
Fast algorithms for ℓ-adic towers over finite fields

Luca De Feo
Laboratoire PRiSM

Université de Versailles
luca.de-feo@uvsq.fr

Javad Doliskani
Computer Science

Department
Western University
jdoliska@uwo.ca

Éric Schost
Computer Science

Department
Western University

eschost@uwo.ca

ABSTRACT
Inspired by previous work of Shoup, Lenstra-De Smit and
Couveignes-Lercier, we give fast algorithms to compute in
(the first levels of) the ℓ-adic closure of a finite field. In
many cases, our algorithms have quasi-linear complexity.

Categories and Subject Descriptors
F.2.1 [Theory of computation]: Analysis of algorithms
and problem complexity—Computations in finite fields; G.4
[Mathematics of computing]: Mathematical software

General Terms
Algorithms,Theory

Keywords
Finite fields, irreducible polynomials, extension towers, al-
gebraic tori, Pell’s equation, elliptic curves.

1. INTRODUCTION
Building arbitrary finite extensions of finite fields is a fun-

damental task in any computer algebra system. For this, an
especially powerful system is the “compatibly embedded fi-
nite fields” implemented in Magma [2, 3], capable of building
extensions of any finite field and keeping track of the em-
beddings between the fields.
The system described in [3] uses linear algebra to describe

the embeddings of finite fields. From a complexity point of
view, this is far from optimal: one may hope to compute and
apply the morphisms in quasi-linear time in the degree of the
extension, but this is usually out of reach of linear algebra
techniques. Even worse, the quadratic memory requirements
make the system unsuitable for embeddings of large degree
extensions. Although the Magma core has evolved since the
publication of the paper, experiments in Section 5 show that
embeddings of large extension fields are still out of reach.
In this paper, we discuss an approach based on polyno-

mial arithmetic, rather than linear algebra, with much better

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’13, June 26–29, 2013, Boston, Massachusetts, USA.
Copyright 2013 ACM 978-1-4503-2059-7/13/06 ...$10.00.

performance. We consider here one aspect of the question,
ℓ-adic towers; we expect that this will play an important
role towards a complete solution.

Let q be a power of a prime p, let Fq be the finite field
with q elements and let ℓ be a prime. Our main interest in
this paper is on the algorithmic aspects of the ℓ-adic closure

of Fq, which is defined as follows. Fix arbitrary embeddings

Fq ⊂ Fqℓ ⊂ F
qℓ

2 ⊂ · · · ;

then, the ℓ-adic closure of Fq is the infinite field defined as

F
(ℓ)
q =

⋃

i≥0

F
qℓ

i .

We also call an ℓ-adic tower the sequence of extensions
Fq,Fqℓ , . . . In particular, they allow us to build the alge-

braic closure F̄q of Fq, as there is an isomorphism

F̄q
∼=

⊗

ℓ prime

F
(ℓ)
q , (1)

where the tensor products are over Fq; we will briefly men-
tion below the algorithmic counterpart of this equality.

We present here algorithms that allow us to “compute” in
the first levels of ℓ-adic towers (in a sense defined hereafter);
at level i, our goal is to be able to perform all basic opera-
tions in quasi-linear time in the extension degree ℓi. We do
not discuss the representation of the base field Fq, and we
count operations {+,−,×,÷} in Fq at unit cost.

Our techniques are inspired by those in [4, 5, 8], which
dealt with the Artin-Schreier case ℓ = p (see also [9], which
reused these ideas in the case ℓ = 2): we construct families
of irreducible polynomials with special properties, then give
algorithms that exploit the special form of those polynomials
to apply the embeddings. Because they are treated in the
references [8, 9], we exclude the cases ℓ = p and ℓ = 2.

The field F
qℓ

i will be represented as Fq[Xi]/〈Qi〉, for some

irreducible polynomialQi ∈ Fq[Xi]. Letting xi be the residue
class of Xi modulo Qi endows Fqℓ

i with the monomial basis

Ui = (1, xi, x
2
i , . . . , x

ℓi−1
i). (2)

Let M : N → N be such that polynomials in Fq[X] of de-
gree less than n can be multiplied in M(n) operations in Fq,
under the assumptions of [33, Ch. 8.3]; using FFT multipli-
cation, one can take M(n) ∈ O(n log(n) log log(n)). Then,
multiplications and inversions in Fq[Xi]/〈Qi〉 can be done
in respectively O(M(ℓi)) and O(M(ℓi) log(ℓi)) operations in
Fq [33, Ch. 9-11]. This is almost optimal, as both results are
quasi-linear in [F

qℓ
i : Fq] = ℓi.

Condition Initialization Qi, Ti Lift, push

q = 1 mod ℓ Oe(log(q)) O(ℓi) O(ℓi)
q = −1 mod ℓ Oe(log(q)) O(ℓi) O(M(ℓi) log(ℓi))

− Oe(ℓ
2 +M(ℓ) log(q)) O(M(ℓi+1)M(ℓ) log(ℓi)2) O(M(ℓi+1)M(ℓ) log(ℓi))

4ℓ ≤ q1/4 Oẽ(ℓ log
5(q) + ℓ3) (bit) Oe(ℓ

2 +M(ℓ) log(ℓq) +M(ℓi) log(ℓi)) O(M(ℓi) log(ℓi))

4ℓ ≤ q1/4 Oẽ(ℓ log
5(q)) (bit) +Oe(M(ℓ)

√
q log(q)) Oe(log(q) +M(ℓi) log(ℓi)) O(M(ℓi) log(ℓi))

Table 1: Summary of results

Computing embeddings requires more work. For this prob-
lem, it is enough consider a pair of consecutive levels in the
tower, as any other embedding can be done by applying re-
peatedly this elementary operation. Following again [8], we
introduce two slightly more general operations, lift and push.
To motivate them, remark that for i ≥ 2, F

qℓ
i has two

natural bases as a vector space over Fq. The first one is
via the monomial basis Ui seen above, corresponding to the
univariate model Fq[Xi]/〈Qi〉. The second one amounts to
seeing F

qℓ
i as a degree ℓ extension of F

qℓ
i−1 , that is, as

Fq[Xi−1, Xi]/〈Qi−1(Xi−1), Ti(Xi−1, Xi)〉, (3)

for some polynomial Ti monic of degree ℓ inXi, and of degree
less than ℓi−1 in Xi−1. The corresponding basis is bivariate
and involves xi−1 and xi:

Bi = (1, . . . , xℓ
i−1−1

i−1 , . . . , xℓ−1
i , . . . , xℓ

i−1−1
i−1 xℓ−1

i). (4)

