Algorithms for Finite Field Arithmetic

Eric Schost
Computer Science Department
Western University
eschost@uwo.ca

Categories and Subject Descriptors

F.2.1 [Theory of computation]: Analysis of algorithms
and problem complexity—Computations in finite fields

General Terms
Algorithms, Theory

Keywords

Finite fields, irreducible polynomials, extensions.

ABSTRACT

We review several algorithms to construct finite fields and
perform operations such as field embedding. Following pre-
vious work by notably Shoup, de Smit and Lenstra or Cou-
veignes and Lercier, as well as results obtained with De Feo
and Doliskani, we distinguish between algorithms that build
“towers” of finite fields, with degrees of the form ¢, ¢%,¢3,. ..

and algorithms for composita. We show in particular how
techniques that originate from algorithms for computing with
triangular sets can be useful in such a context.

1. INTRODUCTION

Finite fields appear in many branches of pure and applied
mathematics, prominently so in areas such as number the-
ory, cryptography and coding theory. As a result, building
and computing in arbitrary finite fields is a fundamental
task for any computer algebra system; for instance, the im-
plementation available in Magma [4] remains one of the most
complete known to us.

Let us have a look at two very simple computations, both
in Magma. The first one,

k4:=GF(574);
k6:=GF(3°4);
a4:=Random(k4) ;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

ISSAC’15, July 6-9, 2015, Bath, United Kingdom.

Copyright is held by the owner/author(s). Publication rights licensed to
ACM. 978-1-4503-3435-8/15/07 ...$15.00.

DOI: http://dx.doi.org/10.1145/2755996.2756637.

a6:=Random(k6) ;

a:=a4+ab;

Runtime error in ’+’: Arguments are not compatible
Argument types given: F1dFinElt, F1dFinElt

obviously doesn’t make sense, while the second one does:

k4:=GF(574);
k6:=GF(576) ;
a4:=Random(k4) ;
a6:=Random (k6) ;
a:=a4+ab;
Parent(a);
Finite field of size 5712

In the second example, we see that the system has to be
able to construct two extensions of a base field, here Fs,
build their compositum when needed, and embed elements
into this compositum.

Our goal here is to present algorithms for these tasks, from
results dating back to the 1980’s and 1990’s to more recent
progress. In most of the text, we fix a prime p and we count
operations in the base field IF), at unit cost — that is, we work
in an algebraic model; another cost measure, in a boolean
model, will be used at times as well.

Precisely, the questions we want to discuss are related to
the construction of arbitrary extensions of F,: for any inte-
ger n, we want to be able to define an extension of degree n
of Fp,, together with mechanisms for computing embeddings
Fpn — Fpm (and invert them, when possible) in such a way
that the obvious compatibility condition is satisfied.

These requirements are weaker than the framework of
“compatibly embedded finite fields” used in Magma, since
the latter allows for several isomorphic versions of the same
finite to be present in the system. Closer to us is the con-
struction of “standard model of finite fields” by de Smit and
Lenstra [21], but as the name implies, the latter construction
possesses further canonicity properties.

An outstanding question regarding the arithmetic of finite
fields is whether one can construct irreducible polynomials
of an arbitrary degree n over F, in time polynomial in n
and log(p). So far, no such result is known, although this
is known to be feasible under the Extended Riemann Hy-
pothesis [1]. Our point of view here is the following: using
probabilistic algorithms (of the Las Vegas type), the ques-
tions we are considering can indeed be solved in polynomial
time; then, how fast can we really do it? Can we obtain
algorithms with quasi-linear cost?

As we will see, this is not known to be the case, as long
as we rely on our algebraic computation model; however, in

P

[]
° o\
F s
FP ..
Fpax
TT~F,.
\]F

/- . F

Figure 1: The algebraic closure of [,

a boolean model, better results can actually be obtained.
Surprisingly, the main difference between these two situa-
tions is the existence of a fast algorithm due to Kedlaya and
Umans [30] to perform an operation called modular compo-
sition.

Several previous algorithms, for instance to construct ir-
reducible polynomials [47, 48, 15], rely on the description of
F, given in Figure 1 (that figure is borrowed from [20]): in
order to construct an irreducible polynomial of degree n, it is
enough to factor n into prime powers, asn = £7' - - - £5°, with
¢;’s pairwise distinct primes, then construct irreducibles of
degrees £7',...,£5°, and combine them. Possibly, a coarser
factorization may be used, as in [1].

