
Trinomial bases and Chinese remaindering for
modular polynomial multiplication

Éric Schost1 and Arash Hariri2

1 ORCCA, Computer Science Department, The University of Western Ontario,
London, Ontario, Canada

eschost@uwo.ca
2 Department of Electrical and Computer Engineering, The University of Western

Ontario, London, Ontario, Canada
hariri@ieee.org

Abstract. Following the previous work by Bajard-Didier-Kornerup, Mc-
Laughlin, Mihailescu and Bajard-Imbert-Jullien, we present an algorithm
for modular polynomial multiplication that implements the Montgomery
algorithm in a residue basis; here, as in Bajard et al.’s work, the mod-
uli are trinomials over F2. Previous work used a second residue basis to
perform the final division. In this paper, we show how to keep the same
residue basis, inspired by l’Hospital rule. Additionally, applying a divide-
and-conquer approach to the Chinese remaindering, we obtain improved
estimates on the number of additions for some useful degree ranges.

Keywords: Montgomery multiplication, Chinese remainder theorem, fi-

nite fields, subquadratic area complexity.

1 Introduction

Modular multiplication of polynomials is a cornerstone for many higher-level
applications, from finite field arithmetic (for non-prime fields) to implementa-
tion of cryptographic protocols. In all that follows, we focus on the practically
important case of polynomials over F2.

Given a polynomial R of degree m, the Montgomery multiplication algo-
rithm [10] shows how to reduce a multiplication modulo a polynomial V of
degree at most m to a multiplication modulo R and a division by R, assuming
that R and V are coprime. This “multiplication” is slightly twisted, though,
since on input A and B, it returns AB/R modulo V .

To implement this algorithm, we need to specify R. An obvious choice is
R = xm [7]. Then, the computations are similar to (but distinct from) those
in the Cook-Sieveking-Kung algorithm [13, Chapter 9]. Using fast polynomial
multiplication [11, 3], this yields an algorithm that uses O(m log(m) log log(m))
additions and multiplications. However, the rather large constant hidden in the
big-O estimate makes it desirable to devise multiplication schemes with a possi-
bly higher asymptotic cost, but whose performance is better for moderate values
of m, say m ≤ 1000.



To fulfill this goal, we will take another approach to the Montgomery mul-
tiplication, that follows the ideas introduced in [1] and [8] (focusing on integer
multiplication), and [2] and [9] (for polynomials): we take R = r1 · · · rn, with
pairwise coprime ri. To make this approach useful, the computations modulo
ri should be easy: in [9], which focuses on large prime base fields, the ri’s are
linear. Here, following [2], the ri’s will be trinomials.
Main result. Throughout this paper, a family of n pairwise coprime trinomials
R = (r1, . . . , rn) in F2[x] is fixed; their product is denoted R. We suppose that
all ri’s have the same degree d. This assumption makes it possible for us to give
explicit complexity bounds; however, the algorithm still works with trinomials
of different degrees. We also assume that all ri’s are squarefree. This can for
instance be obtained by taking d odd: in this case, the derivative of xd + xe + 1
is either xd−1 or xd−1 + xe−1, depending on the parity of e; in both cases, it has
no common factor with xd + xe + 1.

Let m = nd and let V be in F2[x], with gcd(R, V ) = 1 and deg(V ) ≤ m; V
does not have to be irreducible and can have degree less than m. Computations
modulo V will be done through the Montgomery algorithm, applied in the residue
basis R; since m ≥ deg(V ), a polynomial of degree less than deg(V ) is uniquely
determined by its residues modulo R.

Formally, our computational model is the boolean circuit, using multiplication
(AND) and addition (XOR) gates. The area complexity is the number of gates
we use; we distinguish between the number of multiplications and additions. The
time complexity is the length of the longest path in the circuit, i.e., the critical
path. As is customary, we write time complexities in the form αTA + βTX , to
indicate that all paths in the directed graph underlying the circuit have at most
α multiplication gates and β additions gates. Time complexity estimates will
depend on a function Trem(d) defined as follows: Trem(d) is such that for all
i ≤ n, one can compute the remainder of a polynomial of degree at most 2d− 2
by ri using 2d − 2 additions, in time Trem(d); we describe this function further
in Section 2. Since our main focus is more on the total number of gates than
on time complexity, we only give big-O estimates for the latter, except in very
simple cases.

