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ABSTRACT
Let f1, . . . , fs be polynomials in Q[X1, . . . , Xn] that
generate a radical ideal and let V be their complex zero-
set. Suppose that V is smooth and equidimensional;
then we show that computing suitable sections of the
polar varieties associated to generic projections of V
gives at least one point in each connected component of
V ∩ Rn. We deduce an algorithm that extends that of
Bank, Giusti, Heintz and Mbakop to non-compact sit-
uations. Its arithmetic complexity is polynomial in the
complexity of evaluation of the input system, an intrin-
sic algebraic quantity and a combinatorial quantity.

Categories and Subject Descriptors
G.m [Mathematics of computing]: Miscellaneous;
F.2.2 [Theory of Computation]: Analysis of algo-
rithms and problem complexity—Non numerical algo-
rithms and problems: Geometrical problems and com-
putation

General Terms
Algorithms

Keywords
Polynomial system solving, real solutions, complexity

1. INTRODUCTION
Let V be a smooth and equidimensional complex al-

gebraic variety. This paper is devoted to design an al-
gorithm computing at least one point in each connected
component of V ∩Rn. This is a question of importance,
since it is for instance one of the basic subroutines used
to study semi-algebraic sets, a question which occurs
frequently in real-life applications.
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In [3, 4], Bank, Giusti, Heintz and Mbakop treat this
problem, respectively in the case of complex hypersur-

faces and complete intersections, with compact, smooth
real part. To this effect, they use the notion of polar
varieties, going back to Poncelet, which we now recall.

The polar varieties are the critical loci of a family
of projections defined on V . The last of these polar
varieties describes the critical points of the projection
on a line, so it has dimension zero, in generic enough
coordinates. Furthermore, if V ∩ Rn is compact, then
any projection on a line has a critical point on each
connected component of V ∩ Rn. Thus, the last polar
variety has dimension zero and gives one point on each
connected component of V ∩ Rn.

In [3, 4], a local description of the polar varieties by
means of regular, reduced sequences enabled to use the
elimination techniques of [11, 10, 9, 12] to treat this
question with good complexity: the algorithms of [3,
4] have polynomial complexity in an intrinsic geometric
degree, the complexity of evaluation of the input system
and a combinatorial quantity.

In this paper, we propose an algorithm extending
these ideas to smooth varieties, dropping the compact-
ness assumption. We show that in this case, studying
suitable zero-dimensional sections of the polar varieties
enables to obtain one point on each connected compo-
nent of V ∩ Rn.

Unfortunately, we can no longer use the local descrip-
tion of the polar varieties mentioned above, so our algo-
rithms require stronger elimination techniques. Namely,
we use the results of [19, 18, 17], that gives an algorithm
with good complexity for zero-dimensional polynomial
system solving, without the assumptions of regularity
or reducedness.

We deduce an algorithm with a polynomial complex-
ity in the complexity of evaluation of the input system,
a quantity bounding the algebraic degrees of some in-
termediate varieties met during the computation, and a
combinatorial quantity. The study of its practical be-
havior is left to a future work.

Notations and basic definitions.All along this arti-
cle, we consider algebraic subsets of Cn and real alge-
braic sets in Rn, for some given n. Let f1, . . . , fs be
polynomials in Q[X1, . . . , Xn], let V be their complex
zero-set and d its dimension. We assume that the poly-



nomials f1, . . . , fs define a radical ideal and that V is
equidimensional and smooth.

For i in 1, . . . , d, denote by πi the canonical projection

Cn → Ci
(x1, . . . , xn) 7→ (x1, . . . , xi).

We denote by πi its restriction to a map Rn → Ri and
by J the Jacobian matrix of f1, . . . , fs with respect to
Xn, . . . , X1 (so as to simplify the subsequent notation):

J =

2

664

∂f1
∂Xn

· · · ∂f1
∂X1

...
...

∂fs
∂Xn

· · · ∂fs
∂X1

3

775 .

We now describe the critical loci of π1, . . . , πd on V by
means of suitable minors of this matrix.

First, for i = d + 1, we define ∆n−d as 〈f1, . . . , fs〉.
Then for i = 1, . . . , d, ∆n−i+1 is the ideal generated by
f1, . . . , fs and all minors of size n−d in J built upon the
columns 1, . . . , n− i (that is, using the derivatives with
respect to variables Xi+1, . . . , Xn). Note that ∆n−i+1

is generated by

Si :=

�
s

n− d

��
n− i
n− d

�

minors. The i-th polar variety Wn−i+1 is then defined
as the zero-set of ∆n−i+1; in particular, Wn−d = V .

Since the ideal 〈f1, . . . , fs〉 is radical and V is equidi-
mensional and smooth, the points in Wn−i+1 are the
critical points of the restriction of πi to V , for i ≤ d.
After a generic change of variables, Wn−i+1 is expected
to have codimension n− i+ 1 for all i, which accounts
for the indexation we used.

Changes of variables.In what follows, we repeatedly
use linear changes of variables, so we introduce dedi-
cated notations.

