
Interpolation of polynomials given by

straight-line programs

Sanchit Garg a Éric Schost b
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Abstract

We give an algorithm for the interpolation of a polynomial A given by a straight-line
program. Its complexity is polynomial in τ, log(d), L, n, where τ is an input bound
on the number of terms in A, d is a bound on its partial degree in all variables, L
is the length of the given straight-line program and n is the number of variables.
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1 Introduction

There is a growing literature regarding the interpolation of sparse polynomials.
In many studies, given a black box that computes a polynomial A, one seeks
to output the sets of coefficients and monomials of A. Ideally, we would wish
for a complexity polynomial in the number of terms in A and in the logarithm
of its degree (since this is the bit-length of its largest exponent). However, no
such result is known; we give references to previous work below.

We are interested here in interpolating polynomials given not by black-boxes
but by straight-line programs, that perform only additions, subtractions and
multiplications and use constants from a ring S (see e.g. [4, Chapter 4]). As is
to be expected, this restricted model will enable us to devise better algorithms.
On the other hand, this model is powerful enough to cover many applications.
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Our motivation comes from polynomial system solving algorithms using Hensel
lifting techniques, such as those initiated by [15,13,14]. For systems of positive
dimension, the output of these algorithms is given as a straight-line program
in the “parameters” of the problem. Since these methods are used in con-
junction with modular techniques, typical base fields for such applications are
prime fields of cardinality up to 280. When the monomial representation of
the output is required, dense interpolation techniques are used (such as in the
implementation in the Maple RegularChains package of the algorithm
of [6]). Obviously, sparse interpolation of straight-line programs will be useful
to handle the case when the output is sparse (see e.g. [27] for considerations
on the sparseness of polynomials arising in elimination processes).

We start by a result for univariate polynomials. To state it, we use the O (̃ )
notation, so as to omit logarithmic factors: f is in O (̃g) if f is in O(g log(g)α),
for some constant α [8, Chapter 25.7]. Logarithms are in base 2.

Theorem 1 Let A be in S[X], where S is a ring. Given a straight-line program
of size L that computes A, as well as upper bounds τ and d on the number of
terms and degree of A, one can find all coefficients and exponents of A using
O (̃Lτ 4 log(d)2) operations in S and a similar number of bit operations.

From this, one easily deduces the following corollary for the multivariate case.

Corollary 1 Let A be in S[X1, . . . , Xn], where S is a ring. Given a straight-
line program of size L that computes A, as well as upper bounds τ and d on the
number of terms and maximum partial degree of A, one can find all coefficients
and exponents of A using O (̃Ln2τ 4 log(d)2 +n4τ 4 log(d)3) operations in S and
a similar number of bit operations.

In case the base ring is actually the integer ring, it is not hard to modify our
results to obtain overall bit complexity estimates. In addition to the bound
d on the degree of A, one would also require a bound h on the bit-length of
its coefficients. Then, using the previous algorithms over S = Z/2hZ yields
complexity results of order O (̃Lτ 4 log(d)2h) for univariate polynomials and
O (̃Ln2τ 4 log(d)2h+n4τ 4 log(d)3h) for multivariate ones. For straight-line pro-
grams involving rational constants, extra care should be taken to avoid can-
celling denominators through modular reductions; we refer to [18, Section 6]
for an example of a probabilistic workaround to such issues.

For the applications we have in mind to polynomial system solving, degree
bounds (such as Bézout’s) are available. The determination of bounds on the
number of terms is the subject of more recent work such as [27]; without such
bounds, one should use probabilistic early termination as in [24].
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2 Previous work

Avendaño, Krick and Pacetti [2, Theorem 3.1] obtained an algorithm for in-
terpolating a polynomial A ∈ Z[x] given by a straight-line program, with a bit
complexity polynomial in L, τ , log(d), h and h′, where h is an upper bound
on the height of A and h′ an upper bound on the height of the values of A
(and some of its derivatives) at some sample points. As far as we can tell,
this algorithm does not work over arbitrary rings, e.g., not in characteristic
less than τ . Previously, Kaltofen [18] gave an algorithm with a complexity
polynomial in the degree bound d.

Most previous results address the related question of black-box interpolation
over a field. We review here some of these results, pointing out in particular
that for this question, no algorithm is known that would have a complexity
polynomial in τ, log(d) and apply over arbitrary fields.

A first work (that did not use black boxes) was Grigoriev and Karpinski’s [16],
for a particular polynomial (the determinant of a Tutte matrix). Other early
results are due to Zippel [28,29] and Ben Or and Tiwari [3], with improvements
by Kaltofen and Lakshman [22]. Zippel’s algorithm requires root finding in
degree τ and computing τ discrete logarithms, assuming that these logarithms
are bounded by d; no bound polynomial in log(d) is known for this task for
an arbitrary base field.

