼ (r) operations (+,×,÷) in K ′, that is, O∼ (rs)
operations in K ; besides, N ′

is still a normal basis. Finally, the

change-of-basis matrices between W and N still describe change-

of-basis between W ′
and N ′

(but now seen as matrices over K ′).

To summarize, changing the ground field from K to K ′ affects
almost nothing in our setup; the only point that will require our

attention is that L′ may not be a field, so non-zero elements may

not be invertible.

2.2 Multiplication modulo xr − 1

We start with a multiplication algorithm modulo xr − 1. As ex-

plained above, we suppose that we are given a field extension

K ′/K of degree s , and we give an algorithm for multiplication in

L′[x ;σ ′]/⟨xr − 1⟩.
A skew polynomial A ∈ L′[x ;σ ′] defines a K ′-linear mapping

A∗ : L′ → L′ obtained by evaluating A at σ ′. For a in L′, we will
write A(a) instead of A∗ (a); since σ ′ has order r , A(a) is actually
well-defined for A in L′[x ;σ ′]/⟨xr − 1⟩.

This suggests an evaluation / interpolation strategy for multipli-

cation L′[x ;σ ′]/⟨xr −1⟩. This idea is already in [6], but does not take
sparsity into account there; the following algorithm achieves this,

by using evaluation and interpolation at a geometric progression.

We first give the overview of the algorithm, then discuss sub-

routines and establish their cost bounds. Below, remember that

elements of L′ are always represented on the working basis W ′
.

Algorithm 1: Sparse multiplication modulo xr − 1.
Input: Two polynomials A,B ∈ L′[x ;σ ′]/⟨xr − 1⟩.

Output: The product AB ∈ L′[x ;σ ′]/⟨xr − 1⟩.
Step 1: Compute Sr (A,B) as in (1.2) and let R = #Sr (A,B).
Step 2: Compute bi = B (ν ′

0

i), for i = 0,1, . . . ,R−1 and let B be

the r × R matrix over K ′ whose ith column is the coefficient

vector of bi for all i .
Step 3: Compute ei = A(ν ′i), for i = 0, . . . ,r − 1 and let E be

the r × r matrix over K ′ whose ith column is the coefficient

vector of ei for all i .
Step 4: Compute F = E MW→N B and let f0, . . . , fR−1 be the

elements of L′ whose coefficient vectors are the columns

of F .
Step 5: Return the unique polynomial C =

∑
α ∈Sr (A,B) cαx

α

such that C (ν ′
0

i) = fi for all i .

Proposition 2.1. Under assumption H, Algorithm 1 computes
the product AB using O∼ (Rω−2r2s) operations in K and O∼ (r) bit
operations.

Proof. Write C = AB ∈ L′[x ;σ ′]/⟨xr − 1⟩. Since C∗ = A∗ ◦ B∗,
we get C (ν ′

0

i) = A(B (ν ′
0

i)), for i = 0, . . . ,R − 1.
The product E MW→N is by construction the matrix of A∗ :

L′ → L′ (in the working basis), and the columns of B are the

coefficient vectors of B (ν ′
0

i), for i = 0, . . . ,R − 1, also written in the

working basis. As a result, C (ν ′
0

i) = fi holds for i = 0, . . . ,R − 1.

In view of formula (2.1), we know that the support supp(C) is
contained in Sr (A,B); then, we prove in §2.2.2 that Step 5 correctly

recovers C .
In terms of runtime, Step 1 takes O∼ (r) bit operations (by §2.2.1

below) and Step 2 takesO∼ (r2s) operations inK (§2.2.2). Step 3 takes

O∼ (r2) operations in K ′ by [6, Prop. 1.6], which is also O∼ (r2s)
operations in K . The cost of Step 4 is O∼ (Rω−2r2s) operations in
K , using block matrix multiplication. Finally, Step 5 takes another

O∼ (r2s) operations in K (§2.2.2). □

2.2.1. Computing the sumset. Given A and B as above, we

show here how to compute the sumset Sr (A,B). Assume the sup-

ports of A,B are SA,SB , respectively, and let

Ã =
∑
d ∈SA

yd ∈ Z[y], B̃ =
∑
d ∈SB

yd ∈ Z[y]

be the commutative polynomials whose supports are SA,SB and

coefficients are all 1. To compute Sr (A,B) = {(eA+eB) mod r | eA ∈

SA,eB ∈ SB }, it is enough to compute the support of ÃB̃ mod (yr −
1). Using fast multiplication in Z[y], this takesO∼ (r) bit operations,
as claimed.

2.2.2. Evaluation-interpolation at a geometric progression.
Let C = c1x

e1 + · · · + ctx
et

be in L′[x ,σ ′]/⟨xr − 1⟩, with 0 ≤ e1 <
· · · < et < r . Here we show how to evaluate C at the points ν ′

0

i
,

for i = 0,1, . . . ,R − 1, for some integer R, with t ≤ R ≤ r ; we also
show how to recover C from these values, assuming e1, . . . ,et are
known.

