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Faster Algorithms for Multivariate
Interpolation with Multiplicities and

Simultaneous Polynomial Approximations
Muhammad F. I. Chowdhury, Claude-Pierre Jeannerod, Vincent Neiger, Éric Schost, Gilles Villard

Abstract—The interpolation step in the Guruswami-Sudan
algorithm is a bivariate interpolation problem with multiplici-
ties commonly solved in the literature using either structured
linear algebra or basis reduction of polynomial lattices. This
problem has been extended to three or more variables; for
this generalization, all fast algorithms proposed so far rely on
the lattice approach. In this paper, we reduce this multivariate
interpolation problem to a problem of simultaneous polynomial
approximations, which we solve using fast structured linear
algebra. This improves the best known complexity bounds for
the interpolation step of the list-decoding of Reed-Solomon
codes, Parvaresh-Vardy codes, and folded Reed-Solomon codes.
In particular, for Reed-Solomon list-decoding with re-encoding,
our approach has complexityO (̃`ω−1m2(n−k)), where `,m, n, k
are the list size, the multiplicity, the number of sample points
and the dimension of the code, and ω is the exponent of linear
algebra; this accelerates the previously fastest known algorithm
by a factor of `/m.

Index Terms—multivariate polynomial interpolation, polyno-
mial approximation, structured matrix, list decoding, Reed-
Solomon codes.

I. INTRODUCTION

IN THIS paper, we consider a multivariate interpolation
problem with multiplicities and degree constraints (Prob-

lem 1 below) which originates from coding theory. In what
follows, K is our base field and, in the coding theory context,
s, `, n, b are respectively known as the number of variables,
list size, code length, and as an agreement parameter. The
parameters m1, . . . ,mn are known as multiplicities associated
with each of the n points; furthermore, the s variables are
associated with some weights k1, . . . , ks. In the application to
list-decoding of Reed-Solomon codes, we have s = 1, all the
multiplicities are equal to a same value m, n−b/m is an upper
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Vincent Neiger is with ENS de Lyon, Laboratoire LIP (CNRS, ENS de
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bound on the number of errors allowed on a received word,
and the weight k := k1 is such that k + 1 is the dimension
of the code. Further details concerning the applications of our
results to list-decoding and soft-decoding of Reed-Solomon
codes are given in Section IV.

We stress that here we do not address the issue of
choosing the parameters s, `,m1, . . . ,mn with respect to
n, b, k1, . . . , ks, as is often done: in our context, these are all
input parameters. Similarly, although we will mention them,
we do not make some usual assumptions on these parameters;
in particular, we do not make any assumption that ensures
that our problem admits a solution: the algorithm will detect
whether no solution exists.

Here and hereafter, Z is the set of integers, Z>0 the set
of nonnegative integers, and Z>0 the set of positive integers.
Besides, degY1,...,Ys

denotes the total degree with respect
to the variables Y1, . . . , Ys, and wdegk1,...,ks denotes the
weighted-degree with respect to weights k1, . . . , ks ∈ Z on
variables Y1, . . . , Ys, respectively; that is, for a polynomial
Q =

∑
(j1,...,js)Qj1,...,js(X)Y j11 · · ·Y jss ,

wdegk1,...,ks(Q) = max
j1,...,js

(
deg(Qj1,...,js)+j1k1+· · ·+jsks

)
.

Problem 1. Multivariate Interpolation

Input: s, `, n,m1, . . . ,mn in Z>0, b, k1, . . . , ks in Z
and points {(xi, yi,1, . . . , yi,s)}16i6n in Ks+1

with the xi pairwise distinct.

Output: a polynomial Q in K[X,Y1, . . . , Ys] such that
(i) Q is nonzero,

(ii) degY1,...,Ys
(Q) 6 `,

(iii) wdegk1,...,ks(Q) < b,
(iv) Q(xi, yi,1, . . . , yi,s) = 0 with multiplicity at

least mi for 1 6 i 6 n.

We call conditions (ii), (iii), and (iv) the list-size condition,
the weighted-degree condition, and the vanishing condition,
respectively. Note that a point (x, y1, . . . , ys) is a zero of Q of
multiplicity at least m if the shifted polynomial Q(X+x, Y1+
y1, . . . , Ys+ys) has no monomial of total degree less than m;
in characteristic zero or larger than m, this is equivalent to
requiring that all the derivatives of Q of order up to m − 1
vanish at (x, y1, . . . , ys).

By linearizing condition (iv) under the assumption that
conditions (ii) and (iii) are satisfied, it is easily seen that
solving Problem 1 amounts to computing a nonzero solution
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to an M × N homogeneous linear system over K. Here, the
number M of equations derives from condition (iv) and thus
depends on s, n, m1, . . . ,mn, while the number N of un-
knowns derives from conditions (ii) and (iii) and thus depends
on s, `, b, k1, . . . , ks. It is customary to assume M < N
in order to guarantee the existence of a nonzero solution;
however, as said above, we do not make this assumption, since
our algorithms do not require it.

Problem 1 is a generalization of the interpolation step of
the Guruswami-Sudan algorithm [49], [23] to s variables
Y1, . . . , Ys, distinct multiplicities, and distinct weights. The
multivariate case s > 1 occurs for instance in Parvaresh-
Vardy codes [40] or folded Reed-Solomon codes [22]. Distinct
multiplicities occur for instance in the interpolation step in
soft-decoding of Reed-Solomon codes [28]. We note that
this last problem is different from our context since the xi
are not necessarily pairwise distinct; we briefly explain in
Section IV-D how to deal with this case.

Our solution to Problem 1 relies on a reduction to a si-
multaneous approximation problem (Problem 2 below) which
generalizes Padé and Hermite-Padé approximation.

Problem 2. Simultaneous Polynomial Approximations

Input: µ, ν, M ′0, . . . ,M
′
µ−1, N ′0, . . . , N

′
ν−1 in Z>0 and

tuples {(Pi, Fi,0, . . . , Fi,ν−1)}06i<µ of polyno-
mials in K[X] such that for all i, Pi is monic of
degree M ′i and deg(Fi,j) < M ′i for all j.

Output: polynomials Q0, . . . , Qν−1 in K[X] such that
(a) the Qj are not all zero,
(b) for 0 6 j < ν, deg(Qj) < N ′j ,

(c) for 0 6 i < µ,
∑

06j<ν Fi,jQj = 0 mod Pi.

Main complexity results and applications. We first show in
Section II how to reduce Problem 1 to Problem 2 efficiently via
a generalization of the techniques introduced by Zeh, Gentner,
and Augot [54] and Zeh [53, Section 5.1.1] for, respectively,
the list-decoding and soft-decoding of Reed-Solomon codes.

Then, in Section III we present two algorithms for solving
Problem 2. Each of them involves a linearization of the
univariate equations (c) into a specific homogeneous linear
system over K; if we define

M ′ =
∑

06i<µ

M ′i and N ′ =
∑

06j<ν

N ′j ,

then both systems have M ′ equations in N ′ unknowns. (As
for our first problem, we need not assume that M ′ < N ′.)
Furthermore, the structure of these systems allows us to solve
them efficiently using the algorithm of Bostan, Jeannerod, and
Schost in [8].

Our first algorithm, detailed in Section III-B, solves Prob-
lem 2 by following the derivation of so-called extended key
equations (EKE), initially introduced for the particular case
of Problem 1 by Roth and Ruckenstein [43] when s = m = 1
and then by Zeh, Gentner, and Augot [54] when s = 1 and
m > 1; the matrix of the system is mosaic-Hankel. In our
second algorithm, detailed in Section III-C, the linear system

is more directly obtained from condition (c), without resorting
to EKEs, and has Toeplitz-like structure.

Both points of view lead to the same complexity result,
stated in Theorem 2 below, which says that Problem 2 can be
solved in time quasi-linear in M ′, multiplied by a subquadratic
term in ρ = max(µ, ν). In the following theorems, and the
rest of this paper, the soft-O notation O (̃ ) indicates that we
omit polylogarithmic terms. The exponent ω is so that we
can multiply n×n matrices in O(nω) ring operations on any
ring, the best known bound being ω < 2.38 [15], [48], [51],
[31]. Finally, the function M is a multiplication time function
for K[X]: M is such that polynomials of degree at most d in
K[X] can be multiplied in M(d) operations in K, and satisfies
the super-linearity properties of [19, Ch. 8]. It follows from
the algorithm of Cantor and Kaltofen [11] that M(d) can be
taken in O(d log(d) log log(d)) ⊆ O (̃d).

Combining Theorem 2 below with the above-mentioned
reduction from Problem 1 to Problem 2, we immediately
deduce the following cost bound for Problem 1.

Theorem 1. Let

Γ =
{

(j1, . . . , js) ∈ Zs>0

∣∣ j1 + · · ·+ js 6 `

and j1k1 + · · ·+ jsks < b
}
,

and let m = max16i6nmi, % = max
(
|Γ|,

(
s+m−1

s

))
, and

M =
∑

16i6n

(
s+mi

s+1

)
. There exists a probabilistic algorithm

that either computes a solution to Problem 1, or determines
that none exists, using

O
(
%ω−1M(M) log(M)2

)
⊆ O (̃%ω−1M)

operations in K. This can be achieved using Algorithm 1 in
Section II followed by Algorithm 2 or 3 in Section III. These
algorithms choose O(M) elements in K; if these elements are
chosen uniformly at random in a set S ⊆ K of cardinality at
least 6(M+1)2, then the probability of success is at least 1/2.

We will often refer to the two following assumptions on the
input parameters:

H1: m 6 `,
H2: b > 0 and b > ` ·max16j6s kj .

Regarding H1, we prove in Appendix A that the case m > `
can be reduced to the case m = `, so that this assumption
can be made without loss of generality. Besides, it is easily
verified that H2 is equivalent to having Γ = {(j1, . . . , js) ∈
Zs>0 | j1 + · · ·+js 6 `}; when kj > 0 for some j, H2 means
that we do not take ` uselessly large. Then, assuming H1 and
H2, we have % = |Γ| =

(
s+`
s

)
.

As we will show in Section IV, in the context of the list-
decoding of Reed-Solomon codes, applications of Theorem 1
include the interpolation step of the Guruswami-Sudan algo-
rithm [23] in O (̃`ω−1m2

GSn) operations and the interpolation
step of the Wu algorithm [52] in O (̃`ω−1m2

Wun) operations,
where mGS and mWu are the respective multiplicities used in
those algorithms; our result can also be adapted to the context
of soft-decoding [28]. Besides, the re-encoding technique of
Koetter and Vardy [29] can be used in conjunction with our
algorithm in order to reduce the cost of the interpolation step
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of the Guruswami-Sudan algorithm to O (̃`ω−1m2
GS(n − k))

operations.
In Theorem 1, the probability analysis is a standard conse-

quence of the Zippel-Schwartz lemma; as usual, the probability
of success can be made arbitrarily close to one by increasing
the size of S. If the field K has fewer than 6(M+1)2 elements,
then a probability of success at least 1/2 can still be achieved
by using a field extension L of degree d ∈ O(log|K|(M)), up
to a cost increase by a factor in O(M(d) log(d)).

Specifically, one can proceed in three steps. First, we take
L = K[X]/〈f〉 with f ∈ K[X] irreducible of degree d;
such an f can be set up using an expected number of
O (̃d2) ⊆ O(M) operations in K [19, §14.9]. Then we solve
Problem 1 over L by means of the algorithm of Theorem 1,
thus using O

(
%ω−1M(M) log(M)2 ·M(d) log(d)

)
operations

in K. Finally, from this solution over L one can deduce a
solution over K using O(Md) operations in K. This last point
comes from the fact that, as we shall see later in the paper,
Problem 1 amounts to finding a nonzero vector u over K such
that Au = 0 for some M×(M+1) matrix A over K: once we
have obtained a solution u over L, it thus suffices to rewrite
it as u =

∑
06i<d uiX

i 6= 0 and, noting that Aui = 0 for
all i, to find a nonzero ui in O(Md) comparisons with zero
and return it as a solution over K.

