
MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000–000
S 0025-5718(XX)0000-0

COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE

FIELDS

LUDOVIC BRIEULLE, LUCA DE FEO, JAVAD DOLISKANI, JEAN-PIERRE FLORI,

AND ÉRIC SCHOST

Abstract. Let Fq be a finite field. Given two irreducible polynomials f, g
over Fq , with deg f dividing deg g, the finite field embedding problem asks

to compute an explicit description of a field embedding of Fq [X]/f(X) into
Fq [Y ]/g(Y ). When deg f = deg g, this is also known as the isomorphism

problem.

This problem, a special instance of polynomial factorization, plays a cen-
tral role in computer algebra software. We review previous algorithms, due

to Lenstra, Allombert, Rains, and Narayanan, and propose improvements and

generalizations. Our detailed complexity analysis shows that our newly pro-
posed variants are at least as efficient as previously known algorithms, and in

many cases significantly better.

We also implement most of the presented algorithms, compare them with
the state of the art computer algebra software, and make the code available

as open source. Our experiments show that our new variants consistently

outperform available software.

1. Introduction

Let q be a prime power and let Fq be a field with q elements. Let f and g be
irreducible polynomials over Fq, with deg f dividing deg g. Define k = Fq[X]/f(X)
and K = Fq[Y ]/g(Y ); then, there is an embedding φ : k ↪→ K, unique up to Fq-
automorphisms of k. The goal of this paper is to describe algorithms to efficiently
represent and evaluate one such embedding.

All the algorithms we are aware of split the embedding problem in two sub-
problems:

(1) Determine elements α ∈ k and β ∈ K such that k = Fq(α), and such that
there exists an embedding φ mapping α 7→ β. We refer to this problem as
the embedding description problem. It is easily seen that α and β describe
an embedding if and only if they share the same minimal polynomial.

(2) Given elements α and β as above, given γ ∈ k and δ ∈ K, solve the following
problems:
• Compute φ(γ) ∈ K.
• Test if δ ∈ φ(k).
• If δ ∈ φ(k), compute φ−1(δ) ∈ k.

We refer collectively to these problems as the embedding evaluation problem.

2010 Mathematics Subject Classification. Primary .

c©XXXX American Mathematical Society

1



2 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

Motivation, previous work. The first to get interested in this problem was
H. Lenstra: in his seminal paper [28] he shows that it can be solved in deter-
ministic polynomial time, by using a representation for finite fields that he calls
explicit data.1 In practice, the embedding problem arises naturally when designing
a computer algebra system: as soon as a system is capable of representing arbi-
trary finite fields, it is natural to ask it to compute the morphisms between them.
Ultimately, by representing effectively the lattice of finite fields with inclusions, the
user is given access to the algebraic closure of Fq. The first system to implement
a general embedding algorithm was Magma [4]. As detailed by its developers [5],
it used a much simpler approach than Lenstra’s algorithm, entirely based on poly-
nomial factorization and linear algebra. Lenstra’s algorithm was later revived by
Allombert [2, 3] who modified some key steps in order to make it practical; his
implementation has since been part of the PARI/GP system [41].

Meanwhile, a distinct family of algorithms for the embedding problem was
started by Pinch [36], and later improved by Rains [38]. These algorithms, based
on principles radically different from Lenstra’s, are intrinsically probabilistic. Al-
though their worst-case complexity is no better than that of Allombert’s algorithm,
they are potentially much more efficient on a large set of parameters. This poten-
tial was understood by Magma’s developers, who implemented Rains’ algorithm in
Magma v2.14.2

With the exception of Lenstra’s work, the aforementioned papers were mostly
concerned with the practical aspects of the embedding problem. While it was
generally understood that computing embeddings is an easier problem than general
polynomial factoring, no results on its complexity more precise than Lenstra’s had
appeared until recently. A few months before the present paper was finalized,
Narayanan published a novel generalization of Allombert’s algorithm [33], based
on elliptic curve computations, and showed that its (randomized) complexity is at
most quadratic. Narayanan’s generalization relies on the fact that Artin–Schreier
and Kummer theories are special cases of a more general situation: as already
emphasized by Couveignes and Lercier [11], whereas the former theory acts on the
additive group of a finite field, and the latter on its multiplicative group, they can
be extended to more general commutative algebraic groups, in particular to elliptic
curves.
Our contribution. This work aims to be, in large part, a complete review of
all known algorithms for the embedding problem; we analyze in detail the cost of
existing algorithms and introduce several new variants. After laying out the foun-
dations in the next section, we start with algorithms for the embedding description
problem.

Section 3 describes the family of algorithms based (more or less loosely) on
Lenstra’s work; we call these Kummer-type algorithms. In doing so, we pay a par-
ticular attention to Allombert’s algorithm: to our knowledge, this is the first de-
tailed and complete complexity analysis of this algorithm and its variants. Thanks
to our work on asymptotic complexity, we were able to devise improvements to the
original variants of Allombert that largely outperform them both in theory and

1Technically, Lenstra only proved his theorem in the case where k and K are isomorphic;

however, the generalization to the embedding problem poses no difficulties.
2As a matter of fact, Rains’ algorithm was never published; the only publicly available source

for it is in Magma’s source code (file package/Ring/FldFin/embed.m, since v2.14).



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 3

practice. One notable omission in this section is Narayanan’s algorithm, which is,
in our opinion, mostly of theoretical rather than practical interest. We present
instead in Subsection 3.3 a simpler algorithm with essentially the same complexity.

In Section 4 we describe Rains’ algorithm. Rains’ original preprint [38] went
unpublished, thus we give here a complete description and analysis of his algorithm,
for reference. We also give new variants of Rains’ algorithm of lesser interest in
Appendix A.

Then, in Section 5 we present a generalization of Rains’ algorithm using ellip-
tic curves. The possibility of this algorithm was hinted at by Rains, but never
fully developed; we show that it is indeed possible to use elliptic periods to solve
the embedding description problem, and that the resulting algorithm behaves well
both in theory and in practice. While working out the correctness proof of the
elliptic variant of Rains’ algorithm, we encounter an unexpected difficulty: whereas
roots of unity enjoy Galois properties that guarantee the success of Rains’ orig-
inal algorithm, points of elliptic curves fail to provide the same. Heuristically,
the failure probability of the elliptic variant is extremely small, however we are
not able to prove it formally. Our experimental searches even seem to suggest
that the failure probability might be, surprisingly, zero. We state this as a con-
jecture on elliptic periods (see Conjecture 23 and experimental data available at
https://github.com/defeo/ffisom).

Section 6 does a global comparison of all the algorithms presented previously. In
particular, Rains’ algorithm and variants require a non-trivial search for parameters,
which we discuss thoroughly. Then we present an algorithm to select the best
performing embedding description algorithm from a practical point of view. This
theoretical study is complemented by the experimental Section 7, where we compare
our implementations of all the algorithms; our source code is made available through
the Git repository https://github.com/defeo/ffisom for replication and further
scrutiny.

The algorithms for the embedding evaluation problem are much more classical
and well understood. Due to space constraints, we do not present them here;
we address instead the interested reader to the extended version of the present
paper [7].

In conclusion, we hope that our review will constitute a reference guide for
researchers and engineers interested in implementing embeddings of finite fields in
a computer algebra system.
Acknowledgments. We would like to thank Eric M. Rains for sharing his preprint
with us. We also thank Bill Allombert, Christian Berghoff, Jean-Marc Couveignes,
Reynald Lercier, and Benjamin Smith for fruitful discussions.

2. Preliminaries

2.1. Fundamental algorithms and complexity. We review the fundamental
building blocks that constitute the algorithms presented next. We are going to
measure all complexities in number of operations +, ×, ÷ in Fq, unless explicitly
stated otherwise. Most of the algorithms we present are randomized; we use the
big-Oh notation O( ) to express average asymptotic complexity, and we will make
it clear when this complexity depends on heuristics. We also occasionally use the
notation Õ( ) to neglect logarithmic factors in the parameters.

https://github.com/defeo/ffisom
https://github.com/defeo/ffisom


4 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

We let M(m) be a function such that polynomials in Fq[X] of degree less than m
can be multiplied in M(m) operations in Fq, under the assumptions of [42, Ch. 8.3],
together with the slightly stronger one, that M(mn) is in O(m1+εM(n)) for all
ε > 0. Using FFT multiplication, one can take M(m) ∈ O(m log(m) loglog(m)) [8].

We denote by ω the exponent of linear algebra, i.e. a constant such that m×m
matrices with coefficients in any field k can be multiplied using O(mω) additions
and multiplications in k. One can take ω < 2.38, the best result to date being
in [26]; on the other hand, we also suppose that ω > 2.

The algorithms presented in the next sections perform computations in ring
extensions of finite fields. Some of these extensions also happen to be finite fields.
As customary, if k is a finite field and ξ is some element of an algebraic extension
of k, we will write k[ξ] for the ring generated by ξ. To avoid confusion, when the
extension generated by ξ is a finite field, we will write instead k(ξ).

Some algorithms will operate in a polynomial ring k[Z], where k is a field ex-
tension of Fq; some other algorithms will operate in k[Z]/h(Z), where h is a monic
polynomial in k[Z]. We review the basic operations in these rings. We assume
that k is represented as a quotient ring Fq[X]/f(X), with m = deg f , and we let
s = deg h in the complexity estimates.