The same description underlies the algorithms we describe
here: instead of focusing on the construction of irreducible
polynomials, we will describe algorithms for building towers
of finite fields of degrees £, £%,¢3, ... over F,, for £ prime, and
for navigating through these towers; in a second time, we
discuss the construction of composita, in order to be able to
work with extensions of arbitrary degree n. First, however,
we describe algorithms in a seemingly unrelated context,
computations with triangular sets, and show in particular
how modular composition techniques come into play.

Let us finally mention materials not discussed here: rep-
resentation based on Zech logarithms or Conway polyno-
mials [44], deterministic algorithms [1, 47], as well as the
construction of irreducible polynomials with extra proper-
ties (sparseness, primitivity, ...), or of irreducibles whose
degree satisfies prescribed bounds [23, 50].

2. TRIANGULAR SETS

We start with a subject that may not appear directly re-
lated to computations with finite fields: computations with
triangular sets.

In what follows, we will call triangular set a sequence of
polynomials (T4, ...,T,) in Fplz1,. .., zy], such that the fol-
lowing holds: for all 4, T; is in Fp[x1,...,2;], monic in z;
and reduced with respect to T1,...,T;_1; these polynomi-
als form a Grobner basis for the lexicographic order induced
by 1 < --- < zn (of course, the definition carries over to
any base field). In addition, we will suppose that the ideal
(T1,...,Ty) is radical.

Such a data structure, together with more general objects
called regular chains, has a long history in the domain of

polynomial system solving. Regular chains were introduced
in [27], following previous work initiated by Ritt [42] and
Wu [52]. Several definitions co-exist, with contributions by
Lazard [32, 33], Aubry et al. [2] and Moreno Maza [38].

The complexity of basic arithmetic. Our interest here lies
not in solving polynomial systems, or computing triangular
sets, but rather in computing with triangular sets. Indeed,
the structure of a family (71, . ..,T,) as above shows that the
quotient A =TFp[z1,...,x.]/{(T1,...,Tn) admits the natural
multivariate basis (27! -z, with 0 < e; < d; for 1 < i <
n), where we write d; = deg(T;,z;). Later on, we will see
that questions such as the cost of arithmetic operations in
such a basis appear naturally; for the moment, note that
our goal is to obtain algorithms of quasi-linear cost in 6 =
di - - - dp, which is the dimension of A over Fy,.

As it turns out, we do not have good control on the com-
plexity of these operations. Of course, addition takes linear
time, but it is not known to be the case for multiplication.
Indeed, the natural approach to multiplication in a mul-
tivariate basis consists in a polynomial multiplication, fol-
lowed by reduction modulo (T4, ...,T,). The initial product
gives a polynomial of partial degrees (2d1 — 2,...,2d, — 2),
so the number of its monomials, (2d; —1) - - - (2d, — 1) is not
linear in § (except of course is n is fixed).

Except in a few particular cases [5], the rather direct ap-
proach outlined above is the best known so far; it leads to
an overhead of about 3" over a linear cost in §, see [37, 35]
for details.

Change of basis. All notation being as above, let
us call primitive element an element f of A such that
(1, f,...,f°"1) is an Fp-basis of A. In other words, knowing
such an f allows us to write elements of A as univariate poly-
nomials in f; this makes it possible to rely on fast FFT-based
univariate polynomial arithmetic to perform computations
(4, %) and + (when feasible) in A in quasi-linear time.

With such an approach, the main non-trivial tasks are
the changes of basis, from the previous multivariate basis
to the univariate one and back. As of now, no algorithm
is known with a quasi-linear cost, at least in our algebraic
complexity model; the best results to date take subquadratic
time C(8) = O™(5“*1/2) [39, 41], where w is the exponent
of linear algebra.

To illustrate the issues at hand, let us consider a seem-
ingly trivial case, taking m = 1. Discarding the index

1, we are thus looking at a single polynomial T in Fp[z],
and A = F,[z]/(T); the “multivariate basis” here is simply
(1,z,...,2%7'). Given a primitive element f, conversion
from the basis (1, f,..., f¢ ") to (1,z,...,2%"') amounts
to taking a polynomial g in Fp[z] of degree less than d, and
computing g(f) mod T'.

