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Abstract

In the straight-line program model, it is known that computing all partial deriva-
tives of a single polynomial induces only a constant increase in complexity, using the
reverse derivation mode. We show that no such result holds for shifts, divided differ-
ences, ¢-shifts or g-divided differences.
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1 Introduction, main result

Ore operators are useful generalizations of the notion of partial derivatives. To give their
definition, let us denote by A, the ring k[X7,..., X, ], where k is a field and n is a positive
integer. The partial derivatives 01, ..., 0, are defined by 0; : P € A, — 0P/0X;; they
satisfy the relation 0;(PQ) = 0;(P)Q + P0;(Q). Ore operators are defined by allowing
functional equations more general than the above, of the form 0(PQ) = §(P)Q + o(P)I(Q),
where o is a ring homomorphism, and § is a o-derivation [9].

Some standard examples of such operators will be considered here. We will use the
shift operators S; : P — P(Xy,...,X; + 1,...,X,) and the g-shift operators Q; : P
P(Xy,...,¢X;,...,X,), where ¢ is in k, together with the associated (g-)difference operators
(or discrete derivatives) A; : P+ S;(P) — P and A; : P — Q;(P) — P.

From the algorithmic point of view, some tools are common to a large class of such op-
erators. This is for instance the case for elimination techniques, based either on suitable
versions of the Euclidean algorithm, or on more involved non-commutative variants of Buch-
berger’s algorithm: one can see applications of such techniques for multivariate identities
proving in [4], which follows notably [6]. For such questions, partial derivatives and more
general operators are treated on an equal footing; the algorithms are common to a whole
class of Ore structures.

It seems interesting to pursue these investigations, and study what algorithmic and com-
plexity properties pass from partial derivatives to more general operators. This is our goal



in this note: we show that the operators defined above strongly differ from the partial
derivatives with respect to some basic complexity questions.

We will work in the straight-line model of computation, and measure complexity using the
total number of operations (see [3, Ch. 4] for definitions); for any polynomials P, ..., Ps €
A,, we write L(P,...,Ps) for the minimal size of a straight-line program that computes
Py, ..., P;. Thus, we count at unit cost all operations (actually, similar results would also
hold for the multiplicative complexity measure).

One easily sees that computing the gradient of a polynomial P € A, can be done for
about n times the cost of computing P, by propagating forward its n partial derivatives,
that is, L(O\P,...,0,P) € O(nL(P)). However, better can be done: using the so-called
reverse mode of derivation, it is known that L(0,P,...,0,P) < 4L(P). This idea goes back
at least to [8], and is presented in the straight-line model in [1] (see for instance [5] for a much
more comprehensive presentation). Apart from its algorithmic uses, notably for optimization
algorithms, this result is also the basis of lower bound estimates, see [1, 3].

Our main result is that no such inequality holds, either for shifts, divided differences,
g-shifts or g-divided differences, and that an overhead of about n is unavoidable in the worst
case.

Theorem 1 For any L > 1, n>1 and e > 0, there exist Ps and Px in A, such that:

L(S1(Ps),...,Su(Ps))
L(Ps)

>n(l—¢e) and L(Ps) > L,

L(A{(PA), ..., Ay (Pa))
L(Pa)
Furthermore, for any q # 1, there exist Rg and Ry in A,, such that:

L(Q1(Rg), - -, Qn(Rg))
L(Rq)

>n(l—¢e)—1 and L(Pa) > L.

>(n—1)(1—¢) and L(Rg)>L,

L(A1(Rp), -, Au(RY))
L(Rx)

>n—1)(1—-¢)—1 and L(Ry) > L.

Given a straight-line program that computes a polynomial P, it is immediate to deduce a
straight-line program that computes S;(P), increasing the complexity by at most 1 (which
accounts for the cost of computing X; + 1). Thus, L(S;(P)) < L(P) + 1, from which we
deduce L(SiP,...,S,P) < n(L(P) + 1). Similar estimates hold for the other operators
considered here, so our lower bound are sharp.