Theorem 1 One can perform modular multiplication in the residue basis R =
(r1, . . . , rn) using 7nd2 multiplications and

7nd2 + 8n2d− 2nd log2(n) + 6nd− 2n2 − 10n

additions. The time complexity is O(TA + log2(d)TX + nTrem(d)).

When d is such that one can take n ' d, our algorithm uses O(m1.5) operations.
In the worst case, Trem(d) is in O(dTX), so the time complexity is O(TA+ndTX).
If we assume that all trinomials have the form xd + xe + 1, with e < d/2, then
Trem(d) is in O(TX), and the time complexity is O(TA + log2(d)TX + nTX).
Previous work. There exist several other approaches to modular multiplica-
tion; as said above, it is possible to reach a quasi-linear number of operations.



Several other families of algorithms are also known, either for low weight mod-
uli [12, 5] or for arbitrary ones, such as [6], which shares some features with the
family of algorithms we present now.

Our work follows previous results of Bajard et al. [2], who use a basis of tri-
nomials as well (with different constraints than ours) and Newton interpolation
techniques. Here, we use the Chinese remaindering with a classical divide-and-
conquer approach. Mihailescu [9] uses moduli of degree one, whose roots are
either roots of unity or consecutive integers; this is not immediately possible
here, since we work over F2.

In both previous papers, a difficulty arises, since the final exact division
cannot be performed in the residue basis. The same solutions are used: shifting
to another residue basis to do the division. We present an alternative solution,
inspired by l’Hospital rule. This enables us to work with the same set of moduli
(and thus, to reach higher m for a given moduli degree d), at the cost of a slight
increase in the number of operations.
Notation. We write “large” degree polynomials (of degree typically close to
m = nd) with upper case letters, and “low” degree ones (typically, residues of
degree less than d) with lower case letters. Vectors of residues are written in bold
face. The equality A = B mod C means that A and B are congruent modulo
C; the stronger equality A = B rem C means that A is the remainder of the
division of B by C, so that deg(A) < deg(C). The notation A = B div C means
that A is the quotient in the Euclidean division of B by C.
Outline. Section 2 consists of preliminaries. In Section 3, we consider Chinese
remaindering using trinomials. In Section 4, we present our new algorithm and
illustrate its performance in Section 5.

2 Preliminaries

This section reviews basic material on operations such as polynomial multipli-
cation or reduction. Most of these results are known; the only new element here
is a straightforward estimate on the cost of multiplication by several trinomials.

Polynomial multiplication. Let a and b be in F2[x], of degree less than d.
Then, the product ab can be computed using (d− 1)2 additions and d2 multipli-
cations; the time complexity is TA + dlog2(d)eTX .

Reduction by trinomials. For i ≤ n and a ∈ F2[x] of degree at most 2d− 2,
a rem ri can be computed using 2d− 2 additions [14]. As said before, we write
Trem(d) for the time complexity of this operation; the following estimates for
Trem(d) are available:

– for arbitrary trinomials ri, we can let Trem(d) = (2d− 2)TX ;
– if all trinomials ri are of the form xd + xei + 1, with ei < d/2, then we can

take Trem(d) = 2TX , see [4].

Multiplication by trinomials. We also need to estimate the cost of multipli-
cation of a polynomial by one or several of the trinomials r1, . . . , rn. Our result



gives a reasonable operation count; however, we are not able to obtain logarith-
mic time bounds. Such bounds would reduce the overall time complexity of our
main algorithm as well.

Proposition 1 Let P be in F2[x] of degree less than s, let ` ≤ n and let
a1, . . . , a` be in {1, . . . , n}. Then one can compute the product ra1 · · · ra`

P using
2(s− d)` + d`2 additions in time 2`TX .

