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Éric Schost, STIX, École polytechnique
91128 Palaiseau, France

schost@stix.polytechnique.fr

November 5, 2004

Abstract

In the straight-line program model, it is known that computing all partial deriva-
tives of a single polynomial induces only a constant increase in complexity, using the
reverse derivation mode. We show that no such result holds for shifts, divided differ-
ences, q-shifts or q-divided differences.
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1 Introduction, main result

Ore operators are useful generalizations of the notion of partial derivatives. To give their
definition, let us denote by An the ring k[X1, . . . , Xn], where k is a field and n is a positive
integer. The partial derivatives ∂1, . . . , ∂n are defined by ∂i : P ∈ An 7→ ∂P/∂Xi; they
satisfy the relation ∂i(PQ) = ∂i(P )Q + P∂i(Q). Ore operators are defined by allowing
functional equations more general than the above, of the form ∂(PQ) = δ(P )Q+σ(P )∂(Q),
where σ is a ring homomorphism, and δ is a σ-derivation [9].

Some standard examples of such operators will be considered here. We will use the
shift operators Si : P 7→ P (X1, . . . , Xi + 1, . . . , Xn) and the q-shift operators Qi : P 7→
P (X1, . . . , qXi, . . . , Xn), where q is in k, together with the associated (q-)difference operators
(or discrete derivatives) ∆i : P 7→ Si(P )− P and Λi : P 7→ Qi(P )− P .

From the algorithmic point of view, some tools are common to a large class of such op-
erators. This is for instance the case for elimination techniques, based either on suitable
versions of the Euclidean algorithm, or on more involved non-commutative variants of Buch-
berger’s algorithm: one can see applications of such techniques for multivariate identities
proving in [4], which follows notably [6]. For such questions, partial derivatives and more
general operators are treated on an equal footing; the algorithms are common to a whole
class of Ore structures.

It seems interesting to pursue these investigations, and study what algorithmic and com-
plexity properties pass from partial derivatives to more general operators. This is our goal
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in this note: we show that the operators defined above strongly differ from the partial
derivatives with respect to some basic complexity questions.

We will work in the straight-line model of computation, and measure complexity using the
total number of operations (see [3, Ch. 4] for definitions); for any polynomials P1, . . . , Ps ∈
An, we write L(P1, . . . , Ps) for the minimal size of a straight-line program that computes
P1, . . . , Ps. Thus, we count at unit cost all operations (actually, similar results would also
hold for the multiplicative complexity measure).

One easily sees that computing the gradient of a polynomial P ∈ An can be done for
about n times the cost of computing P , by propagating forward its n partial derivatives,
that is, L(∂1P, . . . , ∂nP ) ∈ O(nL(P )). However, better can be done: using the so-called
reverse mode of derivation, it is known that L(∂1P, . . . , ∂nP ) ≤ 4L(P ). This idea goes back
at least to [8], and is presented in the straight-line model in [1] (see for instance [5] for a much
more comprehensive presentation). Apart from its algorithmic uses, notably for optimization
algorithms, this result is also the basis of lower bound estimates, see [1, 3].

Our main result is that no such inequality holds, either for shifts, divided differences,
q-shifts or q-divided differences, and that an overhead of about n is unavoidable in the worst
case.

Theorem 1 For any L ≥ 1, n ≥ 1 and ε > 0, there exist PS and P∆ in An such that:

L(S1(PS), . . . , Sn(PS))

L(PS)
≥ n(1− ε) and L(PS) ≥ L,

L(∆1(P∆), . . . , ∆n(P∆))

L(P∆)
≥ n(1− ε)− 1 and L(P∆) ≥ L.

Furthermore, for any q 6= 1, there exist RQ and RΛ in An such that:

L(Q1(RQ), . . . , Qn(RQ))

L(RQ)
≥ (n− 1)(1− ε) and L(RQ) ≥ L,

L(Λ1(RΛ), . . . , Λn(RΛ))

L(RΛ)
≥ (n− 1)(1− ε)− 1 and L(RΛ) ≥ L.

Given a straight-line program that computes a polynomial P , it is immediate to deduce a
straight-line program that computes Si(P ), increasing the complexity by at most 1 (which
accounts for the cost of computing Xi + 1). Thus, L(Si(P )) ≤ L(P ) + 1, from which we
deduce L(S1P, . . . , SnP ) ≤ n(L(P ) + 1). Similar estimates hold for the other operators
considered here, so our lower bound are sharp.

2 Proof of the statements

For m ∈ N, we denote by Am(k) the m-dimensional affine space over an algebraic closure of
k. If V is an r-equidimensional algebraic variety in Am(k), its degree deg(V ) is the generic,
and maximal, number of intersection points with a linear subspace of codimension r, when
this intersection is finite. We will use Strassen’s degree bound [10]: let P1, . . . , Ps be in
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k[X1, . . . , Xm], and let V ⊂ Am+s(k) be the graph of P1, . . . , Ps. Then V is equidimensional,
and the inequality L(P1, . . . , Ps) ≥ log(deg(V )) holds. Here, and in all that follows, all
logarithms are taken in base 2. Finally, we denote by char(k) the characteristic of k. In all
this section, n is a fixed positive integer.