Furthermore, since the xi in Problem 1 are assumed to
be pairwise distinct, we have already |K| > n and thus we
can take d = O(logn(M)). In all the applications to error-
correcting codes we consider in this paper, M is polynomial
in n so that we can take d = O(1), and in those cases the
cost bound in Theorem 1 holds for any field.

As said before, Theorem 1 relies on an efficient solution to
Problem 2, which we summarize in the following theorem.

Theorem 2. Let ρ = max(µ, ν). There exists a probabilistic
algorithm that either computes a solution to Problem 2, or
determines that none exists, using

O
(
ρω−1M(M ′) log(M ′)2

)
⊆ O (̃ρω−1M ′)

operations in K. Algorithms 2 and 3 in Section III achieve
this result. These algorithms both choose O(M ′) elements in
K; if these elements are chosen uniformly at random in a set
S ⊆ K of cardinality at least 6(M ′+1)2, then the probability
of success is at least 1/2.

If K has fewer than 6(M ′+1)2 elements, the remarks made
after Theorem 1 still apply here.

Comparison with previous work. In the context of coding
theory, most previous results regarding Problem 1 focus on
the list-decoding of Reed-Solomon codes via the Guruswami-
Sudan algorithm, in which s = 1 and the assumptions H1 and
H2 are satisfied as well as

H3: 0 6 k < n where k := k1,
H4: m1 = · · · = mn = m.

The assumption H3 corresponds to the coding theory context,
where k + 1 is the dimension of the code; then k + 1 must
be positive and at most n (the length of the received word).
To support this assumption independently from any application

context, we show in Appendix B that if k > n, then Problem 1
has either a trivial solution or no solution at all.

Previous results focus mostly on the Guruswami-Sudan
case (s = 1,m > 1) and some of them more specifically on
the Sudan case (s = m = 1); we summarize these results
in Table I. In some cases [41], [1], [6], [13], the complexity
was not stated quite exactly in our terms but the translation is
straightforward.

In the second column of that table, we give the cost
with respect to the interpolation parameters `,m, n, assuming
further m = nO(1) and ` = nO(1). The most significant
factor in the running time is its dependency with respect to n,
with results being either cubic, quadratic, or quasi-linear.
Then, under the assumption H1, the second most important
parameter is `, followed by m. In particular, our result in
Section IV, Corollary 14 compares favorably to the cost
O (̃`ωmn) obtained by Cohn and Heninger [13] which was,
to our knowledge, the best previous bound for this problem.

In the third column, we give the cost with respect to
the Reed-Solomon code parameters n and k, using worst-
case parameter choices that are made to ensure the existence
of a solution: m = O(nk) and ` = O(n3/2k1/2) in the
Guruswami-Sudan case [23], and ` = O(n1/2k−1/2) in the
Sudan case [49]. With these parameter choices, our algorithms
present a speedup (n/k)1/2 over the algorithm in [13].

Most previous algorithms rely on linear algebra, either
over K or over K[X]. When working over K, a natural idea is
to rely on cubic-time general linear system solvers, as in Su-
dan’s and Guruswami-Sudan’s original papers. Several papers
also cast the problem in terms of Gröbner basis computation in
K[X,Y ], implicitly or explicitly: the incremental algorithms
of [30], [37], [33] are particular cases of the Buchberger-
Möller algorithm [34], while Alekhnovich’s algorithm [1] is a
divide-and-conquer change of ordering algorithm for bivariate
ideals.

Yet another line of work [43], [54] uses Feng and Tzeng’s
linear system solver [17], combined with a reformulation in
terms of syndromes and key equations. We will use (and
generalize to the case s > 1) some of these results in
Section III-B, but we will rely on the structured linear system
solver of [8] in order to prove our main results. Prior to our
work, Olshevsky and Shokrollahi also used structured linear
algebra techniques [38], but it is unclear to us whether their
encoding of the problem could lead to similar results as ours.

As said above, another approach rephrases the problem of
computing Q in terms of polynomial matrix computations,
that is, as linear algebra over K[X]. Starting from known
generators of the finitely generated K[X]-module (or polyno-
mial lattice) formed by solutions to Problem 1, the algorithms
in [41], [32], [10], [4], [9], [6], [13] compute a Gröbner basis
of this module (or a reduced lattice basis), in order to find
a short vector therein. To achieve quasi-linear time in n,
the algorithms in [4], [9] use a basis reduction subroutine
due to Alekhnovich [1], while those in [6], [13] rely on a
faster, randomized algorithm due to Giorgi, Jeannerod, and
Villard [20].

This approach based on the computation of a reduced lattice
basis was in particular the basis of the extensions to the multi-
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TABLE I
COMPARISON OF OUR COSTS WITH PREVIOUS ONES FOR s = 1.

Sudan case (m = 1)
Sudan [49] O(n3) O(n3)

Roth-Ruckenstein [43] O(`n2) O(n2+1/2k−1/2)

Olshevsky-Shokrollahi [38] O(`n2) O(n2+1/2k−1/2)

This paper O(`ω−1M(n) log(n)2) O (̃nω/2+1/2k1/2−ω/2)

Guruswami-Sudan case (m > 1)
Guruswami-Sudan [23] O(m6n3) O(n9k6)

Olshevsky-Shokrollahi [38] O(`m4n2) O(n7+1/2k4+1/2)

Zeh-Gentner-Augot [54] O(`m4n2) O(n7+1/2k4+1/2)

Kötter / McEliece [30], [33] O(`m4n2) O(n7+1/2k4+1/2)

Reinhard [41] O(`3m2n2) O(n8+1/2k3+1/2)

Lee-O’Sullivan [32] O(`4mn2) O(n9k3)

Trifonov [50] (heuristic) O(m3n2) O(n5k3)

Alekhnovich [1] O(`4m4M(n) log(n)) O (̃n11k6)

Beelen-Brander [4] O(`3M(`mn) log(n)) O (̃n8k3)

Bernstein [6] O(`ωM(`n) log(n)) O (̃n3ω/2+5/2kω/2+1/2)

Cohn-Heninger [13] O(`ωM(mn) log(n)) O (̃n3ω/2+2kω/2+1)

This paper O
(
`ω−1M(m2n) log(n)2

)
O (̃n3ω/2+3/2kω/2+3/2)

variate case s > 1 in [10], [9], [14]. In the multivariate case as
well, the result in Theorem 1 improves on the best previously
known bounds [10], [9], [14]; we detail those bounds and we
prove this claim in Appendix C. In [18], the authors solve a
problem similar to Problem 1 except that they do not assume
that the xi are distinct. For simple roots and under some gener-
icity assumption on the points {(xi, yi,1, . . . , yi,s)}16i6n, this
algorithm uses O(n2+1/s) operations to compute a polynomial
Q which satisfies (i), (iii), (iv) with m = 1. However, the
complexity analysis is not clear to us in the general case with
multiple roots (m > 1).

Regarding Problem 2, several particular cases of it are well-
known. When all Pi are of the form XM ′i , this problem be-
comes known as a simultaneous Hermite-Padé approximation
problem or vector Hermite-Padé approximation problem [3],
[47]. The case µ = 1, with P1 being given through its roots
(and their multiplicities) is known as the M-Padé problem [2].
To our knowledge, the only previous work on Problem 2 in its
full generality is by Nielsen in [36, Chapter 2]. Nielsen solves
the problem by building an ad-hoc polynomial lattice, which
has dimension µ + ν and degree maxi<µM

′
i , and finding a

short vector therein. Using the algorithm in [20], the overall
cost bound for this approach is O (̃(µ + ν)ω(maxi<µM

′
i)),

to which our cost bound O (̃max(µ, ν)ω−1(
∑
i<µM

′
i)) from

Theorem 2 compares favorably.

Outline of the paper. First, we show in Section II how to
reduce Problem 1 to Problem 2; this reduction is essentially
based on Lemma 4, which extends to the multivariate case
s > 1 the results in [54], [53]. Then, after a reminder on
algorithms for structured linear systems in Section III-A, we
give two algorithms that both prove Theorem 2, in Sec-
tions III-B and III-C, respectively. The linearization in the first
algorithm extends the derivation of extended key equations
presented in [54] to the more general context of Problem 2,
ending up with a mosaic-Hankel system. The second algo-
rithm gives an alternative approach, in which the linearization
is more straightforward and the structure of the matrix of

the system is Toeplitz-like. We conclude in Section IV by
presenting several applications to the list-decoding of Reed-
Solomon codes, namely the Guruswami-Sudan algorithm, the
re-encoding technique and the Wu algorithm, and by sketching
how to adapt our approach to the soft-decoding of Reed-
Solomon codes. Readers who are mainly interested in those
applications may skip Section III, which contains the proofs
of Theorems 1 and 2, and go directly to Section IV.

II. REDUCING PROBLEM 1 TO PROBLEM 2

In this section, we show how instances of Problem 1 can
be reduced to instances of Problem 2; Algorithm 1 gives an
overview of this reduction. The main technical ingredient,
stated in Lemma 4 below, generalizes to any s > 1 and
(possibly) distinct multiplicities the result given for s = 1
by Zeh, Gentner, and Augot in [54, Proposition 3]. To prove
it, we use the same steps as in [54]; we rely on the notion of
Hasse derivatives, which allows us to write Taylor expansions
in positive characteristic (see Hasse [24] or Roth [42, pp. 87,
276]).

For simplicity, in the rest of this paper we will use boldface
letters to denote s-tuples of objects: Y = (Y1, . . . , Ys), k =
(k1, . . . , ks), etc. In the special case of s-tuples of integers, we
also write |k| = k1 + · · ·+ks, and comparison and addition of
multi-indices in Zs>0 are defined componentwise. For example,
writing i 6 j is equivalent to i1 6 j1, . . . , is 6 js, and
i − j denotes (i1 − j1, . . . , is − js). If y = (y1, . . . , ys) is
in K[X]s and i = (i1, . . . , is) is in Zs>0, then Y − y =

(Y1 − y1, . . . , Ys − ys) and Y i = Y i11 · · ·Y iss . Finally, for
products of binomial coefficients, we shall write(

j

i

)
=

(
j1
i1

)
· · ·
(
js
is

)
.

Note that this integer is zero when i 66 j.
If A is any commutative ring with unity and A[Y ] denotes

the ring of polynomials in Y1, . . . , Ys over A, then for a
polynomial P (Y ) =

∑
j PjY

j in A[Y ] and a multi-index i
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in Zs>0, the order-i Hasse derivative of P is the polynomial
P [i] in A[Y ] defined by

P [i] =
∑
j>i

(
j

i

)
PjY

j−i.

The Hasse derivative satisfies the following property (Taylor
expansion): for all a in As,

P (Y ) =
∑
i

P [i](a)(Y − a)i.

The next lemma shows how Hasse derivatives help rephrase
the vanishing condition (iv) of Problem 1 for one of the points
{(xr,yr)}16r6n.

Lemma 3. Let (x, y1, . . . , ys) be a point in Ks+1 and
R = (R1, . . . , Rs) in K[X]s be such that Rj(x) = yj
for 1 6 j 6 s. Then, for any polynomial Q in K[X,Y ],
Q(x,y) = 0 with multiplicity at least m if and only if for
all i in Zs>0 such that |i| < m,

Q[i](X,R) = 0 mod (X − x)m−|i|.