2 Proof of the statements

For m € N, we denote by A™(k) the m-dimensional affine space over an algebraic closure of
k. If V is an r-equidimensional algebraic variety in A™(k), its degree deg(V') is the generic,
and maximal, number of intersection points with a linear subspace of codimension r, when

this intersection is finite. We will use Strassen’s degree bound [10]: let P;,..., Ps be in
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k[X1,...,Xn], and let V- C A™"#(k) be the graph of Py, ..., Ps. Then V is equidimensional,
and the inequality L(Py,...,Ps;) > log(deg(V)) holds. Here, and in all that follows, all
logarithms are taken in base 2. Finally, we denote by char(k) the characteristic of k. In all
this section, n is a fixed positive integer.

2.1 Shift operators

For M > 0, we define P,y = (X -+ X,)™. Since deg(P, ) = nM, we get the following
lower bound:

Lemma 1 The inequality L(P, ) > log(nM) holds.

On the other hand, by first computing the product X --- X, and then raising it to Mth
power by binary powering, we obtain the inequality L(P, ) < n + 2log(M). However, a
better asymptotic estimate holds. Let us indeed denote by ¢(M) the minimal length of an
addition chain that computes M. It is known [2] (see also [7] for more bibliography) that
¢(M) is asymptotically equivalent to log(M). We deduce the following improved bound for

L(Py ).
Lemma 2 Lete > 0. The inequality L(P, »r) < n+(14¢)log(M) holds for M large enough.
We now give a lower bound on the complexity of L(S1(Puar), - -, Sn(Puar))-

Lemma 3 If M and char(k) are coprime, the inequality L(S1(Pnr), - - -, Sn(Ponr)) > nlog(M)
holds.

Proof. We can suppose n > 2 (the case n = 1 is immediate). Let V' C A?"(k) be the graph
of the map

@ : A"(k) — A"(k)
X=(21,...,2,) = (S1(Pom)(X),..., Sn(Poam)(x)).

By the degree bound, it suffices to prove that deg(V) > M™. Let v C A?"(k) be the fiber
e 1(1,...,1). We will now prove the following fact: v is finite and has cardinality at least
M™". Note that v is obtained by cutting V' through n hyperplanes; thus, this claim implies
that deg(V') > M™, which will prove the lemma.

The fiber v is isomorphic to the zero-set v’ C A"(k) of the system

Sl(Pn,M)<X17---7Xn> - 1,

Sn<Pn,M)(X17 s 7Xn) = 17
which can be rewritten as

(Xi4+1D)Xy--- Xp)M = 1,

(X1 Xy (X, + 1))M = 1.
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Let us denote by wy,...,wy the Mth roots of 1 in k; our assumption on M and char(k)
implies that wy, ..., wy are pairwise distinct. To any map A : {1,...,n} — {1,..., M}, we
associate the system &, (with coefficients in k):

(X1 +1D)Xy-- X)) = wa),
S :
(X1 Xp- - (Xn+ 1) = W)
For any such A, let vy C A™(k) be the zero-set of &5. Then, v’ is the disjoint union of all vj.
There are M™ choices for A, so to prove our claim, it suffices to prove that all v, are finite
and non-empty.
Let us thus fix amap A : {1,...,n} — {1,..., M}. Since n > 2, all coordinates of all
solutions of &, are non-zero. Letting Y; = 1/X;, the system &, can then be rewritten in

the form
1+Y1 = wpYi--- Yy,

1+Y, = w)\(n)Yi Y,

which yields the equivalent set of equations

Yi = w1 Y, —1,

: (1)
Yn = W)\(n)}/l"'yn_l-

Let A € k[T] be the polynomial [Ticicn(@r@T —1). Let next § C k be the set of the roots
of the polynomial A —T'; since n > 2, A — T is non-zero and non-constant, so ¢ is finite and
non-empty. We conclude by showing that v, itself is finite and non-empty:

e Taking the product of Equations (1), we see that for all (yi,...,y,) in vy, the product
Y1 -+ Yo belongs to d; thus, the function Y;---Y, takes a finite number of values on
vy. Furthermore, Equations (1) show that the value of the product y; - - - y,, uniquely
determines y1, ..., y,. Thus, v, is finite.