For f ∈ Q[X1, . . . , Xn] and A ∈ GLn(C), f(AX)
is the polynomial obtained by applying the change of
variables A to f . For simplicity, we also write fA =
f(AX).

For i ∈ {1, . . . , d+ 1}, the ideal ∆A
n−i+1 is defined by

the polynomials fA
1 , . . . , f

A
s and all minors of size n− d

from the first n − i columns of their Jacobian matrix.
The polar variety associated to this ideal is denoted by
WA
n−i+1, so as to make the dependence with respect to

A explicit. For consistency, we denote by V A = WA
n−d

the zero-set of fA
1 , . . . , f

A
s .

Geometric results.Following [3, 4], to compute one
point in each connected component of V ∩ Rn, we may
compute the last polar variety Wn, which describes the
critical points of the projection on the X1-axis, restric-
ted to V .

Unfortunately, this might not answer the question if
V ∩ Rn is not compact, since there might be connected
components without critical points. In this situation,
an answer will come from the study of the images of
the connected components of V ∩Rn by the projections
π1, . . . , πd.

To inspect these images, we want to ensure closedness
properties. Recall that a map f : A ⊂ Cn → Ci is proper
at b ∈ Ci if there exists a neighborhood O of b such that
f−1(O) is compact, where O denotes the closure of O
for the strong topology. If f is proper everywhere on its
image, we say simply that f is proper; then f is closed
for the strong topology.

We are interested in properness properties of the pro-
jections πi restricted to our family of polar varieties.
Such properties might not hold in the initial coordi-
nates, so we will perform linear changes of coordinates
to get back to this favorable situation. We will thus de-
note by P(A) the following assertion: for i ∈ {1, . . . , d+
1}, the restriction of πi−1 to WA

n−i+1 is proper. By con-
vention, for i = 1, in what follows, this means that WA

n

has dimension zero. An important part of this article is
then devoted to prove that P(A) holds for generic A.

Theorem 1 There exists a non-empty Zariski-open set
Γ in GLn(C) such that for A in Γ, P(A) holds.

Under this condition, the following theorem enables to
compute one point on each connected component of V ∩
Rn. Indeed, if the matrix A in Theorem 2 below is in
GLn(Q), then the connected components of V A ∩ Rn
are in trivial bijection with those of V ∩ Rn.

Theorems 1 and 2 can be considered as our main
contributions. They extend the properties used in no-
tably [3, 4], where it was enough to consider the last
polar variety WA

n , due to the compactness assumption.

Theorem 2 Let A ∈ GLn(C) be such that P(A) holds.
Let pd = (x1, . . . , xd) be any point in Rd. For j ∈
{1, . . . , d− 1}, define pj = (x1, . . . , xj) ∈ Ri. For j = 0,
formally define π−1

0 (p0) as Cn.
Then, the algebraic sets WA

n−j ∩ π−1
j (pj), for j ∈

{0, . . . , d}, are either empty or zero-dimensional. Their
reunion meets every connected component of V A ∩ Rn.

Complexity issues.On the basis of Theorem 2, we pro-
pose an algorithm to compute one point on each con-
nected component of V ∩ Rn. We simply proceed by
solving all zero-dimensional systems described in Theo-
rem 2. Their solutions will be represented by a family
of geometric resolution. In this article, we define a ge-
ometric resolution of a zero-dimensional set Z ⊂ Cn
defined over Q as the data of a linear form u separating
the points in Z and polynomials Q,Q1, . . . , Qn in Q[T ]
such that the relations

Q(u) = 0,

8
><

>:

X1 = Q1(u),
...

Xn = Qn(u),

form a description of the points in Z.
To state our complexity result, we need to define an

important algebraic quantity associated to f1, . . . , fs,
denoted by δ. To this effect, we describe more precisely
the systems defining the polar varieties.

Let A be a matrix in GLn(C). Recall that Si de-
notes the number of minors necessary to define the ideal



∆A
n−i+1, 1 ≤ i ≤ d+ 1. For i = 1, . . . , d+ 1, we denote

by MA
i,1, . . . ,M

A
i,Si

the ordered sequence of these minors.

Due to the definition of the ideals ∆A
n−i+1, we are free

to assume that these sequences are ordered such that
MA
i,1, . . . ,M

A
i,Si

is a prefix of MA
j,1, . . . ,M

A
j,Sj

for i ≥ j.

Thus MA
1,1, . . . ,M

A
1,S1 is the longest of these sequences.

Let us now consider the long ordered sequence

GA = fA
1 , . . . , f

A
s ,M

A
1,1, . . . ,M

A
1,S1 .

Given any prefix subsequence G of GA, define the quan-
tity δAG as the sum of the algebraic degrees of the ir-
reducible components of the variety defined by G. We
define δA as the maximum of all δAG , and δ as the supre-
mum of all δA for A in GLn(Q) such that P(A) holds.

A definition of algebraic degree can be found in [19]. If
f1, . . . , fs are of degree bounded byD, then δ is bounded
by n(D(n− d))n [19, page 4].