Proof. Up to a shift, one can assume that the point is
(x, y1, . . . , ys) = (0,0); in other words, it suffices to show that
for R(0) = 0 ∈ Ks, we have Q(0,0) = 0 with multiplicity
at least m if and only if, for all i in Zs>0 such that |i| < m,
Xm−|i| divides Q[i](X,R).

Assume first that (0,0) ∈ Ks+1 is a root of Q of multiplicity
at least m. Then, Q(X,Y ) =

∑
j QjY

j has only monomials
of total degree at least m, so that for j > i, each nonzero
QjY

j−i has only monomials of total degree at least m− |i|.
Now, R(0) = 0 ∈ Ks implies that X divides each component
of R. Consequently, Xm−|i| divides QjR

j−i for each j > i,
and thus Q[i](X,R) as well.

Conversely, let us assume that for all i in Zs>0 such that
|i| < m, Xm−|i| divides Q[i](X,R), and show that Q has
no monomial of total degree less than m. Writing the Taylor
expansion of Q with A = K[X] and a = R, we obtain

Q(X,Y ) =
∑
i

Q[i](X,R)(Y −R)i.

Each component of R being a multiple of X , we deduce
that for the multi-indices i such that |i| > m every nonzero
monomial in Q[i](X,R)(Y −R)i has total degree at least m.
Using our assumption, the same conclusion follows for the
multi-indices such that |i| < m.

Thus, for each of the points {(xr,yr)}16r6n in Problem 1,
such a rewriting of the vanishing condition (iv) for this point
holds. Now intervenes the fact that the xi are distinct: the
polynomials (X−xa)α and (X−xb)β are coprime for a 6= b,
so that simultaneous divisibility by both those polynomials is
equivalent to divisibility by their product (X−xa)α(X−xb)β .
Using the s-tuple R = (R1, . . . , Rs) ∈ K[X]s of Lagrange
interpolation polynomials, defined by the conditions

deg(Rj) < n and Rj(xi) = yi,j (1)

for 1 6 i 6 n and 1 6 j 6 s, we can then combine
Lemma 3 for all points so as to rewrite the vanishing condition

of Problem 1 as a set of modular equations in K[X] as in
Lemma 4 below. In what follows, we use the notation from
Problem 1 and Theorem 1.

Lemma 4. For any polynomial Q in K[X,Y ], Q satisfies the
condition (iv) of Problem 1 if and only if for all i in Zs>0 such
that |i| < m,

Q[i](X,R) = 0 mod
∏

16r6n:
mr>|i|

(X − xr)mr−|i|.

Proof. This result is easily obtained from Lemma 3 since the
xr are pairwise distinct.

Note that when all multiplicities are equal, that is, m =
m1 = · · · = mn, for every |i| the modulus takes the simpler
form Gm−|i|, where G =

∏
16r6n(X − xr).

Writing j ·k = j1k1 + · · ·+ jsks, recall from the statement
of Theorem 1 that Γ is the set of all j in Zs>0 such that |j| 6 `
and j · k < b. Then, defining the positive integers

Nj = b− j · k

for all j in Γ, we immediately obtain the following reformu-
lation of the list-size and weighted-degree conditions of our
interpolation problem:

Lemma 5. For any polynomial Q in K[X,Y ], Q satisfies the
conditions (ii) and (iii) of Problem 1 if and only if it has the
form

Q(X,Y ) =
∑
j∈Γ

Qj(X)Y j with deg(Qj) < Nj .

For i ∈ Zs>0 with |i| < m and j ∈ Γ, let us now define the
polynomials Pi, Fi,j ∈ K[X] as

Pi =
∏

16r6n:
mr>|i|

(X − xr)mr−|i| (2a)

and
Fi,j =

(
j

i

)
Rj−i mod Pi. (2b)

It then follows from Lemmas 4 and 5 that Q in K[X,Y ]
satisfies the conditions (ii), (iii), (iv) of Problem 1 if and only
if Q =

∑
j∈ΓQjY

j for some polynomials Qj in K[X] such
that
• deg(Qj) < Nj for all j in Γ,
•
∑

j∈Γ Fi,jQj = 0 mod Pi for all |i| < m.
Let now Mi be the positive integers given by

Mi =
∑

16r6n: mr>|i|

(mr − |i|),

for all |i| < m. Since the Pi are monic polynomials of degree
Mi and since degFi,j < Mi, the latter conditions express the
problem of finding such a Q as an instance of Problem 2. In
order to make the reduction completely explicit, define further

M =
∑
|i|<m

Mi ,

µ =

(
s+m− 1

s

)
, ν = |Γ|, % = max(µ, ν);
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then choose arbitrary orders on the sets of indices {i ∈ Zs>0 |
|i| < m} and Γ, that is, bijections

φ : {0, . . . , µ− 1} → {i ∈ Zs>0 | |i| < m} (3a)

and
ψ : {0, . . . , ν − 1} → Γ; (3b)

finally, for i in {0, . . . , µ − 1} and j in {0, . . . , ν − 1},
associate M ′i = Mφ(i), N ′j = Nψ(j), P ′i = Pφ(i) and
F ′i,j = Fφ(i),ψ(j). At this stage we have proved that the solu-
tions to Problem 1 with input parameters s, `, n,m1, . . . ,mn,
b, k1, . . . , ks and points {(xi, yi,1, . . . , yi,s)}16i6n are ex-
actly the solutions to Problem 2 with input param-
eters µ, ν,M ′0, . . . ,M

′
µ−1, N

′
0, . . . , N

′
ν−1 and polynomials

{(P ′i , F ′i,0, . . . , F ′i,ν−1)}06i<µ. This proves the correctness of
Algorithm 1.

Proposition 6. Algorithm 1 is correct and uses

O
(
%M(M) log(M)

)
operations in K.

Proof. The only thing left to do is the complexity analysis;
more precisely, giving an upper bound on the number of
operations in K performed in Step 3.

First, we need to compute Pi as in (2a) for every i in
Zs>0 such that |i| < m. This involves only m different poly-
nomials Pi0 , . . . , Pim−1

where we have chosen any indices
ij such that |ij | = j. We note that, defining for j < m
the polynomial Gj =

∏
16r6n: mr>j

(X − xr), we have
Pim−1 = Gm−1 and for every j < m − 1, Pij = Pij+1 · Gj .
The polynomials G0, . . . , Gm−1 have degree at most n and
can be computed using O(mM(n) log(n)) operations in K;
this is O(%M(M) log(M)) since % >

(
s+m−1

s

)
> m and

M =
∑

16r6n

(
s+mr

s+1

)
> n. Then Pi0 , . . . , Pim−1

can be
computed iteratively using O(

∑
j<mM(deg(Pij ))) operations

in K; using the super-linearity of M(·), this is O(M(M)) since
deg(Pij ) = Mij and

∑
j<mMij 6 M .

Then, we have to compute (some of) the interpolation
polynomials R1, . . . , Rs. Due to Lemma 4, the only values
of i ∈ {1, . . . , s} for which Ri is needed are those such
that the indeterminate Yi may actually appear in Q(X,Y ) =∑

j∈ΓQj(X)Y j . Now, the latter will not occur unless the
ith unit s-tuple (0, . . . , 0, 1, 0, . . . , 0) belongs to Γ. Hence,
at most |Γ| polynomials Ri must be computed, each at a
cost of O(M(n) log(n)) operations in K. Overall, the cost
of the interpolation step is thus in O(|Γ|M(n) log(n)) ⊆
O(%M(M) log(M)).

Finally, we compute Fi,j as in (2b) for every i, j. This is
done by fixing i and computing all products Fi,j incremen-
tally, starting from R1, . . . , Rs. Since we compute modulo Pi,
each product takes O(M(Mi)) operations in K. Summing over
all j leads to a cost of O(|Γ|M(Mi)) per index i. Summing
over all i and using the super-linearity of M leads to a total
cost of O(|Γ|M(M)), which is O(%M(M)).

The reduction above is deterministic and its cost is neg-
ligible compared to the cost in O(%ω−1 M(M) log(M)2) that
follows from Theorem 2 with ρ = % and M ′ =

∑
06i<µM

′
i =

M . Noting that M =
∑
|i|<mMi =

∑
16r6n

(
s+mr

s+1

)
, we

conclude that Theorem 2 implies Theorem 1.

III. SOLVING PROBLEM 2 THROUGH STRUCTURED
LINEAR SYSTEMS

A. Solving structured homogeneous linear systems

Our two solutions to Problem 2 rely on fast algorithms
for solving linear systems of the form Au = 0 with A
a structured matrix over K. In this section, we briefly re-
view useful concepts and results related to displacement rank
techniques. While these techniques can handle systems with
several kinds of structure, we will only need (and discuss)
those related to Toeplitz-like and Hankel-like systems; for a
more comprehensive treatment, the reader may consult [39].

Let M be a positive integer and let ZM ∈ KM×M be
the square matrix with ones on the subdiagonal and zeros
elsewhere:

ZM =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

 ∈ KM×M .

Given two integers M and N , consider the following opera-
tors:

∆M,N : KM×N → KM×N
A 7→ A−ZM AZTN

and
∆′M,N : KM×N → KM×N

A 7→ A−ZM AZN ,
which subtract from A its translate one place along the
diagonal and the anti-diagonal, respectively.

Let us discuss ∆M,N first. If A is a Toeplitz matrix, that
is, invariant along diagonals, ∆M,N (A) has rank at most two.
As it turns out, Toeplitz systems can be solved much faster
than general linear systems, in quasi-linear time in M + N .
The main idea behind algorithms for structured matrices is
to extend these algorithmic properties to those matrices A
for which the rank of ∆M,N (A) is small, in which case we
say that A is Toeplitz-like. Below, this rank will be called the
displacement rank of A (with respect to ∆M,N ).

A pair of matrices (V, W ) in KM×α × Kα×N will be
called a generator of length α for A with respect to ∆M,N if
∆M,N (A) = V W . For the structure we are considering, one
can recover A from its generator; in particular, one can use a
generator of length α as a way to represent A using α(M+N)
field elements. One of the main aspects of structured linear
algebra algorithms is to use generators as a compact data
structure throughout the whole process.

Up to now, we only discussed the Toeplitz structure. Hankel-
like matrices are those which have a small displacement rank
with respect to ∆′M,N , that is, those matrices A for which
the rank of ∆′M,N (A) is small. As far as solving the system
Au = 0 is concerned, this case can easily be reduced to the
Toeplitz-like case. Define B = AJN , where JN is the reversal
matrix of size N , all entries of which are zero, except the anti-
diagonal which is set to one. Then, one easily checks that the
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Algorithm 1. Reducing Problem 1 to Problem 2.

Input: s, `, n,m1, . . . ,mn in Z>0, b, k1, . . . , ks in Z, and points
{(xi, yi,1, . . . , yi,s)}16i6n in Ks+1 with the xi pairwise distinct.

Output: parameters µ, ν, M ′0, . . . ,M
′
µ−1, N ′0, . . . , N

′
ν−1, {(Pi, Fi,0, . . . , Fi,ν−1)}06i<µ

for Problem 2, such that the solutions to this problem are exactly the
solutions to Problem 1 with parameters the input of this algorithm.