Multiplying and dividing polynomials of degree at most s in k[Z] is done in
O(M(sm)) operations in Fq, using Kronecker’s substitution [30, 21, 42, 43, 19].
Multiplication in k[Z]/h(Z) is also done in O(M(sm)) operations using the tech-
nique in [34]. By the same techniques, gcds of degree m polynomials in k[Z] and
inverses in k[Z]/h(Z) are computed in O(M(sm) log(sm)) operations.

Given polynomials e, g, h ∈ k[Z] of degree at most s, modular composition is the
problem of computing e(g) mod h. An upper bound on the algebraic complexity
of modular composition is obtained by the Brent–Kung algorithm [6]; under our
assumptions on the respective costs of polynomial and matrix multiplication, its
cost is O(s(ω+1)/2M(m)) operations in Fq (so if k = Fq, this is O(s(ω+1)/2)). In the
binary RAM complexity model, the Kedlaya–Umans algorithm [24] and its exten-
sion in [37] yield an algorithm with essentially linear complexity in s, m and log(q).
Unfortunately, making these algorithms competitive in practice is challenging; we
are not aware of any implementation of them that would outperform Brent and
Kung’s algorithm.

Note 1. If we have several modular compositions of the form e1(g) mod h, . . . ,
et(g) mod h to compute, we can slightly improve the obvious bound O(ts(ω+1)/2)
(we discuss here k = Fq, so m = 1). If t = O(s), using [23, Lemma 4], this can

be done in time O(t(ω−1)/2s(ω+1)/2). If t = Ω(s), this can be done in O(tsω−1)
operations, by computing 1, g, . . . , gs−1 modulo f , and doing a matrix product in
size s× s by s× t.

Frobenius evaluation. Consider an Fq-algebra Q, and an element α in Q. Given
integers c, d, we will have to compute expressions of the form

σd = αq
d

, τd =

d−1∑
i=0

αq
ci

, µd = αbq
d/cc .

A direct binary powering approach would yield a complexity of, e.g., O(d log(q))
multiplications in Q for the first expression.



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 5

To do better, we use a recursive approach that goes back to [44], with further
ideas borrowed from [40, 22]. For i ≥ 1, define integers Ai, Bi as follows

qi = Aic+Bi, 0 ≤ Bi < c.

Then, we have the relations

σi+j = σq
i

j , τi+j = τi + τ q
ic

j , µi+j = µq
i

j µ
Bj

i αbBiBj/cc.

Since we are interested in σd, τd and µd, using an addition chain for d, we are left
to perform O(log(d)) steps as above.

To perform these operations, we will make a heavy use of a technique originating
in [44]. In its simplest form, it amounts to the following: if Q = Fq[X]/f(X), for
some polynomial f in Fq[X], and β is in Q, we can compute βq by means of the
modular composition β(ξ), where ξ = xq and x is the image of X modulo f .

In the following proposition, we discuss versions of this idea for various kinds
of algebras Q, and how they allow us to compute the expressions σd, τd, µd defined
above.

Proposition 2. Let f ∈ Fq[X] be a polynomial of degree m, and define the Fq-
algebra Q = Fq[X]/f(X). Let h ∈ Q[Z] be a polynomial of degree s, and define
the Q-algebra S = Q[Z]/h(Z). Finally, whenever h ∈ Fq[Z], define the Fq-algebra
Q′ = Fq[Z]/h(Z).

Denote by TQ, TS , TQ′ the cost, in terms of Fq-operations, of one modular com-
position in Q,S,Q′ respectively. Also denote by TQ,t ≤ tTQ (resp. TS,t, TQ′,t) the
cost of t modular compositions sharing the same polynomial (see Note 1).

Then the expressions

σd = αq
d

, τd =

d−1∑
i=0

αq
ci

, µd = αbq
d/cc

can be computed using the following number of operations:

Case 1. α ∈ Q:
• σd: O(M(m) log(q) + TQ log(d)),
• τd: O(M(m) log(q) + TQ log(dc)),
• µd: O(M(m) log(q) + (TQ + M(m) log(c)) log(d));

Case 2. α ∈ Q with f |Xr − 1:
• σd: O(M(m) log(q) + M(r) log(d)),
• τd: O(M(m) log(q) + M(r) log(dc)),
• µd: O(M(m) log(q) + (M(r) + M(m) log(c)) log(d));

Case 3. α ∈ S:
• σd: O(M(ms) log(q) + (TQ,s + TS) log(d)),
• τd: O(M(ms) log(q) + (TQ,s + TS) log(dc)),
• µd: O(M(ms) log(q) + (TQ,s + TS + M(ms) log(c)) log(d));

Case 4. α ∈ S with h ∈ Fq[Z]:
• σd: O((M(m) + M(s)) log(q) + (TQ,s + TQ′,m) log(d),
• τd: O((M(m) + M(s)) log(q) + (TQ,s + TQ′,m) log(dc)),
• µd: O((M(m)+M(s)) log(q)+(TQ,s+TQ′,m+(mM(s)+sM(m)) log(c)) log(d));

Case 5. α ∈ S with h|Xr − a for a ∈ Q:
• σd: O(M(m) log(q) + (TQ,s + M(mr)) log(d)),
• τd: O(M(m) log(q) + (TQ,s + M(mr)) log(dc)),
• µd: O(M(m) log(q) + (TQ,s + M(mr) + M(m) log(c)) log(d)).



6 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

Proof. The complexity estimates mostly rely on the complexity of modular compo-
sition.

Case 1. We let x be the image of X in Q, and we start by computing xq, using
O(M(m) log(q)) operations in Fq.

For i ≥ 0, given ξi = xq
i

and β in Q, we can compute βq
i

as βq
i

=
β(ξi), using TQ = O(m(ω+1)/2) operations; in particular, this allows us to
compute ξi+j from the knowledge of ξi and ξj . Given an addition chain
for d, we thus compute all corresponding ξi’s, and we deduce the σi’s
similarly, since σi+j = σj(ξj). Altogether, starting from ξ1 = xq, this
gives us σd for O(TQ log(d)) further operations in Fq.

The same holds for τd, with a cost in O(TQ log(cd)), since we have to
compute ξc first; and for µd, with a cost in O((TQ + M(m) log(c)) log(d))
operations, as the formula for µi+j shows that we can obtain it by means

of a modular composition (to compute µq
i

j = µj(ξi)), together with two
exponentiations of indices less than c.

The costs for computing σd, τd, µd follow immediately.

Case 2. When f divides Xr − 1, we obtain β(ξi) by computing β(Xqi mod r) mod
(Xr − 1) first, and then reducing modulo f(X). Thus, the cost of one
modular composition is TQ = O(M(r)), and the total cost is obtained by
replacing this value in the estimates for the previous case.

Case 3. We let x and z be the respective images of X in Q and Z in S, and as
a first step, we compute zq (and xq, unless f is as in Case 2 above), in
O(M(ms) log(q)) operations.

In order to compute the quantities σd, τd, µd, we apply the same strat-
egy as above; the key factor for complexity is thus the cost of computing

βq
i

, for β in S, given ζi = zq
i

and ξi = xq
i

(as we did in Case 1, we apply
this procedure to our input element α, as well as to ζi itself, and ξi, in
order to be able to continue the calculation).

To do so, we use an algorithm by Kaltofen and Shoup [22], which boils

down to writing β =
∑s−1
j=0 cj(x)zj , so that βq

i

=
∑s−1
j=0 cj(x)q

i

ζji . The

s coefficients cj(x)q
i

are computed by applying the previous algorithms
in Q to s inputs. This takes time at most sTQ, but as pointed out in
Note 1, improvements are possible if we base our algorithm on modular
composition; we thus denote the cost TQ,s.

Then, we do a modular composition in S to evaluate the result at ζi;
this latter step takes TS = O(s(ω+1)/2M(m)) operations in Fq.

Case 4. The cost for computing zq is O(M(s) log(q)) and that for computing xq

is O(M(m) log(q)). In the last step, the cost TS of modular composition
in S is now that of m modular compositions in degree s (with the same
argument), as detailed in Note 1, that we denote TQ′,m. Similarly, the
cost of multiplication in S can be reduced from O(M(ms)) to O(sM(m) +
mM(s)) operations.

Case 5. We start by computing xq, using O(M(m) log(q)) operations in Fq.
For β as above, suppose that we have already computed all coefficients

dj(x) = cj(x)q
i

in O(TQ,s) operations; we now have to compute βq
i

=∑s−1
j=0 dj(x)ζji .



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 7

We first do the calculation modulo Zr − a rather than modulo h; that

is, we compute
∑s−1
j=0 dj(x)zji where zi = zq

i

. Because zr = a, we have

zi = aiz
qi mod r, with ai = abq

i/rc. If we assume that ai is known, we can
compute

∑s−1
j=0 dj(x)zji using Horner’s method, in time O(sM(m)), and

we reduce this result modulo h, for the cost O(M(mr)) of a Euclidean
division in degree r in Q[Z].

In order to continue the calculation for all indices in our addition chain,
we must thus compute the corresponding ai’s as well, just like the µi’s;
this takes O(TQ + M(m) log(r)) operations.

Since the first stage of the algorithm took O(TQ,s) operations, we can

take TS = O(M(mr)) for computing βq
i

.
To initiate the procedure, the algorithm also needs to compute a1 =

abq/rc, using O(log(q)) multiplications in Q for a cost O(M(m) log(q)). �

Computing subfields. With k = Fq[X]/f(X) and deg f = m as above, we are
given a divisor r of m, and we want to construct an intermediate extension Fq ⊂
L ⊂ k of degree r over Fq. More precisely, we want to compute a monic irreducible
polynomial g ∈ Fq[X] of degree r, and a polynomial h ∈ Fq[X] such that x 7→
h(x) mod f defines an embedding L = Fq[X]/g(X) ↪→ k. We proceed as follows.