Proof. Let P0 = P and Pi = rai
Pi−1 for i = 1, . . . , `, so that the polynomial

we want to compute is Pn. Remark that Pi has degree less than s + di for all i.
Given Pi−1, one can compute Pi using 2(s + d(i− 1))− d additions. Hence, the
total number of additions is at most 2(s − d)` + d`2. Since multiplication by a
single trinomial can be done in time 2TX , the overall time complexity is 2`TX .
¤

3 Chinese remaindering for trinomials

We continue with algorithms to perform Chinese remaindering modulo the family
of pairwise coprime trinomials r1, . . . , rn, and for the inverse operation, multiple
reduction.

Given residues a = (a1, . . . , an), with deg(ai) < d, the Chinese remainder
theorem shows that there exists a unique polynomial A of degree less than m =
nd with ai = A rem ri for all i. Quasi-linear algorithms of area complexity
O(m log(m)2 log log(m)) are known for computing A from its residues ai, and
conversely [13, Chapter 10]. However, the constant hidden in the big-O is rather
large (especially for reduction, which uses fast Euclidean division).

These algorithms rely on divide-and-conquer techniques. In what follows, we
reuse this idea to devise a Chinese remainder algorithm adapted to trinomials,
which performs well for moderate values of m. We also give a (substantially
simpler) multiple reduction algorithm with a similar cost.

Linear combination and Chinese remaindering. Let a = (a1, . . . , an) be
in F2[x]n, with deg(ai) < d for all i. We consider here the question of computing
the coefficients of the linear combination

A =
∑

i≤n

aiSi, with Si = r1 · · · ri−1ri+1 · · · rn;

in what follows, we will write A = LinComb(a, R). Note that this does not quite
solve the Chinese remaindering question, since A rem ri = aiSi rem ri: thus,
one should divide ai by Si modulo ri prior to the combination. However, in the
cases where we apply this algorithm, we will be able to perform this preliminary
step jointly with some other operation, so that the main task is indeed the linear
combination.

Proposition 2 Given a = (a1, . . . , an), one can compute LinComb(a,R) using
3n2d− nd log2(n) additions, in time O(nTX).



Proof. The proof adapts that of [13, Theorem 10.21] to moduli that are trinomi-
als. If n = 1, we have nothing to do. Otherwise, let n′ = bn/2c and n′′ = n− n′.
Define next

B =
∑

1≤i≤n′
air1 · · · ri−1ri+1 · · · rn′ , C =

∑

n′+1≤i≤n

airn′+1 · · · ri−1ri+1 · · · rn,

so that we have
A = Brn′+1 · · · rn + Cr1 · · · rn′ .

This leads to a divide-and-conquer algorithm. Assuming that B and C have
been computed recursively, A is obtained through multiplications by trinomials,
followed by a polynomial addition.

The first step requires to multiply B and C by several trinomials, so it is
handled by Proposition 1. Since B has degree less than n′d and we multiply
it by n′′ trinomials, we obtain a number of additions of 2(n′d − d)n′′ + dn′′2,
with a time complexity of 2n′′TX . Similarly, C has degree less than n′′d and we
multiply it by n′ trinomials, so we get 2(n′′d− d)n′+ dn′2 additions, and a time
complexity of 2n′TX .

The final polynomial addition takes an extra nd scalar additions, which are
done in parallel. After simplifying, we get that the total number of additions
needed to reconstruct A from B and C is at most 3n2d/2− nd for n even, and
3n2d/2− nd− d/2 for n odd. Hence, the number N(n) of additions satisfies the
relation:

N(n) ≤ N(n′) + N(n′′) + 3n2d/2− nd.

Solving the recurrence gives N(n) ≤ 3n2d−nd log2(n). Since 2n′ ≤ 2n′′ ≤ n+1,
the time complexity D(n) satisfies

D(n) ≤ max(D(n′), D(n′′)) + (n + 2)TX ,

which yields our claim. ¤
Reduction. For modular reduction, a more direct approach turns out to work
well. In cases where we need the modular reduction in Section 4, the input
polynomial A will be even; hence, we present an adapted reduction algorithm,
starting with a lemma.

Lemma 1 Given A of degree at most s(d − 1), one can compute all ai =
A rem ri using n(s− 1)(2d− 2) additions, in time O(sTrem(d)).