e Conversely, let us consider p in ¢, and define y; = wyq)p—1, fori = 1,...,n. Taking the
product of these equalities, we deduce that y; - - -y, = A(p). By definition, A(p) = p,
SO Y1+ Yn = p. Thus, the point (y1,...,y,) is a solution of Equations (1), and so v,
is non-empty. 0

We can now conclude the proof of the first two assertions in Theorem 1. Let thus € > 0

and L > 1, and let ¢ > 0 be such that }jrg > 1 —¢. Let next M be coprime with the

characteristic of £ and large enough to satisfy the inequalities

nlog(M) >nl—£’
n+(1+¢)log(M) — 1+4¢"

L(Py) <n+ (1+¢&)log(M)
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and
log(nM) > L.

We deduce from the above lemmas that

L(S1(Pum), - Sn(Punr)) 1—¢
J 2 > > — > [,
L(Por) > n T 2 n(l—¢e) and L(P,nm)>L

This proves the first assertion in the theorem.

To prove the second assertion, note that for any polynomial P and any 1 < i < n, we
have the inequality L(S;(P)) < L(A;(P))+ L(P) + 1, since S;(P) is obtained as A;(P) + P.
Taking all ¢ into account, this rewrites as

L(AL(P),...,An(P)) > L(S1(P),...,Su(P)) —n— L(P),

so that
L(P) L(P)

Then, the previous result easily yields the second point in the theorem.

— 1.

2.2 ¢-shift operators

Let us now consider the ¢-shift operators Q;(P) = P(Xy,...,q¢X;, ..., X,) for some ¢ € k.
For M >0, we define R, py = (Xq +--- + Xn)M. The following lower bound is immediate in
view of the degree of R, u:

Lemma 4 The inequality L(R, ) > log(M) holds.

As in the previous subsection, by first computing the sum X; 4+ --- + X, and raising it to
Mth power, we obtain the following upper bound:

Lemma 5 Let ¢ > 0. The inequality L(R, ) < n+ (1 4 ¢)log(M) holds for M large
enough.

We now give a lower bound on the complexity of L(Q1(Runr), - - Qn(Rnnr))-

Lemma 6 If M and char(k) are coprime and (¢ — 1)(¢ +n — 1) # 0 in k, the inequality
L(Q1(Rop), -, Qu(Runr)) > nlog(M) holds.

Proof. The proof is similar to that of Lemma 3. Using the degree bound, it is enough to
prove the following fact: the zero-set of the system

(X1 +Xo+--+ X)M = 1,

(Xi+ X+ +gX)M = 1



is finite, of cardinality M". Let us denote by wy, ...,wy the M pairwise distinct Mth roots
of 1 in k. As above, to any map A : {1,...,n} — {1,..., M}, we associate the following
system (with coefficients in k):

X1+ Xo+--+ X, = wia),

X1+X2++an = w)\(n)'

This system is linear, of determinant (¢ —1)""!(¢+mn — 1), which is non-zero by assumption.
Thus, it has exactly one solution. Since there are M™ such systems, and their zero-sets are
disjoint, our claim follows. 0

We deduce the following corollary, which lifts the assumption g—n+1 # 0 of the previous
Lemma.

Lemma 7 If M and char(k) are coprime, and q # 1, then the inequality
L(Ql(Rn,M)a R Qn(RmM)) > (n - 1) log(M) holds.

Proof. 1f ¢ +mn — 1 # 0, then the above lemma concludes (and actually gives a slightly
better bound). Else, suppose that ¢ + n — 1 = 0. Any straight-line program that com-
putes Q1(Run)s - -, Qu(Rnn) in k[X1, ..., X,] yields, by specializing X,, at 0, a straight-
line program that computes Q1 (Ru—1.0), - - - Qn1(Rn—1.m) in k[ X1, ..., X,,_1], without cost
increase.

Now, we have g + (n — 1) — 1 # 0, so we can apply the previous lemma, which implies
that L(Q1(Rn—1.0)s - @n-1(Rn—1.0m)) > (n—1)log(M) if M and char(k) are coprime. The
remark in the preceding paragraph finishes the proof. 0

The proof of the last two statements of Theorem 1 follows as in the previous subsection.
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