Let α ∈ k be a random element. Then α has a minimal polynomial of degree
m over Fq with high probability. In other words, one needs O(1) such random
elements to find one with degree m minimal polynomial. Now, the trace

(1) Trk/L(α) = α+ αq
r

+ · · ·+ αq
m−r

has a minimal polynomial of degree r over Fq with high probability as well. This
means we can compute, after O(1) random trials, the desired polynomials β =
Trk/L(α), its minimal polynomial g, and h the polynomial of degree less than m
representing β.

Proposition 3. Let Fq ⊂ k be a finite extension of degree m, and let r be a divisor
of m. Computing an intermediate field Fq ⊂ L ⊂ k with [L : Fq] = r takes an

expected O(m(ω+1)/2 log(m) + M(m) log(q)) operations in Fq. Once L is computed,

any element γ ∈ L can be lifted to its image in k using O(m(ω+1)/2) operations.

Proof. Computing the minimal polynomial of an element in k takes O(m(ω+1)/2)
operations in Fq, see [39]. The trace in Eq. (1) is computed as the expression τm of

the previous paragraph (with c = r and d = m/r), at a cost of O(m(ω+1)/2 log(m)+
M(m) log(q)) operations in Fq.

Finally, given an element γ ∈ L, its image in k is computed by evaluating h(γ),
where h is the polynomial representation of Trk/L(α). This can be done by a

modular composition at cost O(m(ω+1)/2). �

Root finding in cyclotomic extensions. Given a field k = Fq[X]/f(X) of de-
gree m as above, we will need to factor some special polynomials in k[Z]: we are
interested in finding one factor of a polynomial that splits into factors of the same,
known, degree. This problem is known as equal degree factorization (EDF), and
the best generic algorithm for it is the Cantor–Zassenhaus method [9, 44], which
runs in O(M(sm)(dm log(q) + log(sm))) operations in Fq [42, Th. 14.9], where s is
the degree of the polynomial to factor, and d is the degree of the factors.



8 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

More efficient variants of the Cantor–Zassenhaus method are known for special
cases. When the degree s of the polynomial is small compared to the extension
degree m, Kaltofen and Shoup [22] give an efficient algorithm which is as follows.

Algorithm 1 Kaltofen–Shoup EDF for extension fields

Input: A polynomial h with irreducible factors of degree d over k = Fq[X]/f(X).
Output: An irreducible factor of h over k.

1. If deg h = d return h.
2. Take a random polynomial a0 ∈ k[Z] of degree less than deg h,

3. Compute a1 ←
md−1∑
i=0

aq
i

0 mod h,

4. if q is an even power q = 2e then

5. Compute a2 ←
e−1∑
i=0

a2i

1 mod h

6. else
7. Compute a2 ← a

(q−1)/2
1 mod h

8. end if
9. Compute h0 ← gcd(a2, h) and h1 ← gcd(a2 − 1, h) and h−1 ← h/(h0h1),

10. Apply recursively to the smallest non-constant polynomial among h0, h1, h−1.

We refer the reader to the original paper [22] for the correctness of the Kaltofen–
Shoup algorithm. We are mainly interested here in its application to root extraction
in cyclotomic extensions. Let r be a prime power and let f be an irreducible factor
of the r-th cyclotomic polynomial Φr, with s = deg f . Denote Fq[X]/f(X) by
Fq(ζ), where ζ is the image of X in the quotient. Given an r-th power α ∈ Fq(ζ)

we want to compute an r-th root α1/r, or equivalently a linear factor of Zr−α over
Fq(ζ).

We propose two different algorithms; one of them is quadratic in r, whereas the
other one has a runtime that depends on r and s, and will perform better for small
values of s.

Proposition 4. Let r be a prime power and let ζ be a primitive r-th root of unity;
let also s = [Fq(ζ) : Fq]. One can take r-th roots in Fq(ζ) using either

O(M(s) log(q) + rsω−1 log(r) log(s) + M(rs) log(s) log(r))

or

O(M(s) log(q) + rM(r) log(s) + M(rs) log(s) log(r))

operations in Fq.

Proof. We use Algorithm 1 with k = Fq(ζ), to get a linear factor of the polynomial
Zr−α, so that d = 1 (note that Zr−α splits into linear factors in k[Z]). We discuss
Step 3, which is the dominant step. Let f ∈ Fq[X] be the defining polynomial of
Fq(ζ) and let h be a factor of Zr − α of degree n.

We are in Case 5 of our discussion on Frobenius evaluation, and we want to
compute a trace-like expression of the form τs. As per that discussion, two algo-
rithms are available to do Frobenius evaluation in k (one of them uses modular
composition, the other the fact that f divides Xr − 1). Because s ≤ r, we deduce
that a1 can be computed in either

O(M(s) log(q) + rsω−1 log(s) + M(rs) log(s))



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 9

or

O(M(s) log(q) + nM(r) log(s) + M(rs) log(s))

operations in Fq, where the first term accounts for computing αbq/rc (so we need
only compute it once). The depth of the recursion in Algorithm 1 is log(r), and
the degree n is halved each time, so we obtain the desired result. �

Root finding in some extensions of cyclotomic extensions. Let r = vd,
where v 6= p is a prime and d is a positive integer and let s be the order of q in
Z/vZ. We assume that d ≥ 2, since this will be the case whenever we want to apply
the following.

Consider an extension Fq ⊂ k = Fq[X]/f(X) of degree r, and let Fq(ζ) and k(ζ)
be extensions of degree s over Fq and k respectively, defined by an irreducible factor
of the v-th cyclotomic polynomial over Fq. In this paragraph, we discuss the cost
of computing a v-th root in k(ζ), by adapting the root extraction algorithm given
in [16].

Following [16, Algorithm 3], one reduces the root extraction in k(ζ) to a root
extraction in Fq(ζ); note that [16, Algorithm 3] reduces the root extraction to the
smallest possible extension of Fp, but projecting to Fq(ζ) is more convenient here.
The critical computation in this algorithm is a trace-like computation performing
the reduction.

Algorithm 2 v-th root in k(ζ)

Input: a ∈ k(ζ)v

Output: a v-th root of a
1. repeat
2. choose a random c ∈ k(ζ)
3. a′ ← acv

4. λ← a′
(qs−1)/v

5. b← 1 + λ+ λ1+qs + · · ·+ λ1+qs+···+q(r−2)s

6. until b 6= 0
7. β ← (a′bv)1/v in Fq(ζ)
8. return βb−1c−1

One multiplication in k(ζ) amounts to doing r multiplications modulo a degree
s factor of Φv, and s multiplications modulo f ; since s ≤ r, this takes O(sM(r))

operations in Fq. The computation of λ = a′
(qs−1)/v

= a′
bqs/vc

can then be done as
explained in our discussion on Frobenius evaluation (Case 4). The cost of each mod-
ular composition is O(s(ω−1)/2r(ω+1)/2), for a total of O(s(ω−1)/2r(ω+1)/2 log(s) +
sM(r) log(q)) operations in Fq.

The trace-like computation of 1 +λ+λ1+qs + · · ·+λ1+qs+···+q(r−2)s

can be done
as follows. Let x be the image of X in k = Fq[X]/f(X). To compute xq

s

we first
compute xq using O(M(r) log(q)) operations in Fq, and then do log(s) modular

compositions in k. To compute λq
s

, note that an element λ ∈ k(ζ) can be written
as λ = λ0(x) + λ1(x)ζ + · · ·+ λs−1(x)ζs−1 and that ζq

s

= ζ. Therefore for any i,

λq
is

=

s−1∑
j=0

λj(x
qis)

(
ζq

is
)j

=

s−1∑
j=0

λj(x
qis)ζj .



10 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

In particular, given xq
is

, λq
is

can be computed using O(s(ω−1)/2r(ω+1)/2) opera-
tions in Fq, and [16, Algorithm 2] can be applied in a direct way, with a cost of

O(s(ω−1)/2r(ω+1)/2 log(r) + M(r) log(q)) operations in Fq.
The root extraction in Fq(ζ) is done as in the previous paragraph, and have a

negligible cost, since we assumed that s ≤ v ≤ √r. Therefore, we arrive at the
following result.

Proposition 5. With k, ζ and v as above, one can extract v-th roots in k(ζ) using
an expected O(s(ω−1)/2r(ω+1)/2 log(r) + sM(r) log(q)) operations in Fq.

2.2. The Embedding Description problem. We are finally ready to address
the problem of describing the embedding of k = Fq[X]/f(X) in K = Fq[Y ]/g(Y );
throughout the paper we let m = deg f and n = deg g, so that m|n. The embedding
description problem asks to find two elements α ∈ k and β ∈ K such that α 7→ β
for some field embedding φ : k → K. This is equivalent to α and β having the same
minimal polynomial.