For i ≥ 0, the value C (ν ′
0

i) is by definition C∗ (ν ′
0

i), that is,

C (ν ′
0

i) = c1σ
e1 (ν ′

0
)i + · · · + ctσ

et (ν ′
0
)i

= c1ν
′
e1
i + · · · + ctν

′
et
i .

Taken all together for i = 0, . . . ,R − 1, these equalities give



C (ν ′
0

0)
C (ν ′

0

1)
...

C (ν ′
0

R−1)



=



1 1 · · · 1

ν ′e1 ν ′e2 · · · ν ′et
...

...
...

ν ′e1
R−1 ν ′e2

R−1 · · · ν ′et
R−1





c1
c2
...

ct



.

Proposition 2.2. GivenC and R as above, with t ≤ R ≤ r , we can
compute C (ν ′

0

i), for i = 0,1, . . . ,R − 1, using O∼ (r2s) operations in
K . Given e1, . . . ,et , we can recover c1, . . . ,ct from these values using
O∼ (r2s) operations in K as well.

Proof. The matrix giving the values C (ν ′
0

i) is transposed Van-

dermonde, built on the conjugates ν ′ei . A matrix-vector product by

such a matrix takes O∼ (max(R,t)) ∈ O∼ (r) operations +,× in L′;
this is O∼ (r2) operations in K ′, and thus O∼ (r2s) operations in K .

Conversely, to recoverC , we need to solve such a system (keeping

only the first t rows). This takes O∼ (r) operations +,× in L′ and
O (r) inversions - the former add up to O∼ (r2s) operations in K , as
above. The terms we have to invert are products of the differences

ν ′ei − ν
′
ek , so they are all of the form α ⊗K 1, for various non-zero

α ∈ L, so they are all units in L′. As a result, these inversions cost a
total O∼ (r2) operations in K . □

2.3 Multiplication modulo xr − a

This section follows closely [6, Sec. 2.1], with only a few minor

differences; in particular, correctness of the procedure below is

established in that reference.

Let K ′ and L′ be as above, with [K ′ : K] = s , and let λ be a unit

in L′. We define the norm

a := λσ ′(λ) · · ·σ ′r−1 (λ),

Note that we know a ∈ K ′ since a = σ (a), which is why we need to

extendK toK ′. We now consider multiplication in L′[x ;σ ′]/⟨xr −a⟩.
Themain idea is to reducemultiplicationmoduloxr−a tomultiplica-

tion modulo xr −1. For this, define the L′-linear map δ : L′[x ;σ ′]→

L′[x ;σ ′] by setting δ (x i) = λσ ′(λ) · · ·σ ′i−1 (λ)x i . As proved in [6],

it induces an L′-algebra isomorphism δ : L′[x ;σ ′]/⟨xr − a⟩ →
L′[x ;σ ′]/⟨xr − 1⟩.

Algorithm 2: Multiplication modulo xr − a.
Input:
• An element λ ∈ L′×.
• A,B in L′[x ;σ ′]/⟨xr − a⟩, where a = λσ ′(λ) · · ·σ ′r−1 (λ).

Output: The product AB ∈ L′[x ;σ ′]/⟨xr − a⟩.
Step 1: Compute si = σ ′i (λ) for i = 0, . . . ,r − 1.
Step 2: Compute λi = s0 · · · si−1 for i = 1, . . . ,r .
Step 3: Compute A′ = δ (A) and B′ = δ (B).
Step 4: Compute C ′ = A′B′ ∈ L′[x ;σ ′]/⟨xr − 1⟩ by Algo-

rithm 1.

Step 5: Return δ−1 (C ′).

Before analyzing the whole procedure, we discuss the first step,

computing all conjugates of λ. Reference [6] assumes that the ap-

plication of σ in the working basis W of L takes quasi-linear time,

that is, O∼ (r) operations in K ; from this, we would deduce that

applying σ ′ to an element of L′ takes O∼ (rs) operations in K ′.
However, as noted in the introduction, we would rather not make

such a strong assumption. If L is given as L = K[z]/f (z), and thus

L′ = K[z,ξ]/⟨f (z),д(ξ)⟩, given σ (z mod f), von zur Gathen and

Shoup’s iterated Frobenius algorithm [12] allows us to compute all

conjugates of λ in O∼ (r2) operations in K ′, that is, O∼ (r2s) opera-
tions in K ; this is optimal, up to logarithmic factors. We now show

that this is still possible, working under the assumptions of this

paper.

Proposition 2.3. Under assumption H, given λ in L′, one can
compute the sequence λ,σ ′(λ), . . . ,σ ′r−1 (λ) using O∼ (r2s) opera-
tions in K .