This problem is known as modular composition. The
best known algorithms for it rely on baby-step / giant-step
techniques, and involve both polynomial and matrix arith-
metic [10, 26]; the former reference gives an algorithm of cost
O(d“*/2) which is O(d*%°) for the best known value of
w [34]; in [26], this is improved to O(d'®®"), which remains
far from linear time. It is worth pointing out that modular
composition lies at the heart of several other important algo-
rithms, such as polynomial factorization over finite fields [24,
49, 29, 28].

Still in the univariate case, the inverse change-of-basis
amounts to taking a polynomial h of degree less than d,
and finding ¢ such that h = g(f) mod T'. As it turns out,
this can be done in the same cost as in the other direction:
the conversion algorithm relies on the non-degeneracy of the
trace 7 : A — Fp, to (essentially) reduce the computation
to computing traces of the form 7(h*). This can in turn be
done by an algorithm for power projection that is dual to
the one for modular composition [48, 8].

Kedlaya and Umans’ algorithm. In [30], Kedlaya and
Umans gave an algorithm for modular composition that
takes almost linear time, in a boolean model. Precisely, for
any € > 0, there exists an algorithm for modular composi-
tion that runs in time O7(d'™*log(p)) in a boolean RAM;
this is to be compared to the bit size of the input and output,
which is proportional to dlog(p).

The algorithm proceeds by lifting the computation from
F, to Z, which indeed requires an analysis in a boolean
model; a similar algorithm for power projection can be found
in [30] as well.

Going back to our conversion problems, these results allow
us to handle the (rather artificial) case n = 1. An extension
of Kedlaya and Umans’ algorithms to multivariate situations
is given in [40]; it makes it possible to perform the changes
of basis in n variables in time O™(6' 7 log(p)), for any € > 0,
still in a boolean model.

Altogether, we are able to do conversions, and thus per-
form arithmetic tasks in A in time close to linear, as long
as we use a binary model. Unfortunately, the techniques in-
volved in Kedlaya and Umans’ algorithm and its extension
in [40] lead to rather large constants hidden in the big-Os.
As a result, as of now, there is no known implementation of
these techniques that would be competitive with the baby-
step / giant-step algorithm of Brent and Kung.

Back to finite fields. Recalling Figure 1, we will follow the
approach below:

e For any prime ¢, build what we will call the ¢-adic
tower over I, that is, the extensions

Fp > Fpe 5 F 2 > = F i — - (1)

of degrees £,£2,...,¢', ... over Fy,.

e Given any coprime degrees ¢ and m’, devise a way to
construct the compositum

szimj =]Fptz?? [Fpmj .

Let us first discuss the question of data representation.
Looking at the nested extensions in (1), one is led to con-
sider polynomials (T¢,;):>1, such that for all ¢, (T¢,1,...,T¢)
is a triangular set in Fp[z1,...,z;] with leading degrees
(¢,...,¢), and the ideal (Ty,1, ..., T¢,;) is maximal; our model

of the field with pﬂ elements can then be

Kéi = Fp[azl, e ,xi]/<Tg71, e 7Ti,i>~

Given two coprime extension degrees ¢' and m’, the com-
positum K, ® K,,; is simply

Fp[xh ey Ty Y1y ey yj]/<Te,17 sy Tf7i7 T:’L,l? N 7T;L,j>7
where the polynomials T™’s are obtained by evaluating T”’s at
Y1,...,Yyj. In this representation, embeddings are straight-
forward, but as we saw before, arithmetic operations are
more costly.

Lift up, push down. Assuming we can compute polyno-
mials T¢1,...,T¢,:, the discussion above shows that intro-
ducing a primitive element for these polynomials will allow
us to reduce arithmetic operations to univariate polynomial
arithmetic.

In the case at hand, it is easy to see that for all ¢, x; has
degree £* over F,, so that we can write

Kyi = Fplz:]/{Qu,1),

where Qq,; € Fp[z;] has degree £. As per the discussion in
the previous paragraphs, going from a multivariate repre-
sentation to a univariate one, and back, can be done using
C(¢") operations in F,, and in almost linear time in a boolean
model.