We can now state our complexity result. We denote
by M(x) the number of operations necessary to mul-
tiplying polynomials of degree x. The notation f ∈
Olog (x) means that f ∈ O(x log(x)a), for some constant
a.

Theorem 3 Let f1, . . . , fs be polynomials of degree bou-
nded by D in Q[X1, . . . ,Xn], given by a Straight-Line
Program of length L. Suppose that 〈f1, . . . , fs〉 is a radi-
cal, equidimensional ideal and that V = V (f1, . . . , fs) ⊂
Cn is smooth of dimension d.

There exists a probabilistic algorithm computing a fa-
mily of geometric resolutions, the reunion of whose real
zeros contains at least one point in each connected com-
ponent of V ∩ Rn. In case of success, its complexity is
within

Olog

�
Ln10S1(s+ S1)M (D(n− d)δ)3�

arithmetic operations.

The probabilistic aspects come from putting the system
in general position, and also appear during the execu-
tion of the algorithm of [19]. From Theorem 1, the
probability of success depends on the choice of points
outside proper Zariski-closed sets.

Our complexity result is similar to that of [3, 4, 5],
and in that it depends on the evaluation properties of
the input system, a combinatorial number (here denoted
by S1) and a suitable intrinsic quantity (here denoted
by δ). We did not use the local description of polar
varieties by regular sequences from [3, 4], whence the
intricate definition of our quantity δ.

A complexity result of the same spirit, but in a some-
how different formulation for arbitrary non-compact,
smooth, real complete intersection varieties was inde-
pendently obtained in [5] by a substantially different
method.

Related works.In [13, 14, 15, 6, 7, 8], the authors
consider arbitrary real algebraic sets, and reduce to the
study of smooth and compact real algebraic hypersur-
faces, via sums of squares and infinitesimal deforma-
tions. Then, the zero-dimensional critical locus of a

projection on a well-chosen line is studied. This yields
algorithms with complexities simply exponential in the
number of variables; no mention of intrinsic quantities
is made.

In [21, 2, 22, 23], the problem is treated with a view
toward practical efficiency. To deal with non-compact
situations, the authors of [21, 2, 22] compute the critical
points of the square of the distance to a given point,
whereas in [23] we study the set of non properness of
a family of projections. No complexity estimates are
given.

In this article, we represent the solutions of a zero-
dimensional polynomial system by means of geometric
resolutions. This notion appeared in the series of arti-
cles [11, 9, 10, 12], see further references therein. For
the similar notion of Rational Univariate Representa-
tion and its use in real geometry, we refer to [1, 20, 21].

Organization of the paper.The three remaining sec-
tions are devoted to prove respectively Theorems 1, 2
and 3.

2. PROPERNESS PROPERTIES
This section is devoted to prove that in generic coor-

dinates, all polar varieties satisfy a properness property.
This is the content of Theorem 1, which we now restate.

There exists a Zariski-open set Γ in GLn(C) such that
for A in Γ and i ∈ {1, . . . , d+ 1}, the restriction of the
projection πi−1 to the polar variety WA

n−i+1 associated
to the polynomials fA

1 , . . . , f
A
s is proper.

The intuition is the following. Through an induc-
tive reasoning, consider that we have found coordinates
ensuring a proper projection for WA

n−i. In these coor-
dinates, the restriction of πi−1 to WA

n−i+1 may not be
proper; then an arbitrary small change of the variables
X1, . . . , Xi will not alter WA

n−i+1, but will restore the
properness of πi−1.

To obtain the existence of the Zariski-open set Γ, we
must nevertheless adopt an algebraic point of view. The
notion of properness of a projection is strongly related
to that of Noether normalization, so we will actually
prove that all polar varieties satisfy a Noether normal-
ization statement. Many ideas used below, notably that
of examining an incremental intersection process, orig-
inate from [11, 10, 9]. In what follows, for r ≤ n, X≤r
denotes X1, . . . , Xr, and X denotes X1, . . . , Xn.

2.1 Strategy of proof
Proving Theorem 1 requires to handle generic lin-

ear changes of variables. Let thus A be a n × n ma-
trix whose entries are new indeterminates (Ai,j)1≤i,j≤n.
We mimic the definitions of the introduction for this
“generic” change of variables.

For k ∈ {1, . . . , s}, define fA
k ∈ Q(Ai,j)[X] as fA

k =
fk(AX). For i ≤ d + 1, we define the ideal ∆A

n−i+1

similarly to ∆A
n−i+1 above, that is, using the polynomi-

als fA
k and all minors of size n − d from the first n − i

columns of their Jacobian matrix. Then WA
n−i+1 is the

zero-set of ∆A
n−i+1. Thus WA

n−i+1 is the polar varieties
associated to the “generic” change of variables A.



Subsection 2.2 is devoted to introduce some technical
notation. Then in Subsection 2.3 we prove that the
ideals ∆A

n−i+1 satisfy a Noether normalization property:

Proposition 1 Let i ∈ {1, . . . , d + 1}, let P be one of
the prime components of the radical of the ideal ∆A

n−i+1,
and let r be its dimension. Then r is at most i− 1 and
the extension Q(Ai,j)[X≤r]→ Q(Ai,j)[X]/P is integral.