Proof. Suppose that λ has coefficients (β0, . . . ,βr−1) on the

working basis W ′
of L′. Under assumption (H), we can compute

its coefficients (γ0, . . . ,γr−1) on the normal basis N ′
in O (r2) op-

erations in K ′, that is, O∼ (r2s) operations in K , by a matrix-vector

product withMW→N .

Let L ∈ K ′r×r be the matrix whose ith column contains the

coefficients of σ ′i (λ) on the working basis W ′
, and let MN →W

be the change-of-basis matrix from N ′
to W ′

. Then, we have the

equality

L = MN →W



γ0 γr−1 · · · γ1
γ1 γ0 · · · γ2
...

...
. . .

...

γr−1 γr−2 · · · γ0



.

Since the right-hand is a Hankel matrix, we can left-multiply it by

a vector inO∼ (r) operations in K ′. Hence the total cost to compute

L is O∼ (r2) operations in K ′, that is, O∼ (r2s) operations in K . □

Corollary 2.4. Under assumption H, Algorithm 2 computes the
product AB using O∼ (Rω−2r2s) operations in K and O∼ (r) bit oper-
ations.

Proof. The previous proposition gives the cost of computing

s0, . . . ,sr−1; the products λ1, . . . ,λr can be deduced for another

O∼ (r2) operations in K ′, which is O∼ (r2s) operations in K ; this

gives us A′ and B′. To compute their product C ′, Proposition 2.1

takes O∼ (Rω−2r2s) operations in K and O∼ (r) bit operations. Fi-
nally, to recover δ−1 (C ′), we have to invert all λi s (they are units,

by assumption); this takes O∼ (r2s) operations in K again. □

2.4 Main algorithm
The description of the main algorithm is essentially taken from [6],

but we replace the procedure for multiplication modulo xr − a
given in that reference by ours. A more minor difference is that

we simplify the algorithm by not fully exploiting some properties

given in [6], that would allow us to save a factorO∼ (s); since s will
be logarithmic in the input size, this is harmless. Finally, we show

how fast multipoint evaluation is actually required to obtain the

claimed runtime.

To compute the product AB in L[x ;σ], we compute its image

modulo central moduli of the form xr − ai , for a0,a1, . . . as in the

previous subsection. If K is a small finite field, we may have to

extend it in order to guarantee the existence of sufficiently many

such moduli. Suppose that A and B have degree at most d , so that

C = AB has degree at most 2d , and let e = ⌈2d/r⌉ + 1; this will be
the number of moduli we need.

Lemma 2.5. Let K ′ be an extension of K , let Γ be a subset of K ′ of
cardinality at least e (e + 1)r , and let L′ = L ⊗K K ′. Fix a basis of L′

overK ′. Then for λ1, . . . ,λe in L′, with coefficients taken uniformly at
random in Γ, the probability that their norms a1, . . . ,ae be non-zero
and pairwise distinct is at least 1/2.

Proof. For λ in L′, its norm a = λσ ′(λ) · · ·σ ′r−1 (λ) is the de-
terminant of the multiplication endomorphism by λ (seen as a

K ′-linear map L′ → L′). Hence, it is a non-constant homogeneous

polynomial of degree r in the coefficients of λ (on an arbitrary

K ′-basis of L′); we write it ∆(λ). Then, the conclusion we want is

the non-vanishing of the product of all ∆(λi) and ∆(λi) − ∆(λj),
for 1 ≤ i < j ≤ e . This is an expression of degree e (e + 1)r/2
in the coefficients of the λi ’s, so the conclusion follows from the

DeMillo-Lipton-Schwartz-Zippel lemma. □

Algorithm 3: Multiplication.
Input: Two polynomials A,B ∈ L[x ;σ] of degree at most d .
Output: AB with probability at least 1/2, or error

Step 1: Let e = ⌈2d/r⌉ + 1.
Step 2: Build an extension K ′ of K , such that |K ′ | ≥ e (e + 1)r

and let s = [K ′ : K].
Step 3: Pick a subset Γ of K ′ of cardinality at least e (e + 1)r .
Step 4: Pick λ1, · · · ,λe in L′ = L ⊗K K ′. by choosing their

coefficients uniformly at random in Γ.
Step 5: Compute the norms a1, . . . ,ae of λ1, · · · ,λe . If any of

them vanishes, raise an error.

Step 6: Compute all Ai = A mod (xr − ai) and Bi = B mod

(xr − ai).
Step 7: Compute all Ci = AiBi mod (xr − ai).
Step 8: Recover C = AB from C1, . . . ,Ce .

Proposition 2.6. Under assumption H, Algorithm 3 computes the
product AB using an expected O∼ (max(d,r)rRω−2) operations in K
and O∼ (max(d,r)) bit operations, with probability of success at least
1/2; otherwise, it raises an error.