The most obvious way to solve this problem is to take the class of X in k =
Fq[X]/f(X) for α, and a root of f in K for β. Since f splits completely in K,
we can apply Algorithm 1 for the special case d = 1. Using our discussion on
the cost of Frobenius evaluation (precisely, Case 4), we obtain an upper bound of
O
(
(nm(ω+1)/2 + M(m)n(ω+1)/2 +mM(n) log(q)) log(m)

)
expected operations in Fq

for the problem. We remark that this complexity is strictly larger than Õ(m2).
For a more specialized approach, we note that it is enough to solve the following

problem: let r be a prime power such that r|m and gcd(r,m/r) = 1, find αr ∈ k
and βr ∈ K such that αr and βr have the same minimal polynomial, of degree r.

Indeed, once such αr and βr are known for every primary factor r of m, possible
solutions to the embedding problem are

α =
∏
r|m,

gcd(r,m/r)=1

αr, β =
∏
r|m,

gcd(r,m/r)=1

βr,

or

α =
∑
r|m,

gcd(r,m/r)=1

αr, β =
∑
r|m,

gcd(r,m/r)=1

βr.

Moreover, to treat the general embedding description problem, it is sufficient
to treat the case where [k : Fq] = [K : Fq] = r. Indeed, we can reduce to this

situation by applying Proposition 3, at an additional cost of O(n(ω+1)/2 log(n) +
M(n) log(q)) for each primary factor r. Therefore, to simplify the exposition, we
focus on algorithms solving the following problem.

Problem. Let r be a prime power and k,K a pair of extensions of Fq of degree r.
Describe an isomorphism between k and K.

Note that although some algorithms are restricted to this situation, especially
those presented in Section 3, some of them could still be readily applied to a more
general situation, especially those from Sections 4 and 5.

All algorithms presented next are going to rely on one common principle: con-
struct an element in k (and in K) such that its minimal polynomial (or, equivalently,
its orbit under the absolute Galois group of Fq) is uniquely (or almost uniquely)
defined.



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 11

3. Kummer-type algorithms

In this section, we review what we call Kummer-type approaches to the embed-
ding problem for prime power degree extensions. We briefly review the works of
Lenstra [28], and Allombert [2, 3], then we give variants of these algorithms with
significantly lower complexities. As stated above, we let k,K be degree r extensions
of Fq, where r is a prime power, and we let p be their characteristic. We give our
fast versions of the algorithms for two separate cases: the case p - r is treated in
Section 3.1, the case r = pd, where d is a positive integer, is treated in Section 3.2.
Finally, in Section 3.3 we give a variant of the case p - r better suited for the case
where r is a high-degree prime power.

In [28], Lenstra proves that given two finite fields of the same size, there exists a
deterministic polynomial time algorithm that finds an isomorphism between them.
The focus of the paper is on theoretical computational complexity; in particular,
it avoids using randomized subroutines, such as polynomial factorization. In [2, 3],
Allombert gives a similar approach with more focus on practical efficiency. In
contrast to Lenstra’s, his algorithm relies on polynomial factorization, thus it is
polynomial time Las Vegas. Even though neither of the two algorithms is given
a detailed complexity analysis, both rely on solving linear systems, thus a rough
analysis yields an estimate of O(rω) operations in Fq in both cases.

The idea of Lenstra’s algorithm is as follows. Assume that r is prime, and
let Fq[ζ] denote the ring extension Fq[Z]/Φr(Z) where Φr is the r-th cyclotomic
polynomial. Let τ be a non r-adic residue of Fq[ζ], and let Fq[ζ][θ] denote the

quotient Fq[ζ][Y ]/(Y r − τ) such that θ = τ1/r is the residue class of Y . Lenstra
shows that Fq[ζ][θ] is isomorphic to k[ζ] as a ring (Lenstra actually goes the other
way around and constructs τ from θ as τ = θr whereas θ itself comes from a normal
basis of k computed using linear algebra. In Lenstra’s terminology, θ and τ = θr are
generators of the Teichmüller subgroups of k[ζ] and Fq[ζ] and solutions to Hilbert’s
theorem 90).

Furthermore, the algorithm constructs θ1, θ2, and τ1, τ2 in such a way that an
integer j > 0 can be found such that

ψ : Fq[ζ][θ1] → Fq[ζ][θ2]

θ1 7→ θj2

is an isomorphism of rings. Finally, denoting by ∆ the automorphism group of k[ζ]
over k, an embedding k ↪→ K is obtained by restricting the above isomorphism ψ
to the fixed field k[ζ]∆. To summarize, the algorithm is made of three steps:

• Construct elements θ1 ∈ k[ζ] and θ2 ∈ K[ζ];

• Letting τi = θri , find the integer j such that τ1 = τ j2 by a discrete logarithm
computation in Fq[ζ];

• Compute α ∈ k and β ∈ K as some functions of θ1, θ
j
2 invariant under ∆.

The algorithm is readily generalized to prime powers r by iterating this procedure.
Allombert’s algorithms differ from Lenstra’s in two key steps, both resorting

to polynomial factorization. First, he computes an irreducible factor h of the cy-
clotomic polynomial Φr of degree s, and so constructs a field extension Fq(ζ) as
Fq[Z]/h(Z). Then he defines k[ζ] = k[Z]/h(Z) and K[ζ] = K[Z]/h(Z) (note that
these are not fields if r is not prime), and constructs θ1 ∈ k[ζ] and θ2 ∈ K[ζ]
in a way equivalent to Lenstra’s using linear algebra. At this point, rather than



12 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

computing a discrete logarithm, Allombert points out that there exists a c ∈ Fq(ζ)
such that θ1 7→ cθ2 defines an isomorphism, and that such value can be computed
as the r-th root of θr1/θ

r
2. Finally, by making the automorphism group of k[ζ] over

k act on θ1 and θ2, he obtains an embedding k ↪→ K.

3.1. Allombert’s algorithm. In this section, we analyze the complexity of Al-
lombert’s original algorithm [2], that of its revised version [3], and we present new
variants with the best known asymptotic complexities. The main difference with
respect to the versions presented in [2, 3] is in the way we compute θ1, θ2, which are
solutions to Hilbert’s theorem 90 as will become clear below. Whereas Allombert
resorts to linear algebra, we rely instead on evaluation formulas that have a high
probability of yielding a solution. Recently, Narayanan [33, Sec. 3] independently
described a variant which is similar to our Proposition 8 in the special case s = 1.

3.1.1. General strategy. Let k = Fq[X]/f(X) where f has degree r, a prime power,
and let x be the image of X in k. Let h(Z) be an irreducible factor of the r-th
cyclotomic polynomial over Fq. Then h has degree s where s is the order of q in
the multiplicative group (Z/rZ)×. We form the field extension Fq(ζ) ∼= Fq[Z]/h(Z)
and the ring extension k[ζ] = k[Z]/h(Z) ∼= k ⊗ Fq(ζ) where ζ is the image of Z in
the quotients. The action of the Galois group Gal(k/Fq) can be extended to k[ζ]
by

σ : k[ζ] → k[ζ]
x⊗ ζ 7→ xq ⊗ ζ .

Allombert shows (see [2, Prop. 3.2]) that σ is an automorphism of Fq(ζ)-algebras,
and that its fixed set is isomorphic to Fq(ζ). The same can be done for the ring
K[ζ]. Let us restate the algorithm for clarity.

Algorithm 3 Allombert’s algorithm

Input: Field extensions k,K of Fq of degree r.
Output: The description of a field embedding k → K.

1. Factor the r-th cyclotomic polynomial and make the extensions Fq(ζ), k[ζ],K[ζ];

2. Find θ1 ∈ k[ζ] such that σ(θ1) = ζθ1;
3. Find θ2 ∈ K[ζ] such that σ(θ2) = ζθ2;
4. Compute an r-th root c of θr1/θ

r
2 in Fq(ζ);

5. Let α, β be the constant terms of θ1, cθ2 respectively;
6. return The field embedding defined by α 7→ β.

The cyclotomic polynomial Φr is factored over Fq using [40, Theorem 9], and
r-th root extraction in Fq(ζ) is done using Proposition 4, so we are left with the
problem of finding θ1 (and θ2), that is, instances of Hilbert’s theorem 90.

We now show how to do it in the extension k[ζ]/Fq(ζ), the case of K[ζ] being
analogous. We review approaches due to Allombert, that rely on linear algebra, and
propose new algorithms that rely on evaluation formulas and ultimately polynomial
arithmetic. Note that all these variants can be directly applied to any extension
degree r as long as p - r, and do not require r to be a prime power. Nevertheless,
in practice, it is more efficient to perform computations for each primary factor
independently and glue the results together in the end.



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 13

If A is a polynomial with coefficients in Fq(ζ), we will denote by Â the morphism
A(σ) of the algebra k[ζ]; note that the usual property of q-polynomials holds:

ÂB = Â ◦ B̂.

3.1.2. Algorithms relying on linear algebra. As some algorithmic details were omit-
ted in Allombert’s publications, and no precise complexity analysis was performed,
we extracted the details from PARI/GP source code [41] and perform the complex-
ity analysis here. We also propose another variant, using an algorithm by Paterson
and Stockmeyer.
Allombert’s original algorithm. A direct solution to Hilbert’s theorem 90 is to

find a non-zero θ ∈ k[ζ] such that ̂(S − ζ)(θ) = 0.
The original version of Allombert’s algorithm [2] does precisely this, by comput-

ing the matrix of the Frobenius automorphism σ of k/Fq using O(M(r) log(q) +
rM(r)) operations in Fq and then an eigenvalue of σ for ζ over Fq(ζ) using lin-
ear algebra, at a cost of O((rs)ω) operations in Fq. This gives a total cost of
O(sM(r) log(q) + (rs)ω) operations in Fq.
Allombert’s revised algorithm. Allombert’s revision of his own algorithm [3]
uses the factorization

(2) h(S) = (S − ζ)b(S).