Proof. We prove that for any given i ≤ n, ai = Ai rem r can be computed using
(s − 1)(2d − 2) additions, in time (s − 1)Trem(d). Doing so in parallel for all ri

proves our proposition.
If s = 1, we have nothing to do. Else, we write A = A0 + x(d−1)(s−2)A1,

with deg(A0) < (d− 1)(s− 2) and deg(A1) ≤ 2(d− 1). Let bi = A1 rem ri and
Bi = A0 + x(d−1)(s−2)bi, so that A = Bi mod ri and deg(Bi) ≤ (d − 1)(s − 1).
By what was said before, one can compute bi using 2d − 2 additions, with a
time complexity of Trem(d). Continuing inductively by reducing Bi modulo ri,
the final number of additions is (s− 1)(2d− 2), and the time is (s− 1)Trem(d).
¤



Corollary 1 Let A ∈ F2[x] be even and of degree less than nd. Then, one can
compute all ai = A rem ri using n(n+3)(d−1) additions, in time O(nTrem(d)).

Proof. Let us write A = B2, with deg(B) < nd/2. Our assumptions that all
ri are coprime imply that n ≤ d, so that the latter degree is upper-bounded
by (dn/2e + 1)(d − 1). In view of the previous lemma, we can thus compute
all bi = Bi rem ri using ndn/2e(2d − 2) ≤ 2(n + 1)(d − 1) additions, in time
O(nTrem(d)).

Then, we obtain ai as b2
i rem ri. The cost of reducing b2

i modulo ri is at most
2d−2, in time Trem(d). Hence, the total cost is at most (n+1)(d−1)+2d−2 =
(n + 3)(d− 1) additions for reduction by a single trinomial; the time complexity
is O(nTrem(d)). ¤

4 The multiplication algorithm

We conclude with presenting our Montgomery-like multiplication algorithm in
the residue basis. We start by recalling the Montgomery original construction,
then the prior extension to residue basis computations from [9, 2], and finally
give our new version.

The Montgomery algorithm. As in the introduction, let R and V be of
respective degrees m and m′, with gcd(R, V ) = 1 and m′ ≤ m. Given the
inverse W of V modulo R and A,B of degrees less than m′, the Montgomery
algorithm computes the quantities Z, H, T, Q of Figure 1.

Input:

– A, B, V, W, R

Output:

– Q = AB/R mod V

1. Z = AB
2. H = ZW rem R
3. T = Z −HV
4. Q = T div R.

Fig. 1. Montgomery multiplication

Observe that T is 0 modulo R, so that the division yielding Q is exact.
Obviously, Q = AB/R mod V . Besides, since deg(R) = m and deg(T ) ≤ m +
m′ − 1, we have deg(Q) ≤ m′ − 1, so Q = AB/R rem V .

The Montgomery multiplication with polynomial residues. In both [9]
and [2], the idea of computing modulo a highly composite R is raised. We recall
this process here, for our case R = r1 · · · rn, with ri trinomials. Additions and
multiplications modulo R are done component-wise modulo R = (r1, . . . , rn).



However, the final step of the algorithm cannot be performed in the residue
basis, since it becomes a division by zero.

The workaround in [9, 2] consists in shifting from the set of moduli R to
another set R̃ = (rn+1, . . . , r2n) modulo which R can be inverted. This shifting
process, also called base extension, is thus the composite of a Chinese remain-
dering operation (or Newton interpolation) at r1, . . . , rn, followed by a multiple
reduction at rn+1, . . . , r2n.

To minimize the overhead, it turns out to be better to take as input the
residues a,b of A and B modulo R, as well as their residues ã, b̃ modulo R̃;
similarly, we output the residues q, q̃ of Q modulo both sets. Thus, the algorithm
starts as before, performing the computations modulo R. Before the division by
R, though, it shifts from the basis R to R̃, divides by R in this basis, and
eventually shifts back to R. As input, it also takes the residues w of W modulo
R, and the residues s̃ of S = 1/R and ṽ of V modulo R̃. The details of this
algorithm are in Figure 2 (with notation adapted to our setting).