Looking at two levels i — 1 and i at once, we further have

Fplzi] /(Qe,i) ~ Fplzi1, 2i] /(Qei-1, Tt,:),

where Téﬂ- is obtained from T}; by rewriting all expressions
in 1,...,T;—1 in terms of x;_1 only. We call this isomor-
phism and its inverse push down and [lift up. This equiva-
lence is crucial: not only does it allow us to perform embed-
dings or compute relative traces or norms, it may also help
us break down the conversion from multivariate to univari-
ate polynomials into simpler steps, improving on the cost
seen above, provided we have efficient algorithms for push
down and lift up.

3. SOME USEFUL TOWERS

In addition to being one of the building blocks of algo-
rithms for general finite field arithmetic, algorithms for com-
puting in some specific f-adic towers have found several ap-
plications. We briefly describe two of them here; both ques-
tions arise in relation to torsion subgroups of elliptic curves
or Jacobians of genus 2 curves.

Quadratic extensions. The first particular case we consider
is that of quadratic extensions. In this case, we rely on a
well-known construction of such extensions [31, Th. VI.9.1],
which was already put to use algorithmically in [47, 48]: if
p = 1mod 4, then for any quadratic non-residue a € F,,
the polynomial 22 —ae Fp[X] is irreducible for any k£ > 0
(the case p = 1 mod 4 can be accommodated along the same
lines, by first moving to a degree-2 extension). This allows

us to define the polynomials

2

T = xi —xi—1
2

TQ’Q To — 1
2

Top = 71—«

that define what we called the 2-adic tower.
i > 1 we have the isomorphism

Then, for all

Fyles, ..., zil/(Ton, ..., Toi) = Fplei] /{af - a),
which maps z; to xfl_]; in this case, this simply amounts
to exponent arithmetic. In addition, for this very partic-
ular case, push down amounts to decomposing a polyno-
mial A(z;) into even and odd parts, as A(x;) = Ao(z?) +
xiAl(x?), and return Ag(zi—1) + z;A1(xs-1); lift up is the
inverse operation. When these operations show up in more
general towers, they are by no means as straightforward.

Computations in quadratic extensions as above were used
in the algorithm of [25] that computes the cardinality of
the Jacobian of a curve of genus 2, following Schoof’s ellip-
tic curve point counting algorithm [45]. The Jacobian is a
group, and the point-counting algorithm involves in particu-
lar the computation of elements of 2*-torsion in this group,
by means of successive divisions by two. Such a division
by two boils down to several arithmetic operations (+, X),
and four square root extractions; thus, the elements we are
computing are defined over the 2-adic tower over of [Fy,.

At the time of writing [25], the authors relied on a vari-
ant of the Kaltofen-Shoup algorithm [29] with running time
O(d“*V/2) for an extension of degree d = 2*; this was
improved in [22], where fast algorithms for square root com-
putation were given for such a tower.

Artin-Schreier extensions. Another important particular
case can be highlighted: Artin-Schreier towers, correspond-
ing ¢ = p, that is, to extensions of degrees p, p?, Early re-
sults for this situation are due to Cantor [11], with a descrip-
tion of polynomials that can play the role of what we call
Tp.1,Tp,2,...; another family of such polynomials is given
given by Adleman and Lenstra in [1], and was reused by
Shoup [47, 48].

This construction is used in an algorithm due to Cou-
veignes [13] for computing isogenies between elliptic curves
over finite fields. Remembering that elliptic come endowed
with a group law, an isogeny is simply defined as a surjec-
tive regular map between two elliptic curves that preserves
the group law; in cryptology, they are the core of Elkies’ im-
provements to the Schoof point-counting algorithm [3], and
show up as well in more recent constructions [43, 51].

Couveignes’ algorithm computes isogenies of degree ~ p*
between two elliptic curves E and E’; it relies on the inter-
polation of a rational function at special points in an Artin-
Schreier tower of height O(k) (these points being deduced
from the coordinates of points of p*-torsion in E and E’).
Since the required degree p* can be taken arbitrarily high,
we need efficient algorithms to compute the Artin-Schreier
tower, but also perform other tasks such as the interpolation;
the paper [14] described some algorithms in this direction,
with further developments in [18, 19].

10

4. BUILDING GENERAL TOWERS

Using cyclotomy. To construct a tower for an arbitrary ¢, a
first approach extends directly the construction used in the
quadratic case above, using ideas from Kummer theory. We
first review algorithms for a similar problem, the construc-
tion of irreducible polynomials.