If we set h(S) = Ss +
∑s−1
i=0 hiS

i, we can explicitly write b as

(3) b(S) =

s−1∑
i=0

bi(S)ζi, where

{
bs−1(S) = 1,

bi−1(S) = bi(S)S + hi.

Indeed, Horner’s rule shows that b−1(S) = h(S), and by direct calculation we find
that (S − ζ) · b(S) = b−1(S).

We get a solution to Hilbert’s theorem 90 by evaluating b(S) = h(S)/(S − ζ) on

an element in the kernel of ĥ over k, linear algebra now taking place over Fq rather

than Fq(ζ). The details on the computation of ĥ were extracted from PARI/GP
source code and yield the following complexity.

Proposition 6. Using Allombert’s revised algorithm, a solution θ to Hilbert’s the-
orem 90 can be computed in O(M(r) log(q) + srM(r) + rω) operations in Fq.

Proof. As in Allombert’s original algorithm, one first computes the matrix of σ over
k at a cost of O(M(r) log(q) + rM(r)) operations in Fq.

To get the matrix of ĥ over k, one first computes the powers xq
i

for 0 ≤ i ≤ s
using the matrix of σ, at a cost of O(sr2) operations in Fq. From them, one can

iteratively compute the powers xjq
i

for 2 ≤ j ≤ r for a total cost of O(srM(r))

operations in Fq, and iteratively compute the matrix of ĥ for an additional total
cost of O(sr2) operations in Fq, accounting for the scalar multiplications by the
coefficients of h. The total cost is therefore dominated by O(srM(r)) operations in
Fq.

Given the matrix of ĥ over k, computing an element in its kernel costs O(rω)

operations in Fq. The final evaluation of b̂ is done using Eq. (3) and the matrix of
σ for Frobenius computations, for a cost of O(sr2) operations in Fq. �



14 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

Using the Paterson–Stockmeyer algorithm. Given the matrix Mσ of σ, there

is a natural way of evaluating ĥ at a reduced cost: the Paterson–Stockmeyer al-

gorithm [35] computes the matrix of ĥ and h(Mσ), using O(
√
srω) operations in

Fq. The evaluations of σ that take a total of O(sr2) operations in Fq can be done
directly using modular exponentiations, for a total of O(sM(r) log(q)).

Proposition 7. Using the Paterson–Stockmeyer algorithm and modular exponen-
tiations, a solution θ to Hilbert’s theorem 90 can be computed in O(sM(r) log(q) +√
srω) operations in Fq.

Although this complexity is not as good as the ones we will obtain next, this
variant performs reasonably well in practice, as discussed in Section 7.

3.1.3. Algorithms relying on polynomial arithmetic. It is immediate to see that the
minimal polynomial of σ over k[ζ] is Sr − 1; by direct calculation, we verify that it
factors as

(4) Sr − 1 = (S − ζ) ·Θ(S) = (S − ζ)

r−1∑
i=0

ζ−i−1Si.

Hence, we can set

(5) θa = Θ̂(a) = a⊗ ζ−1 + σ(a)⊗ ζ−2 + · · ·+ σr−1(a)⊗ ζ−r

for some a ∈ k chosen at random. Because of Eq. (4), θa is a solution as long as it
is non-zero. This is reminiscent of Lenstra’s algorithm [28, Th. 5.2].

To ensure the existence of a such that θa 6= 0, we only need to prove that k is not
entirely contained in ker Θ̂. But the maps σi restricted to k are all distinct, thus
Artin’s theorem on character independence (see [25, Ch VI, Theorem 4.1]) shows

that they are linearly independent, and therefore Θ̂ is not identically zero on k. In
practice, we take a ∈ k at random until θa 6= 0. Since the map Θ̂ is Fq-linear and
non-zero, it has rank at least 1, thus a random θa is zero with probability less than
1/q. Therefore, we only need O(1) trials to find θ1 (and θ2).

Using the polynomial b(S) introduced in Eq. (2), and defining g(S) = (Sr −
1)/h(S), we can rewrite Eq. (4) as

(6) Θ(S) = b(S) · g(S).

Then, the morphism Θ̂ can be evaluated as b̂ ◦ ĝ, the advantage being that g has
coefficients in Fq, rather than in Fq(ζ): we set τa = ĝ(a) for some a ∈ k chosen

at random and compute θa = b̂(τa) using Eq. (3), yielding a solution to Hilbert’s
theorem 90 as soon as τa 6= 0. As before, O(1) trials are enough to get θa 6= 0.

We now give three variations on the above algorithm to compute a candidate
solution θa more efficiently. Which algorithm has the best asymptotic complexity
depends on the value of s with respect to r; we arrange them by increasing s.
First solution: divide-and-conquer recursion. We use a recursive algorithm
similar to the computation of trace-like functions in Proposition 2, to directly eval-
uate θa using Eq. (5). Let ξ1 = xq and θa,1 = aζ−1, and set the following recursive
relations:

(7) ξj =

{
σj/2(ξj/2) j even,

σ(ξj−1) j odd,
θa,j =

{
θa,j/2 + ζ−j/2σj/2(θa,j/2) j even,

(a+ σ(θa,j−1))ζ−1 j odd.

Then θa = θa,r.



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 15

Proposition 8. Given a ∈ k, the value θa in Eq. (5) can be computed using

O(s(ω−1)/2r(ω+1)/2 log(r) + M(r) log(q))

operations in Fq.
Proof. The value ξ1 is computed by binary powering using O(M(r) log(q)) opera-
tions, while the value θa,1 is deduced from the polynomial h using O(rs) operations.

To compute the recursive formulas in Eq. (7) we use the same technique as in
Proposition 2: given b ∈ k[ζ], the value σj(b) is computed as the modular com-
position of the polynomial b(x, z) with the polynomial ξj(x) in the first argument.
Each modular composition in k[ζ] is done using s modular compositions in k, at
a cost of O(s(ω−1)/2r(ω+1)/2) operations (see Note 1). Multiplications by ζ−j are
done by seeing the elements of k[ζ] as polynomials in x over Fq(ζ), thus performing
r multiplications modulo h, at a cost of O(rM(s)) operations. Given that the total
depth of the recursion is O(log(r)), we obtain the stated bound. �

Second solution: automorphism evaluation. We use Eq. (6) and Eq. (3) to

compute θa as θa = b̂ ◦ ĝ(a).

Proposition 9. Given a ∈ k, the value θa in Eq. (5) can be computed using

O(r(ω2−4ω−1)/(ω−5) + (s+ r2/(5−ω))M(r) log(q))

operations in Fq.
Proof. We proceed in two steps. We first compute ĝ(a) using the automorphism
evaluation algorithm of Kaltofen and Shoup [23, Algorithm AE], at a cost of
O(r(ω+1)/2+(3−ω)|β−1/2|+r(ω+1)/2+(1−β)(ω−1)/2+rβM(r) log(q)), for any 0 ≤ β ≤ 1.
Choosing β = 2/(5 − ω) minimizes the overall runtime, giving the exponents re-
ported above.

We then use Eq. (3) to compute θa =
∑s−1
i=0 ai ⊗ ζi, where as−1 = ĝ(a), and

ai−1 = σ(ai)+hiĝ(a). The cost of this computation is dominated by the evaluations
of σ, which take O(M(r) log(q)) operations each, thus contributing O(sM(r) log(q))
total operations. �

Third solution: multipoint evaluation. Finally, we can compute all the values
σ(a), . . . , σr−1(a) directly, write θa as a polynomial in x and ζ of degree r − 1 in
both variables, and reduce modulo h for each power xi.

Proposition 10. Given a ∈ k, the value θa in Eq. (5) can be computed using

O(M(r2) log(r) + M(r) log(q))

operations in Fq.
Proof. The values σ(a), . . . , σr−1(a) can be computed by binary powering using
O(rM(r) log(q)). We can do slightly better using the iterated Frobenius technique of
von zur Gathen and Shoup [44, Algorithm 3.1] (see also [42, Ch. 14.7]), which costs
of O(M(r2) log(r) + M(r) log(q)) operations. The final reduction modulo h costs
O(rM(r) log(r)) operations, which is negligible in front of the previous step. �

The following proposition summarizes our analysis. To clarify the order of mag-
nitude of the exponents, let us assume q = O(1) and neglect polylogarithmic fac-
tors; then, if ω = 2.38 (best bound to date), the runtimes are O(s0.69r1.69) for

s ∈ O(r0.23), O(r1.85 + s1.38r) for s ∈ Ω(r0.23) and s ∈ O(r0.72), and Õ(r2) other-
wise. For ω = 3, all costs are at best quadratic.



16 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

Proposition 11. Given k,K of degree r over Fq, assuming that s is the order of
q in (Z/rZ)×, Algorithm 3 computes its output using

• O(s(ω−1)/2r(ω+1)/2 log(r) + M(r) log(q)) expected operations in Fq if s ∈
O(r(ω−3)/(ω−5)), or

• O(r(ω2−4ω−1)/(ω−5)+(s+r2/(5−ω))M(r) log(q)+sω−1r log(r) log(s)) expected
operations in Fq if if s ∈ Ω(r(ω−3)/(ω−5)) and s ∈ O(r1/(w−1)), or

• O(M(r2) log2(r) + M(r) log(r) log(q)) expected operations in Fq otherwise.