Proof. For K finite, s is O (log(dr)), and K ′ can be built in an

expected O (log(dr)2) operations in K [29]; if K is infinite, we take

K ′ = K and s = 1. Given the λi ’s, the cost of computing all ai ’s
will be subsumed in that of the further steps. If the conclusions

of Lemma 2.5 hold, then all λi ’s are invertible (so we can apply

the algorithm of the previous section), and their norms ai ’s are
pairwise distinct.

Write A =
∑
j<r α j (x

r)x j , B =
∑
j<r βj (x

r)x j and C = AB =∑
j<r γj (x

r)x j , where all α j ,βj ,γj have degree at most ⌈2d/r⌉ =

e−1. Then, for i ≤ e ,A mod (xr −ai) =
∑
j<r α j (ai)x

j
. Thus, Step 6

amounts to evaluating α0, . . . ,αr−1 at a1, . . . ,ae (and similarly for

B). This takes O∼ (max(d,r)) operations in K ′ by fast evaluation,

which is also O∼ (max(d,r)) operations in K . Step 7 involves O (e)
calls to Algorithm 2; this costs O∼ (Rω−2er2s) operations in K and

O∼ (er) bit operations. The former number is O∼ (max(d,r)rRω−2),
and the latter O∼ (max(d,r)). Since Sr (A,B) is the sumset for all

reductions Ci , the computation of Sr (A,B) needs to be done only
once, reducing the overall computing time. Finally, given Ci =
C mod (xr − ai), as the x

r − ai are central elements in L′[x ;σ],
the reductions Ci have the same form as in the commutative ring

L′[x], and we can regard C,Ci all of them as in the ring L′[x].
For e pairwise distinct ai , we can recover C by r interpolations in
degree e − 1 in K ′ for anotherO∼ (max(d,r)) operations in K . If the
ai ’s are not pairwise distinct, the interpolation algorithm raises an

error. □

Our main algorithm now repeats the procedure above until it

succeeds; this will happen after an expectedO (1) attempts, thereby

establishing Theorem 1.1.

3 A supersparse algorithm
Let again A and B be in L[x ;σ], both of degree at most d . We now

give a multiplication algorithm whose complexity is polynomial

in r , log(d) and S , where S is the size of the sumset S(A,B) =
supp(A) + supp(B) (recall that the support of AB is contained in

S(A,B)). The first part of the algorithm is Monte Carlo, and costs

O∼ (log(d)S log(1/µ)) bit operations, for a probability of failure at

most µ; the rest of the algorithm is Las Vegas.

3.0.1. Outlook of the algorithm. The first step in our algo-

rithm computes S(A,B) as defined above. For any given error tol-

erance µ, the algorithm in [2] achieves this with bit complexity

O∼ (log(d)S log(1/µ)) and with probability at least 1 − µ. Here, and
in what follows, we write S = #S(A,B).

Let us write S(A,B) = {e1, . . . ,eS } andAB = c1x
e1+· · ·+cSx

eS ∈

L[x ;σ], with all ci in L. For a non-zero multiple q of r , xq − 1 is

central, and we have

(AB) mod (xq − 1) = c1x
e1 mod q + · · · + cSx

eS mod q ,

with ei mod q in {0,1, . . . ,q − 1} for all i . If all ei mod q are pair-

wise distinct, and if we assume that S(A,B) is known, computing

(AB) mod (xq − 1) allows us to recover AB.
However, even through randomization, we are not able to find a

q satisfying such a condition and of growth rate less than quadratic

in S . Instead, we use an approach coming from [1]: we allow for

a certain number of ei mod q to coincide. We will then take q of

the form q = pr , with p a prime whose size is well controlled. For p
satisfying certain luckiness conditions, we will be able to recover at

least half the terms in AB; then, we compute the remaining terms

recursively.

3.0.2. Finding a prime. Let n be a non-zero integer, and let T
be a subset of {0, . . . ,2d }. An element e in T is called a collision
modulo n if there exists e ′ , e in T such that e ≡ e ′ mod n.

Lemma 3.1. One can find using an expected O∼ (log(d)T) bit op-
erations a prime p such that p ∈ O (log(d)T) and T has at most T /2
collisions modulo p, with T = #T.

Proof. Let λ = max(21, ⌈20(T − 1) ln(2d)/3⌉). Then, Lemma 8

in [1] shows that ifp is a random prime in {λ, . . . ,2λ}, with probabil-
ity at least 1/2, T has less thanT /2 collisions modulo p. In particular,
trying an expected O (1) such primes is sufficient to find a suitable

one. By sieving, we can compute all primes up to 2λ inO∼ (log(d)T)
bit operations. Given a prime p in {λ, . . . ,2λ}, we can compute

T mod p in the same asymptotic cost. Counting collisions can be

done by (for instance) sorting all ei mod p, in O∼ (T log log(d)) bit
operations. □

3.0.3. Finding half the terms. Our main procedure is the fol-

lowing. In addition toA and B, we take as input an “approximation”

P of the product AB; as output, we return a better approximation

of AB, as specified below.