Lifting corresponds to the change of basis from Bi to Ui;
pushing is the inverse transformation.
Lift and push allow us to perform embeddings as a par-

ticular case, but they are also the key to many further oper-
ations. We do not give details here, but we refer the reader
to [8, 9, 18] for examples such as the computation of relative
traces, norms or characteristic polynomials, and applications
to solving Artin-Schreier or quadratic equations, given in [8]
and [9] for respectively ℓ = p and ℓ = 2.
Table 1 summarizes our main results. Under various as-

sumptions, it gives costs (counted in terms of operations in
Fq) for initializing the construction, building the polynomi-
als Qi and Ti from Eq.(3), and performing lift and push.
Oe() indicates probabilistic algorithms with expected run-
ning time, and Oẽ() indicates the additional omission of
logarithmic factors. Two entries mention bit complexity, as
they use an elliptic curve point counting algorithm.
In all cases, our results are close to being linear-time in ℓi,

up to sometimes the loss of a factor polynomial in ℓ. Except
for the (very simple) case where q = 1 mod ℓ, these results
are new, to the best of our knowledge. To otbain them,
we use two constructions: the first one (Section 2) uses cy-
clotomy and descent algorithms; the second one (Section 3)
relies on the construction of a sequence of fibers of isogenies
between algebraic groups.
These constructions are inspired by previous work due to

respectively Shoup [27, 28] and Lenstra / De Smit [21], and
Couveignes / Lercier [6]. We briefly discuss them here and
give more details in the further sections.
Lenstra and De Smit [21] address a question similar to

ours, the construction of the ℓ-adic closure of Fq (and of its
algebraic closure), with the purpose of standardizing it. The
resulting algorithms run in polynomial time, but (implicitly)
rely on linear algebra and multiplication tables, so quasi-
linear time is not directly reachable. References [27, 28, 6]

discuss a related problem, the construction of irreducible
polynomials over Fq; the question of computing embeddings
is not considered. The results in [6] are quasi-linear, but
they rely on an algorithm by Kedlaya and Umans [14] that
works only in a boolean model.

To conclude the introduction, let us mention a few appli-
cations of our results. A variety of computations in number
theory and algebraic geometry require constructing new ex-
tension fields and moving elements from one to the other.
As it turns out, in many cases, the ℓ-adic constructions con-
sidered here are sufficient: two examples are [7, 11], both in
relation to torsion subgroups of Jacobians of curves.

The main question remains of course the cost of comput-
ing in arbitrary extensions. As showed by Eq. (1), this boils
down to the study of ℓ-adic towers, as done in this paper,
together with algorithms for computing in composita. Refer-
ences [27, 28, 6] deal with related questions for the problem
of computing irreducible polynomials; a natural follow-up
to the present work is to study the cost of embeddings and
similar changes of bases in this more general context.

2. QUASI-CYCLOTOMIC TOWERS
In this section, we discuss a construction of the ℓ-adic

tower over Fq inspired by previous work of Shoup [27, 28],
Lenstra-De Smit [21] and Couveignes-Lercier [6]. The results
of this section establish rows 1 and 3 of Table 1.

The construction starts by building an extension K0 =
Fq[Y0]/〈P0〉 obtained by adjoining an ℓth root of unity to Fq,
such that the residue class y0 of Y0 is a non ℓ-adic residue
in K0 (we discuss this in more detail in the first subsec-
tion); we let r be the degree of P0. By [17, Th. VI.9.1], for

i ≥ 1, the polynomial Y ℓi

i − y0 ∈ K0[Yi] is irreducible, so

Ki = K0[Yi]/〈Y ℓi

i − y0〉 is a field with qrℓ
i

elements. Letting
yi be the residue class of Yi in Ki, these fields are natu-
rally embedded in one another by the isomorphism Ki+1 ≃
Ki[Yi+1]/〈Y ℓ

i+1 − yi〉; in particular, we have yℓi+1 = yi.
In order to build F

qℓ
i , we apply a descent process, for

which we follow an idea of Shoup’s. For i ≥ 0, let xi be the
trace of yi over a subfield of index r:

xi =
∑

0≤j≤r−1 yq
ℓij

i .

Then, [27, Th. 2.1] proves that Fq(xi) = F
qℓ

i (see Figure 1).

In particular, the minimal polynomials of x1, x2, . . . over Fq

are the irreducible polynomials Qi we are interested in.
We show here how to compute these polynomials, the

polynomials Ti of Eq. (3) and how to perform lift and push.
To this effect, we will define more general minimal polyno-
mials: for 0 ≤ j ≤ i, we will let Qi,j ∈ Fq(xj)[Xi] be the
minimal polynomial of xi over Fq(xj), so thatQi,j has degree
ℓi−j , with in particular Qi,0 = Qi and Qi,i−1 = Ti(xi−1, Xi).

In Subsections 2.2 and 2.3, we discuss favorable cases,

Fq

K0 = Fq(y0)
Fqℓ = Fq(x1)

K1 = K0(y1)
F
qℓ

2 = Fq(x2)

K2 = K1(y2)
F
(ℓ)
q

K
(ℓ)
0

r ℓ

r ℓ
ℓ

r
ℓ

r

Figure 1: The ℓ-adic towers over Fq and K0.

where ℓ divides respectively q−1 and q+1. The first case is
folklore; it yields the fastest and simplest algorithms. Our
results for the second case are related to known facts about
Chebyshev polynomials [30, § 6.2], but, to the best of our
knowledge, are new. We will revisit these cases in Section 3
and account for their naming convention. Our results in the
general case (Subsection 2.4) are slower, but still quasi-linear
in ℓi, up to a factor polynomial in ℓ.
Shoup used this setup to compute Qi in time quadratic in

ℓi [28, Th. 11]. It is noted there that using modular composi-

tion techniques [33, Ch. 12], this could be improved to get a
subquadratic exponent in ℓi, up to an extra cost polynomial
in ℓ. For ℓ = 3 (where we are in one the first two cases),
Couveignes and Lercier make a similar remark in [6, § 2.4];
using a result by Kedlaya and Umans [14] for modular com-

position, they derive for any ε > 0 a cost of 3i(1+ε)O(log(q))
bit operations, up to polynomial terms in log log(q).
In this section, and in the rest of this paper, if L/K is a

field extension, we write TrL/K , NL/K and GalL/K for the
trace, norm and Galois group of the extension.