Proof. The cost of factoring the r-th cyclotomic polynomial is an expected
O(M(r) log(rq)) operations in Fq, using [40, Theorem 9]. This is negligible com-
pared with other steps. The solutions θ1, θ2 to Hilbert’s theorem 90 are computed
as described above, according to the size of s. The powers θr1, θ

r
2 are computed us-

ing Kronecker substitution in O(M(sr) log(r)) operations, which is also negligible.
Finally, the cost of computing an r-th root in Fq(ζ) is given by Proposition 4 and
can not be neglected.

Combining the costs coming from the solution to Hilbert’s theorem 90 and the
r-th root extraction, we obtain the following complexities according to s.

• If we use the algorithm described in our first solution, combining Propo-
sition 8 with the first case of Proposition 4, we obtain an estimate of
O(s(ω−1)/2r(ω+1)/2 log(r) + M(r) log(q)) operations.

• If we use the algorithm described in our second solution, combining
Proposition 9 with the first case of Proposition 4, we obtain an estimate

of O(r(ω2−4ω−1)/(ω−5) + (s + r2/(5−ω))M(r) log(q) + sω−1r log(r) log(s) +
M(rs) log(r) log(s)) operations.

• Otherwise, we use the algorithm described in our third solution. Combining
Proposition 10 with the second case of Proposition 4, and replacing s with r
everywhere, we obtain an estimate of O(M(r2) log2(r) +M(r) log(r) log(q))
expected operations.

For s ∈ O(r(ω−3)/(ω−5)), the first solution has the better runtime. Assum-
ing s ∈ Ω(r(ω−3)/(ω−5)), the runtime in the second case can be written as

O(r(ω2−4ω−1)/(ω−5) + (s + r2/(5−ω))M(r) log(q) + sω−1r log(r) log(s)). If in addi-
tion s is in O(r1/(w−1)), this runtime is subquadratic, that is, better than that in
our third solution. �

3.2. The Artin–Schreier case. This section is devoted to the case r = pd for
some positive integer d. The technique we present here originates in Adleman
and Lenstra’s work [1, Lemma 5], and appears again in Lenstra’s [28] and Al-
lombert’s [2]. The chief difference with previous work once again consists in re-
placing linear algebra with a technique to solve the additive version of Hilbert’s
theorem 90 similar to the one in the previous section. Recently, Narayanan [33,
Sec. 4] independently described a related variant with a similar complexity.

The idea is to build a tower inside the extension k/Fq using polynomials of the
form Xp −X − a where a ∈ k. To start, let a1 ∈ Fq be such that TrFq/Fp

(a1) 6= 0.
Let σ ∈ Gal(Fq/Fp) be a generator of the Galois group. Then by the additive
version of Hilbert’s theorem 90 there is no element α ∈ Fq such that σ(α)−α = a1.
Equivalently, the polynomial f1 = Xp −X − a1 has no root in Fq. By the Artin–
Schreier theorem in [25, Ch VI] f1 is irreducible over Fq. For a root α1 ∈ k of f1

the extension Fq(α1)/Fq is of degree p. Now let a2 = a1α
p−1
1 . Then by [1, Lemma



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 17

5] the polynomial f2 = Xp−X−a2 is irreducible over Fq(α1). So, for a root α2 ∈ k
of f2 the extension Fq(α2, α1)/Fq(α1) is of degree p. Continuing the above process
we build a tower

(8) Fq ⊂ Fq(α1) ⊂ · · · ⊂ Fq(α1, · · · , αd) = k.

The idea of building such tower using the Artin–Schreier polynomials fi can also be
found in [28, 2, 39]. By construction, αi /∈ Fq(α1, · · · , αi−1) for all 1 ≤ i ≤ d. This
means that the minimal polynomial of αd over Fq is of degree r = pd. Therefore,
k = Fq(αd), and the element αd is uniquely defined up to Fq-isomorphism.

The above construction boils down to computing a root of the polynomial f =
Xp − X − a ∈ k[X]. We now show how to efficiently compute such a root. By
construction, a is always in an intermediate subfield Fq ⊆ k′ ⊂ k. This means

Trk/Fp
(a) = Trk′/Fp

(Trk/k′(a)) = Trk′/Fp
(pia) = 0

for some i > 0. By Hilbert’s theorem 90 there exists α ∈ k such that α−σ(α) = −a
for a generator σ ∈ Gal(k/Fp). In other words, αp − α − a = 0. Therefore, α is a
root of f . On the other hand, for a random element θ ∈ k with nonzero trace, α
can be explicitly set as

(9) α =
1

Tr(θ)
[aσ(θ) + (a+σ(a))σ2(θ) + · · ·+ (a+σ(a) + · · ·+σrt−2(a))σrt−1(θ)]

where t = [Fq : Fp]. To compute α using Eq. (9) efficiently, we define

ξi = σi(x), βi(u) = u+σ(u)+· · ·+σi−1(u), αi(v) = β1(a)σ(v)+· · ·+βi(a)σi(v).

A simple calculation gives

αj+k(v) = αj(v) + σj(αk(v)) + βj(a)σj+1(βk(v)).

From these we can extract the following recursive relations:

ξj =

{
σj/2(ξj/2) j even

σ(ξj−1) j odd
,

βj(u) =

{
βj/2(u) + σj/2(βj/2(u)) j even

u+ σ(βj−1(u)) j odd
,

αj(v) =

{
αj/2(v) + σj/2(αj/2(v)) + βj/2(a)σj/2+1(βj/2(v)) j even

α1(v) + σ(αj−1(v)) + aσ2(βj−1(v)) j odd

Thus, the values Tr(θ) = βrt(θ), and α = βrt(θ)
−1αrt(θ) can be computed recur-

sively, inO(log(rt)) steps. At step j of the recursive algorithm, ξj , βj(a), βj(θ), αj(θ)
are computed. As before, the action of σj is the same as composing with ξj . So
each step of the recursion is dominated by O(1) modular compositions over Fq at

the cost of O(r(ω+1)/2) operations in Fq. The initial value of ξ1 = xq is computed
using O(M(r) log(q)) operations in Fq. Therefore, the cost of computing a root of

f is O(r(ω+1)/2 log(rt) + M(r) log(q)) operations in Fq.
Now, to compute αd in Eq. (8) we need to take d roots where d ∈ O(log(r)/ log(p))

which leads to the following result. (Note that ξ1 is computed only once and reused
thereafter.)



18 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

Proposition 12. Let r = pd for a positive integer d, and let t = [Fq : Fp]. An
isomorphism of two extensions k/Fq, K/Fq of degree r can be constructed using

O(r(ω+1)/2 log(rt) log(r) + M(r) log(q)) operations in Fq.

3.3. High-degree prime powers. We end this section with an algorithm that is
particularly efficient when the extension degree r is a high-degree prime power. Al-
lombert’s algorithm works well in this case, however its complexity depends linearly
on the order s of q modulo r. If r = vd for some prime v 6= p, it is natural to seek an
algorithm which depends on the order of q modulo v instead. The idea we present
is a variation on Lenstra’s algorithm, using successive v-th root extractions. We
are not aware of this algorithm appearing anywhere in the literature. We also note
that Narayanan [33, Sec. 5] recently published a radically different generalization of
Allombert’s algorithm with a very similar complexity in r (his algorithm has much
worse complexity in q, though).

An overview of our construction is as follows. Let r = vd where v 6= p is a prime
and d is a positive integer. Suppose the extension k/Fq is of degree r. Let s be the
order of q in Z/vZ, and write qs − 1 = uvt where gcd(v, u) = 1. We first move to
cyclotomic field extensions Fq(ζ), k(ζ),K(ζ) of degree s over Fq, k,K respectively,
by obtaining an irreducible factor of the v-th cyclotomic polynomial over Fq. Then
we obtain a random non-v-adic residue η ∈ Fq(ζ).

We have [k(ζ) : Fq(ζ)] = r, so we can compute an r-th root θ of η in k(ζ)
using d successive v-th root extractions in k(ζ). Therefore, θ is a generator for the
unique subgroup of k(ζ)∗ of order vd+t. Then the constant term α of θ is such
that k = Fq(α). Doing the same in K yields an element β ∈ K such that the map
α 7→ β defines an isomorphism. The main difficulty in applying such an algorithm
resides in computing efficiently v-th roots in k(ζ), for which we use Proposition 5;
this yields the main result of this section.

Theorem 13. Let r = vd where v 6= p is a prime and d is a positive integer. Also let
s be the order of q in Z/vZ. Given extensions k/Fq, K/Fq of degree r, an embedding

k ↪→ K can be constructed at the cost of an expected O(s(ω−1)/2r(ω+1)/2 log(r)2 +
sM(r) log(r) log(q) operations in Fq.

Proof. We can construct the embedding of Theorem 13 as follows. We first build
the extensions k(ζ)/Fq(ζ) and K(ζ)/Fq(ζ). Let η be a non-v-adic residue in Fq(ζ).
Then η is an r-power in k(ζ) and K(ζ). To obtain r-th roots θ1 ∈ k, θ2 ∈ K of η
we take d successive v-th roots.

Algorithm 4 Kummer-type algorithm for extension towers

Input: Extensions k/Fq K/Fq of degree prime-power r = vd, with v 6= p.
Output: The description of a field embedding k ↪→ K.