Algorithm 4: Half multiplication.
Input:

• A,B ∈ L[x ;σ] of degrees at most d
• P ∈ L[x ;σ], such that all terms of P are terms of AB
• a set T ⊂ {0, . . . ,2d } containing the support of AB − P

Output:

• P∗ in L[x ;σ] such that all terms of P∗ are terms of AB.
• a set T∗ ⊂ {0, . . . ,2d } containing the support of AB − P∗,
such that #T∗ ≤ #T/2.

Step 1: find a prime p ∈ O (log(d)T) such that T has at most

T /2 collisions modulo p, with T = #T.
Step 2: compute u = (AB − P) mod (xpr − 1).
Step 3: compute f1 = e1 mod pr , . . . , fT = eT mod pr .
Step 4: let T∗ ⊂ T be the set of collisions in T modulo pr .
Step 5: Let P∗ = P . For i = 1, . . . ,T , if ei is not in T

∗
, find the

coefficient ci of x
fi
in u and let P∗ = P∗ + cix

ei
.

Step 6: Return P∗ and T∗.

Proposition 3.2. Algorithm 4 is correct. Under assumption H, it
uses an expected O∼ (log(d)Trω) operations in K and O∼ (log(d)Tr)
bit operations, with T = #T.

Proof. By construction, all terms in P∗ are either terms in P (in

which case they are terms in AB), or terms in AB − P (and thus in

AB as well); they are thus always terms in AB, which shows that

the first item holds.

Next, take a term in AB but not in P∗; then, it belongs to T, but
not to T − T∗; this proves that the support of AB − P∗ is in T∗, as
claimed. Finally, since T has at most T /2 collisions modulo p, it
has at most T /2 collisions modulo pr ; hence, we have #T∗ ≤ #T/2.
Correctness is proved.

Next, we analyze the cost of this procedure. By Lemma 3.1, Step

1 takes an expected O∼ (log(d)T) bit operations. At Step 2, we com-

puteu by reducingA and B modulo xpr −1, multiplying the remain-

ders and reducing the product, and subtracting P mod (xpr − 1).
Sincep isO∼ (log(d)T), using Theorem 1.1, the cost of computing

the product modulo xpr − 1 is an expected O∼ (log(d)Trω) opera-
tions in K and O (log(d)Tr) bit operations. This dominates the cost

of the other steps. □

3.0.4. Main algorithm. The main procedure calls Algorithm 4

on rapidly decreasing supportsT; it finishes afterO (log S) iterations,
where S is the cardinality of S(A,B) = supp(A) + supp(B).

Algorithm 5: Multiplication.
Input:
• A,B in L[x ;σ] of degrees at most d
• error tolerance µ.

Output: with probability at least 1 − µ, the product AB.

Step 1: compute S(A,B) = supp(A) + supp(B).
Step 2: let P = 0 and T = S(A,B).
Step 3: while T is not empty do

a: let P ,T = Half multiplication(A,B,P ,T).
Step 4: return P .

The following proposition results directly from Proposition 3.2,

using the algorithm of Arnold and Roche [2] for computing S(A,B)
with a cost of O∼ (S log(d) log 1

µ) bit operations. It establishes The-

orem 1.2.

Proposition 3.3. Algorithm 5 succeeds with probability at least
1− µ. Under assumption H, it uses an expectedO∼ (log(d)Srω) opera-
tions in K and an expectedO∼ (log(d)S (r + log(1/µ))) bit operations,
with S = #S(A,B).

4 Multivariate skew polynomials
Finally, we extend our second univariate multiplication algorithm

to certain multivariate cases, using Kronecker substitution. One

may also use the algorithm of Section 2, but the result would be

exponential in the number n of variables: the runtime of the algo-

rithm of Section 2 is polynomial in the input degree, and Kronecker

substitution produces univariate polynomials of degree exponential

in n.
Multivariate skew polynomials have not been as intensively stud-

ied; refer to [13, 20, 21] for recent work. Let L[x1, . . . ,xn ;σ1, . . . ,σn]
be a multivariate skew polynomial ring, where L is a field, with the

relations xia = σi (a)xi and xix j = x jxi for all i, j, and where each

σi is an automorphism of L.
In [21], using a matrix of endomorphisms, the authors define

more general multivariate skew polynomials. Our definition seems

to correspond to a diagonal matrix containing automorphisms,

which is only a special case of the definition in [21]. However, in

[21], xi ,x j do not commute for i , j, which is used to make sure

the uniqueness of evaluation, defined as the remainder of a right

division. In our definition, we assume xix j = x jxi for all i, j, and
the evaluation at a point is defined as the value of function which

replaces xi in the skew polynomial with σi .
We assume that there exists an automorphism σ of L, having

order r , and integers e1, . . . ,en such that for all i , σi = σei , and

as before we let K be the fixed field of σ . This assumption is for

instance valid when L is a finite field.