2.1 Finding P0

To determine P0, we compute the ℓ-th cyclotomic polyno-
mial Φℓ ∈ Z[X0] and factor it over Fq[X0]: by [28, Th. 9],
this takes Oe(M(ℓ) log(ℓq)) operations in Fq.
Over Fq[X0], Φℓ splits into irreducible factors of the same

degree r, where r is the order of q in Z/ℓZ (so r divides ℓ−1);
let F0 be one of these factors. By construction, there exist
non ℓ-adic residues in Fq[X0]/〈F0〉. Once such a non-residue
y0 is found, we simply let P0 be its minimal polynomial over
Fq (which still has degree r); given y0, computing P0 takes
O(r2) operations in Fq [28, Th. 4].
Following [27, 28, 6], we pick y0 at random: we expect

to find a non-residue after O(1) trials; by [28, Lemma 15],
each takes Oe(M(ℓ) log(r)+M(r) log(ℓ) log(r)+M(r) log(q))
operations in Fq. An alternative due to Lenstra and De Smit
is to take iterated ℓ-th roots of X0 mod F0 until we find a
non-residue: this idea is helpful in making the construction
canonical, but more costly, so we do not consider it.

2.2 Gm-type extensions
We consider here the simplest case, where ℓ divides q− 1;

the (classical) facts below give the first row of Table 1. In
this case, Φℓ splits into linear factors over Fq (so r = 1).
The polynomial P0 is of the form Y0 − y0, where y0 is a non
ℓ-adic residue in Fq; since we can bypass the factorization of
Φℓ, the cost of initialization is Oe(log(q)) operations in Fq.
Besides, no descent is required: for i ≥ 0, we have Ki = F

qℓ
i

and xi = yi; the families of polynomials we obtain are

Qi = Xℓi

i − y0 and Ti = Xℓ
i −Xi−1. (5)

Lift and push use no operation in Fq, only exponent arith-
metic. Lift takes F =

∑

0≤j<ℓi+1 fjx
j
i+1 and rewrites it as a

bivariate polynomial in xi, xi+1 and push does the converse
operation, using the rules

xji+1 = x j div ℓ
i x j mod ℓ

i+1 and xeix
f
i+1 = xeℓ+f

i+1 .

2.3 Chebyshev-type extensions
Consider now the case where ℓ divides q+1: then, Φℓ splits

into quadratic factors over Fq and r = 2. We also require
that y0 has norm 1 over Fq (see below for a discussion); we
deduce an expression for the polynomials Qi,j ∈ Fq(xj)[Xi].

Proposition 1. For 1 ≤ j < i, Qi,j satisfies

Qi,j(Xi) = Y ℓi−j

+ Y −ℓi−j

− xj mod Y 2 −XiY + 1. (6)

Proof. Since NK0/Fq (y0) = 1, NKi/Fq(xi)(yi) is an ℓi-th
root of unity. But ℓ does not divide q − 1, so 1 is the only
such root in Fq, and by induction on i it also is the only root
in Fq(xi); hence, the minimal polynomial of yi over Fq(xi) is
Y 2
i − xiYi + 1. By composition, it follows that the minimal

polynomial of yi over Fq(xj) is Y
2ℓi−j

i −xjY ℓi−j

i +1. Taking
a resultant to eliminate Yi between these two polynomials
gives the following relation between xj and xi:

Qi,j(Xi)
2 = ResYi(Y

2ℓi−j

i − xjY ℓi−j

i + 1, Y 2
i −XiYi + 1).

By direct calculation, this is equivalent to Eq. (6).

As a result, we can compute Qi,j in time O(M(ℓi−j)) by
repeated squaring, but we give a better algorithm in Sec-
tion 3.1 (and show how to find a y0 satisfying the hypothe-
ses); we leave the algorithms for lift and push to Section 4.

2.4 The general case
Finally, we discuss the general case, with no assumption

on the behavior of Φℓ in Fq[X]. This completes the third row
of Table 1, using the bound r ∈ O(ℓ). Because r = [K0 : Fq]
divides ℓ − 1, it is coprime with ℓ. Thus, Qi remains the
minimal polynomial of xi over K0, and more generally Qi,j

remains the minimal polynomial of xi over Kj ; this will allow
us to replace Fq by K0 as our base field. We will measure all
costs by counting operations in K0, and we will deduce the
cost over Fq by adding a factor O(M(r) log(r)) to account
for the cost of arithmetic in K0.

For i ≥ 0, since Ki = K0[Yi]/〈Y ℓi

i − y0〉, we represent its
elements on the basis {yei | 0 ≤ e < ℓi}; e.g., xi is written as

xi =
∑

0≤j≤r−1 yq
ℓij mod ℓi

i yq
ℓij div ℓi

0 .

Our strategy is to convert between two univariate bases of
Ki, {yei | 0 ≤ e < ℓi} and {xei | 0 ≤ e < ℓi}. In other words,
we show how to apply the isomorphism

Ψi : Ki = K0[Yi]/〈Y ℓi

i − y0〉 → K0[Xi]/〈Qi,0〉
and its inverse; we will compute the required polynomials
Qi,0 and Qi,i−1 as a byproduct. In a second time, we will
use Ψi to perform push and lift between the monomial basis
in xi and the bivariate basis in (xi−1, xi).

We will factor Ψi into elementary isomorphisms

Ψi,j : Kj [Xi]/〈Qi,j〉 → Kj−1[Xi]/〈Qi,j−1〉, j = i, . . . , 1.

To start the process, with j = i, we let Qi,i = Xi − xi ∈
Ki[Xi], so that Ki = Ki[Xi]/〈Qi,i〉. Take now j ≤ i and sup-
pose that Qi,j is known. We are going to factor Ψi,j further
as Φ′′

i,j ◦ Φ′
i,j ◦ Φi,j , by introducing first the isomorphism

ϕj : Kj → Kj−1[Yj]/〈Y ℓ
j − yj−1〉.

The forward direction is a push from the monomial basis
in yj to the bivariate basis in (yj−1, yj) and the inverse is
a lift; none of them involves any arithmetic operation (see
Subsection 2.2). Then, we deduce the isomorphism

Φi,j : Kj [Xi]/〈Qi,j〉 → Kj−1[Yj , Xi]/〈Y ℓ
j − yj−1, Q

⋆
i,j〉,

where Q⋆
i,j is obtained by applying ϕj to all coefficients of

Qi,j . Since Φi,j consists in a coefficient-wise application of
ϕj , applying it or its inverse costs no arithmetic operations.
Next, changing the order of Yj and Xi, we deduce that

there exists Si,j in Kj−1[Xj] and an isomorphism

Φ′
i,j : Kj−1[Yj , Xi]/〈Y ℓ

j − yj−1, Q
⋆
i,j〉 →

Kj−1[Xi, Yj]/〈Qi,j−1, Yj − Si,j〉,

where deg(Q⋆
i,j , Xi) = ℓi−j and deg(Qi,j−1, Xi) = ℓi−j+1.