1. Factor the v-th cyclotomic polynomial over Fq to build the extensions k(ζ)/Fq(ζ)
and K(ζ)/Fq(ζ);

2. Find a random non-v-adic residue η ∈ Fq(ζ);
3. Compute r-th roots θ1, θ2 of η in k(ζ),K(ζ);
4. Let α, β be the constant terms of θ1, θ2 respectively;
5. return The field embedding defined by α 7→ β.

Step 1 is done using [40, Theorem 9], which takes O(M(v) log(vq)) operations in
Fq. We do Step 2 by taking random elements in Fq(ζ) until a non-v-adic residue

is found. Testing v-adic residuosity of η amounts to computing η(qs−1)/v in Fq(ζ),



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 19

which can be done in O(s(ω−1)/2 log(s)+M(s) log(v) log(s)+M(s) log(q)) operations
in Fq, in view of our discussion in Section 2.

Step 3 is done using d = O(log(r)/ log(v)) successive root extractions, each
of which takes an expected O(s(ω−1)/2r(ω+1)/2 log(r) + sM(r) log(q)) operations
in Fq. Therefore Algorithm 4 runs in an expected O(s(ω−1)/2r(ω+1)/2 log(r)2 +
sM(r) log(r) log(q) operations in Fq. �

4. Rains’ algorithm

We now move on to a different family of algorithms based on the theory of
algebraic groups. The simplest of these is Pinch’s cyclotomic algorithm [36]. The
idea is very simple: given r, select an integer ` such that [Fq(µ`) : Fq] = r, where
µ` is the group of `-th roots of unity. Then, any embedding k → K takes µ` ⊂ k∗

to µ` ⊂ K∗, and the minimal polynomial of any primitive `-th root of unity has
degree exactly r.

Pinch’s algorithm is very effective when r = ϕ(`). Indeed in this case the `-th
cyclotomic polynomial Φ` is irreducible over Fq, and its roots form a unique orbit
under the action of the absolute Galois group of Fq. Thus we can take any primitive
`-th roots of unity α ∈ k and β ∈ K to describe the embedding.

In the general case, however, the roots of Φ` are partitioned in ϕ(`)/r orbits,
thus for two randomly chosen `-th roots of unity ζ1 ∈ k and ζ2 ∈ K, we can only
say that there exists an exponent e such that

α = ζ1 7→ ζe2 = β

defines a valid embedding. Pinch’s algorithm tests all possible exponents e, until a
suitable one is found. To test for the validity of a given e, it applies the embedding
φ : ζ1 7→ ζ2 to the class of X in k, and verifies that its image is a root of f in K.

The trial-and-error nature of Pinch’s algorithm makes it impractical, except for
rare favorable cases where a small ` such that r = ϕ(`) can be found. One possible
workaround, suggested by Pinch himself, is to replace the group of roots of unity
with a group of torsion points of a well chosen elliptic curve. We analyze this idea
in greater detail in Section 5.

This section is devoted to a different way of improving Pinch’s algorithm, imag-
ined by Rains [38], and implemented in the Magma computer algebra system [4].
Rains’ technical contribution is twofold: first he replaces roots of unity with Gauss-
ian periods to avoid trial-and-error, second he moves to slightly larger extension
fields to ensure the existence of a small ` as above.

4.1. Uniquely defined orbits from Gaussian periods. For the rest of the
section, we are going to assume that q is prime. The case where q is a higher power
of a prime is discussed in Note 18.

Suppose that we have an `, coprime with q, such that [Fq(µ`) : Fq] = r, then the
cyclotomic polynomial Φ` factors over Fq into ϕ(`)/r distinct factors of degree r.
Pinch’s method, by choosing random roots of Φ` in k and K, randomly selects one
of these factors as minimal polynomial. By combining the roots of Φ` into Gaussian
periods, Rains’ method uniquely selects a minimal polynomial of degree r.

Definition 14. Let q be a prime, and let ` be a squarefree integer such that
(Z/`Z)× = 〈q〉 × S for some S. For any generator ζ` of µ` in Fq(µ`), define the



20 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

Gaussian period ηq(ζ`) as

(10) ηq(ζ`) =
∑
σ∈S

ζσ` .

It is evident from the definition that the Galois orbit of ηq(ζ`) is independent of
the initial choice of ζ`. Much less evident is the fact that this orbit has maximal
size and forms a normal basis of Fq(µ`), as stated in the following lemma.

Lemma 15. Let q be a prime, and let ` be a squarefree integer such that (Z/`Z)× =
〈q〉 × S for some S. The periods ηq(ζ

τ
` ) for τ running through 〈q〉 form a normal

basis of Fq(µ`) over Fq, independent of the choice of ζ`.

Proof. See [17, Main Theorem]. The main idea of the proof is to show that cyclo-
tomic units are normal in characteristic zero, then that integrality conditions carry
normality through reduction modulo q. �

In what follows we are going to write η(ζ`) when q is clear from the context.

Example 16. Consider the extension F8/F2 of degree 3, which is generated by
the 7-th roots of unity. We have a decomposition (Z/7Z)× = 〈2〉 × 〈−1〉, and the
cyclotomic polynomial factors as

(11) Φ7(X) = (X3 +X + 1)(X3 +X2 + 1).

For any root ζ7, we define the period

(12) η2(ζ7) = ζ7 + ζ−1
7 .

The three periods η2(ζ7), η2(ζ7)2 and η2(ζ7)4 are all roots of the polynomial x3 +
x2 + 1 and form a normal basis of F8/F2.

4.2. Rains’ cyclotomic algorithm. The bottom-line of Rains’ algorithm follows
immediately from the previous section: given k, K and r,

(1) find a small ` satisfying the conditions of Lemma 15 with [Fq(µ`) : Fq] = r;
(2) take random `-th roots of unity ζ` ∈ k and ζ ′` ∈ K;
(3) return the Gaussian periods αr = η(ζ`) and βr = η(ζ ′`).

The problem with this algorithm is the vaguely defined smallness requirement
on `. Indeed the conditions of Lemma 15 imply that ` divides Φr(q), thus in the
worst case ` can be as large as O(qϕ(r)), which yields an algorithm of exponential
complexity in the field size.

To circumvent this problem, Rains allows the algorithm to work in small auxiliary
extensions of k and K, and then descend the results to k and K via a field trace.
In other words, Rains’ algorithm looks for ` such that [Fq(µ`) : Fq] = rs for some
small s. We summarize this method in Algorithm 5; we only give the procedure for
the field k, the procedure for the field K being identical.

Algorithm 5 Rains’ cyclotomic algorithm

Input: A field extension k/Fq of degree r; a squarefree integer ` such that

• (Z/`Z)× = 〈q〉 × S for some S,
• #〈q〉 = rs for some integer s;

a polynomial h of degree s irreducible over k.
Output: A normal generator of k over Fq, with a uniquely defined Galois orbit.

1. Construct the field extension k′ = k[Z]/h(Z);
2. repeat



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 21

3. Compute ζ ← θ(#k′−1)/` for a random θ ∈ k′
4. until ζ is a primitive `-th root of unity;
5. Compute η(ζ)←∑

σ∈S ζ
σ;

6. return α← Trk′/k η(ζ) =
∑s−1
i=0 η(ζ)q

ri

.

Proposition 17. Algorithm 5 is correct. On input q, r, `, s it computes its output
using O(sr(ω+1)/2 log(sr)+M(sr)(log(q)+(`/r) log(`))) operations in Fq on average.

Proof. By construction k′ is isomorphic to Fq(µ`). By Lemma 15 η(ζ) is a normal
generator of k′, and by [32, Prop. 5.2.3.1] α is a normal generator of k. This proves
correctness.

According to Proposition 2, computing ζ in Step 3 costs

O
((
s(ω+1)/2M(r) + sr(ω+1)/2 + M(sr) log(`)

)
log(sr) + M(sr) log(q)

)
,

and the loop is executed O(1) times on average. By observing that s(ω−1)/2 ∈
O(`/r), this fits into the stated bound.

Steps 5 and 6 can be performed at once by observing that

α =

s−1∑
i=0

η(ζq
ri

) =

s−1∑
i=0

∑
σ∈S

ζq
riσ.

By reducing qriσ modulo `, we can compute this sum at the cost of ϕ(`)/r expo-
nentiations of degree at most ` in k′, for a total cost of O((M(sr)(`/r) log(`)), using
the techniques of Section 2. The final result is obtained as an element of k. �

The attentive reader will have noticed the irreducible polynomial h of degree
s given as input to Rains’ algorithm. Computing this polynomial may be expen-
sive. For a start, we may ask s to be coprime with r, so that h can be taken
with coefficients in Fq. Then, for small values of s and q, one may use a table of
irreducible polynomials. For larger values, the constructions [12, 13, 14] are rea-
sonably efficient, and yield an irreducible polynomial in time less than quadratic
in s. However negligible from an asymptotic point of view, the construction of the
polynomial h and of the field k′ take a serious toll on the practical performances of
Rains’ algorithm.3

This concludes the presentation of Rains’ algorithm. However, we are still left
with a problem: how to find ` satisfying the conditions of the algorithm, and what
bounds can be given on it. These questions will be analyzed in Section 6.

Note 18. Rains’ algorithm is easily extended to a non-prime field Fq, as long as
q = pd with gcd(d, r) = 1. In this case, indeed, any generator of Fpr over Fp is also
a generator of Fqr over Fq. The algorithm is unchanged, except for the additional
requirement that gcd(ϕ(`), d) = 1, which ensures that the Gaussian periods indeed
generate Fpr .