For polynomials with integer coefficients, Mansour [26] and Alon and Man-
sour [1] obtain a deterministic bit complexity polynomial in h, n, log(d), τ ,
where h is an upper bound on the bit-length of the output coefficients, but
their approach does not seem to extend to other rings or fields. Avendaño,
Krick and Pacetti [2] obtain a heuristic algorithm for the interpolation of
polynomials in Z[X], with a complexity polynomial in h, log(d), h̃, p, where h̃
is a bound on the heights of A(yi), for some suitable evaluation points yi ∈ Z,
and where p is a “lucky” prime greater than τ . However, the probabilistic
aspects are not fully understood yet.

Kaltofen and Lakshman [22,21] and Kaltofen, Lakshman and Wiley [23] present
modular versions of Ben Or and Tiwari’s algorithm, with a cost quasi-linear in
τ in [21]. Kaltofen [19] also suggested to compute modulo primes p for which
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p− 1 is smooth, to facilitate the discrete logarithm computations.

Over finite fields, Grigoriev, Karpinski and Singer [17] show that sparse in-
terpolation is possible, up to computing in extensions of the base field; their
algorithm has complexity O (̃n2τ 6 + q2.5), where q is the size of the base field.
In floating-point arithmetic, a numerically robust extension of Ben Or and
Tiwari’s algorithm is described in [11].

A question close to sparse interpolation is the recovery of the sparsest shift of a
polynomial [10]. Giesbrecht and Roche [12] showed recently how to recover the
sparsest shift using modular methods; even if the question and their method
are distinct from ours, it is worth mentioning that similar techniques are used
(generating families of primes provably containing suitable ones).

3 Preliminaries

Our basic idea (already used in many references above) consists in evaluating
the unknown polynomial A at roots of unity; here, we will construct these roots
by working in extensions of the base ring S of the form S[X]/〈Xpi − 1〉, for
suitable values of pi. To recover A, we will use an approach similar to Lemma 3
in Grigoriev and Karpinski’s work [16], combining Chinese remaindering, ap-
plied to symmetric functions, and integer root finding (in [16], the application
is different: this idea is used to solve systems of the form

∑
i x

m
i −

∑
j ym

j = Am

in unknowns xi and yj).

Formally, our computational model is the algebraic RAM, as defined for in-
stance by Kaltofen in [20]. The cost estimates count two kinds of operations:
algebraic operations in the base ring and bit operations corresponding to in-
teger manipulations, in particular flow control of the algorithm. Concretely,
the cost of flow control will be negligible, so we will not mention it explicitly.

The algorithm relies on polynomial and integer multiplication. We thus denote
by M a function such that polynomials of degree less than d can be multiplied
in M(d) operations in the base ring S and M(d) bit operations, and by MZ
a function such that integers of bit-length d can be multiplied in MZ(d) bit
operations. We make the usual super-linearity assumptions of [8, Chapter 8];
by the results of Cantor-Kaltofen [5] and Fürer [7], one can take M(d) in
O(d log(d) log log(d)) and MZ(d) in O(d log(d) 2O(log∗(d))), that is, both are in
O (̃d).

We also need to find roots of a squarefree polynomial (written χ below)
of degree n in Z[T ], knowing that χ splits into linear factors in Z[T ]. In
our context, we can slightly simplify the p-adic method of [25], as we will
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know a prime p (actually, several) for which χ remains squarefree modulo
p. As pointed out in [22], one can find all roots of χ modulo p by fast
evaluation, using O(M(p) log(p)) operations in Fp, which is O (̃p) bit oper-
ations. Then, by [8, Theorem 15.18], lifting these roots to integer ones takes
O(M(n)MZ(h) log(n)) ⊂ O (̃nh) bit operations, where h is a bound on the
bit-length of the coefficients and roots of χ, and on the bit-length of p.

4 Proof of the main results

As usual, we reduce the multivariate case to the univariate one by Kronecker’s
substitution. To A ∈ S[X1, . . . , Xn] of partial degree bounded by d in all
variables, we associate A′ ∈ S[X] given by

A′ = A(Y1, . . . , Yn),

with Yi = X(d+1)i−1
. The degree of A′ is then less than (d+1)n; besides, given

a straight-line program of size L for A, one can deduce a straight-line program
of size L + O(n2 log(d)) for A′, as each variable is raised to a power at most
(d + 1)n to form A′. Conversely, given the monomials and exponents of A′,
one can recover the exponents of A by writing those of A′ in base d + 1; this
takes O (̃n log(d)) bit operations per coefficient. Taking these overheads into
account, one readily deduces Corollary 1 from Theorem 1.

We can thus focus on the univariate case of Theorem 1. Recall that A is
given by a straight-line program that performs only additions, subtractions
and multiplications; we let L be the number of these operations. We further
let τ and d be the given bounds on the number of terms and degree of A, so
that we can write

A =
σ∑

i=1

aiX
ei ,

with σ ≤ τ , ai 6= 0 and ei ≤ d for all i, and ei < ej for i < j.

Let (pi)i≥1 = (2, 3, 5, . . . ) be the set of primes and let χ be the (unknown)
polynomial

∏σ
i=1(T − ei) ∈ Z[T ]. We now describe all steps of the algorithm

and give their cost; summing these costs proves Theorem 1.