1. Compute Γ = {j ∈ Zs>0 | |j| 6 ` and b− j · k > 0}, µ =
(
s+m−1

s

)
, ν = |Γ|, and bijections

φ and ψ as in (3)
2. Compute Mi =

∑
16r6n: mr>|i|(mr − |i|) and Nj = b− j · k for j ∈ Γ

3. Compute Pi and Fi,j for |i| < m, j ∈ Γ as in (2)
4. Return the integers µ, ν,Mφ(0), . . . ,Mφ(µ−1), Nψ(0), . . . , Nψ(ν−1) together with the polynomial

tuples {(Pφ(i), Fφ(i),ψ(0), . . . , Fφ(i),ψ(ν−1))}06i<µ

displacement rank of A with respect to ∆′M,N is the same as
the displacement rank of B with respect to ∆M,N , and that
if (V,W ) is a generator for A with respect to ∆′M,N , then
(V,WJN ) is a generator for B with respect to ∆M,N . Using
the algorithm for Toeplitz-like matrices gives us a solution v
to Bv = 0, from which we deduce that u = JNv is a solution
to Au = 0.

In this paper, we will not enter the details of algorithms
for solving such structured systems. The main result we will
rely on is the following proposition, a minor extension of a
result by Bostan, Jeannerod, and Schost [8], which features
the best known complexity for this kind of task, to the best
of our knowledge. This algorithm is based on previous work
of Bitmead and Anderson [7], Morf [35], Kaltofen [25], and
Pan [39], and is probabilistic (it depends on the choice of some
parameters in the base field K, and success is ensured provided
these parameters avoid a hypersurface of the parameter space).

The proof of the following proposition occupies the rest of
this section. Remark that some aspects of this statement could
be improved (for instance, we could reduce the cost so that
it only depends on M , not max(M,N)), but that would be
inconsequential for the applications we make of it.

Proposition 7. Given a generator (V,W ) of length α for a
matrix A ∈ KM×N , with respect to either ∆M,N or ∆′M,N ,
one can find a nonzero element in the right nullspace of A,
or determine that none exists, by a probabilistic algorithm
that uses O(αω−1M(P ) log(P )2) operations in K, with P =
max(M,N). The algorithm chooses O(P ) elements in K; if
these elements are chosen uniformly at random in a set S ⊆ K
of cardinality at least 6P 2, the probability of success is at
least 1/2.

Square matrices. In all that follows, we consider only the
operator ∆M,N , since we already pointed out that the case of
∆′M,N can be reduced to it for no extra cost.

When M = N , we use directly [8, Theorem 1], which
gives the running time reported above. That result does not
explicitly state which solution we obtain, as it is written for
general non-homogeneous systems. Here, we want to make
sure we obtain a nonzero element in the right nullspace (if
one exists), so slightly more details are needed.

The algorithm in that theorem chooses 3M − 2 elements
in K, the first 2M − 2 of which are used to precondition A
by giving it generic rank profile; this is the case when these
parameters avoid a hypersurface of K2M−2 of degree at most
M2 +M .

Assume this is the case. Then, following [26], the output
vector u is obtained in a parametric form as u = λ(u′), where
u′ consists of another set of M parameters chosen in K and λ
is a surjective linear mapping with image the right nullspace
ker(A) of A. If ker(A) is trivial, the algorithm returns the
zero vector in any case, which is correct. Otherwise, the set
of vectors u′ such that λ(u′) = 0 is contained in a hyperplane
of KM , so it is enough to choose u′ outside of that hyperplane
to ensure success.

To conclude we rely on the so-called Zippel-Schwartz
lemma [16], [55], [45], which can be summarized as follows:
if a nonzero polynomial over K of total degree at most d
is evaluated by assigning each of its indeterminates a value
chosen uniformly at random in a subset S of K, then the
probability that the resulting polynomial value be zero is at
most d/|S|. Thus, applying that result to the polynomial of
degree d := M2 + M + 1 6 3M2 corresponding to the
hypersurface and the hyperplane mentioned above, we see that
if we choose all parameters uniformly at random in a subset
S ⊆ K of cardinality |S| > 6M2, the algorithm succeeds with
probability at least 1/2.

Wide matrices. Suppose now that M < N , so that the system
is underdetermined. We add N −M zero rows on top of A,
obtaining an N × N matrix A′. Applying the algorithm for
the square case to A′, we will obtain a right nullspace element
u for A′ and thus A, since these nullspaces are the same. In
order to do so, we need to construct a generator for A′ from the
generator (V,W ) we have for A: one simply takes (V ′,W ),
where V ′ is the matrix in KN×α obtained by adding N −M
zero rows on top of V .

Tall matrices. Suppose finally that M > N . This time, we
build the matrix A′ ∈ KM×M by adjoining M − N zero
columns to A on the left. The generator (V,W ) of A can be
turned into a generator of A′ by simply adjoining M−N zero
columns to W on the left. We then solve the system A′s = 0,
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and return the vector u obtained by discarding the first M−N
entries of s.

The cost of this algorithm fits into the requested bound; all
that remains to see is that we obtain a nonzero vector in the
right nullspace ker(A) of A with nonzero probability. Indeed,
the nullspaces of A and A′ are now related by the equality
ker(A′) = KM−N × ker(A). We mentioned earlier that in the
algorithm for the square case, the solution s to A′s = 0 is
obtained in parametric form, as s = λ(s′) for s′ ∈ KM , with
λ a surjective mapping KM → ker(A′). Composing with the
projection π : ker(A′)→ ker(A), we obtain a parametrization
of ker(A) as u = (π ◦ λ)(s′). The error probability analysis
is then the same as in the square case.

B. Solving Problem 2 through a mosaic-Hankel linear system

In this section, we give our first solution to Problem 2,
thereby proving Theorem 2; this solution is outlined in Al-
gorithm 2. It consists of first deriving and linearizing the
modular equations of Lemma 8 below, and then solving the
resulting mosaic-Hankel system using the approach recalled
in Section III-A. Note that, when solving Problem 1 using
the reduction to Problem 2 given in Section II, these modular
equations are a generalization to arbitrary s of the extended
key equations presented in [43], [54], [53] for s = 1.

We consider tuples {(Pi, Fi,0, . . . , Fi,ν−1)}06i<µ of poly-
nomials in K[X] with, for all i, Pi monic of degree M ′i and
deg(Fi,j) < M ′i for all j. Given degree bounds N ′0, . . . , N

′
ν−1,

we look for polynomials Q0, . . . , Qν−1 in K[X] such that the
following holds:
(a) the Qj are not all zero,
(b) for 0 6 j < ν, deg(Qj) < N ′j ,

(c) for 0 6 i < µ,
∑

06j<ν Fi,jQj = 0 mod Pi.
Our goal here is to linearize the condition (c) into a homo-

geneous linear system over K involving M ′ linear equations
with N ′ unknowns, where M ′ = M ′0 + · · · + M ′µ−1 and
N ′ = N ′0 + · · · + N ′ν−1. Without loss of generality, we will
assume that

N ′ 6M ′ + 1. (4)

Indeed, if N ′ > M ′ + 1, the instance of Problem 2 we are
considering has more unknowns than equations. We may set
the last N ′ − (M ′ + 1) unknowns to zero, while keeping the
system underdetermined. This simply amounts to replacing the
degree bounds N ′0, . . . , N

′
ν−1 by N ′0, . . . , N

′
ν′−2, N

′′
ν′−1, for

ν′ 6 ν and N ′′ν′−1 6 N ′ν′−1 such that N ′0 + · · · + N ′ν′−2 +
N ′′ν′−1 = M ′ + 1. In particular, ν may only decrease through
this process.

In what follows, we will work with the reversals of the input
and output polynomials of Problem 2, defined by

Pi = XM ′iPi(X
−1),

Fi,j = XM ′i−1Fi,j(X
−1),

Qj = XN ′j−1Qj(X
−1).

Let also β = maxh<ν N
′
h and, for 0 6 i < µ and 0 6 j < ν,

δi = M ′i + β − 1 and γj = β −N ′j .

In particular, δi > 0 and γj > 0; recalling that Pi is monic,
we can define further the polynomials Si,j in K[X] as

Si,j =
XγjFi,j

Pi
mod Xδi

for 0 6 i < µ and 0 6 j < ν. (Those polynomials
can be seen as a generalization of what is usually called
syndrome polynomials in the context of coding theory; see
for example [54].) By using these polynomials, we can now
reformulate the approximation condition of Problem 2 in terms
of a set of extended key equations:

Lemma 8. Let Q0, . . . , Qν−1 be polynomials in K[X] that
satisfy condition (b) in Problem 2. They satisfy condition (c)
in Problem 2 if and only if for all i in {0, . . . , µ − 1}, there
exists a polynomial Ti in K[X] such that∑

06j<ν

Si,jQj = Ti mod Xδi and deg(Ti) < β−1. (5)

Proof. Condition (c) holds if and only if for all i in {0, . . . , µ−
1}, there exists a polynomial Bi in K[X] such that∑

06j<ν

Fi,jQj = BiPi. (6)

For all i, j, the summand Fi,jQj has degree less than
M ′i + N ′j − 1, so the left-hand term above has degree less
than δi. Since Pi has degree M ′i , this implies that whenever
a polynomial Bi as above exists, we must have deg(Bi) <
δi − M ′i = β − 1. Now, by substituting 1/X for X and
multiplying by Xδi−1 we can rewrite the identity in (6) as∑

06j<ν

Fi,j QjX
γj = TiPi, (7)

where Ti is the polynomial of degree less than β−1 given by
Ti = Xβ−2Bi(X

−1). Since the degrees of both sides of (7)
are less than δi, one can consider the above identity mod-
ulo Xδi without loss of generality, and since Pi(0) = 1 one
can further divide by Pi modulo Xδi . This shows that (7) is
equivalent to the identity in (5), and the proof is complete.

Following [43], [54], we are going to rewrite the con-
ditions in (5) as a linear system in the coefficients of the
polynomials Q0, . . . , Qν−1, eliminating the unknowns Ti from
the outset. Let us first define the coefficient vector of a
solution (Q0, . . . , Qν−1) to Problem 2 as the vector in KN ′

obtained by concatenating, for 0 6 j < ν, the vectors[
Q

(0)
j , Q

(1)
j , . . . , Q

(N ′j−1)

j

]T
of the coefficients of Qj . Fur-

thermore, denoting by S
(0)
i,j , S

(1)
i,j , . . . , S

(δi−1)
i,j the δi > 1

coefficients of the polynomial Si,j , we set up the block matrix

A =
[
Ai,j

]
06i<µ, 06j<ν

∈ KM
′×N ′ ,

whose block (i, j) is the Hankel matrix

Ai,j =
[
S

(u+v+γj)
i,j

]
06u<M ′i , 06v<N

′
j

∈ KM
′
i×N

′
j .

Lemma 9. A nonzero vector of KN ′ is in the right nullspace
of A if and only if it is the coefficient vector of a solution
(Q0, . . . , Qν−1) to Problem 2.
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Proof. It is sufficient to consider a polynomial tuple
(Q0, . . . , Qν−1) that satisfies (b). Then, looking at the high-
degree terms in the identities in (5), we see that condition (c)
is equivalent to the following homogeneous system of linear
equations over K: for all i in {0, . . . , µ − 1} and all δ in
{δi −M ′i , . . . , δi − 1},

∑
06j<ν

∑
06r<N ′j

S
(δ−r)
i,j Q

(N ′j−1−r)
j = 0.

The matrix obtained by considering all these equations is
precisely the matrix A.

We will use the approach recalled in Section III-A to
find a nonzero nullspace element for A, with respect to the
displacement operator ∆′M ′,N ′ . Not only do we need to prove
that the displacement rank of A with respect to ∆′M ′,N ′ is
bounded by a value α not too large, but we also have to
efficiently compute a generator of length α for A, that is,
a pair of matrices (V,W ) in KM ′×α × Kα×N ′ such that
A − ZM ′AZN ′ = VW . We will see that here, computing
such a generator boils down to computing the coefficients of
the polynomials Si,j . The cost incurred by computing this
generator is summarized in the following lemma; combined
with Proposition 7 and Lemma 9, this proves Theorem 2.