Lemma 2. From Q⋆
i,j, we can compute Qi,j−1 and Si,j in

O(M(ℓi+1) log(ℓi)) operations in K0. Once this is done, we

can apply Φ′
i,j or its inverse in O(M(ℓi+1)) operations in K0.

Proof. We obtain Qi,j−1 and Si,j from the resultant and
degree-1 subresultant of Y ℓ

j − yj−1 and Q⋆
i,j with respect to

Yj , computed over the polynomial ring Kj−1[Xi]. This is
done by the algorithms of [24, 22], using O(M(ℓi+1) log(ℓ))
operations in K0 (for this analysis, and all others in this
proof, we assume that we use Kronecker’s substitution for
multiplications). To obtain Si,j , we invert the leading co-
efficient of the degree-1 subresultant modulo the resultant
Qi,j−1; this takes O(M(ℓi) log(ℓi)) operations in K0.
Applying Φ′

i,j amounts to taking a polynomial A(Yj , Xi)

reduced modulo 〈Y ℓ
j − yj−1, Q

⋆
i,j〉 and reducing it modulo

〈Qi,j−1, Yj − Si,j〉. This is done by computing A(Si,j , Xi),
doing all operations modulo Qi,j−1. Using Horner’s scheme,
this takes O(ℓ) operations (+,×) in Kj−1[Xi]/〈Qi,j−1〉, so
the complexity claim follows.
Conversely, we start from A(Xi) reduced modulo Qi,j−1;

we have to reduce it modulo 〈Y ℓ
j − yj−1, Q

⋆
i,j〉. This is done

using the fast Euclidean division algorithm with coefficients
in Kj−1[Yj]/〈Y ℓ

j −yj−1〉 for O(M(ℓi+1)) operations in K0.

The last isomorphism Φ′′
i,j is trivial:

Φ′′
i,j : Kj−1[Xi, Yj]/〈Qi,j−1, Yj − Si,j〉 → Kj−1[Xi]/〈Qi,j−1〉

forgets the variable Yj ; it requires no arithmetic operation.
Taking j = i, . . . , 1 allows us to compute Qi,i−1 and Qi,0

for O(i2M(ℓi+1) log(ℓ)) operations in K0. Composing the
maps Ψi,j , we deduce further that we can apply Ψi or its
inverse for O(iM(ℓi+1)) operations in K0.
We claim that we can then perform push and lift between

the monomial basis in xi and the bivariate basis in (xi−1, xi)
for the same cost. Let us for instance explain how to lift.
We start fromA written on the bivariate basis in (xi−1, xi);

that is, A is in K0[Xi−1, Xi]/〈Qi−1, Ti〉. Apply Ψi−1 to its
coefficients in x0i , . . . , x

ℓ−1
i , to rewrite A as an element of

K0[Yi−1, Xi]/〈Y ℓi−1

i−1 − yi−2, Ti〉 = Ki−1[Xi]/〈Qi,i−1〉.
Applying Ψ−1

i,i gives us the image of A in Ki, and applying
Ψi finally brings it to K0[Xi]/〈Qi〉.

3. TOWERS FROM IRREDUCIBLE FIBERS
In this section we discuss another construction of the ℓ-

adic tower based on work of Couveignes and Lercier [6]. The
results of this section are summarized in rows 2, 4 and 5 of
Table 1. This construction is not unrelated to the ones of
the previous section, and indeed we will start by showing
how those of Sections 2.2 and 2.3 reduce to it.

Here is the bottom line of Couveignes’ and Lercier’s idea.
Let G,G′ be integral algebraic Fq-groups of the same di-
mension and let φ : G′ → G be a surjective, separable al-
gebraic group morphism. Let ℓ be the degree of φ; then,
the set of points x ∈ G with fiber G′

x of cardinality ℓ is
a nonempty open subset U ⊂ G. If the induced homomor-
phism G′(Fq)→ G(Fq) of groups is not surjective then there
are points of G(Fq) with fibers lying in algebraic extensions
of Fq. Assume that we are able to choose φ so that we can
find one of these points contained in U , with an irreducible
fiber, and apply a linear projection to this fiber (e.g., onto
an axis). The resulting polynomial is irreducible of degree
dividing ℓ (and expectedly equal to ℓ). If we can repeat the
construction with a new map φ′ : G′′ → G′, and so on, the
sequence of extensions makes an ℓ-adic tower over Fq.

3.1 Towers from algebraic tori
In [6], Couveignes and Lercier explain how their idea yields

the tower of Section 2.2. Consider the multiplicative group
Gm: this is an algebraic group of dimension one, and Gm(Fq)
has cardinality q − 1. The ℓ-th power map defined by φ :
X 7→ Xℓ is a degree ℓ algebraic endomorphism of Gm, sur-
jective over the algebraic closure.

Suppose that ℓ divides q − 1, and let η be a non ℓ-adic
residue in Fq (η plays here the same role as y0 in Section 2).

For any i > 0, the fiber φ−i(η) is defined by Xℓi − η: we
recover the construction of Subsection 2.2.

More generally, following [26, 34], we let k = Fq, L = Fqn

and k ⊂ F (L. The Weil restriction ResL/k Gm is an alge-

braic torus, and the norm NL/F induces a map ResL/k Gm →
ResF/k Gm. Define the maximal torus Tn as the intersection
of the kernels of the maps NL/F for all subfields F . Then

Tn has dimension ϕ(n), is isomorphic to G
ϕ(n)
m over the al-

gebraic closure, and its k-rational points form a group of
cardinality Φn(q):

Tn(k) ∼= {α ∈ L∗ | NL/F (α) = 1 for all k ⊂ F (L}. (7)

We now detail how the construction of Section 2.3 can be
obtained by considering the torus T2; this will allow us to
start completing the second row in Table 1.

Lemma 3. Let ∆ ∈ Fq be a quadratic non-residue if p 6=
2, or such that TrFq/F2(∆) = 1 otherwise. Let δ =

√
∆ or

δ2+δ = ∆ accordingly. The maximal torus T2 is isomorphic

to the Pell conic

C :

{

x2 −∆y2 = 4 if p 6= 2,

x2∆+ xy + y2 = 1 if p = 2.
(8)

Multiplication in T2 induces a group law on C. The neutral

element is (2, 0) if p 6= 2, or (0, 1) if p = 2. The sum of two

points P = (x1, y1) and Q = (x2, y2) is defined by

P ⊕Q =







(

x1x2 +∆y1y2
2

,
x1y2 + x2y1

2

)

if p 6= 2,

(x1x2 + x1y2 + x2y1, x1x2∆+ y1y2) if p = 2.