2.1 Shift operators

For M ≥ 0, we define Pn,M = (X1 · · ·Xn)M . Since deg(Pn,M) = nM , we get the following
lower bound:

Lemma 1 The inequality L(Pn,M) ≥ log(nM) holds.

On the other hand, by first computing the product X1 · · ·Xn and then raising it to Mth
power by binary powering, we obtain the inequality L(Pn,M) ≤ n + 2 log(M). However, a
better asymptotic estimate holds. Let us indeed denote by `(M) the minimal length of an
addition chain that computes M . It is known [2] (see also [7] for more bibliography) that
`(M) is asymptotically equivalent to log(M). We deduce the following improved bound for
L(Pn,M).

Lemma 2 Let ε > 0. The inequality L(Pn,M) ≤ n+(1+ε) log(M) holds for M large enough.

We now give a lower bound on the complexity of L(S1(Pn,M), . . . , Sn(Pn,M)).

Lemma 3 If M and char(k) are coprime, the inequality L(S1(Pn,M), . . . , Sn(Pn,M)) ≥ n log(M)
holds.

Proof. We can suppose n ≥ 2 (the case n = 1 is immediate). Let V ⊂ A2n(k) be the graph
of the map

ϕ : An(k) → An(k)
x = (x1, . . . , xn) 7→ (S1(Pn,M)(x), . . . , Sn(Pn,M)(x)).

By the degree bound, it suffices to prove that deg(V ) ≥ Mn. Let v ⊂ A2n(k) be the fiber
ϕ−1(1, . . . , 1). We will now prove the following fact: v is finite and has cardinality at least
Mn. Note that v is obtained by cutting V through n hyperplanes; thus, this claim implies
that deg(V ) ≥ Mn, which will prove the lemma.

The fiber v is isomorphic to the zero-set v′ ⊂ An(k) of the system
S1(Pn,M)(X1, . . . , Xn) = 1,

...
Sn(Pn,M)(X1, . . . , Xn) = 1,

which can be rewritten as 
((X1 + 1)X2 · · ·Xn)M = 1,

...
(X1X2 · · · (Xn + 1))M = 1.
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Let us denote by ω1, . . . , ωM the Mth roots of 1 in k; our assumption on M and char(k)
implies that ω1, . . . , ωM are pairwise distinct. To any map λ : {1, . . . , n} → {1, . . . ,M}, we
associate the system Sλ (with coefficients in k):

Sλ


((X1 + 1)X2 · · ·Xn) = ωλ(1),

...
(X1X2 · · · (Xn + 1)) = ωλ(n).

For any such λ, let vλ ⊂ An(k) be the zero-set of Sλ. Then, v′ is the disjoint union of all vλ.
There are Mn choices for λ, so to prove our claim, it suffices to prove that all vλ are finite
and non-empty.

Let us thus fix a map λ : {1, . . . , n} → {1, . . . ,M}. Since n ≥ 2, all coordinates of all
solutions of Sλ are non-zero. Letting Yi = 1/Xi, the system Sλ can then be rewritten in
the form 

1 + Y1 = ωλ(1)Y1 · · ·Yn,
...

1 + Yn = ωλ(n)Y1 · · ·Yn,

which yields the equivalent set of equations
Y1 = ωλ(1)Y1 · · ·Yn − 1,

...
Yn = ωλ(n)Y1 · · ·Yn − 1.

(1)

Let ∆ ∈ k[T ] be the polynomial
∏

1≤i≤n(ωλ(i)T − 1). Let next δ ⊂ k be the set of the roots
of the polynomial ∆−T ; since n ≥ 2, ∆−T is non-zero and non-constant, so δ is finite and
non-empty. We conclude by showing that vλ itself is finite and non-empty:

• Taking the product of Equations (1), we see that for all (y1, . . . , yn) in vλ, the product
y1 · · · yn belongs to δ; thus, the function Y1 · · ·Yn takes a finite number of values on
vλ. Furthermore, Equations (1) show that the value of the product y1 · · · yn uniquely
determines y1, . . . , yn. Thus, vλ is finite.

• Conversely, let us consider p in δ, and define yi = ωλ(1)p−1, for i = 1, . . . , n. Taking the
product of these equalities, we deduce that y1 · · · yn = ∆(p). By definition, ∆(p) = p,
so y1 · · · yn = p. Thus, the point (y1, . . . , yn) is a solution of Equations (1), and so vλ

is non-empty. �

We can now conclude the proof of the first two assertions in Theorem 1. Let thus ε > 0
and L ≥ 1, and let ε′ > 0 be such that 1−ε′

1+ε′ ≥ 1 − ε. Let next M be coprime with the
characteristic of k and large enough to satisfy the inequalities

n log(M)

n + (1 + ε′) log(M)
≥ n

1− ε′

1 + ε′
,

L(Pn,M) ≤ n + (1 + ε′) log(M)

4



and
log(nM) ≥ L.