In Subsection 2.4 we show how this property special-
izes. We use the notation relative to changes of vari-
ables, that was defined in the introduction.

Proposition 2 There exists a Zariski open set Γ in
GLn(C) such that for A in Γ, the following holds. Let
i ∈ {1, . . . , d+1}, let PA be one of the prime components
of the radical of ∆A

n−i+1, and r its dimension. Then r
is at most i− 1 and C[X≤r]→ C[X]/PA is integral.

In Subsection 2.5, we will conclude the proof of The-
orem 1 by using a result of [16] to relate the properness
property and the above normalization result:

Proposition 3 Let A be in GLn(C) and i ∈ {1, . . . , d+
1}. The following assertions are equivalent.

• For every prime component PA of the radical of
∆A
n−i+1, the following holds. Let r be the dimen-

sion of PA; then r is at most i− 1 and C[X≤r]→
C[X]/PA is integral.

• The restriction of πi−1 to WA
n−i+1 is proper.

2.2 Preliminaries
The above propositions rely on the properties of some

ring extensions. For the sake of shortness, we introduce
the following notation related to these extensions. Let
k be a field; given an ideal I ⊂ k[X], we denote by Q(I)
the following property: Let P be a prime ideal appearing
in the prime decomposition of

√
I, and r its dimension.

Then k[X≤r]→ k[X]/P is integral.
For instance, Proposition 1 can then be rephrased as:

the ideal ∆A
n−i+1 satisfies property Q, and has dimen-

sion at most i − 1. The following result will be useful
to prove that proposition; the proof is immediate.

Lemma 1 Suppose that I is equidimensional of dimen-
sion r and that k[X≤r] → k[X]/I is an integral ring
extension. Then I satisfies property Q.

2.3 Proof of Proposition 1
We prove the property of Proposition 1 by decreasing

induction on i = d+ 1, . . . , 1. Let us first settle the case
i = d + 1. Then the ideal ∆A

n−d is generated by the

polynomials fA
1 , . . . , f

A
s = f1(AX), . . . , fs(AX). Thus

the validity of assertion Pd+1 follows from the Noether
Normalization Theorem.

Let us now assume that the property holds for index
i+1, and prove it for index i. We first establish property
Q(∆A

n−i+1), then prove the dimension property.

Preliminaries. By definition, ∆A
n−i+1 is obtained by

adjoining some suitable minors of the Jacobian matrix of
fA

1 , . . . , f
A
s to the ideal ∆A

n−i. Denote by MA
1 , . . . ,M

A
N

these minors. Proving property Q(∆A
n−i+1) will follow

from seeing this intersection process incrementally.
For j = 1, . . . , N , let ∆A

n−i+1,j be the ideal ∆A
n−i +�

MA
1 , . . . ,M

A
j

�
and define ∆A

n−i+1,0 = ∆A
n−i. Thus,

Q(∆A
n−i+1,0) holds, and we want to establish property

Q(∆A
n−i+1,N ). Thus to conclude, it is enough to pro-

ve that Q(∆A
n−i+1,j) implies Q(∆A

n−i+1,j+1), for j ∈
{0, . . . , N − 1}.

Since i and j are fixed, we simplify the notation by let-
ting ∆ = ∆A

n−i+1,j , ∆′ = ∆A
n−i+1,j+1 and M = MA

j+1,
so that ∆′ = ∆ +M . Then ∆ satisfies property Q and
we want to show that it is also the case for ∆′. We first
perform some immediate simplifications.

Let ∩`≤LP` be the prime decomposition of
√

∆, for

some integer L. Then the prime components of
√

∆′

are the reunion of the prime components of
√
P` +M ,

for ` ≤ L, so it is enough to prove that for every ` such
that P` + M 6= (1), P` + M satisfies property Q. By
assumption, P` has dimension ≤ i for all `; for fixed
r ≤ i, we partition the set {1, . . . , L} as follows:

• ` belongs to L+ if dimP` = r and P` contains M .

• ` belongs to L− if dimP` = r, P` does not contain
M and P` +M 6= (1).

• ` belongs to S if dimP` = r, P` does not contain
M and P` +M = (1).

• ` belongs to R if dimP` 6= r.

It is enough to prove that Q(P` + M) holds for ` in
L+ ∪ L−, since letting r vary will conclude the proof.

If M belongs to P`, the ideal P` + M coincides with
P` and the assumption hypothesis concludes; thus we
need only consider ` in L−. In this situation, by Krull’s
Principal Ideal Theorem, and since P` is prime, P`+M is
equidimensional of dimension r− 1. Thus by Lemma 1,
it is enough to prove that the extension

Q(Ai,j)[X≤r−1]→ Q(Ai,j)[X]/(P` +M)

is integral for ` ∈ L−.