Suppose that F, contains an ¢th root of unity, for some
prime /; equivalently, ¢ divides p — 1. In order to construct
an irreducible polynomial of degree ¢ in F,, it is enough to

find a non ¢th power, say a. Then, the polynomials ¢ —
are all irreducible, as was the case for quadratic extensions.

When there is no such root of unity, we can adjoin one.
We follow here the approach of [47, 48]: first, compute an
irreducible factor P of the £th cyclotomic polynomial in Fp[z]
(call r its degree), and replace our base field F,, by Ko =
Fp(yo), where P(yo) = 0. Then, proceed as in the previous
case: picking a random element « in Ky that is not an ¢th
power, we build the extension K; = Ko(y1), with 3¢ = «;
we can build further levels similarly.

In order to deduce an irreducible polynomial over F,, we
compute the trace TKl/Fpe (y1); its minimal polynomial over

F, has degree ¢ [47]. Essentially the same idea is used by
de Smit and Lenstra [21], using Gauss periods to descend
from Kj.

To build the tower itself, we continue the construction
above Ko and descend over F, as illustrated in Figure 2
(which is borrowed from [16]). That reference also gives
a fast algorithm for lift up and push down, allowing us to
perform all conversions at level i using O™ (¢°?) operations
in F,, (for data of size £°).

Ko = Ky (y2)

JoooN

K1 =Ko (y1)]Fpe? = Fp(z2)

/\/

y()) Fpl —]F (

\/

Ko = F

Figure 2: The /(-adic towers over F, and Ko.

Couveignes and Lercier’s algorithm. A second workaround
when roots of unity are missing is to use elliptic curves in-
stead: this principle underlies some very well known con-
structions, such as Lenstra’s ECM factoring algorithm [36],
that is derived Pollard’s p — 1 method, as well as some other
ones, such as Chudnovsky and Chudnovsky’s “Fast Elliptic
Number Theoretic Transform” [12], derived from the usual
Fast Fourier Transform.

In the case at hand, Couveignes and Lercier [15] showed
how to construct irreducible polynomials by taking fibers of
isogenies (we already saw isogenies in the previous section).
We will not repeat the construction here, but simply state
that for well-chosen curves (with conditions on their cardi-
nality, as often for such constructions), they showed that

some particular fibers indeed give irreducible polynomials of
degrees of the form ¢¢. Note the analogy with the previous
case, where we were looking at fibers of the fth power map.

In [16], we showed how this idea carries over to defining a
whole tower; that is, how to build all polynomials defining
the tower and do lift up and push down in good complexity,
O (¢%) operations in degree £'.

5. COMPOSITA

Finally, we look at the question of building general exten-
sions. The basic idea already appears in [9] and was used
in [47]: if a and b are elements of respective degrees L = £'
and M = m’ over Fp,, with £ and m coprime, then both a+b
and ab have degree £'m/.

This result was first put to use in order to compute irre-
ducible polynomials — namely, starting from the minimal
polynomials of a and b, say F' and G, it is enough to com-
pute the minimal polynomials of either a 4+ b or ab. These
polynomials are often called the composed sum and composed
product of F' and G they are written

F@G:H(xf(oﬂrﬂ)) and F®G:1_[(3U7cyﬁ)7

«a,f o,B

the products running over all the roots a of F' and [of
G, and have degree D = LM. The construction of the
composed product is often credited to Selmer [46].

The polynomials F' & G and F ® G can be computed as
resultants, namely as

(F & G)(z) = resy (F(z —y),G(y))
(F ® G)(x) = resy (y" F(z/y), G(y)),

but it is unknown how to obtain a quasi-linear running time
from these expressions. Faster algorithms were given in [6],
using conversions to and from Newton sums for all these
polynomials, for fields of large enough characteristics; for
general cases, see the discussions in [7, 5].

The last operation we consider is embedding, and more
generally change of basis. Indeed, the discussion above im-
plies the existence of isomorphisms

(2)

Fplz, yl/(F,G) — Fplz]/(F&G)
r+y < z
and
Fplz, yl/(F,G) — Fpl] (F®G)
Ty i Z.