Lemma 10. The displacement rank of A with respect to
∆′M ′,N ′ is at most µ + ν. Furthermore, one can compute
a corresponding generator of length µ + ν for A using
O ((µ+ ν)M(M ′)) operations in K.

Proof. We are going to exhibit two matrices V ∈ KM ′×(µ+ν)

and W ∈ K(µ+ν)×N ′ such that A − ZM ′AZN ′ = VW .
Because of the structure of A, at most µ rows and ν columns
of the matrix A−ZM ′AZN ′ are nonzero. More precisely, only
the first row and the last column of each M ′i×N ′j block of this
matrix can be nonzero. Indexing the rows (resp. columns) of
A−ZM ′AZN ′ from 0 to M ′−1 (resp. from 0 to N ′−1), only
the µ rows with indices of the form ri = M ′0 + · · ·+M ′i−1 for
i = 0, . . . , µ−1 can be nonzero, and only the ν columns with
indices of the form cj = N ′0+· · ·+N ′j−1 for j = 0, . . . , ν−1
can be nonzero.

For two integers i,K with 0 6 i < K, define Oi,K =

[0 · · · 0 1 0 · · · 0]
T ∈ KK with 1 at position i, and

O(V ) = [Ori,M ′ ]06i<µ ∈ KM
′×µ,

O(W ) =
[
Ocj ,N ′

]T
06j<ν

∈ Kν×N
′
.

For given i in {0, . . . , µ − 1} and j in {0, . . . , ν − 1}, we
will consider vi,j = [v

(r)
i,j ]06r<M ′i in KM ′i×1 and wi,j =

[w
(r)
i,j ]06r<N ′j in K1×N ′j , which are respectively the last col-

umn and the first row of the block (i, j) in A − ZM ′AZN ′ ,
up to a minor point: the first entry of vi,j is set to zero. The
coefficients v

(r)
i,j and w

(r)
i,j can then be expressed in terms

of the entries A
(u,v)
i,j = S

(u+v+γj)
i,j of the Hankel matrix

Ai,j = [A
(u,v)
i,j ]06u<M ′i , 06v<N ′j as follows:

v
(r)
i,j =

 0 if r = 0,

A
(r,N ′j−1)

i,j −A(r−1,0)
(i,j+1) if 1 6 r < M ′i ,

(8)

w
(r)
i,j =

 A
(0,r)
i,j −A(M ′i−1−1,r+1)

i−1,j if r < N ′j − 1,

A
(0,N ′j−1)

i,j −A(M ′i−1−1,0)

i−1,j+1 if r = N ′j − 1.
(9)

Note that here, we use the convention that an indexed object
is zero when the index is out of the allowed bounds for this
object.

Then, we define Vj and Wi as

Vj =

 v0,j

...
vµ−1,j

 ∈ KM
′×1 and

Wi = [wi,0 · · · wi,ν−1] ∈ K1×N ′ ,

and we define V ′ and W ′ as

V ′ = [V0 · · · Vν−1] ∈ KM
′×ν and

W ′ =

 W0

...
Wµ−1

 ∈ Kµ×N
′
.

Now, one can easily verify that the matrices

V =
[
V ′ O(V )

]
∈ KM

′×(µ+ν) (10a)

and
W =

[
O(W )

W ′

]
∈ K(µ+ν)×N ′ (10b)

are generators for A, that is, A−ZMAZN = VW .
We notice that all we need in order to compute the gen-

erators V and W are the last M ′i + N ′j − 1 coefficients of
Si,j(X) = S

(0)
i,j +S

(1)
i,j X + · · ·+S

(δi−1)
i,j Xδi−1 for 0 6 i < µ

and 0 6 j < ν. Now, recall that

Si,j =
XγjFi,j

Pi
mod Xδi =

Xδi−(M ′i+N ′j−1)Fi,j

Pi
mod Xδi .

Thus, the first δi − (M ′i + N ′j − 1) coefficients of Si,j are
zero, and the last M ′i + N ′j − 1 coefficients of Si,j are the
coefficients of

S?i,j =
Fi,j

Pi
mod XM ′i+N ′j−1, (11)

which can be computed in O(M(M ′i +N ′j)) operations in K
by fast power series division. By expanding products, we see
that M(M ′i+N

′
j) = O(M(M ′i)+M(N ′j)). Summing the costs,

we obtain an upper bound of the form

O

 ∑
06i<µ

∑
06j<ν

M(M ′i) + M(N ′j)

 ,

which is in O(νM(M ′) + µM(N ′)) using the super-linearity
of M. Since we assumed in (4) that N ′ 6 M ′ + 1, this is
O((µ+ ν)M(M ′)).
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Algorithm 2. Solving Problem 2 via a mosaic-Hankel linear system.

Input: positive integers µ, ν, M ′0, . . . ,M
′
µ−1, N ′0, . . . , N

′
ν−1 and polynomial tuples

{(Pi, Fi,0, . . . , Fi,ν−1)}06i<µ in K[X]ν+1 such that for all i, Pi is monic of
degree M ′i and deg(Fi,j) < M ′i for all j.

Output: polynomials Q0, . . . , Qν−1 in K[X] such that (a), (b), (c).

1. For i < µ, j < ν, compute the coefficients S(γj+r)
i,j for r < M ′i+N

′
j−1, that is, the coefficients

of the polynomials S?i,j defined in (11)
2. For i < µ and j < ν, compute the vectors vi,j and wi,j as defined in (8) and (9)
3. For i < µ, compute ri = M ′0 + · · ·+M ′i−1 ; for j < ν, compute cj = N ′0 + · · ·+N ′j − 1

4. Deduce the generators V and W as defined in (10) from ri, cj , vi,j , wi,j
5. Use the algorithm of Proposition 7 with input V and W ; if there is no solution then exit with

no solution, otherwise find the coefficients of Q0, . . . , Qν−1

6. Return Q0, . . . , Qν−1

C. A direct solution to Problem 2

In this section, we propose an alternative solution to Prob-
lem 2 which leads to the same asymptotic running time as in
the previous section but avoids the extended key equations of
Lemma 8; it is outlined in Algorithm 3 below. As above, our
input consists of the polynomials (Pi, Fi,0, . . . , Fi,ν−1)06i<µ

and we look for polynomials Q0, . . . , Qν−1 in K[X] such that
for 0 6 i < µ,

∑
06j<ν Fi,jQj = 0 mod Pi, with the Qj not

all zero and for j < ν, degQj < N ′j .

In addition, for r > 0, we denote by F
(r)
i,j and P

(r)
i the

coefficients of degree r of Fi,j and Pi, respectively, and we
define Ci as the M ′i ×M ′i companion matrix of Pi; if B is
a polynomial of degree less than M ′i with coefficient vector
v ∈ KM ′i , then the product Civ ∈ KM ′i is the coefficient vector
of the polynomial XB mod Pi. Explicitly, we have

Ci =


0 0 · · · 0 −P (0)

i

1 0 · · · 0 −P (1)
i

0 1 · · · 0 −P (2)
i

...
...

. . .
...

...
0 0 · · · 1 −P (M ′i−1)

i

 ∈ KM
′
i×M

′
i .

We are going to see that solving Problem 2 is equivalent
to finding a nonzero solution to a homogeneous linear system
whose matrix is A′ = (A′i,j) ∈ KM ′×N ′ , where for i < µ

and j < ν, A′i,j ∈ KM
′
i×N

′
j is a matrix which depends on

the coefficients of Fi,j and Pi. Without loss of generality, we
make the same assumption as in the previous section, that is,
N ′ 6M ′ + 1 holds.

For i, j as above and for h ∈ Z>0, let α(h)
i,j ∈ KM ′i be the

coefficient vector of the polynomial XhFi,j mod Pi, so that
these vectors are given by

α
(0)
i,j =


F

(0)
i,j
...

F
(M ′i−1)
i,j

 and α
(h+1)
i,j = Ci α(h)

i,j .

Let then A′ = (A′i,j) ∈ KM ′×N ′ , where for every i < µ and
j < ν, the block A′i,j ∈ KM

′
i×N

′
j is defined by

A′i,j =
[
α

(0)
i,j · · · α

(N ′j−1)

i,j

]
.

Lemma 11. A nonzero vector of KN ′ is in the right nullspace
of A′ if and only if it is the coefficient vector of a solution
(Q0, . . . , Qν−1) to Problem 2.

Proof. By definition A′i,j is the M ′i×N ′j matrix of the mapping
Q 7→ Fi,jQ mod Pi, for Q in K[X] of degree less than N ′j .
Thus, if (Q0, . . . , Qν−1) is a ν-tuple of polynomials that
satisfies the degree constraint (b) in Problem 2, applying A′ to
the coefficient vector of this tuple outputs the coefficients of
the remainders

∑
06j<ν Fi,jQj mod Pi, for i = 0, . . . , µ− 1.

The claimed equivalence then follows immediately.

The following lemma shows that A′ possesses a Toeplitz-
like structure, with displacement rank at most µ+ν. Together
with Proposition 7 and Lemma 11, this gives our second proof
of Theorem 2.

Lemma 12. The displacement rank of A′ with respect to
∆M ′,N ′ is at most µ + ν. Furthermore, one can compute
a corresponding generator of length µ + ν for A′ using
O((µ+ ν)M(M ′)) operations in K.

Proof. We begin by giving two matrices Y ∈ KM ′×(µ+ν) and
Z ∈ K(µ+ν)×N ′ such that ∆M ′,N ′(A

′) is equal to the product
Y Z. Define first the matrix

C =


C0 0 · · · 0
0 C1 · · · 0
...

...
. . .

...
0 0 · · · Cµ−1

 ∈ KM
′×M ′ .

Up to µ columns, C coincides with ZM ′ ; we make this explicit
as follows. For 0 6 i < µ, we define

vi =


P

(0)
i
...

P
(M ′i−1)
i

 ∈ KM
′
i , (12a)
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Vi =



0
...
0
vi
1
0
...
0


∈ KM

′
, Wi =



0
...
0
1
0
0
...
0


∈ KM

′
, (12b)

where the last entry of vi in Vi and the coefficient 1 in
Wi have the same index, namely M ′0 + · · · + M ′i − 1.
(Hence the last vector Vµ−1 only contains vµ−1, without a 1
after it.) Then, defining V = [V0 · · · Vµ−1] ∈ KM ′×µ and
W = [W0 · · · Wµ−1] ∈ KM ′×µ, we obtain

C = ZM ′ − V0W
T
0 − · · · − Vµ−1W

T
µ−1 = ZM ′ − VWT .

As before, we use the convention that an indexed object is zero
when the index is out of the allowed bounds for this object.
For 0 6 j < ν, let us further define

V ′j =


α

(0)
0,j
...

α
(0)
µ−1,j

 −

α

(N ′j−1)

0,j−1
...

α
(N ′j−1)

µ−1,j−1

 ∈ KM
′

(13a)

and

W ′j =



0
...
0
1
0
...
0


∈ KN

′
, (13b)

with the coefficient 1 in W ′j at index N ′0 + · · · + N ′j−1, and
the compound matrices

V ′ = [V ′0 · · · V ′ν−1] ∈ KM
′×ν ,

W ′ = [W ′0 · · · W ′ν−1] ∈ KN
′×ν .