The auxiliary polynomialsα`. By assumption, the
extension Q(Ai,j)[X≤r ] → A` := Q(Ai,j)[X]/P` is an
integral ring extension for ` in L+ ∪ L− ∪ S. Thus we
need only prove that for ` ∈ L−, P` + M contains a
monic polynomial in Q(Ai,j)[X≤r−1][Xr].
By Quillen-Suslin’s Theorem, A` is a free Q(Ai,j)[X≤r]-
module. Let χ` be the characteristic polynomial of the
multiplication by M in A`, seen as a free module, and
α` ∈ Q(Ai,j)[X≤r] its constant term. For ` ∈ L−, the
image of M is a non-zero divisor in A`, so α` is not
zero, and P` + M 6= (1) so α` is not constant. Cayley-
Hamilton’s Theorem implies that α` belongs to the ideal
P` +M . It is thus enough to prove that α` is monic in
Xr to prove Q(∆A

n−i+1).



Introduction of a change of variables.Let B be a
matrix in GLn(Q) of the form

B =

�
B′ 0
0 In−r

�
,

such that B′ is square of size r, In−r is the n−r identity
matrix and α`(BX) is monic in Xr for all ` in L−. For
the construction of such a matrix, we refer to [11, 9, 10].

We use the change of variables B in two different ways
to conclude.

• If P is an ideal in Q(Ai,j)[X], we denote by PB

the ideal {f(BX), f ∈ P}; if P is prime, PB is
prime of the same dimension. We then have the
decomposition

√
∆B = ∩`≤LPB

` .

Let ` ∈ L+ ∪ L− ∪ S. We claim that the con-
stant term of the characteristic polynomial of the
multiplication by M(BX) modulo PB

` is α`(BX).
Indeed, let {G1, . . . , GD} be a basis of the free
Q(Ai,j)[X≤r]-module A`. The linear change of
variables B affects only the first r variables, so
{G1(BX), . . . , GD(BX)} is a Q(Ai,j)[X≤r]-basis
of Q(Ai,j)[X]/PB

` ; our assertion follows.

• Let (Ci,j)1≤i,j≤n be the entries of the matrix AB;
thus all Ci,j are linear forms in the entries of A
with rational coefficients. Given a polynomial f in
Q(Ai,j)[X], we denote by SubsC(f) ∈ Q(Ai,j)[X]
the polynomial f where each variable Ai,j is sub-
stituted by the linear form Ci,j .

If P is an ideal in Q(Ai,j)[X], we denote by PC the
ideal {SubsC(f), f ∈ P}. As above, if P is prime,
PC is prime of the same dimension and we have
the equality

√
∆C = ∩`≤LPC

` .

Let ` ∈ L+ ∪ L− ∪ S. Using the same argumen-
tation as above, we see that the constant term of
the characteristic polynomial of the multiplication
by SubsC(M) modulo PC

` is SubsC(α`).

Two useful equalities.We now prove that ∆B = ∆C

and M(BX) = SubsC(M). Recall that the polyno-
mials fA

1 , . . . , f
A
s together with some minors of their

Jacobian matrix generate the ideal ∆. We need not
be more precise on these minors, and simply denote
them by MA

1 , . . . ,M
A
Q . To prove the above equalities,

it is enough to prove that if f is any of the polynomi-
als fA

1 , . . . , f
A
s ,M

A
1 , . . . ,M

A
Q ,M , the equality f(BX) =

SubsC(f) holds.
Consider first the polynomials fA

k . They are defined
by fA

k = fk(AX), from which we deduce SubsC(fA
k ) =

fk(CX) = fk(ABX) = fA
k (BX) for k ≤ s, as requested.

We now turn to the minors MA
1 , . . . ,M

A
Q and M .

They are defined using the first n − i columns of the
Jacobian matrix of the polynomials fA

k , i.e., with par-
tial derivatives of these polynomials with respect to the
variables Xi+1, . . . , Xn. It is then enough to prove that
(∂fA

k /∂Xj)(BX) = SubsC(∂fA
k /∂Xj) for k ≤ s and

j > i. But this is an immediate consequence of the
definition of the polynomials fA

k , and of the fact that
the change of variables B acts trivially on the variables
Xi+1, . . . , Xn since r ≤ i.

Proof of propertyQ(∆A
n−i+1). The equality ∆B =

∆C implies ∩`≤LPB
` = ∩`≤LPC

` , and uniqueness of the
prime decomposition yields

{PB
` , ` ∈ L} = {PC

` , ` ∈ L}.

Since dimPB
` = dimPC

` = dimP` for all `, we deduce

{PB
` , ` ∈ L+ ∪ L− ∪ S} = {PC

` , ` ∈ L+ ∪ L− ∪ S}.

Let ` in L−. By the last equality, there exists `′ in L+∪
L− ∪ S, such that PC

` = PB
`′ . Since MB = SubsC(M),

the characteristic polynomial of SubsC(M) modulo PC
`

is the characteristic polynomial of MB modulo PB
`′ , so

SubsC(α`) = α`′(BX) by the above discussion.
Since α` is neither zero nor constant, α`′ is neither zero
nor constant, so `′ ∈ L−. Thus α`′(BX) = SubsC(α`)
is monic in Xr, and so is α`.