We deduce from the above lemmas that

L(S1(Pn,M), . . . , Sn(Pn,M))

L(Pn,M)
≥ n

1− ε′

1 + ε′
≥ n(1− ε) and L(Pn,M) ≥ L.

This proves the first assertion in the theorem.
To prove the second assertion, note that for any polynomial P and any 1 ≤ i ≤ n, we

have the inequality L(Si(P )) ≤ L(∆i(P )) + L(P ) + 1, since Si(P ) is obtained as ∆i(P ) + P .
Taking all i into account, this rewrites as

L(∆1(P ), . . . , ∆n(P )) ≥ L(S1(P ), . . . , Sn(P ))− n− L(P ),

so that
L(∆1(P ), . . . , ∆n(P ))

L(P )
≥ L(S1(P ), . . . , Sn(P ))

L(P )
− n

L(P )
− 1.

Then, the previous result easily yields the second point in the theorem.

2.2 q-shift operators

Let us now consider the q-shift operators Qi(P ) = P (X1, . . . , qXi, . . . , Xn) for some q ∈ k.
For M ≥ 0, we define Rn,M = (X1 + · · ·+ Xn)M . The following lower bound is immediate in
view of the degree of Rn,M :

Lemma 4 The inequality L(Rn,M) ≥ log(M) holds.

As in the previous subsection, by first computing the sum X1 + · · · + Xn and raising it to
Mth power, we obtain the following upper bound:

Lemma 5 Let ε > 0. The inequality L(Rn,M) ≤ n + (1 + ε) log(M) holds for M large
enough.

We now give a lower bound on the complexity of L(Q1(Rn,M), . . . , Qn(Rn,M)).

Lemma 6 If M and char(k) are coprime and (q − 1)(q + n − 1) 6= 0 in k, the inequality
L(Q1(Rn,M), . . . , Qn(Rn,M)) ≥ n log(M) holds.

Proof. The proof is similar to that of Lemma 3. Using the degree bound, it is enough to
prove the following fact: the zero-set of the system

(qX1 + X2 + · · ·+ Xn)M = 1,
...

(X1 + X2 + · · ·+ qXn)M = 1
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is finite, of cardinality Mn. Let us denote by ω1, . . . , ωM the M pairwise distinct Mth roots
of 1 in k. As above, to any map λ : {1, . . . , n} → {1, . . . ,M}, we associate the following
system (with coefficients in k):

qX1 + X2 + · · ·+ Xn = ωλ(1),
...

X1 + X2 + · · ·+ qXn = ωλ(n).

This system is linear, of determinant (q−1)n−1(q +n−1), which is non-zero by assumption.
Thus, it has exactly one solution. Since there are Mn such systems, and their zero-sets are
disjoint, our claim follows. �

We deduce the following corollary, which lifts the assumption q−n+1 6= 0 of the previous
Lemma.

Lemma 7 If M and char(k) are coprime, and q 6= 1, then the inequality
L(Q1(Rn,M), . . . , Qn(Rn,M)) ≥ (n− 1) log(M) holds.

Proof. If q + n − 1 6= 0, then the above lemma concludes (and actually gives a slightly
better bound). Else, suppose that q + n − 1 = 0. Any straight-line program that com-
putes Q1(Rn,M), . . . , Qn(Rn,M) in k[X1, . . . , Xn] yields, by specializing Xn at 0, a straight-
line program that computes Q1(Rn−1,M), . . . , Qn−1(Rn−1,M) in k[X1, . . . , Xn−1], without cost
increase.

Now, we have q + (n − 1) − 1 6= 0, so we can apply the previous lemma, which implies
that L(Q1(Rn−1,M), . . . , Qn−1(Rn−1,M)) ≥ (n−1) log(M) if M and char(k) are coprime. The
remark in the preceding paragraph finishes the proof. �

The proof of the last two statements of Theorem 1 follows as in the previous subsection.

References

[1] W. Baur and V. Strassen. The complexity of partial derivatives. Theoret. Comput. Sci.,
22(3):317–330, 1983.

[2] A. Brauer. On addition chains. Bull. Amer. Math. Soc., 45:736–739, 1939.

[3] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, volume
315 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 1997.

[4] F. Chyzak and B. Salvy. Non-commutative elimination in Ore algebras proves multi-
variate identities. J. Symbolic Comput., 26(2):187–227, 1998.

[5] A. Griewank. Evaluating derivatives, volume 19 of Frontiers in Applied Mathematics.
Society for Industrial and Applied Mathematics (SIAM), 2000.

[6] A. Kandri-Rody and V. Weispfenning. Noncommutative Gröbner bases in algebras of
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