Proof. The isomorphism follows by Weil restriction to
Fq(δ)/Fq with respect to the basis (1/2, δ/2) if p 6= 2, or
(δ, 1) if p = 2. Indeed, by virtue of Eq. (7), an element
(x, y) of Fq(δ) belongs to T2 if and only if its norm over
Fq is 1. Let σ be the generator of GalFq(δ)/Fq . For p 6=
2, clearly δσ = −δ. For p = 2, by Artin-Schreier theory,
TrFq(δ)/Fq (δ) = TrFq/F2(∆) = 1, hence δσ = 1 + δ. In both
cases, Eq. (8) follows. The group law is obtained by direct
calculation.

Pell conics are a classic topic in number theory[20] and
computer science, with applications to primality proving,
factorization [19, 12] and cryptography [25].
As customary, we denote by [n](x, y) the n-th scalar mul-

tiple of a point (x, y). [n] is an endomorphism of C of degree
n, separable if and only if (n, p) = 1.

Lemma 4. Let P = (α, β) be a point of C. The abscissa

of [n]P is given by Cn(α), where Cn ∈ Z[X] is the n-th
Chebyshev polynomial, defined by C0 = 2, C1 = X, and

Cn+1 = XCn − Cn−1. (9)

Proof. Induction on n. A detailed proof can be found
in [30, Prop. 6.6].

Theorem 5. Let η ∈ Fq(δ) be a non ℓ-adic residue in

T2, and let P = (α, β) be its image in C/Fq. For any i > 0,
the polynomials Cℓi − α are irreducible. Their roots are the

abscissas of the images in C/F
qℓ

i of the ℓi-th roots of η.

Proof. By [17, Th. VI.9.1], the polynomial Xℓi − η is
irreducible. Its roots correspond to the fiber [ℓi]−1(P), and
the Galois group of F

qℓ
i /Fq acts transitively on them.

Two points of C have the same abscissa if and only if they
are opposite. But η is a non ℓ-adic residue, hence η 6= η−1,
and all the points in [ℓi]−1(P) have distinct abscissa. By
Lemma 4, Cℓi − α vanishes precisely on those abscissas and
is thus irreducible.

We can now apply our results to the computation of the
polynomials Qi and Ti of Section 2.3.

Corollary 6. The polynomials Qi,j of Prop. 1 satisfy

Qi,j(Xi) = Cℓi−j (Xi)− xj .
Proof. We have already shown that NKj/Fq(xj)(yj) = 1

for any j, thus yj is a non ℓ-adic residue in T2/Fq(xj). In-
dependently of the characteristic and of the element ∆ ∈
Fq(xj) chosen, the abscissa of the image of yj in C/Fq(xj)
is TrKj/Fq(xj) yj = xj . The statement follows from the pre-
vious theorem.

There is a folklore algorithm computing the n-th Cheby-
shev polynomial using O(n) operations in Z [15]. We shall
need a slightly better algorithm working modulo p.

Corollary 7. The polynomials Qi,j can be computed us-

ing O(ℓi−j) operations in Fp.

Proof. Let Cn =
∑

i cn,iX
n−i. It is well known that

|cn+k,2k| are the coefficients of the (1, 2)-Pascal triangle, also
called Lucas’ triangle (see [30, Prop. 6.6] and [1]). It follows
that

cn,2k+2

cn,2k
= − (n− 2k)(n− 2k − 1)

(n− k − 1)(k + 1)
,

which immediately gives the algorithm. Indeed, since we
know the cn,2k’s are the image mod p of integers, we compute
them using multiplications and divisions in Qp with relative
precision 1.

We are left with the problem of finding the non ℓ-adic
residue η to initialize the tower. As before, this will be done
by random sampling and testing.

Lemma 8. Let P = (α, β) be a point on C. For any n,
there is a formula to compute the abscissa of [±n]P , using

O(log n) operations in Fq, and not involving β.

Proof. Observe that if n = 2, the abscissa of [±2]P is
α2 − 2 (for any p). Let P ′ = (α′, β′), and let γ be the
abscissa of P ⊖ P ′. By direct computation we find that
the abscissa of P ⊕ P ′ is αα′ − γ (for any p); this formula
is called a differential addition. Thus, O(1) operations are
needed for a doubling or a differential addition. To compute
the abscissa of [±n]P , we use the ladder algorithm of [23],
requiring O(log n) doublings and differential additions.

Proposition 9. The abscissa of a point P ∈ C/Fq satis-

fying the conditions of Theorem 5 can be found using Oe(log q)
operations in Fq.

Proof. We randomly select α ∈ Fq and test that it be-
longs to C. If p 6= 2, this amounts to testing that α2 − 4
is a quadratic non-residue in Fq, a task that can be accom-
plished with O(log q) operations. If p = 2, by Artin-Schreier
theory this is equivalent to TrFq/F2(1/α

2) = 1, which can be
tested in O(log q) operations in Fq.

Then we check that P is a non ℓ-adic residue by verifying
that [(q+1)/ℓ]P is not the group identity. By Lemma 8, this
computation requires O(log q) operations. About half of the
points of Fq are quadratic non-residues, and about 1−1/ℓ of
them are the abscissas of points with the required order, thus
we expect to find the required element after Oe(1) trials.

It is natural to ask whether a similar construction could
be applied to any ℓ. If r is the order of q modulo ℓ, the nat-
ural object to look at is Tr, but here we are faced with two
problems. First, multiplication by ℓ is now a degree ℓϕ(r)

map, thus its fibers have too many points; instead, isoge-
nies of degree ℓ should be considered. Second, it is an open
question whether Tr can be parameterized using ϕ(r) coor-
dinates; but even assuming it can be, we are still faced with
the computation of a univariate annihilating polynomial for
a set embedded in a ϕ(r)-dimensional space, a problem not
known to be feasible in quasi-linear time. Studying this gen-
eralization is another natural follow-up to the present work.

3.2 Towers from elliptic curves
Since it seems hard to deal with higher dimensional alge-

braic tori, it is interesting to look at other algebraic groups.
Being one-dimensional, elliptic curves are good candidates.
In this section, we quickly review Couveignes’ and Lercier’s
construction, referring to [6] for details, and point out the
modifications needed in order to build towers (as opposed
to constructing irreducible polynomials).