Then, we claim that the matrices

Y = [−V V ′ ] ∈ KM
′×(µ+ν) (14a)

and

Z =

[
WTA′ZTN ′
W ′

T

]
∈ K(µ+ν)×N ′ (14b)

are generators for A′ for the Toeplitz-like displacement struc-
ture, that is,

A′ −ZM ′ A′ZTN ′ = Y Z.

By construction, we have C A′ = (Bi,j)i<µ,j<ν ∈ KM ′×N ′ ,
with Bi,j given by

Bi,j = CiA′i,j =
[
α

(1)
i,j · · · α

(N ′j−1)

i,j α
(N ′j)

i,j

]
∈ KM

′
i×N

′
j .

As a consequence, A′ − CA′ZTN ′ = V ′W ′T , so finally we
get, as claimed,

A′ −ZM ′ A′ZTN ′ = A′ − (C + VWT )A′ZTN ′
= A′ − C A′ZTN ′ − VWTA′ZTN ′
= V ′W ′T − VWTAZTN ′
= Y Z.

To compute Y and Z, the only non-trivial steps are those
giving V ′ and WTA′. For the former, we have to compute the
coefficients of XN ′jFi,j mod Pi for every i < µ and j < ν−1.
For fixed i and j, this can be done using fast Euclidean division
in O(M(M ′i + N ′j)) operations in K, which is O(M(M ′i) +
M(N ′j)). Summing over the indices i < µ and j < ν − 1, this
gives a total cost of O(νM(M ′) + µM(N ′)) operations. This
is O((µ+ ν)M(M ′)), since by assumption N ′ 6M ′ + 1.

Finally, we show that WTA′ can be computed using O((µ+
ν)M(M ′)) operations as well. Computing this matrix amounts
to computing the rows of A′ of indices M ′0 + · · · + M ′i − 1,
for i < µ. By construction of A′, this means that we want to
compute the coefficients of degree M ′i − 1 of XhFi,j mod Pi
for h = 0, . . . , N ′j − 1 and for all i, j. Unfortunately, the
naive approach leads to a cost proportional to M ′N ′ oper-
ations, which is not acceptable. However, for i and j fixed,
Lemma 13 below shows how to do this computation using only
O(M(M ′i)+M(N ′j)) operations, which leads to the announced
cost by summing over i and j.

Lemma 13. Let P ∈ K[X] be monic of degree m, let F ∈
K[X] be of degree less than m, and for i > 0 let ci denote the
coefficient of degree m−1 of XiF mod P . Then, for n > 1 we
can compute c0, . . . , cn−1 using O(M(m)+M(n)) operations
in K.

Proof. Writing F =
∑

06j<m fjX
j we have XiF mod P =∑

06j<m fj
(
Xi+j mod P

)
. Hence ci =

∑
06j<m fjbi+j ,

with bi denoting the coefficient of degree m−1 of Xi mod P .
Since b0 = · · · = bm−2 = 0 and bm−1 = 1, we can deduce
c0, . . . , cn−1 from bm−1, bm, . . . , bm+n−2 in time O(M(n))
by multiplication by the lower triangular Toeplitz matrix
[fm+j−i−1]i,j of order n− 1.

Thus, we are left with the question of computing the n− 1
coefficients bm, . . . , bm+n−2. Writing P as P = Xm +∑

06j<m pjX
j and using the fact that XiP mod P = 0 for

all i > 0, we see that the bi are generated by a linear recurrence
of order m with constant coefficients:

bi+m +
∑

06j<m

pjbi+j = 0 for all i > 0.

Consequently, bm, . . . , bm+n−2 can be deduced from
b0, . . . , bm−1 in time O( nmM(m)), which is O(M(m)+M(n)),
by dn−1

m e calls to Shoup’s algorithm for extending a linearly
recurrent sequence [46, Theorem 3.1].

IV. APPLICATIONS TO THE DECODING OF
REED-SOLOMON CODES

To conclude, we discuss Theorem 1 in specific contexts
related to the decoding of Reed-Solomon codes; in this section
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Algorithm 3. Solving Problem 2 via a Toeplitz-like linear system.

Input: positive integers µ, ν, M ′0, . . . ,M
′
µ−1, N ′0, . . . , N

′
ν−1 and polynomial tuples

{(Pi, Fi,0, . . . , Fi,ν−1)}06i<µ in K[X]ν+1 such that for all i, Pi is monic of
degree M ′i and deg(Fi,j) < M ′i for all j.

Output: polynomials Q0, . . . , Qν−1 in K[X] such that (a), (b), (c).

1. Compute vi and Vi for i < µ, as defined in (12); compute V = [V0 · · · Vµ−1]

2. Compute W ′j for j < ν, as defined in (13); compute W ′ = [W ′0 · · · W ′ν−1]

3. Compute α
(N ′j)

i,j , that is, the coefficients of XN ′jFi,j mod Pi, for i < µ, j < ν − 1

4. Compute V ′j for j < µ, as defined in (13); compute V ′ = [V ′0 · · · V ′ν−1]

5. Compute the row of index M ′0 + · · ·+M ′i−1 of A′, for i < µ, that is, the coefficient of degree
M ′i − 1 of XhFi,j mod Pi, for h < N ′j , j < ν (see Lemma 13 for fast computation)

6. Compute WTA′ whose row of index i is the row of index M ′0 + · · ·+M ′i − 1 of A′

7. Compute the generators Y and Z as defined in (14)
8. Use the algorithm of Proposition 7 with input Y and Z; if there is no solution then exit with

no solution, otherwise find the coefficients of Q0, . . . , Qν−1

9. Return Q0, . . . , Qν−1

we always have s = 1. First, we give our complexity result
in the case of list-decoding via the Guruswami-Sudan algo-
rithm [23]; then we show how the re-encoding technique [29],
[27] can be used in our setting; then, we discuss the interpola-
tion step of the Wu algorithm [52]; and finally we present the
application of our results to the interpolation step of the soft-
decoding [28]. In these contexts of applications, we will use
some of the assumptions on the parameters H1, H2, H3, H4
given in Section I. Note that in the context of soft-decoding,
the xi in the input of Problem 1 are not necessarily pairwise
distinct: we will explain how to adapt our algorithms to this
case. Besides, still in this context, the number of points n is
no longer equal to the length of the code and may actually be
much larger, unlike in hard-decision (list-)decoding.

A. Interpolation step of the Guruswami-Sudan algorithm
We study here the specific context of the interpolation step

of the Guruswami-Sudan list-decoding algorithm for Reed-
Solomon codes. This interpolation step is precisely Problem 1
where we have s = 1 and we make assumptions H1, H2, H3,
H4. Under H2, the set Γ introduced in Theorem 1 reduces to
{j ∈ Z>0 : j 6 `} = {0, . . . , `}, so that |Γ| = ` + 1. Thus,
assumption H1 ensures that the parameter % in that theorem is
% = `+1; because of H4 all multiplicities are equal so that we
further have M =

(
m+1

2

)
n = m(m+1)

2 n. From Theorem 1, we
obtain the following result, which substantiates our claimed
cost bound in Section I, Table I.

Corollary 14. Taking s = 1, if the parameters `, n, m :=
m1 = · · · = mn, b and k := k1 satisfy H1, H2, H3, H4, then
there exists a probabilistic algorithm that computes a solution
to Problem 1 using

O
(
`ω−1M(m2n) log(mn)2

)
⊆ O (̃`ω−1m2n)

operations in K, with probability of success at least 1/2.

We note that the probability analysis in Theorem 1 is
simplified in this context. Indeed, to ensure probability of

success at least 1/2, the algorithm chooses O(m2n) elements
uniformly at random in a set S ⊆ K of cardinality at least
24m4n2; if |K| < 24m4n2, one can use the remarks following
Theorem 1 in Section I about solving the problem over an
extension of K and retrieving a solution over K. Here, the
base field K of a Reed-Solomon code must be of cardinality
at least n since the xi are distinct; then, an extension degree
d = O(logn(m)) suffices and the cost bound above becomes
O
(
`ω−1M(m2n) log(mn)2 ·M(d) log(d)

)
. Besides, in the list-

decoding of Reed-Solomon codes we have m = O(n2), so that
d = O(1) and the cost bound and probability of success in
Corollary 14 hold for any field K (of cardinality at least n).

B. Re-encoding technique
The re-encoding technique has been introduced by Koetter

and Vardy [29], [27] in order to reduce the cost of the
interpolation step in list- and soft-decoding of Reed-Solomon
codes. Here, for the sake of clarity, we present this technique
only in the context of Reed-Solomon list-decoding via the
Guruswami-Sudan algorithm, using the same notation and
assumptions as in Subsection IV-A above: s = 1 and we have
H1, H2, H3, H4. Under some additional assumption on the
input points in Problem 1, by means of partially pre-solving
the problem one obtains an interpolation problem whose
linearization has smaller dimensions. The idea at the core
of this technique is summarized in the following lemma [29,
Lemma 4].

Lemma 15. Let m be a positive integer, x be an element
in K, and Q =

∑
j Qj(X)Y j be a polynomial in K[X,Y ].

Then, Q(x, 0) = 0 with multiplicity at least m if and only if
(X − x)m−j divides Qj for each j < m.

Proof. By definition, Q(x, 0) = 0 with multiplicity at least m
if and only if Q(X + x, Y ) has no monomial of total degree
less than m. Since Q(X + x, Y ) =

∑
j Qj(X + x)Y j , this is

equivalent to the fact that Xm−j divides Qj(X + x) for each
j < m.
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This property can be generalized to the case of several roots
of the form (x, 0). More precisely, the re-encoding technique
is based on a shift of the received word by a well-chosen code
word, which allows us to ensure the following assumption on
the points {(xr, yr)}16r6n: for some integer n0 > k + 1,

y1 = · · · = yn0
= 0 and yn0+1 6= 0, . . . , yn 6= 0. (15)

We now define the polynomial G0 =
∏

16r6n0
(X − xr)

which vanishes at xr when yr = 0, and Lemma 15 can
be rewritten as follows: Q(xr, 0) = 0 with multiplicity at
least m for 1 6 r 6 n0 if and only if Gm−j0 divides Qj
for each j < m. Thus, we know how to solve the vanishing
condition for the n0 points for which yr = 0: by setting
each of the m polynomials Q0, . . . , Qm−1 as the product of a
power of G0 and an unknown polynomial. Combining this
with the polynomial approximation problem corresponding
to the points {(xr, yr)}n0+16r6n, there remains to solve a
smaller approximation problem.

Indeed, under the previously mentioned assumptions s = 1
and H1, H2, H3, H4, it has been shown in Section II that
the vanishing condition (iv) of Problem 1 restricted to points
{(xr, yr)}n0+16r6n is equivalent to the simultaneous polyno-
mial approximations∑

i6j6`

(
j

i

)
Rj−iQj = 0 mod Gm−i for i < m,

where G =
∏
n0+16r6n(X − xr) and R is the interpolation

polynomial such that degR < n − n0 and R(xr) = yr
for n0 + 1 6 r 6 n. On the other hand, we have seen
that the vanishing condition for the points {(xr, yr)}16r6n0

is equivalent to Qj = Gm−j0 Q?j for each j < m, for
some unknown polynomials Q?0, . . . , Q

?
m−1. Combining both

equivalences, we obtain for i < m∑
i6j<m

Fi,j Q
?
j +

∑
m6j6`

Fi,j Qj = 0 mod Gm−i (16)

with

Fi,j =


(
j

i

)
Rj−iGm−j0 mod Gm−i for i 6 j < m,(

j

i

)
Rj−i mod Gm−i for m 6 j 6 `.