Input:

– a = (a1, . . . , an) and ea = (an+1, . . . , a2n)

– b = (b1, . . . , bn) and eb = (bn+1, . . . , b2n)
– w = (w1, . . . , wn)
– es = (sn+1, . . . , s2n)
– ev = (vn+1, . . . , v2n)

– R = (r1, . . . , rn) and eR = (rn+1, . . . , r2n)

Output:

– q = (q1, . . . , qn) and eq = (qn+1, . . . , q2n)

1. (zi)i≤n = (aibi rem ri)i≤n

1’. (zn+i)i≤n = (an+ibn+i rem rn+i)i≤n

2. (hi)i≤n = (ziwi rem ri)i≤n

2’. (hn+i)i≤n = shift(h1, . . . , hn)
3. (tn+i)i≤n = (zn+i − hn+ivn+i rem rn+i)i≤n

4. (qn+i)i≤n = (tn+isn+i rem rn+i)i≤n

4’. (qi)i≤n = shift−1(qn+1, . . . , q2n)

Fig. 2. Residue Montgomery multiplication as in [2, 9]

Our algorithm. Our approach rests on the following remark: when divisions by
zero occur, one can still obtain a meaningful result by dividing derivatives. With
the notation of Figure 1, from the equality T = RQ, we obtain by differentiation

T ′ = R′Q + RQ′.



The polynomial R is squarefree, because all ri are, and are pairwise coprime.
Hence, we can deduce the relation

Q =
T ′

R′
mod R. (1)

In contrast to the algorithm of the previous paragraph, our algorithm does
not require a second set of moduli: we work with R = (r1, . . . , rn) all along.
Still, as before, we will handle more data as input and output than the mere
residues of A and B modulo R. If A is in F2[x], we still write its residue repre-
sentation modulo R as a = (a1, . . . , an). Besides, we denote by a? the residue
representation of its derivative, i.e., A′:

a? = (a?
1, . . . , a

?
n), with a?

i = A′ mod ri.

Note that a?
i is not the derivative of ai.

The previous algorithm uses a function shift to extend the modular infor-
mation from the moduli R to R̃. In a similar manner, we use a function diff
that takes as input the residues a of a polynomial A of degree less than nd, and
outputs the residues a? of its derivative: this is done by computing A through
the Chinese remaindering, differentiating it, and reducing the result modulo all
ri.

Now, the input of the multiplication algorithm consists of the residues a,b
of A and B modulo R, and of the residues a?,b? of the derivatives A′ and B′;
the output consists of the residues q and q? of Q and its derivative Q′. The
computation follows the same steps as before. Since a,a?,b,b? are known, we
can compute the residues z and z?, using the relations zi = aibi rem ri and
z?
i = aib

?
i + a?

i bi rem ri.
Next, we deduce the residue representation h of H = ZW rem R. However,

since we take remainders modulo R, the derivative of H cannot be computed
term-wise, so we use the function diff to obtain h? (which is valid, since deg(H) <
nd).

In view of (1), we see that only t? is required to obtain the quotient Q. Since
T = Z −HV , we deduce that t?i = T ′ mod ri is given by

z?
i − hiv

?
i − h?

i vi rem ri.

Let U be the inverse of R′ modulo R and let u? be the residue vector of U modulo
R. Equation (1) then implies that q?

i = Q rem ri equals t?i u
?
i rem ri. Knowing q,

we deduce q? by applying the function diff (which is valid, since deg(Q) < nd).
Remark that q? is not needed if we perform a single multiplication. However,
since Q may be reused for further multiplications, we compute q? for consistency.
The details of the algorithm are given in Figure 3.
Optimization and cost analysis. We finally prove the complexity statement
announced in Theorem 1, starting with a discussion of the function diff.

This function consists of a Chinese remaindering, followed by differentiation,
followed by a multiple reduction. As mentioned in Section 3, the Chinese remain-
dering requires as a first step the modular multiplication of the residue vector by



Input:

– a = (a1, . . . , an) and a? = (a?
1, . . . , a

?
n)

– b = (b1, . . . , bn) and b? = (b?
1, . . . , b

?
n)

– w = (w1, . . . , wn)
– u? = (u?