Let ℓ be a prime different from p and not dividing q − 1.
Let E0 be an elliptic curve whose cardinality over Fq is a
multiple of ℓ. By Hasse’s bound, this is only possible if
ℓ ≤ q+2

√
q+1. An isogeny is an algebraic group morphism

between two elliptic curves that is surjective in the algebraic

E0 E1

E2

E3

E4

φ0

φ1

φ2φ3

φ4

Figure 2: The isogeny cycle of E0.

closure. It is said to be rational over Fq if it is invariant under
the q-th power map; such an isogeny exists if and only if the
curves have the same number of points over Fq. An isogeny
of degree n is separable if and only if n is prime to p, in
which case its kernel contains exactly n points. Because of
the assumptions on ℓ, there exists an e ≥ 1 such that, for
any curve E isogenous to E0, the Fq-rational part of E[ℓ] is
cyclic of order ℓe.
Suppose for simplicity, that p 6= 2, 3 and let E0 be ex-

pressed as the locus

E0 : y2 = x3 + ax+ b, with a, b ∈ Fq, (10)

plus one point at infinity. We denote by H0 the unique
subgroup of E0/Fq of order ℓ, and by φ0 the unique isogeny
whose kernel is H0; we then label E1 the image curve of φ0.
We go on denoting by Hi the unique subgroup of Ei/Fq of
order ℓ, and by φi : Ei → Ei+1 the unique isogeny with
kernel Hi. The construction is depicted in Figure 2.

Lemma 10. Let E0, E1, . . . be defined as above, there ex-

ists n ∈ O(
√
q log(q)) such that En is isomorphic to E0.

Proof. It is shown in [6, § 4] that the isogenies φi are
horizontal in the sense of [16], hence they necessarily form
a cycle. Let t be the trace of E0, the length of the cycle is
bounded by the class number of Q[X]/(X2 − tX − q), thus
by Minkowski’s bound it is in O(

√
q log(q)).

In what follows, the index i is to be understood modulo
the length of the cycle. This is a slight abuse, because En

is isomorphic but not equal to E0, but it does not hide any
theoretical or computational difficulty.
Under the former assumptions, it is proved in [6, § 4]

that if P is a point of Ei of order divisible by ℓe, if ψ =
φi−1 ◦ φi−2 ◦ · · · ◦ φj , then the fiber ψ−1(P) is irreducible
and has cardinality ℓi−j . Knowing Ei, Vélu’s formulas [32]
allow us to express the isogenies φi as rational fractions

φi : Ei → Ei+1,

(x, y) 7→
(

fi(x)

gi(x)
, y

(

fi(x)

gi(x)

)′)

,
(11)

where gi is the square polynomial of degree ℓ−1 vanishing on
the abscissas of the affine points ofHi, and fi is a polynomial
of degree ℓ.
There is a subtle difference between our setting and Cou-

veignes’ and Lercier’s. The goal of [6] is to compute an
extension of degree ℓi of Fq for a fixed i: this can be done by
going forward i times, then taking the fiber of a point of Ei

by the isogenies φi−1, . . . , φ0. In our case, we are interested
in building extensions of degree ℓi incrementally, i.e. without
any a priori bound on i. Thus, we have to walk backwards

in the isogeny cycle: if η ∈ Fq is the abscissa of a point of

E0 of order ℓe 6= 2, we will use the following polynomials to
define the ℓ-adic tower:

T1 = f−1(X1)− ηg−1(X1),

Ti = f−i(Xi)−Xi−1g−i(Xi).

The following theorem gives the time for building the
tower; lift and push are detailed in the next section.

Theorem 11. Suppose 4ℓ ≤ q1/4, and under the above as-

sumption. Initializing the ℓ-adic tower requires Oẽ(ℓ log
5(q)+

ℓ3) bit operations; and building the i-th level requires Oe(ℓ
2+

M(ℓ) log(ℓq) +M(ℓi) log(ℓi)) operations in Fq.

Proof. For the initialization, [6, § 4.3] shows that if 4ℓ ≤
q
1/4, a curve E0 with the required number of points can
be found in Oẽ(ℓ log

5(q)) bit operations. We also need to
compute the ℓth modular polynomial Φℓ mod p; for this, we
compute it over Z with Õ(ℓ3) bit operations [10], then reduce
it modulo p.

To build the i-th level, we first need to find the equation
of E−i. For this, we evaluate Φℓ at j(E−i+1), using O(ℓ2)
operations. Lemma 10 implies that this polynomial has only
two roots in Fq, namely j(E−i) and j(E−i+2). We factor it
using Oe(M(ℓ) log(ℓq)) operations [33, Ch 14], and we take
an arbitrary curve with j-invariant j(E−i). Then we find an
ℓ-torsion point using Oe(log q) operations, and apply Vélu’s
formulas to compute φ−i. We deduce the polynomial Ti,
and Qi is obtained using O(M(ℓi) log(ℓi)) operations using
Algorithm 1 given in the next section.

Remark 1. Instead of computing the cycle step by step,
we could compute it entirely during the initialization phase,
by using Vélu’s formulas alone to compute E1, E2, . . . until
we hit E0 again. By doing so, we avoid using the modular
polynomial Φℓ at each new level. By Lemma 10, this requires
Oe(ℓ

√
q log(q)) operations. This is not asymptotically good

in q, but for practical values of q and ℓ the cycle is often
small and this approach works well. This is accounted for
in the last row of Table 1.

4. LIFTING AND PUSHING
The previous constructions of ℓ-adic towers based on ir-

reducible fibers share a common structure that allows us
to treat lifting and pushing in a unified way. Renaming the
variables (Xi−1, Xi) as (X,Y), the polynomials (Qi−1, Qi, Ti)
as (R,S, T), the extension at level i is described as

Fq[Y]/〈S(Y)〉 and Fq[X,Y]/〈R(X), T (X,Y)〉,

with R of degree ℓi−1, S of degree ℓi, and where T (X,Y)
has the form f(Y) − Xg(Y), with deg(f) = ℓ, deg(g) < ℓ
and gcd(f, g) = 1; possibly, g = 1. In all this section, f , g
and their degree ℓ are fixed.

Lift is the conversion from the bivariate basis associated
to the right-hand side to the univariate basis associated to
the left-hand side; push is the inverse. Using the special
shape of the polynomial T , they reduce to composition and
decomposition of rational functions, as we show next. These
results fill in all missing entries in the lift / push column of
Table 1.

4.1 Lifting

Algorithm 1 Compose

Input: P ∈ Fq[X,Y], f, g ∈ Fq[Y], n ∈ N
1: if n = 1 then
2: return P
3: else
4: m← ⌈n/2⌉
5: Let P0, P1 be such that P = P0 +XmP1

6: Q0 ← Compose(P0, f, g,m)
7: Q1 ← Compose(P1, f, g, n−m)
8: Q← Q0g

n−m +Q1f
m

9: return Q
10: end if

Let P be in Fq[X,Y] and n be in N, with deg(P,X) < n.
We define P [f, g, n] as

P [f, g, n] = gn−1P

(

f

g
, Y

)

∈ Fq[X,Y].