As of now, we still do not know how to perform these op-
erations efficiently. Of course, it is possible to use the ex-
tension of Kedlaya and Umans’ algorithm mentioned before;
this leads to algorithms with almost linear running time in
a boolean model, but as we said above, they are difficult to
put into practice. In an algebraic model, the paper [17] give
two different algorithms, but none of them is quasi-linear.

6. REFERENCES

[1] L. M. Adleman and H. W. Lenstra. Finding
irreducible polynomials over finite fields. In STOC"86,
pages 350-355, New York, NY, USA, 1986. ACM.

[2] P. Aubry, D. Lazard, and M. Moreno Maza. On the
theories of triangular sets. J. Symb. Comput.,
28(1,2):45-124, 1999.

11

[3] I. F. Blake, G. Seroussi, and N. P. Smart. Elliptic
curves in cryptography. Cambridge University Press,
New York, NY, USA, 1999.

[4] W. Bosma, J. Cannon, and A. Steel. Lattices of
compatibly embedded finite fields. J. Symb. Comput.,
24(3-4):351-369, 1997.

[5] A. Bostan, M. F. I. Chowdhury, J. van der Hoeven,
and E. Schost. Homotopy techniques for multiplication

modulo triangular sets. J. Symb. Comput.,
46(12):1378-1402, 2011.

[6] A. Bostan, P. Flajolet, B. Salvy, and E. Schost. Fast
computation of special resultants. J. Symb. Comput.,
41(1):1-29, 2006.

[7] A. Bostan, L. Gonzélez-Vega, H. Perdry, and
E. Schost. From Newton sums to coefficients:
complexity issues in characteristic p. In MEGA 05,
2005.

[8] A. Bostan, G. Lecerf, and E. Schost. Tellegen’s
principle into practice. In ISSAC’03, pages 37—44.
ACM, 2003.

[9] J. V. Brawley and L. Carlitz. Irreducibles and the

composed product for polynomials over a finite field.

Discrete Math., 65(2):115-139, 1987.

R. P. Brent and H.-T. Kung. Fast algorithms for

manipulating formal power series. Journal of the

ACM, 25(4):581-595, 1978.

D. G. Cantor. On arithmetical algorithms over finite

fields. J. Combin. Theory Ser. A, 50(2):285-300, 1989.

D. V. Chudnovsky and G. V. Chudnovsky.

Computational problems in arithmetic of linear

differential equations. Some Diophantine applications.

In Number theory (New York, 1985/1988), volume

1383 of Lecture Notes in Math., pages 12—49. Springer,

Berlin, 1989.

J.-M. Couveignes. Computing ¢-isogenies using the

p-torsion. In ANTS-II, pages 59-65, London, UK,

1996. Springer-Verlag.

J.-M. Couveignes. Isomorphisms between

Artin-Schreier towers. Math. Comp.,

69(232):1625-1631, 2000.

J.-M. Couveignes and R. Lercier. Fast construction of

irreducible polynomials over finite fields. Israel J.

Math., 194(1):77-105, 2013,

L. De Feo, J. Doliskani, and E. Schost. Fast
algorithms for ¢-adic towers over finite fields. In
ISSAC’13, pages 165-172. ACM, 2013.

L. De Feo, J. Doliskani, and E. Schost. Fast arithmetic
for the algebraic closure of finite fields. In ISSAC ’1/,
pages 122-129. ACM, 2014.

L. De Feo and E. Schost. Fast arithmetics in
Artin-Schreier towers over finite fields. J. Symb.
Comput., 47(7):771-792, 2012.

L. De Feo. Fast algorithms for computing isogenies
between ordinary elliptic curves in small characteristic.
Journal of Number Theory, 131(5):873-893, May 2011.
B. de Smit and H. W. Lenstra. Standard models for
finite fields: the definition, 2008.

B. de Smit and H. W. Lenstra. Standard models of
finite fields. In G. Mullen and D. Panario, editors,
Handbook of Finite Fields. CRC Press, 2013.

[22] J. Doliskani and E. Schost. Computing in degree

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

[26]

[27]

[28]

[29]

2F_extensions of finite fields of odd characteristic. Des.
Codes Cryptogr., to appear.

J. von zur Gathen. Irreducible polynomials over finite
fields. In Foundations of Software Technology and
Theoretical Computer Science, volume 241 of Lecture
Notes in Computer Science, pages 252—-262. Springer
Berlin Heidelberg, 1986.