Consider integers N = (N1, . . . ,Nn) and the L-linear mapping

ΨN defined by

ΨN : L[x1, . . . ,xn ;σ1, . . . ,σn] → L[x ;σ]

xd1
1
· · · xdnn 7→ xd1N1+· · ·+dnNn

This is simply a Kronecker substitution, in a non-commutative

setting.

Lemma 4.1. If Ni ≡ ei mod r for all i , then ΨN is a K-algebra
morphism.

Proof. Since ΨN acts multiplicatively on monomials, the only

property we have to verify is that for integers (d1, . . . ,dn) and b in

L, ΨN (xd1
1
· · · xdnn)ΨN (b) = ΨN (xd1

1
· · · xdnn b). The former equals

σ
∑n
i=1 diNi (b)x

∑n
i=1 diNi

, while the latter is σ
∑n
i=1 di ei (b)x

∑n
i=1 diNi .

Our assumption implies that the exponents

∑n
i=1 diNi and

∑n
i=1 diei

are the same modulo r , and the conclusion follows. □

For D ≥ 0, let L[x1, . . . ,xn ;σ1, . . . ,σn]D be the L-vector space
of skew polynomials of total degree less than D. We now dis-

cuss conditions on N that ensures that the restriction of ΨN to

L[x1, . . . ,xn ;σ1, . . . ,σn]D is injective.

Lemma 4.2. Let D be a positive integer. Assume Ni ∈ N>0 satisfy
D ≤ N1 and NiD ≤ Ni+1 for 1 ≤ i < n. Then the restriction of ΨN
to L[x1, . . . ,xn ;σ1, . . . ,σn]D is injective.

Proof. Supposem ∈ N>0 can be represented asm =
∑n
i=1 diNi

with

∑n
i=1 di < D, and in particular 0 ≤ di < D. It suffices to show

that this relation defines dn uniquely; once this is known, we set

m′ =m − dnNn and the claim follows by induction. Precisely, we

prove that dn = ⌊
m
Nn
⌋. Since

dnNn ≤ m =
n∑
i=1

diNi ≤ (D − 1) (1 +
n−1∑
i=1

Ni) + dnNn

= D (1 +
n−1∑
i=1

Ni) − (1 +
n−1∑
i=1

Ni) + dnNn

≤ (D +
n∑
i=2

Ni) − (1 +
n−1∑
i=1

Ni) + dnNn

= D − 1 − N1 + Nn + dnNn

< Nn + dnNn = (dn + 1)Nn .

Dividing by Nn on both sides, we get dn ≤
m
Nn
< (dn + 1). Since

dn is an integer, we get dn = ⌊
m
Nn
⌋, and we are done. □

The following algorithm describes how to compute the di ’s.

Algorithm 6: Index.
Input:
• Positive integers N1, . . . ,Nn , where D ≤ N1 and NiD ≤
Ni+1 for i = 1, . . . ,n − 1.
• A positive integerm = d1N1+ · · ·+dnNn , where 0 ≤ di < D
for i = 1, . . . ,n.

Output: The indices d1, . . . ,dn .
Step 1: For i = n, . . . ,1 do
a: Let di = ⌊ mNi

⌋.

b: Letm =m − diNi .

Step 2: Return d1, . . . ,dn .

Lemma 4.3. Algorithm 6 is correct and requires O∼ (n log(D) +
n log(Nn)) bit operations.

Proof. Correctness comes from the expression dn = ⌊
m
Nn
⌋,

which was established in the proof of Lemma 4.2. As to complexity,

each iteration of Step 1 costs a constant number of arithmetic

operations. Since m ≤ DNn and N1 < N2 < · · · < Nn , the

height of m is O (log(D) + log(Nn)), and the total cost of Step 1

is O∼ (n log(D) + n log(Nn)) bit operations. □

Taking into account the constraints in the two previous lemmas,

we obtain the following construction of integers N1, . . . ,Nn .

Lemma 4.4. Given a positive integer D, set N0 = 1 and define
N = (N1, . . . ,Nn) recursively by

Ni+1 = ei+1 + ki+1r , where ki+1 = max{⌈
DNi − ei+1

r
⌉,0}.

Then N satisfies the conditions of Lemmas 4.1 and 4.2, and Ni ≤

rDn+1 holds for all i .

Proof. The congruence conditions clearly hold. For i ≥ 0, we

claim that NiD ≤ Ni+1 ≤ NiD + r ; the left-hand side then proves

the inequalities needed in Lemma 4.2.