If P =
∑n−1

i=0 pi(Y)Xi, then P [f, g, n] =
∑n−1

i=0 pif
ign−1−i.

We first give an algorithm to compute this expression, then
show how to relate it to lifting; when g = 1, Algorithm 1
reduces to a well known algorithm for polynomial composi-
tion [33, Ex. 9.20].

Theorem 12. On input P, f, g, n, with deg(P,X) < n
and deg(P, Y) < ℓ, Algorithm 1 computes Q = P [f, g, n]
using O(M(ℓn) log(n)) operations in Fq.

Proof. If n = 1, the theorem is obvious. Suppose n >
1, then P0 and P1 have degrees less than m and n − m
respectively. By induction hypothesis,

Q0 = P0[f, g,m] =
∑m−1

i=0 pif
igm−1−i,

Q1 = P1[f, g, n−m] =
∑n−m−1

i=0 pi+mf
ign−m−1−i.

Hence,

Q=
∑m−1

i=0 pif
ign−1−i +

∑n−m−1
i=0 pi+mf

i+mgn−m−1−i

= P [f, g, n].

The only step that requires a computation is Step 8, costing
O(M(ℓn)) operations in Fq. The recursion has depth log(n),
hence the overall complexity is O(M(ℓn) log(n)).

Corollary 13. At level i, one can perform the lift oper-

ation using O(M(ℓi) log(ℓi)) operations in Fq.

Proof. We start from an element α written on the bivari-
ate basis, that is, represented as A(X,Y) with deg(A,X) <
n = ℓi−1 and deg(A, Y) < ℓ (note that ℓn = ℓi). We
compute the univariate polynomials A⋆ = A[f, g, n] and
γ = gn−1 using O(M(ℓi) log(ℓi)) operations in Fq; then the
lift of α is A⋆/γ modulo S. The inverse of γ is computed
using O(M(ℓn) log(ℓn)) operations, and the multiplication
adds an extra O(M(ℓn)).

4.2 Pushing
We first deal with the inverse of the question dealt with

in Theorem 12: starting from Q ∈ Fq[Y], reconstruct P ∈
Fq[X,Y] such that Q = P [f, g, n]. When g = 1, Algorithm 2
reduces to Algorithm 9.14 of [33].

Theorem 14. On input Q, f, g, h, n, with deg(Q) < ℓn
and h = 1/g mod f , Algorithm 2 computes a polynomial

P ∈ Fq[X,Y] such that deg(P,X) < n, deg(P, Y) < ℓ and

Q = P [f, g, n] using O(M(ℓn) log(n)) operations in Fq.

Algorithm 2 Decompose

Input: Q, f, g, h ∈ Fq[Y], n ∈ N
1: if n = 1 then
2: return Q
3: else
4: m← ⌈n/2⌉
5: u← 1/gn−m mod fm

6: Q0 ← Qu mod fm

7: Q1 ← (Q−Q0g
n−m) div fm

8: P0 ← Decompose(Q0, f, g, h,m)
9: P1 ← Decompose(Q1, f, g, h, n−m)
10: return P0 +XmP1

11: end if

Proof. We prove the theorem by induction. If n = 1,
the statement is obvious, so let n > 1. The polynomials Q0

and Q1 verify Q = Q0g
n−m + Q1f

m. By construction, Q0

has degree less than ℓm. Since deg(g) < ℓ, this implies that
Q0g

n−m has degree less than ℓn; thus, Q1 has degree less
than ℓ(n − m). By induction, P0 and P1 have degree less
than m, resp. n−m, in X, and less than ℓ in Y , and

Q0 = P0[f, g,m] =
∑m−1

i=0 p0,if
igm−1−i,

Q1 = P1[f, g, n−m] =
∑n−m−1

i=0 p1,if
ign−m−1−i.

Hence, P = P0+X
mP1 has degree less than n in X and less

than ℓ in Y , and the following proves correctness:

P [f, g, n] =
∑m−1

i=0 p0,if
ign−1−i +

∑n−1
i=m p1,i−mf

ign−1−i

= P0[f, g,m]gn−m + P1[f, g, n−m]fm = Q.

At Step 5, we do as follows: starting from h = 1/g mod f ,
we deduce 1/gn−m mod f in time O(M(ℓ) log(n)) by binary
powering mod f . We also compute gn−m in time O(M(ℓn))
by binary powering, and we use Newton iteration (start-
ing from 1/gn−m mod f) to deduce 1/gn−m mod fm in time
O(M(ℓn)). All other steps cost O(M(ℓn)); the recursion has
depth log(n), so the total cost is O(M(ℓn) log(n)).

Corollary 15. At level i, one can perform the push op-

eration using O(M(ℓi) log(ℓi)) operations in Fq.

Proof. Given α represented by a univariate polynomial
A(Y) of degree less than ℓn, with n = ℓi−1. We compute
gn−1 and A⋆ = gn−1A mod S using O(M(ℓi)) operations.
Then, we compute h = 1/g mod f in time O(M(ℓ) log(ℓ))
and apply Algorithm 2 to A⋆, f , g, h and n. The re-
sult is a bivariate polynomial B, representing α on the bi-
variate basis. The dominant phase is Algorithm 2, costing
O(M(ℓi) log(ℓi)) operations in Fq.

5. IMPLEMENTATION
To demonstrate the interest of our constructions, we made

a very basic implementation of the towers of Sections 3.1
and 3.2 in Sage [31]. It relies on Sage’s default implemen-
tation of quotient rings of Fp[X], which itself uses NTL
[29] for p = 2 and FLINT [13] for other primes. Towers
based on elliptic curves are constructed using the algorithm
described in Remark 1. The source code is available at
https://defeo.github.io/towers

We compare our implementation to three ways of con-
structing ℓ-adic towers in Magma. First, one may construct
the levels from bottom to top using the finite field construc-
tor GF(). For the parameters we used, Magma uses tables of

https://defeo.github.io/towers

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

 4096

 4 5 6 7 8 9 10 11

se
co

n
d

s

height

GF()
sub<>

Embed()
T2

 4 5 6 7 8 9 10 11

GF()
sub<>

Embed()
T2

Elliptic

Figure 3: Times for building 3-adic towers on top of
F2 (left) and F5 (right), in Magma (first three lines)
and using our code.

precomputed Conway polynomials and automatically com-
putes embeddings on creation, see http://magma.maths.usyd.edu.au/magma/releasenotes/2/14.
The second approach constructs the highest level of the
tower first, then all the lower levels using the sub<> con-
structor. The last one constructs the levels from bottom to
top using random dense polynomials and calls the Embed()

function; we do not count the time for finding the irreducible
polynomials.
We ran tests on an Intel Xeon E5620 clocked at 2.4 GHz,

using Sage 5.5 and Magma 2.18.12. The time required for
the creation of 3-adic towers of increasing height is summa-
rized in Figure 3; the timings of our algorithms are labeled
Chebyshev and Elliptic. Computations that took more than
4GB RAM were interrupted.
Despite its simplicity, our code consistently outperforms

Magma on creation time. On the other hand, lift and push
operations take essentially no time in Magma, while in all
the tests of Figure 3 we measured a running time almost
perfectly linear for one push followed by one lift, taking ap-
proximately 70µs per coefficient (this is in the order of a
second around level 10). Nevertheless, the large gain in cre-
ation time makes the difference in lift and push tiny, and we
are convinced that an optimized C implementation of the al-
gorithms of Section 4 would match Magma’s performances.