Conclusion.It only remains to prove that WA
n−i+1 has

dimension at most i−1. Let K be an algebraic closure of
Q(Ai,j) and Πi the canonical projection Kn → Ki. Due
to our definitions, WA

n−d ⊂ Kn is smooth and equidi-

mensional, and WA
n−i+1 is the critical locus of Πi on

WA
n−d for i ≤ d.

We deduce that for i ≤ d, WA
n−i+1 is contained in the

reunion of (i) the singular locus of WA
n−i and (ii) the

critical locus of the restriction of πi to the regular locus
of WA

n−i. It is thus enough to prove that this last object
has dimension at most i− 1.

Let us write the irreducible decomposition of WA
n−i

as ∪`≤LZ`. By the induction assumption, all Z` have
dimension at most i; it is thus enough to consider the
components of dimension i to conclude. The induction
statement asserts that the restriction of πi to any of
these components is a finite map. Then the conclusion
follows from the algebraic Bertini-Sard Theorem [24].

2.4 Proof of Proposition 2
Fix i ∈ {1, . . . , d+ 1}, and consider the ideal ∆A

n−i+1.
Since i is fixed, we write ∆ = ∆A

n−i+1. Let (P`)`≤L
be the prime components of

√
∆ in Q(Ai,j)[X], so that√

∆ = ∩`≤L
√
P`, and let G`,1, . . . , G`,N` ∈ Q(Ai,j)[X]

be some generators of P`.
There is a Zariski-open subset Γ of GLn(C) such that

for A in Γ, the entries of Γ cancel none of the denomi-
nators of the coefficients of G`,i, for ` ≤ L and i ≤ N`.
Then we denote byGA

`,i the polynomial in C[X] obtained
by evaluating all coefficients of G`,i at the entries of A,
and by QA

` the ideal generated by GA
`,1, . . . , G

A
`,N`

.
Remark: The letter P is used for prime ideals; we do

not claim that (GA
`,1, . . . , G

A
`,N`

) remains prime, this is
why we use the letter Q.

To prove Proposition 2, we proceed as follows. We
first prove that the equality

√
∆A = ∩`≤L

p
QA
` holds

for all A in Γ. In a second time we prove that every
ideal QA

` satisfies property Q and is equidimensional of
dimension at most i− 1. Even if QA

` is not prime, this
is enough to prove Proposition 2. Proving these results
may require to remove strict Zariski-closed sets from Γ.



First Step:
√

∆A = ∩`≤L
p
QA
` . Let fA

1 , . . . , f
A
s and

MA
1 , . . . ,M

A
N be the polynomials generating the ideal

∆. By definition, for ` ≤ L, all these polynomials
belong to P`, which can be expressed by a series of
equalities in Q(Ai,j)[X] giving them as a combination
of G`,1, . . . , G`,N` . In all these equalities, the indeter-
minates Ai,j can be replaced by the entries of any matrix
A ∈ Γ, yielding equalities in C[X]. Thus, for A in Γ,

∆A ⊂ ∩`QA
` , whence

√
∆A ⊂ ∩`

p
QA
` .

Conversely, let us form the products G1,i1 · · ·GL,iL ,
for all possible multi-indices i = (i1, . . . , iL). All these
products belong to the radical of ∆, so there exists N ∈
N such that every (G1,i1 · · ·GL,iL)N ∈ ∆. Then every
product (GA

1,i1 · · ·G
A
L,iL

)N belongs to ∆A for all A ∈ Γ,

whence (QA
1 · · ·QA

L )N ⊂ ∆A. Taking radicals yields

∩`
p
QA
` ⊂

√
∆A.

Second Step: Properties ofQA
` . Let ` ≤ L and r` the

dimension of P`. Up to removing a Zariski-closed subset
from Γ, we claim that QA

` is equidimensional of dimen-
sion r` too. As quick way to see this, remark that an
equidimensional decomposition can be performed by an
algorithm without factorization. Then for A in a suit-
able Zariski-open set, the execution over C[X] for the
polynomials defining QA

` is the trace of the execution
in Q(Ai,j)[X] for the polynomials defining P`, which is
assumed to give an equidimensional result of dimension
r`.

To conclude, it is thus enough to prove property Q for
QA
` . By Proposition 1, for ` ≤ L and i ∈ {r`+ 1, . . . , n}

there exists a polynomial mi ∈ Q(Ai,j)[X≤r` ][T ] such
that mi(Xi) belongs to P`. Again, after removing the
Zariski-closed subset from Γ that is defined by the de-
nominators appearing in the underlying equalities, we
deduce that C[X≤r` ]→ C[X]/QA

` is integral for A ∈ Γ.
We deduce that QA

` satisfies property Q by Lemma 1.

2.5 Proving properness
We finish the proof of Theorem 1 by proving Prop. 3.

Let A be in GLn(C) and i ∈ {2, . . . , d + 1} (case i = 1
is trivial).