(17)

Obviously, the degree constraints on Q0, . . . , Qm−1 directly
correspond to degree constraints on Q?0, . . . , Q

?
m−1 while those

on Qm, . . . , Q` are unchanged. The number of equations
obtained when linearizing (16) is M ′ =

∑
i<m deg(Gm−i) =

m(m+1)
2 (n − n0), while the number of unknowns is N ′ =∑
j<m(b− jk− (m− j)n0) +

∑
m6j6`(b− jk) =

∑
j6`(b−

jk)−m(m+1)
2 n0. In other words, we have reduced the number

of (linear) unknowns as well as the number of (linear) equa-
tions by the same quantity m(m+1)

2 n0, which is the number
of linear equations used to express the vanishing condition
for the n0 points (x1, 0), . . . , (xn0

, 0). (Note that if we were
in the more general context of possibly distinct multiplicities,
we would have set yi = 0 for the n0 points which have the
highest multiplicities, in order to maximize the benefit of the
re-encoding technique.)

This re-encoding technique is summarized in Algorithm 4.
Assuming that Step 4 is done using Algorithm 2 or 3,
we obtain the following result about list-decoding of Reed-
Solomon codes using the re-encoding technique.

Corollary 16. Take s = 1 and assume the parameters `, n,
m := m1 = · · · = mn, b and k := k1 satisfy H1, H2, H3, H4.
Assume further that the points {(xr, yr)}16r6n satisfy (15) for
some n0 > k + 1. Then there exists a probabilistic algorithm
that computes a solution to Problem 1 using

O
(
`ω−1M(m2(n− n0)) log(n− n0)2 +mM(mn0)

+ M(n0) log(n0)
)
⊆ O (̃`ω−1m2(n− n0) +m2n0)

operations in K with probability of success at least 1/2.

Proof. For Steps 1, 2, 3, the complexity analysis is sim-
ilar to the one in the proof of Proposition 6; we still
note that we have to compute G0, so that these steps
use O(`M(m2(n − n0)) log(n − n0) + M(n0) log(n0)) op-
erations in K. According to Theorem 2, Step 4 uses
O
(
`ω−1M(m2(n−n0)) log(n−n0)2

)
operations in K. Step 5

uses O(mM(mn0) + M(m2(n − n0))) operations in K. In-
deed, we first compute G0, . . . , G

m
0 using O(mM(mn0))

operations and then the products Gm−j0 Qj for j < m are
computed using O(mM(mn0) +M(m2(n−n0))) operations:
for each j < m, the product Gm−j0 Qj can be computed using
O(M(mn0)+M(deg(Qj))) operations since Gm−j0 has degree
at most mn0; and from Algorithms 2 and 3 we know that
degQ0 + · · · + degQm−1 6 (

∑
i<mM

′
i) + 1 (see (4) in

Section III-B), with here
∑
i<mM

′
i = m(m+1)

2 (n− n0).

Similarly to the remarks following Corollary 14, if |K| <
24m2(n − n0) then K does not contain enough elements
to ensure a probability of success at least 1/2 using our
algorithms, but one can solve the problem over an extension of
degree O(1) and retrieve a solution over K without impacting
the cost bound.

C. Interpolation step in the Wu algorithm

Our goal now is to show that our algorithms can also be used
to efficiently solve the interpolation step in the Wu algorithm.
In this context, we have s = 1 and we make assumptions H1,
H2, H4 on input parameters to Problem 1. We note that here
the weight k is no longer related to the dimension of the code;
besides, we may have k 6 0.

Roughly, the Wu algorithm [52] works as follows. It first
uses the Berlekamp-Massey algorithm to reduce the problem
of list-decoding a Reed-Solomon code to a problem of rational
reconstruction which focuses on the error locations (while
the Guruswami-Sudan algorithm directly relies on a problem
of polynomial reconstruction which focuses on the correct
locations). Then, it solves this problem using an interpolation
step and a root-finding step which are very similar to the ones
in the Guruswami-Sudan algorithm.

Here we focus on the interpolation step, which differs from
the one in the Guruswami-Sudan algorithm by mainly one
feature: the points {(xr, yr)}16r6n lie in K × (K ∪ {∞}),
that is, some yr may take the special value ∞. For a point
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Algorithm 4. Interpolation step of list-decoding Reed-Solomon codes using re-encoding.

Input: `, n,m, b, k in Z>0 and satisfying H1, H2, H3, H4, and points {(xr, yr)}16r6n
in K2 with the xr pairwise distinct and the yr satisfying (15).

Output: Q0, . . . , Q` in K[X] such that
∑
j6`QjY

j is a solution to Problem 1 with
input s = 1, `, n,m = m1 = · · · = mn, b, k and {(xr, yr)}16r6n.

1. Compute µ = m, ν = `+ 1,M ′i = (m− i)(n− n0), N ′j = b− jk− n0(m− j) for j < m and
N ′j = b− jk for m 6 j 6 `

2. Compute G0 =
∏

16r6n0
(X − xr) and Pi =

(∏
n0+16r6n(X − xr)

)m−i
for i < m

3. Compute the Fi,j for i < m and j 6 ` as in (17)
4. Compute a solution Q0, . . . , Q` to Problem 2 on input µ, ν, M ′0, . . . ,M

′
m−1, N

′
0, . . . , N

′
` and

the polynomials {(Pi, Fi,0, . . . , Fi,`)}06i<m
5. Return Gm0 Q0, G

m−1
0 Q1, . . . , G0Qm−1, Qm, . . . , Q`, or report “no solution” if Step 4 did

(x,∞), a polynomial Q in K[X,Y ] and a parameter ` such
that degY (Q) 6 `, Wu defines in [52] the vanishing condition
Q(x,∞) = 0 with multiplicity at least m as the vanishing
condition Q(x, 0) = 0 with multiplicity at least m, where
Q = Y `Q(X,Y −1) is the reversal of Q with respect to the
variable Y and the parameter `. Thus, we have the following
direct adaptation of Lemma 15.

Lemma 17. Let `,m be positive integers, x be an element
in K, and Q =

∑
j6`Qj(X)Y j be a polynomial in K[X,Y ]

with degY (Q) 6 `. Then, Q(x,∞) = 0 with multiplicity at
least m if and only if (X − x)m−j divides Q`−j for each
j < m.

As in the re-encoding technique, assuming we reorder the
points so that y1 = · · · = yn∞ = ∞ and yr 6= ∞
for r > n∞ for some n∞ > 0, the vanishing condition
of Problem 1 restricted to the points {(xr, yr)}16r6n∞ is
equivalent to Q`−j = Gm−j∞ Q?`−j for each j < m, for
some unknown polynomials Q?`−m+1, . . . , Q

?
` . The degree

constraints on Q`−m+1, . . . , Q` directly correspond to degree
constraints on Q?`−m+1, . . . , Q

?
` , while those of Q0, . . . , Q`−m

are unchanged.
This means that in the interpolation problem we are faced

with, we can deal with the points of the form (x,∞) the same
way we dealt with the points of the form (x, 0) in the case of
the re-encoding technique: we can pre-solve the corresponding
equations efficiently, and we are left with an approximation
problem whose dimensions are smaller than if no special
attention had been paid when dealing with the points of the
form (x,∞). More precisely, let G∞ =

∏
16r6n∞

(X − xr)
as well as G =

∏
n∞+16r6n(X − xr) and R of degree less

than n−n∞ such that R(xr) = yr for each r > n∞. Defining
further

Fi,j =


(
j

i

)
Rj−i for i 6 j 6 `−m,(

j

i

)
Rj−iGj−`+m∞ for `−m < j 6 `,

we obtain the following simultaneous polynomial approxima-

tions: for i < m,∑
i6j6`−m

Fi,j Qj +
∑

`−m<j6`

Fi,j Q
?
j = 0 mod Gm−i.

Pre-solving the equations for the points of the form (x,∞) has
led to reduce the number of (linear) unknowns as well as the
number of (linear) equations by the same quantity m(m+1)

2 n∞,
which is the number of linear equations used to express the
vanishing condition for the n∞ points (x1,∞), . . . , (xn∞ ,∞).
We have the following result.

Corollary 18. Take s = 1 and assume that the parameters
`, n, m := m1 = · · · = mn, b and k := k1 satisfy H1, H2, H4.
Assume further that each of the points {(xr, yr)}16r6n is
allowed to have the special value yr =∞. Then there exists a
probabilistic algorithm that computes a solution to Problem 1
using

O
(
`ω−1M(m2n) log(n)2

)
⊆ O (̃`ω−1m2n)

operations in K with probability of success is at least 1/2.

As above, if |K| < 24m2(n− n∞) then in order to ensure
a probability of success at least 1/2 using our algorithms, one
can solve the problem over an extension of degree O(1) and
retrieve a solution over K, without impacting the cost bound.

We note that unlike in the re-encoding technique where the
focus was on a reduced cost involving n−n0, here we are not
interested in writing the detailed cost involving n− n∞. The
reason is that n∞ is expected to be close to 0 in practice. The
main advantage of the Wu algorithm over the Guruswami-
Sudan algorithm is that it uses a smaller multiplicity m, at
least for practical code parameters; details about the choice of
parameters m and ` in the context of the Wu algorithm can
be found in [5, Section IV.C].

D. Application to soft-decoding of Reed-Solomon codes

As a last application, we briefly sketch how to adapt our
results to the context of soft-decoding, in which we still have
s = 1. The interpolation step in soft-decoding of Reed-
Solomon codes [28] differs from Problem 1 because there
is no assumption ensuring that the xr are pairwise distinct
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among the points {(xr, yr)}16r6n. Regarding our algorithms,
this is not a minor issue since this assumption is at the core
of the reduction in Section II; we will see that we can still
rely on Problem 2 in this context. However, although the
number of linear equations

∑
16r6n

mr(mr+1)
2 imposed by

the vanishing condition is not changed by the fact that several
xr can be the same field element, it is expected that the
reduction to Problem 2 will not be as effective as before. More
precisely, the displacement rank of the structured matrix in the
linearizations of the problem in Algorithms 2 and 3 may in
some cases be larger than if the xr were pairwise distinct.

To measure to which extent we are far from the situation
where the xr are pairwise distinct, we use the parameter

q = max
x∈K

∣∣{r ∈ {1, . . . , n} | xr = x}
∣∣ .

For example, q = 1 corresponds to pairwise distinct xr,
while q = n corresponds to x1 = · · · = xn; we always
have q 6 n and, if K is a finite field, q 6 |K|s with
s = 1 in our context here. Then, we can write the set of
points P = {(xr, yr)}16r6n as the disjoint union of q sets
P = P1∪· · ·∪Pq where each set Ph = {(xh,r, yh,r)}16r6nh

is such that the xh,r are pairwise distinct; we denote mh,r

the multiplicity associated with the point (xh,r, yh,r) in the
input of Problem 1. Now, the vanishing condition (iv) asks
that the q vanishing conditions restricted to each Ph hold
simultaneously. Indeed, Q(xr, yr) = 0 with multiplicity at
least mr for all points (xr, yr) in P if and only if for each
set Ph, Q(xh,r, yh,r) = 0 with multiplicity at least mh,r for
all points (xh,r, yh,r) in Ph.

We have seen in Section II how to rewrite the vanishing
condition as simultaneous polynomial approximations when
the xr are pairwise distinct. This reduction extends to this case:
by simultaneously rewriting the vanishing condition for each
set Ph, one obtains a problem of simultaneous polynomial
approximations whose solutions exactly correspond to the
solutions of the instance of (extended) Problem 1 we are
considering. Here, we do not give details about this reduction;
they can be found in [53, Section 5.1.1]. Now, let m(h) be
the largest multiplicity among those of the points in Ph;
in this reduction to Problem 2, the number of polynomial
equations we obtain is

∑
16h6qm

(h). Thus, according to
Theorem 2, for solving this instance of Problem 2, our
Algorithms 2 and 3 use O (̃ρω−1M ′) operations in K, where
ρ = max(`+1,

∑
16h6qm

(h)) and M ′ =
∑

16r6n
mr(mr+1)

2 .
We see in this cost bound that the distribution of the points
into disjoint sets P = P1 ∪ · · · ∪ Pq has an impact on the
number of polynomial equations in the instance of Problem 2
we get: when choosing this distribution, multiplicities could
be taken into account in order to minimize this impact.