Acknowledgments. We acknowledge support from NSERC,
the CRC program, and ANR through the ECLIPSES project
under Contract ANR-09-VERS-018. De Feo would like to
thank Antoine Joux and Jérôme Plût for fruitful discussions.
We are grateful to the reviewers for their remarks.

6. REFERENCES
[1] A. T. Benjamin. The Lucas triangle recounted. In Congressus

Numerantium, volume 200, pages 169–177, 2010.

[2] W. Bosma, J. Cannon, and C. Playoust. The MAGMA algebra
system I: the user language. J. Symbolic Comput.,
24(3-4):235–265, 1997.

[3] W. Bosma, J. Cannon, and A. Steel. Lattices of compatibly
embedded finite fields. J. Symbolic Comput., 24(3-4):351–369,
1997.

[4] D. G. Cantor. On arithmetical algorithms over finite fields. J.
Combin. Theory Ser. A, 50(2):285–300, 1989.

[5] J.-M. Couveignes. Isomorphisms between Artin-Schreier towers.
Math. Comp., 69(232):1625–1631, 2000.

[6] J.-M. Couveignes and R. Lercier. Fast construction of
irreducible polynomials over finite fields. To appear in the
Israel Journal of Mathematics, July 2011.

[7] L. De Feo. Fast algorithms for computing isogenies between
ordinary elliptic curves in small characteristic. Journal of
Number Theory, 131(5):873–893, May 2011.

[8] L. De Feo and É. Schost. Fast arithmetics in Artin-Schreier
towers over finite fields. J. Symbolic Comput., 47(7):771–792,
2012.

[9] J. Doliskani and É. Schost. A note on computations in degree

2k-extensions of finite fields, 2012. Manuscript.

[10] A. Enge. Computing modular polynomials in quasi-linear time.
Math. Comp., 78(267):1809–1824, 2009.

[11] P. Gaudry and É. Schost. Point-counting in genus 2 over prime
fields. J. Symbolic Comput., 47(4):368–400, 2012.

[12] S. A. Hambleton. Generalized Lucas-Lehmer tests using Pell
conics. Proceedings of the American Mathematical Society,
140:2653–2661, 2012.

[13] W. Hart. Fast library for number theory: an introduction.
Mathematical Software–ICMS 2010, pages 88–91, 2010.

[14] K. S. Kedlaya and C. Umans. Fast polynomial factorization and
modular composition. SIAM J. Computing, 40(6):1767–1802,
2011.

[15] W. Koepf. Efficient computation of chebyshev polynomials in
computer algebra. Computer Algebra Systems: A Practical
Guide., pages 79–99, 1999.

[16] D. Kohel. Endomorphism rings of elliptic curves over finite
fields. PhD thesis, University of California at Berkley, 1996.

[17] S. Lang. Algebra. Springer, 3rd edition, Jan. 2002.

[18] R. Lebreton and É. Schost. Algorithms for the universal
decomposition algebra. In ISSAC’12, pages 234–241. ACM,
2012.

[19] F. Lemmermeyer. Conics - a Poor Man’s Elliptic Curves, 2003.

[20] H. W. Lenstra. Solving the Pell equation. Notices of the AMS,
49(2):182–192, 2002.

[21] H. W. Lenstra and B. De Smit. Standard models for finite
fields: the definition, 2008.

[22] T. Lickteig and M. Roy. Sylvester–habicht sequences and fast
cauchy index computation. J. Symbolic Comput., 31(3):315 –
341, 2001.

[23] P. L. Montgomery. Speeding the pollard and elliptic curve
methods of factorization. Math. Comp., 48(177), 1987.

[24] D. Reischert. Asymptotically fast computation of subresultants.
In ISSAC, pages 233–240. ACM, 1997.

[25] K. Rubin and A. Silverberg. Torus-Based cryptography. In
D. Boneh, editor, Advances in Cryptology - CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages
349–365, Berlin, Heidelberg, 2003. Springer Berlin / Heidelberg.

[26] K. Rubin and A. Silverberg. Algebraic tori in cryptography. In
In High Primes and Misdemeanours: Lectures in Honour of
the 60th birthday of Hugh Cowie Williams, volume 41 of
Fields Institute Communications. AMS, 2004.

[27] V. Shoup. New algorithms for finding irreducible polynomials
over finite fields. Math. Comp., 54:435–447, 1990.

[28] V. Shoup. Fast construction of irreducible polynomials over
finite fields. J. Symbolic Comput., 17(5):371–391, 1994.

[29] V. Shoup. NTL: A library for doing number theory.
http://www.shoup.net/ntl, 2003.

[30] J. H. Silverman. The arithmetic of dynamical systems, volume
241 of Graduate Texts in Mathematics. Springer, 2007.

[31] W. A. Stein and Others. Sage Mathematics Software (Version
5.5). The Sage Development Team, 2013.

[32] J. Vélu. Isogénies entre courbes elliptiques. Comptes Rendus
de l’Académie des Sciences de Paris, 273:238–241, 1971.

[33] J. von zur Gathen and J. Gerhard. Modern computer algebra.
Cambridge University Press, New York, NY, USA, 1999.

[34] V. E. Voskresenskĭi. Algebraic groups and their birational
invariants, volume 179. American Mathematical Society, 1998.

http://magma.maths.usyd. edu.au/magma/releasenotes/2/14
http://www.shoup.net/ntl

	Introduction
	Quasi-cyclotomic towers
	Finding P0
	Gm-type extensions
	Chebyshev-type extensions
	The general case

	Towers from irreducible fibers
	Towers from algebraic tori
	Towers from elliptic curves

	Lifting and pushing
	Lifting
	Pushing

	Implementation
	References