Step 0: computing bounds.

• We first choose q such that all coefficients of χ are bounded (in absolute
value) by q. A suitable bound is q = (d + 1)τ ; a marginally better one is

(d + 2− τ) · · · d(d + 1).
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Yet better results are obtained by taking the maximum of the coefficients
of (T + d + 1− τ) · · · (T + d− 1)(T + d), but this brings little improvement.

• We next choose r such that for any primes pσ1 , . . . , pσr ,
∏

pσi
≥ q. To do so,

remark that

pσ1 · · · pσr ≥ 2r.

Hence, one can take r = dlog(q)e ∈ O(τ log(d)). After generating primes up
to pdlog(q)e, one can find a sharper bound if wanted.

• We next choose s such that ∆ =
∏

i<j(ej − ei) has at most s prime factors.

Remark that ∆ ≤ dτ2
, so one can take s = bτ 2 log(d)c. By generating primes

up to pbτ2 log(d)c, one could get a sharper bound if wanted.

• Finally, let N = r + s ∈ O(τ 2 log(d)).

Cost: using binary powering, one can compute q and r in O(MZ(τ log(d)))
bit operations and s in O(MZ(τ

2 log(d))) bit operations; the cost of computing
N is polylogarithmic in τ and log(d). Hence, the total time is O (̃τ 2 log(d))
bit operations.

Step 1: finding primes. By sieving, compute the first N primes p1, . . . , pN .
All pi are bounded by 2N log(N); their sum is thus in O(N2 log(N)).

Cost: by [8, Theorem 18.10], the cost is O(N log(N)2 log log(N)) bit opera-
tions, which is in O (̃τ 2 log(d)).

Step 2: modular evaluations. For i = 1, . . . , N , compute Ai = A mod
(Xpi − 1), as a dense polynomial, and let Si be the set of exponents of Ai.
Remark that for all i, Ai =

∑σ
j=1 ajX

ej mod pi , so that Si is contained in the
set {ej mod pi}; however, it may happen that for some i, Si has size less than
σ if two exponents have the same residue modulo pi.

Cost: for any i, we compute Ai by evaluating the given straight-line program
for A modulo Xpi − 1; all intermediate results are thus dense polynomials of
degree less than pi as well (an example of a similar computation is in [9]).

An addition modulo Xpi − 1 takes O(pi) operations in S; a multiplication
modulo Xpi − 1 takes M(pi) + pi operations, since Euclidean division by
Xpi − 1 uses only pi additions. Hence, the cost of a single operation (+,−,×)
in S[X]/(Xpi − 1) is O(M(pi)). Computing Ai takes L times more, that is,
O(LM(pi)) operations in S. Summing on all i gives O(LNM(N log(N))) oper-
ations in S, which is in O (̃L τ 4 log(d)2); the bit complexity is similar.

Step 3: filtering. Find σ′ = maxi≤N |Si|, and discard all pi for which Si does
not have cardinality σ′. Let R ⊂ {1, . . . , N} be the set of remaining indices.
We claim that |R| ≥ r and σ′ = σ (the number of terms in A). Indeed, we
remark first that |Si| ≤ σ for all i. Besides, |Si| < σ if and only if pi divides
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∆ =
∏

i<j(ei − ej). Since ∆ has at most s prime factors, there are at least
N − s = r elements i in {1, . . . , N} for which |Si| = σ.

Cost: this step only requires to scan the sequence of exponents of the poly-
nomials Ai. Since all degrees are at most 2N log(N), the cost is O (̃N2) bit
operations, which is in O (̃τ 4 log(d)2).

Step 4: recovering χ. At this stage, we know the sets Si, but do not know
how to pair their elements to do Chinese remaindering. However, the symmet-
ric functions of the elements of the sets Si can be matched unambiguously.
Thus, for all i ∈ R, starting from Si, we compute χi =

∏
e∈Si

(T − e) ∈ Fpi
[T ];

we deduce χ by applying the Chinese remainder theorem to the (χi, pi). Cor-
rectness follows from the fact that |R| ≥ r, so that the product of the primes
pi for i in R is an upper bound on the coefficients in χ.

Cost: for any i, χi can be computed from its roots in O(M(τ) log(τ)) opera-
tions in Fpi

using subproduct tree techniques [8, Chapter 10], whence a total
cost of O (̃τN) bit operations. Then, since

∏
i∈R pi ≤ (2N log(N))N , Chinese

remaindering has a bit cost of O (̃τN) as well [8, Chapter 10]. Hence, the total
cost is O (̃τ 3 log(d)) bit operations.

Step 5: recovering the ei. Find the roots of χ to recover the exponents ei,
by lifting the roots known modulo pi, for an i in R.

Cost: by the discussion in the previous section, the cost is O (̃τ 2 log(d)) bit
operations.

Step 6: recovering the coefficients. Pick an element j in R. For i =
1, . . . , τ , compute fi = ei mod pj and let ai be the coefficient of fi in Aj.

Cost: since we perform τ modular reductions on integers bounded by d, the
cost is O (̃τ log(d)) bit operations.
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