1, . . . , u
?
n)

– v = (v1, . . . , vn) and v? = (v?
1 , . . . , v?

n)
– R = (r1, . . . , rn)

Output:

– q = (q1, . . . , qn) and q? = (q?
1 , . . . , q?

n)

1. (zi)i≤n = (aibi rem ri)i≤n

1’. (z?
i )i≤n = (aib

?
i + a?

i bi rem ri)i≤n

2. (hi)i≤n = (ziwi rem ri)i≤n

2’. (h?
i )i≤n = diff(h1, . . . , hn)

3. (t?
i )i≤n = (z?

i − hiv
?
i − h?

i vi rem ri)i≤n

4. (qi)i≤n = (t?
i u?

i rem ri)i≤n

4’. (q?
i )i≤n = diff(q1, . . . , qn)

Fig. 3. Our version of the residue Montgomery multiplication

the vector (xi = S−1
i rem ri)i≤n, with Si = r1 · · · ri−1ri+1 · · · rn. We apply the

function diff twice. In both cases, this product can be absorbed in other modular
multiplications (requiring us to slightly modify the precomputed polynomials we
take as input).

– At step 2’, we apply diff to the vector (h1, . . . , hn) obtained at step 2. Hence,
we can modify step 2, replacing the product ziwi rem ri by the product
zi(wixi rem ri) rem ri, so that the vector (wixi rem ri)i≤n is needed as in-
put. However, this modifies hi; since hi is reused at step 3, we have to
compensate for this extra xi factor: this is done by replacing the prod-
uct hiv

?
i rem ri by hi(v?

i Si rem ri) rem ri, so that we take the latter vector
(v?

i Si rem ri)i≤n as input.
– At step 4’, we apply diff to the vector (q1, . . . , qn) obtained at step 4. Then,

we modify step 4, replacing the product t?i u
?
i rem ri by t?i (u

?
i xi rem ri) rem ri,

so (u?
i xi rem ri)i≤n is used as an extra input.

Hence, the cost of Chinese remaindering reduces to that of the LinComb function
given in Proposition 2. Differentiation is free, and gives an even polynomial; the
cost of multiple reduction is given in Corollary 1. Hence, the total cost of diff is
at most 4n2d − nd(log2(n)− 3)− n2 − 3n additions. The time complexity is in
O(nTrem(d)).

We complete the cost analysis of the whole algorithm. The algorithm per-
forms seven vector multiplications in size n, with polynomials of degree less than
d: this is done using 7n(d − 1)2 additions and 7nd2 multiplications. There are
two calls to diff, using 8n2d− 2nd(log2(n)− 3)− 2n2 − 6n additions.



The extra operations are vector additions and remainders in size n. It turns
out to be better to postpone the reduction at step 1’ to step 3, after all additions
are done. Then, we have three size-n additions to perform, on polynomials of
degree up to 2d − 2; hence, they require 3n(2d − 1) scalar additions. The four
remainders use 4n(2d − 2) additions. Summing all previous contributions gives
the estimate on the number of operations in Theorem 1.

The time complexity analysis requires no extra complication, except to note
that the addition at step 1’ can be done in parallel with one at step 3. The total
time is then seen to be in O(TA + log2(d)TX + nTrem(d)).

5 Examples

Table 1 illustrates the number of additions performed by our algorithm for a few
values of d. The second column gives the maximal list of trinomials one can use,
under the form of a set S = {i1, . . . , in} of integers between 1 and d − 1: the
corresponding trinomials are xd + xi1 + 1, . . . , xd + xin + 1. As can be seen, the
squarefreeness assumption on our trinomials forces us to discard at least half of
the available ones for d even.