J. von zur Gathen and V. Shoup. Computing
Frobenius maps and factoring polynomials. Comput.
Complexity, 2:187-224, 1992.

P. Gaudry and E. Schost. Point-counting in genus 2
over prime fields. J. Symb. Comput., 47(4):3684AS400,
2012.

X. Huang and V. Y. Pan. Fast rectangular matrix
multiplication and applications. Journal of
Complezity, 14(2):257-299, 1998.

M. Kalkbrener. A generalized Euclidean algorithm for
computing triangular representations of algebraic
varieties. J. Symb. Comput., 15:143-167, 1993.

E. Kaltofen and V. Shoup. Subquadratic-time
factoring of polynomials over finite fields. Math.
Comp., 67(223):1179-1197, 1998.

E. Kaltofen and V. Shoup. Fast polynomial
factorization over high algebraic extensions of finite
fields. In ISSAC’97, pages 184-188. ACM, 1997.

K. S. Kedlaya and C. Umans. Fast polynomial
factorization and modular composition. SICOMP,
40(6):1767-1802, 2011.

S. Lang. Algebra. Springer, 3rd edition, January 2002.
D. Lazard. A new method for solvong algebraic
systems of positive dimension. Disc. Appl. Math.,
33:147-160, 1991.

D. Lazard. Solving zero-dimensional algebraic systems.
J. Symb. Comput., 13:147-160, 1992.

F. Le Gall. Powers of tensors and fast matrix
multiplication. In ISSAC’1/, pages 296-303. ACM,
2014.

R. Lebreton. Relaxed Hensel lifting of triangular sets.
J. Symb. Comput., 68, Part 2:230-258, 2015.

H. W. Lenstra. Factoring integers with elliptic curves.
Annals of Mathematics, 126:649-673, 1987.

X. Li, M. Moreno Maza, and E. Schost. Fast
arithmetic for triangular sets: from theory to practice.
In ISSAC’07, pages 269-276. ACM, 2007.

M. Moreno Maza. On triangular decompositions of
algebraic varieties. Technical Report TR 4/99, NAG
Ltd, Oxford, UK, 1999.

http://www.csd.uwo.ca/ moreno/.

12

39]

(40]

[41]

42]

(43]

(44]

(45]

(46]

(47]

(48]

(49]

[50]

[51]

[52]

C. Pascal and E. Schost. Change of order for bivariate
triangular sets. In ISSAC’06, pages 277-284. ACM,
2006.

A. Poteaux and E. Schost. Modular composition
modulo triangular sets and applications. Comput.
Complezity, 22(3):463-516, 2013.

A. Poteaux and E. Schost. On the complexity of
computing with zero-dimensional triangular sets. J.
Symb. Comput., 50:110-138, 2013.

J. F. Ritt. Differential Algebra. Dover Publications,
1966.

A. Rostovtsev and A. Stolbunov. Public-key
cryptosystem based on isogenies. Cryptology ePrint

Archive, Report 2006/145, April 2006.

A. Scheerhorn. Trace- and norm-compatible extensions
of finite fields. Appl. Algebra Engrg. Comm. Comput.,
3(3):199-209, 1992.

R. Schoof. Elliptic curves over finite fields and the
computation of square roots mod p. Math. Comp.,
44(170):483-494, 1985.

E. S. Selmer. Linear recurrence relations over finite
fields. Department of Mathematics, University of
Bergen, 1966.

V. Shoup. New algorithms for finding irreducible
polynomials over finite fields. Math. Comp.,
54:435-447, 1990.

V. Shoup. Fast construction of irreducible polynomials
over finite fields. J. Symb. Comput., 17(5):371-391,
1994.

V. Shoup. A new polynomial factorization algorithm
and its implementation. J. Symb. Comput.,
20(4):363-397, 1995.

I. E. Shparlinski. Finding irreducible and primitive
polynomials. Appl. Algebra Engrg. Comm. Comput.,
4(4):263-268, 1993.

E. Teske. An elliptic curve trapdoor system. Journal
of Cryptology, 19(1):115-133, January 2006.

W. T. Wu. On zeros of algebraic equations — an
application of Ritt principle. Kexue Tongbao, 31:1-5,
1986.