Let (PA
` )`≤L be the prime components of ∆A

n−i+1 and
(r`)`≤L their dimensions. The restriction of πi−1 to
WA
n−i+1 is proper if and only if all its restrictions to

the zero-sets V (PA
` ) are proper. Thus to conclude, we

prove that the restriction of πi−1 to V (PA
` ) is proper if

and only if the extension C[X≤r` ] → C[X]/PA
` is inte-

gral and r` ≤ i− 1, for ` ≤ L.
For j ∈ {r` + 1, . . . , n}, let mj ∈ C(X≤r`)[T ] be

the monic minimal polynomial of Xj in the algebraic
field extension C(X≤r`) → frac(C[X]/PA

` ). Lemma
3.10 in [16] states that the set of non-properness for
the restriction of πr` to V (PA

` ) is the reunion of the
zero-sets of the denominators of the coefficients of the
polynomials mj . Thus the restriction of πr` to V (PA

` ) is
proper if and only if the extension C[X≤r` ]→ C[X]/PA

`

is integral.
Then, the restriction of πi−1 to V (PA

` ) is proper if
and only if the restriction of πr` to V (PA

` ) is proper
and r` ≤ i− 1. This concludes the proof.

Remark: Dimension of fibers.From [24, Chapter
1.5.3], all fibers of the restriction of πr` to V (P`) are
finite, for ` ≤ L. Since r` ≤ i − 1, we deduce that all
fibers of the restriction of πi−1 to WA

n−i+1 have finite
cardinality. This proves the first statement of Theo-
rem 2.

3. PROOF OF THEOREM 2
We now investigate the relation between the polar

varieties of f1, . . . , fs and the connected components of
V ∩ Rn. Namely, we conclude the proof of Theorem 2:

Let A ∈ GLn(C) be such that P(A) holds. Let pd =
(x1, . . . , xd) be any point in Rd. For j ∈ {1, . . . , d− 1},
define pj = (x1, . . . , xj) ∈ Ri, and π−1

0 (p0) = Cn. Then
the algebraic sets WA

n−j ∩ π−1
j (pj), j ∈ {0, . . . , d}, are

either empty or zero-dimensional. Their reunion meets
every connected component of V A ∩ Rn.

Since the matrix A is fixed once and for all in this
section, there is no need to systematically make explicit
mention of it. Thus, in all the rest of this section, we
simply write Wn−i+1 and V instead of WA

n−i+1 and V A.
Our hypothesis will simply be denoted by P: for all i in
1, . . . , d+1, the restriction of πi−1 to Wn−i+1 is proper.

In what follows, we first prove a geometric result on
the frontier of the projections of the connected compo-
nents of V ∩Rn, then conclude the proof of Theorem 2.

The frontier of A ⊂ Ri is the closure of A minus the
interior of A (for the strong topology). We use the fact
that for A,B ⊂ Ri, if A is connected and meets both B
and its complementary, then A meets the frontier of B.

Proposition 4 Let D be a connected component of V ∩
Rn. For i in 1, . . . , d, the frontier of πi(D) ⊂ Ri is
included in πi(Wn−i+1 ∩D).

Proof. Let us denote this property by Qi. We prove
it by decreasing induction on i = d, . . . , 1. First, we
prove Qd. Let x ∈ Rd be in the frontier of πd(D).
By assumption P, the restriction of πd to V ∩ Rn is
proper, so x is in the image πd(D). Thus, since V ∩Rn
is smooth, from the implicit function theorem, there
exists a critical point y ∈ D of πd restricted to V such
that πd(y) = x. This proves Qd.

We now assume Qi+1, and prove Qi. Let thus x ∈ Ri
be in the frontier of πi(D) ⊂ Ri. It is enough to prove
that x is in πi(D): as in the previous paragraph, the
implicit function theorem then proves that x is a critical
point of the restriction of πi to D, which gives property
Qi.

Thus, we prove that x is in πi(D). Let ϕ be the
projection ϕ : Ri+1 → Ri that maps (x1, . . . , xi+1) to
(x1, . . . , xi); for r > 0, we denote by Br ⊂ Ri the closed
ball centered at x of radius r, and by Cr ⊂ Ri+1 the
preimage ϕ−1(Br), which is a cylinder.

By definition, for r > 0, π−1
i (Br) meets D, so Cr

meets πi+1(D). On the other hand, since x is in the
frontier of πi(D), there exists a point in Br that is
not πi(D), so there exists a point in Cr that is not
in πi+1(D). We deduce that for r > 0, Cr meets the
frontier of πi+1(D).



By induction hypothesis, there exists yr ∈ Wn−i ∩D
such that πi+1(yr) ∈ Cr. Applying ϕ, we deduce that
πi(yr) ∈ Br. Since this holds for all r > 0, x is in
the closure of πi(Wn−i ∩ D). By assumption P, the
restriction of πi to Wn−i∩D is proper, so πi(Wn−i∩D)
is closed. Thus x is in πi(Wn−i ∩D) ⊂ πi(D). �

Now, we are ready to prove Theorem 2. Let pd =
(x1, . . . , xd) be an arbitrary point in Rd, and let pj =
(x1, . . . , xj) for j = 1, . . . , d − 1. Let D be a connected
component of V ∩ Rn. We will prove that there exists
j0 ∈ {0, . . . , d} such that π−1

j (pj0) ∩Wn−j0 meets D,

with the convention that π−1
0 (p0) = Cn.