APPENDIX A
ON ASSUMPTION H1

In this appendix, we discuss the relevance of the assump-
tion H1 introduced previously for Problem 1. In the introduc-
tion, we did not make any assumption on m = max16i6nmi

and `, but we mentioned that the assumption H1, that is, m 6 `
is mostly harmless. The following lemma substantiates this

claim, by showing that the case m > ` can be reduced to the
case m = `.

Lemma 19. Let s, `, n,m1, . . . ,mn, b,k be parameters for
Problem 1, and suppose that m > `. Define P =∏

16i6n: mi>`
(X−xi)mi−` and d = deg(P ). The solutions to

this problem are the polynomials of the form Q = Q? P with
Q? a solution for the parameters s, `, n,m′1, . . . ,m

′
n, b−d,k,

where m′i = ` if mi > ` and m′i = mi otherwise.

Proof. Assume a solution exists, say Q, and let Qi(X,Y ) =
Q(X + xi, Y1 + yi,1, . . . , Ys + yi,s) for i = 1, . . . , n. Every
monomial of Qi has the form XhY j with h > mi − `, since
|j| 6 ` by condition (ii) and h + |j| > mi by condition (iv).
Therefore, if mi > ` then Xmi−` divides Qi and, shifting
back the coordinates for each i, we deduce that P divides Q.

Let us now consider the polynomial Q? = Q/P
and show that it solves Problem 1 for the parameters
s, `, n,m′1, . . . ,m

′
n, b − d,k. First, Q? clearly satisfies con-

ditions (i) and (ii). Furthermore, writing Q =
∑

j Qj(X)Y j

and Q? =
∑

j Q
?
j (X)Y j , we have Q?j = Qj/P for all j, so

that

wdegk(Q?) = max
j

(deg(Qj)− d+ k1j1 + · · ·+ ksjs)

= wdegk(Q)− d
< b− d,

so that condition (iii) holds for Q? with b replaced by
b − d. Finally, Q? satisfies condition (iv) with each mi > `
replaced by m′i = `: writing Q?i (X,Y ) = Q?(X + xi, Y1 +
yi,1, . . . , Ys + yi,s) for i ∈ {1, . . . , n} such that mi > `, we
have

Q?i (X,Y ) =
Qi(X,Y )

Xmi−` Pi(X)
,

where

Pi(X) =
∏

h6=i: mh>`

(X + xi − xh)mh−`.

All the monomials of Qi(X,Y )/Xmi−` have the form XhY j

with h + |j| > mi − (mi − `) = ` and, since Pi(0) 6= 0, the
same holds for Q?i (X,Y ).

Conversely, let Q′ be any solution to Problem 1 with
parameters s, `, n,m′1, . . . ,m

′
n, b − d,k. Proceeding as in

the previous paragraph, one easily verifies that the product
Q′ P is a solution to Problem 1 with parameters s, `, n,
m1, . . . ,mn, b,k.

APPENDIX B
ON ASSUMPTION H3

In this appendix, we show the relevance of the assump-
tion “kj < n for some j ∈ {1, . . . , s}” when considering
Problem 1; in particular when s = 1 or when we assume
that k1 = · · · = ks =: k, this shows the relevance of the
assumption H3: 0 6 k < n. More precisely, when kj > n
for every j, Lemma 20 below gives an explicit solution to
Problem 1.

Lemma 20. Let s, `, n,m, b,k be parameters for Problem 1
and suppose that kj > n for j = 1, . . . , s. Define P =
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∏
16i6n(X − xi)

mi and d = deg(P ) =
∑

16i6nmi. If
b 6 d then this problem has no solution. Otherwise, a solution
is given by the polynomial P (considered as an element of
K[X,Y ]).

Proof. If b > d then it is easily checked that P satisfies con-
ditions (i)–(iv) and thus solves Problem 1. Now, to conclude
the proof, let us show that if Problem 1 admits a solution Q,
then b > d must hold. Let dY = degY Q. If dY > m =
maximi, then the weighted-degree condition (iii) gives b >
wdegk(Q) > dY (minj kj) > mn > d. Let us finally assume
dY < m. Following the proof of Lemma 19, we can write
Q = P ?Q? where P ? =

∏
16i6n: mi>dY

(X − xi)mi−dY , for
some Q? in K[X,Y ] such that degY Q? = dY . Then, the
weighted-degree condition gives b >

∑
16i6n: mi>dY

(mi −
dY ) + wdegk(Q?) >

∑
16i6n: mi>dY

(mi − dY ) + dY n >∑
16i6n: mi>dY

mi +
∑

16i6n: mi6dY
dY > d.

APPENDIX C
THE LATTICE-BASED APPROACH

In this appendix, we summarize the approach for solving
Problem 1 via the computation of a reduced polynomial lattice
basis; this helps us to compare the cost bounds for this
approach with the cost bound we give in Theorem 1. Here,
s > 1 and for simplicity, we assume that k := k1 = · · · = ks
as in the list-decoding of folded Reed-Solomon codes. Besides,
we make the assumptions H1, H2, H3, H4 as presented in
the introduction. Two main lattice constructions exist in the
literature; following [10, §4.5], we present them directly in the
case s > 1, and then give the cost bound that can be obtained
using polynomial lattice reduction to find a short vector in the
lattice.

Let G =
∏

16r6n(X − xr) and R1, . . . , Rs ∈ K[X] such
that deg(Rj) < n and Rj(xi) = yi,j for every j ∈ {1, . . . , s}
and i ∈ {1, . . . , n}. In the first construction, the lattice is
generated by the polynomials{

Gi
s∏
r=1

(Yr −Rr)jr
∣∣∣ i > 0, i+ |j| = m

}
⋃ { s∏

r=1

(Yr −Rr)jrY Jrr
∣∣∣ |j| = m, |J | 6 `−m

}
;

this construction may be called banded due to the shape of
the generators above when s = 1. In the second construction,
which may be called triangular, the lattice is generated by the
polynomials{

Gi
s∏
r=1

(Yr −Rr)jr
∣∣∣ i > 0, i+ |j| = m

}
⋃ { s∏

r=1

(Yr −Rr)jr
∣∣∣m 6 |j| 6 `

}
.

When s = 1, the first construction is used in [4, Remark 16]
and [32], [13], and the second one is used in [4], [6];
when s > 1, the former can be found in [10] while the
latter appears in [9], [14]. In both cases the actual lattice
bases are the coefficient vectors (in Y ) of the polynomials
h(X,XkY1, . . . , X

kYs), for h in either of the sets above;

these Xk are introduced to account for the weighted-degree
condition (iii) in Problem 1.

In this context, for a lattice of dimension L given by
generators of degree at most d, the algorithm in [20]
computes a shortest vector in the lattice in expected time
O(LωM(d) log(Ld)), as detailed below. For a deterministic
solution, see the algorithm of Gupta, Sarkar, Storjohann, and
Valeriote [21], whose cost is O(LωM(d)(log(L)2 + log(d))).

For the banded basis, its dimension LB and degree dB can
be taken as follows:

LB =

(
s+m− 1

s

)
+

(
s+m− 1

s− 1

)(
s+ `−m

s

)
and

dB = O(mn).

The dimension formula is given explicitly in [10, p. 75], while
the degree bound is easily obtained when assuming that the
parameters m,n, b of Problem 1 satisfy b 6 mn; such an as-
sumption is not restrictive, since when b > mn the polynomial
Q = Gm is a trivial solution. In this case, the arithmetic cost
for constructing the lattice matrix with the given generators is
O
((
s+m
s

)2
M(mn)

)
, which is O(L2

BM(mn)). Similarly, in
the triangular case,

LT =

(
s+ `

s

)
and dT = O(`n),

and the cost for constructing the lattice matrix is
O(L2

T M(`n)).
Under our assumption H1: m 6 `, we always have LB >

LT and dB 6 dT ; when s = 1, we get LB = LT = `+ 1.
To bound the cost of reducing these two polynomial lattice

bases, recall that the algorithm of [20] works as follows.
Given a basis of a lattice of dimension L and degree d, if
x0 ∈ K is given such that the determinant of the lattice
does not vanish at X = x0, then the basis will be reduced
deterministically using O(LωM(d) log(Ld)) operations in K.
Otherwise, such an x0 is picked at random in K or, if the
cardinality |K| is too small to ensure success with probability
at least 1/2, in a field extension L of K. In general, L
should be taken of degree O(log(Ld)) over K; however, here
degree 2 will suffice. Indeed, following [6, p. 206] we note
that for the two lattice constructions above the determinants
have the special form G(X)i1Xi2 for some i1, i2 ∈ Z>0.
Since G(X) = (X − x1) · · · (X − xn) with x1, . . . , xn ∈ K
pairwise distinct, x0 can be found deterministically in time
O(M(n) log(n)) as soon as |K| > n + 1, by evaluating G at
n+ 2 arbitrary elements of K; else, |K| is either n or n+ 1,
and x0 can be found in an extension L of K of degree 2. Such
an extension can be computed with probability of success at
least 1/2 in time O(log(n)) (see for example [19, §14.9]).
Then, with the algorithm of [20] we obtain a reduced basis
over L[X] using O(LωM(d) log(Ld)) operations in L; since
the degree of L over K is O(1), this is O(LωM(d) log(Ld))
operations in K. Eventually, one can use [44, Theorems 13 and
20] to transform this basis into a reduced basis over K[X]
without impacting the cost bound; or more directly, since
here we are only looking for a sufficiently short vector in
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the lattice, this vector can be extracted from a shortest vector
in the reduced basis over L[X]. Therefore, by applying the
algorithm of [20] to reduce the banded basis and triangular
basis shown above, we will always obtain a polynomial Q
solution to Problem 1 (assuming one exists) in expected time

O(LωBM(mn) log(LBmn)) and O(LωTM(`n) log(LT `n)),

respectively. For s = 1, the assumption H1 implies that these
costs are O(`ωM(mn) log(`n)) and O(`ωM(`n) log(`n)), re-
spectively, as reported in [13], [6]. For s > 1, the costs
obtained in [10], [9] are worse, but only because the short
vector algorithms used in those references are slower than the
ones we refer to; no cost bound is explicitly given in [14]. The
result in Theorem 1 is an improvement over those of both [10]
and [9]. To see this, remark that the cost in our theorem is
quasi-linear in

(
s+`
s

)ω−1(s+m
s+1

)
n, whereas the costs in [10],

[9] are at least
(
s+`
s

)ω
mn; a simplification proves our claim.
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codes from a Gröbner basis perspective,” J. Symbolic Comput.,
vol. 43, no. 9, pp. 645–658, 2008. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0747717108000059

[33] R. J. McEliece, “The Guruswami-Sudan decoding algorithm for Reed-
Solomon codes,” 2003, iPN Progress Report 42-153.
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in 2000, under the supervision of Marc Giusti. He is an associate professor
in the Department of Computer Science at Western University and holds a
Canada Research Chair in Computer Algebra.

Gilles Villard received the PhD degree from the Institut National Poly-
technique of Grenoble, and became a research scientist with the French
National Center for Scientific Research (CNRS) in 1990. He arrived at the
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