If ki+1 = 0, then NiD ≤ ei+1, so Ni+1 = ei+1, which means

NiD ≤ Ni+1. On the other hand, since 0 ≤ ei+1 < r , we have

Ni+1 ≤ NiD + r . If ki+1 > 0, then ki+1 = ⌈
DNi−ei+1

r ⌉, so we have

DNi−ei+1
r ≤ ki+1 <

DNi−ei+1
r + 1. This gives DNi − ei+1 ≤ ki+1r <

DNi − ei+1 + r , and thus DNi ≤ Ni+1 < DNi + r . In either case, we

proved the claim. This inequalities also imply (by induction) that all

Ni ’s satisfy Ni ≤ Di +r (Di − 1)/(D − 1), and thus Ni ≤ rDn+1
. □

Corollary 4.5. Let D and N as in the previous lemma, and let C
be in L[x1, . . . ,xn ;σ1, . . . ,σn]D , with #C ≤ S . Given ΨN (C) we can
recover C in O∼ (Sn2 log(D) + Sn log(r)) bit operations.

Proof. Apply Algorithm 6 to all terms of ΨN (C). Each instance

takes O∼ (n log(D) + n log(Nn)) bit operations, and the previous

lemma proved that log(Nn) is O (n log(D) + log(r)). □

We can now present our sparse multivariate multiplication algo-

rithm.

Algorithm 7: Multivariate Multiplication.

Input:

• A,B in L[x1, . . . ,xn ;σ1, . . . ,σn]
• error tolerance µ

Output: with probability at least 1 − µ, the product AB

Step 1: let D = degA + degB + 1.
Step 2: let N be as in Lemma 4.4.

Step 3: compute Ã = ΨN (A) and B̃ = ΨN (B)

Step 4: compute C̃ = ÃB̃ by calling Algorithm 5 with inputs Ã,

B̃ and µ

Step 5: return Ψ−1
N

(C̃)

Proposition 4.6. Algorithm 7 computes AB with probability at
least 1 − µ and costs O∼ (nrωS logD) field operations in K plus
O∼ (n2S logD + nSr logD + nS logDlog(1/µ) + S log r log(1/µ)) bit
operations, where S = #S(A,B).

Proof. Correctness comes from Lemma 4.4: if the product ÃB̃
computed in Step 4 is correct, then the output is the product AB.
By Proposition 3.3, Algorithm 5 returns the correct product with

probability at least 1 − µ, so we are done.

Step 2 needs n operations. Since the bit-lengths are O (n logD +
log r), the bit cost isO∼ (n2 logD+n log r). At Step 3, since #A,#B ≤
S , we use at mostO∼ (n2S logD +nS log r) bit operations. At Step 4,

the degree of f̃ · д̃ is d̃ , so by Proposition 3.3 we useO∼ (rωS log(d̃))

operations inK andO∼ (log(d̃)S (r + log(1/µ))) bit operations. Since

d̃ ≤ DNn andNn is inO (rDn), this isO∼ (nrωS logD) operations in
K andO∼ (nSr logD +S log r log(1/µ) +nS logD log(1/µ)) bit oper-
ations. In Step 5, by Lemma 4.3, we useO∼ (nS logD +nS logNn) =
O∼ (n2S logD + nS log r) bit operations. □

5 Conclusions
In this paper, we present new multiplication algorithms for skew

polynomials. Our first new algorithm is a Las Vegas algorithm for

multiplication in L[x ;σ]; the second algorithm is for multiplication

of “supersparse” polynomials in L[x ;σ]. Its cost is sensitive to the

number of non-zero terms, and is significantly faster than previous

algorithms when the product has large degree but few terms.

Finally, we consider multiplying sparse multivariate skew poly-

nomials in L[x1, . . . ,xn ;σ1, . . . ,σn].We introduced a non-commuta-

tive Kronecker substitution scheme, and present an algorithm with

polynomial runtime in the input and output size. This is a particular

improvement over standard dense algorithms, which could be of

exponential complexity in the number of non-zero input terms.

Acknowledgement
The authors would like to acknowledge the careful anonymous

review of this paper.

References
[1] A. Arnold, M. Giesbrecht, and D. Roche. 2013. Faster sparse interpolation of

straight-line programs. In International Workshop on Computer Algebra in Scien-
tific Computing. Springer, 61–74.

[2] A. Arnold and D. Roche. 2015. Output-sensitive algorithms for sumset and sparse

polynomial multiplication. In ISSAC’15. ACM Press, 29–36.

[3] D. Boucher, P. Gaborit, W. Geiselmann, O. Ruatta, and F. Ulmer. 2010. Key

exchange and encryption schemes based on non-commutative skew polynomials.

In International Workshop on Post-Quantum Cryptography. Springer, 126–141.
[4] D. Boucher, W. Geiselmann, and F. Ulmer. 2007. Skew-cyclic codes. Applicable

Algebra in Engineering, Communication and Computing 18, 4 (2007), 379–389.