For j = 0, . . . , d − 1, we denote by Cj ⊂ Rj+1 the
cylinder {pj}×R built above pj (we take C0 = R); note
that pj+1 belongs to Cj by definition.

Consider the subset J ⊂ {0, . . . , d − 1} such that
j ∈ J if and only if Cj intersects the frontier of πj+1(D),
at a point denoted by xj+1. First, suppose that J
is not empty. Then, by Proposition 4, for j0 ∈ J ,
xj0+1 belongs to πj0+1(Wn−j0 ∩ D), so pj0 belongs to
πj0(Wn−j0 ∩D), which concludes the proof.

Now, suppose that J is empty. We shall show below
that this implies that for all j ∈ {0, . . . , d − 1}, Cj is
included in πj+1(D). For the moment, suppose that it
is true. Then for index d − 1, this yields that Cd−1 is
contained in πd(D). Since pd is in Cd−1, pd is in πd(D),
and we take j0 = d (recall that Wn−d = V ).

It remains to show that, under the assumption that
J is empty, for all j ∈ {0, . . . , d − 1}, Cj is included
in πj+1(D). We proceed by induction on j. First take
j = 0. By assumption, the frontier of π1(D) is empty,
so π1(D) = R = C0, as requested. Now, suppose that
Cj−1 is contained in πj(D); in particular, pj belongs to
πj(D), so Cj meets πj+1(D). Since J is empty, Cj does
not intersect the frontier of πj+1(D), so Cj is contained
in πj+1(D). This ends the proof.

4. PROOF OF THEOREM 3
We finally present our algorithm. It takes as input

f1, . . . , fs in Q[X1, . . . ,Xn] that generate an equidi-
mensional and radical ideal of dimension d, whose zero-
set V is smooth. It returns a set of geometric reso-
lutions describing zero-dimensional sets, whose reunion
intersects every connected component of V ∩ Rn. We
suppose that f1, . . . , fs have degree bounded by D and
are given by a Straight-Line Program of size L.

The first step of the algorithm applies a randomly
chosen change of variables A with rational coefficients
to the input system. As usually, denote by fA

1 , . . . , f
A
s

the polynomials we obtain. Then we choose an arbi-
trary point pd = (x1, . . . , xd) in Qd and compute geo-
metric resolutions of the zero-dimensional sets WA

n−i+1∩
π−1
i−1(pi−1), for i ∈ {1, . . . , d + 1}. Correctness follows

from Theorem 2, as soon as A satisfies property P de-
fined in the introduction.

To estimate the complexity of the process, we use the
following result adapted from [19]. The notations used
here are defined in the introduction.

Theorem 4 [19] Let g1, . . . , gS be polynomials of de-

gree bounded by D in Q[X1, . . . ,Xn], represented by a
Straight-Line Program of length L and defining a zero-
dimensional variety. There exists an algorithm comput-
ing a geometric resolution of V (g1, . . . , gS) whose arith-
metic complexity is:

Olog (Sn4(nL+ n4)M(Dd))3

where d is the maximum of the sums of the algebraic
degrees of the irreducible components of the intermediate
varieties defined by g1, . . . , gi for i in 1, . . . , S.

As a shorthand, in what follows, we refer to the quantity
d above as the algebraic degree of g1, . . . , gS.

To prove Theorem 3, we must describe the systems
we use to define the zero-dimensional sets WA

n−i+1 ∩
π−1
i−1(pi−1). We freely make use of the notation MA

i,j

defined in the introduction, and adopt the same ordering
convention. Then WA

n−i+1 ∩ π−1
i−1(pi−1) is defined by

fA
1 , . . . , f

A
s ,M

A
i,1, . . . ,M

A
i,Si ,

where X1, . . . , Xi are specialized at p1, . . . , pi.
All polynomials in these systems have degree at most

D(n− d). Due to the application of the change of vari-
ables A, the polynomials fA

k can be evaluated within
L+n2 operations. Using Baur-Strassen’s and Berkowitz’
algorithms, any Jacobian minor involved in the above
systems can be evaluated in (n−d)4(L+n2) operations.
Since Si ≤ 3DS1 for all i, any of the above systems can
be evaluated within O(S1n

4(L+ n2)) operations.
To apply Theorem 4, we relate the algebraic degrees

of the above systems to the quantity δ defined in the
introduction. This is actually straightforward. Special-
izing variables only lowers the algebraic degree. Using
our ordering convention, we deduce that the algebraic
degrees of all the systems we solve are bounded by that
of

fA
1 , . . . , f

A
s ,M

A
1,1, . . . ,M

A
1,S1 .

By definition, this quantity is bounded by δ.
The proof of Theorem 3 follows immediately. First

we plug the above data into the complexity estimate
of Theorem 4, and perform slight simplifications. We
finally restore the initial coordinates; the cost is negli-
gible [19].
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polynomiaux de dimension positive. PhD thesis,
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