Table 1. Numerical examples

d indices nmax nmax d additions

13 {1, 2, 3, 4, 6, 7, 10, 12} 8 104 15912
14 {1, 3, 5, 9, 11} 5 70 9564
15 {1, . . . , 14} − {10, 12} 12 180 35561
16 {1, 3, 5, 7, 9, 13, 15} 7 112 18691
17 {3, 4, 5, 6, 9, 11, 12, 14, 15} 9 153 28919
18 {1, 3, 5, 7, 9, 11, 13, 15, 17} 9 162 31768
19 {3, 4, 5, 6, 7, 9, 10, 12, 13, 15, 16} 11 209 45644
20 {1, 3, 5, 9, 11, 15, 17} 7 140 27325
21 {1, . . . , 20} − {15} 19 399 117393
22 {1, 3, 7, 9, 11, 13, 15, 19, 21} 9 198 44428
23 {2, 3, 5, 8, 9, 11, 12, 14, 15, 18, 20, 21, 22} 13 299 78348
24 {5, 7, 11, 13, 15, 17, 19, 21, 23} 9 216 51514
25 {1, 3, 4, 7, 9, 10, 13, 15, 16, 18, 19, 21, 22, 24} 14 350 99352
26 {3, 5, 7, 9, 11, 15, 17, 21, 23} 9 234 59104
27 {1, . . . , 26} − {2, 4, 9, 11, 16, 18} 20 540 186032

Our goal was to obtain a low operation count for multiplication modulo the
modulus V . We are successful in this, since our results improve on some of the
best ones previously known to us. For instance, Bajard et al. [2] have 49920
additions for m = 192, 139400 additions for m = 360 and 213716 additions
for m = 486. We obtain 44336 additions for (n = 8, d = 24,m = nd = 192),
108285 additions for (n = 18, d = 21,m = nd = 378) and 159872 additions for
(n = 18, d = 27,m = nd = 486).



6 Conclusion

The results given here easily extend to slightly more general situations: e.g.,
using trinomials of different degrees would enable one to extend and refine the
range of accessible degrees. Harder questions concern our time complexity: as of
now, our Chinese remaindering or multiple remaindering algorithms have rather
bad time complexity, due to their sequential nature. It would be most interesting
to obtain a similar operation count with a logarithmic time.
Acknowledgments. We would like to thank the referees for their helpful com-
ments, as well as Paul Zimmermann for pointing out McLaughlin’s work. The
first author acknowledges the support of the Canada Research Chairs Program
and of NSERC.

References

1. J.-C. Bajard, L.-S. Didier, and P. Kornerup. An RNS Montgomery modular mul-
tiplication algorithm. IEEE Transactions on Computers, 47(7):766–776, 1998.

2. J.-C. Bajard, L. Imbert, and G. A. Jullien. Parallel Montgomery multiplication in
GF(2k) using trinomial residue arithmetic. In 17th IEEE Symposium on Computer
Arithmetic, pages 164–171. IEEE, 2005.

3. D. G. Cantor. On arithmetical algorithms over finite fields. J. Combin. Theory
Ser. A, 50(2):285–300, 1989.

4. M. Ernst, M. Jung, F. Madlener, S. Huss, and R. Blümel. A reconfigurable system
on chip implementation for elliptic curve cryptography over GF(2n). In CHES’02,
volume 2523 of LNCS, pages 381–399. Springer-Verlag, 2003.

5. H. Fan and M. A. Hasan. A new approach to subquadratic space complexity
parallel multipliers for extended binary fields. IEEE Transactions on Computers,
56(2):224–233, 2007.

6. P. Giorgi, C. Nègre, and T. Plantard. Subquadratic binary field multiplier in double
polynomial system. In SECRYPT’07, 2007.

7. C. K. Koç and T. Acar. Montgomery multiplication in GF(2k). Designs, Codes
and Cryptography, 14(1):57–69, 1998.

8. P. McLaughlin, Jr. New frameworks for Montgomery’s modular multiplication
method. Mathematics of Computation, 73(246):899–906, 2004.

9. P. Mihailescu. Fast convolutions meet Montgomery. Mathematics of Computation,
77(282):1199–1221, 2008.

10. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519–521, 1985.

11. A. Schönhage. Schnelle Multiplikation von Polynomen über Körpern der Charak-
teristik 2. Acta Informatica, 7:395–398, 1977.

12. B. Sunar. A generalized method for constructing subquadratic complexity GF(2k)
multipliers. IEEE Transactions on Computers, 53(9):1097–1105, 2004.

13. J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University
Press, 1999.

14. H. Wu. Low complexity bit-parallel finite field arithmetic using polynomial basis.
In CHES’99, volume 1717 of LNCS, pages 280–291. Springer-Verlag, 1999.