[5] D. Boucher and F. Ulmer. 2009. Coding with skew polynomial rings. Journal of
Symbolic Computation 44, 12 (2009), 1644–1656.

[6] X. Caruso and J. Le Borgne. 2017. Fast multiplication for skew polynomials. In

ISSAC’17. ACM, 77–84.

[7] D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic

progressions. J. Symb. Comput. 9, 3 (1990), 251–280.
[8] J.-M. Couveignes and R. Lercier. 2009. Elliptic periods for finite fields. Finite

Fields Their Appl. 15, 1 (2009), 1–22.
[9] E. Gabidulin. 1985. Theory of codes with maximum rank distance. Problemy

Peredachi Informatsii 21, 1 (1985), 3–16.
[10] F. Le Gall. 2014. Powers of tensors and fast matrix multiplication. In ISSAC’14.

ACM Press, 296–303.

[11] J. von zur Gathen and M. Giesbrecht. 1990. Constructing normal bases in finite

fields. J. Symb. Comput 10 (1990), 547–570.

[12] J. von zur Gathen and V. Shoup. 1992. Computing Frobenius maps and factoring

polynomials. Computational Complexity 2, 3 (1992), 187–224.

[13] W. Geiselmann and F. Ulmer. 2019. Skew Reed-Muller codes. Contemporary
mathematics (2019), 107–116.

[14] M. Giesbrecht. 1998. Factoring in skew-polynomial rings over finite fields. Journal
of Symbolic Computation 26, 4 (1998), 463–486.

[15] M. Giesbrecht, A. Jamshidpey, and É Schost. 2019. Quadratic-Time Algorithms

for Normal Elements. In ISSAC’19. ACM Press, 179–186.

[16] K. Girstmair. 1999. An algorithm for the construction of a normal basis. Journal
of Number Theory 78, 1 (1999), 36–45.

[17] D. Goss. 1996. Basic Structures of Function Field Arithmetic. Springer Berlin

Heidelberg.

[18] S. Johnson. 1974. Sparse polynomial arithmetic. ACM SIGSAM Bulletin 8, 3 (1974),
63–71.

[19] E. Kaltofen and V. Shoup. 1998. Subquadratic-time factoring of polynomials over

finite fields. Math. Comp. 67, 223 (1998), 1179–1197.
[20] U. Martínez-Penas. 2019. Classification of multivariate skew polynomial rings

over finite fields via affine transformations of variables. arXiv: 1908.06833 (2019).
[21] U. Martínez-Penas and F. R. Kschischang. 2019. Evaluation and interpolation

over multivariate skew polynomial rings. Journal of Algebra 525 (2019), 111–139.
[22] M. Monagan and R. Pearce. 2009. Parallel Sparse Polynomial Multiplication Using

Heaps. In ISSAC’09. 263–269.
[23] M. Monagan and R. Pearce. 2011. Sparse Polynomial Pseudo Division Using a

Heap. J. Symb. Comp. 46, 7 (2011), 807–822.
[24] O. Ore. 1933. Theory of non-commutative polynomials. Annals of Mathematics

(1933), 480–508.

[25] S. Puchinger and A. Wachter-Zeh. 2016. Sub-quadratic decoding of Gabidulin

codes. In 2016 IEEE International Symposium on Information Theory (ISIT). IEEE,
2554–2558.

[26] S. Puchinger and A.Wachter-Zeh. 2018. Fast operations on linearized polynomials

and their applications in coding theory. Journal of Symbolic Computation 89

(2018), 194–215.

[27] F. Kschischang R. Koetter. 2008. Coding for errors and erasures in randomnetwork

coding. IEEE Transactions on Information Theory 54, 8 (2008), 3579–3591.

[28] D. Roche. 2018. What can (and can’t) we do with sparse polynomials?. In ISSAC’18.
25–30.

[29] V. Shoup. 1994. Fast construction of irreducible polynomials over finite fields.

Journal of Symbolic Computation 17, 5 (1994), 371–391.

[30] J. van der Hoeven and G. Lecerf. 2012. On the Complexity of Multivariate

Blockwise Polynomial Multiplication. In ISSAC’12. 211–218.
[31] J. van der Hoeven and G. Lecerf. 2013. On the bit-complexity of sparse polynomial

and series multiplication. J. Symbolic Computation 50 (2013), 227–254.

[32] Y. Zhang. 2010. A secret sharing scheme via skew polynomials. In 2010 Interna-
tional Conference on Computational Science and Its Applications. IEEE, 33–38.

	Abstract
	1 Introduction
	2 Sparse multiplication
	2.1 Preliminaries
	2.2 Multiplication modulo xr-1
	2.3 Multiplication modulo xr-a
	2.4 Main algorithm

	3 A supersparse algorithm
	4 Multivariate skew polynomials
	5 Conclusions
	References