However, when gcd(d, r) 6= 1, it is impossible to have (Z/`Z)× = 〈q〉 × S, so
Rains’ algorithm simply cannot be applied to this case. In the next section we are
going to present a variant that does not suffer from this problem.

3 A straightforward way to avoid these constructions consists in computing a factor h of the

cyclotomic polynomial Φ` over the extension k following case 5 from Section 2.1. Then, using
Newton’s identities, the period can be recovered from the logarithmic derivative of the reciprocal

of h. Nevertheless, the cost of factoring Φ` renders this approach unpractical.



22 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

5. Elliptic Rains’ algorithm

The Pinch/Rains’ algorithm presented in the previous section relies on the use
of the multiplicative group of finite fields. It is natural to try to extend it to other
types of algebraic groups in order to cover a wider range of parameters. And indeed
Pinch [36] showed how to use torsion points of elliptic curves in place of roots of
unity. Rains also considered this possibility, but did not investigate it thoroughly
as no theoretical gain was to be expected. However, the situation in practice is
quite different. In particular, the need for auxiliary extensions in the cyclotomic
method is very costly, whereas the elliptic variant has naturally more chances to
work in the base fields, and to be therefore very competitive.

In the next sections, we first introduce elliptic periods, a straightforward gener-
alization of Gaussian periods for torsion points of elliptic curves, then analyze the
cost of their computation. The main issue with this generalization is that, con-
trary to Gaussian periods, elliptic periods do not yield normal bases of finite fields.
We still provide experimental data and heuristic arguments to support the benefit
of using them. Whether they always yield an element generating the right field
extension, a weak counterpart to Lemma 15, is left as an open problem.

5.1. Uniquely defined orbits from elliptic periods. An elliptic curve E/L
defined over a field L is given by an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 with a1, a2, a3, a4, a6 ∈ L.

For any field extension M/L the group of M -rational points of E is the set

E(M) = {(x, y) ∈M2 | E(x, y) = 0} ∪ {O}

endowed with the usual group law, where O is the point at infinity.
For an integer `, we denote by E[`] the `-torsion subgroup of E(L̄), where L̄

denotes the algebraic closure of L. In this section we are going to consider integers
` coprime with the characteristic of L, then E[`] is a group of rank 2.

For an elliptic curve E/Fq defined over a finite field, we denote by π its Frobenius
endomorphism. It is well known that π satisfies a quadratic equation π2−tπ+q = 0,
where t is called the trace of E, and that this equation determines the cardinality
of E as #E(Fq) = q + 1− t.

Like in the cyclotomic case, the Frobenius endomorphism partitions E[`] into
orbits. Our goal is to take traces of points in E[`] so that a uniquely defined orbit
arises. This task is made more complex by the fact that E[`] has rank 2, hence we
are going to restrict to a family of primes ` named Elkies primes.

Definition 19 (Elkies prime). Let E/Fq be an elliptic curve, let ` be a prime
number not dividing q. We say that ` is an Elkies prime for E if the characteristic
polynomial of the Frobenius endomorphism π splits into two distinct factors over
Z/`Z:

(13) π2 − tπ + q = (π − λ)(π − µ) mod ` with λ 6= µ.

Note that if ` is an Elkies prime for E, then E[`] splits into two eigenspaces for
π which are defined on extensions of Fq of degrees ord`(λ) and ord`(µ). We are
now ready to define the elliptic curve analogue of Gaussian periods.



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 23

Definition 20. Let E/Fq be an elliptic curve of j-invariant not 0 or 1728.4 Let
` > 3 be an Elkies prime for E, λ an eigenvalue of π, and P a point of order ` in
the eigenspace corresponding to λ (i.e., such that π(P ) = λP ). Suppose that there
is a subgroup S of (Z/`Z)× such that

(14) (Z/`Z)× = 〈λ〉 × S.
Then we define an elliptic period as

(15) ηλ,S(P ) =

{∑
σ∈S/{±1} x ([σ]P ) if −1 ∈ S,∑
σ∈S x ([σ]P ) otherwise,

where x(P ) denotes the abscissa of P .

Lemma 21. With the same notation as in Definition 20, let

#〈λ〉 =

{
r if −1 /∈ 〈λ〉,
2r otherwise.

Then, for any point P in the eigenspace of λ, the period ηλ,S(P ) is in Fqr , and its
minimal polynomial does not depend on the choice of P .

Proof. By construction, the Frobenius endomorphism π acts on 〈P 〉 as multiplica-
tion by the scalar λ. It is well known that two points have the same abscissa if and
only if they are opposite, hence the Galois orbit of x(P ) has size r, and we conclude
that both x(P ) and ηλ,S(P ) are in Fqr .

Now let P ′ = [a]P be another point in the eigenspace of λ. By construction,
a = ±λiσ, for some 0 ≤ i < r and some σ ∈ S. Hence ηλ,S(P ′) = ηλ,S([λi]P ),
implying that ηλ,S(P ) and ηλ,S(P ′) are conjugates in Fqr . �

We remark that the previous lemma only states that the elliptic periods ηλ,S([λi]P )
uniquely define an orbit inside Fqr , but gives no guarantee that they generate the
whole Fqr . At this point, one would like to have an equivalent of Lemma 15 for ellip-
tic periods, i.e. that the elliptic period ηλ,S(P ) is a normal generator of Fq(x(P )).
However, it is easy to find non-normal elliptic periods, as the following example
shows.

Example 22. Let E/F7 be defined by y2 = x3 + 5x + 4, and consider the degree
3 extension of F7 defined by k = F7[X]/(X3 + 6X2 + 4). Then

• ` = 31 is an Elkies prime for E;
• the eigenvalues of the Frobenius modulo ` are λ = 25 of multiplicative order

3 and µ = 4 of multiplicative order 5;
• P = (5a2 + 2a, 4) is a point of order 31 of E/k;
• η = ηλ,S(P ) = 5a2+5a+4 is not a normal element, indeed η+4η7+2η49 = 0.

All well known proofs of Lemma 15 rely on the fact that the `-th cyclotomic
polynomial is irreducible over Q, and its roots form a normal basis of Q(ζ`). This
fails in the elliptic case: there is indeed no guarantee that the eigenspace of λ can
be lifted to a normal basis over some number field.

4The definition is easily extended to include j = 0, 1728: one must quotient S by Aut(E) ∩ S
and raise summands to an appropriate power.



24 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

Note however that, even if the elliptic period is not normal, it is enough for our
purpose that it generates Fq(x(P )) as a field, like in the example above. Experi-
mental evidence suggests that this might always be the case. Thus, we state this
as a conjecture.

Conjecture 23. With the above notation, the elliptic period ηλ,S(P ) generates
Fq(x(P )) over Fq.

If the conjecture is false, the only arguments we can give are of a heuristic
nature. First and most simply, we can assume that the elliptic period behaves like
a random element of Fq(x(P )). In this case the chance of it not being a generator
is approximately 1/qr. Based on this observation, numerous experiments were
conducted for small values of q and r either by sampling random curves over Fq or
through more involved methods using modular curves, but no counterexample was
found. Secondly, based on the polynomially cyclic algebras setting of [29], one can
give a sufficient condition for the period to be a normal generator of Fq(x(P )), that
is a weak counterpart to Lemma 15. Heuristically, this suggests that the chance of
the period not being normal is approximately 1/q.

We are now ready to present the generalization of Rains’ algorithm, with the
warning that the algorithm may fail, with low probability, if Conjecture 23 is false.

5.2. Elliptic variant of Rains’ algorithm. Rain’s cyclotomic algorithm needs
auxiliary extensions to accommodate for sufficiently small subgroups µ` of the unit
group. By replacing unit groups with torsion groups of elliptic curves, we gain
more freedom on the choice of the size of the group, thus we are able to work with
smaller fields.

The algorithm is very similar to Algorithm 5, and follows immediately from the
previous section. For simplicity, we are going to state it only for r odd. Given k,
K and r,

(1) find a prime `, an elliptic curve E, and an eigenvalue λ of the Frobenius
endomorphism, satisfying the conditions of Definition 20, and such that
ord`(λ) = r;

(2) take random points P ∈ E(k)[`] and P ′ ∈ E(K)[`] in the eigenspace of λ;
(3) return the elliptic periods α := ηλ,S(P ) and β := ηλ,S(P ′).

Here we are faced with a difficulty: given E and λ it is easy to pick a random
point in E[`], but it is potentially much more expensive to compute a point in the
eigenspace of λ. We will circumvent the problem by forcing E(Fqr )[`] to be of rank
1, and to coincide exactly with the eigenspace of λ. If we write µ = q/λ for the
other eigenvalue of π, this is easily ensured by further asking that ord`(µ) - r.

We defer the discussion on the search for the elliptic curve E to Section 6. Here
we suppose that we are already given suitable parameters `, E and λ, and analyze
the last two steps of the algorithm, summarized below. We only give the procedure
for k, the procedure for the field K being identical.

Algorithm 6 Elliptic Rain’s algorithm

Input: A field extension k/Fq of odd degree r, an elliptic curve E/Fq, its trace t,
a prime ` not dividing q, an integer λ such that:

• X2 − tX + q = (X − λ)(X − q/λ) mod `,
• ord`(λ) = r, ord`(q/λ) - r,
• (Z/`Z)× = 〈λ〉 × S for some S.



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 25

Output: A generator of k over Fq, with a uniquely defined Galois orbit, or FAIL.
1. repeat
2. Compute P ← [#E(k)/`]Q for a random Q ∈ E(k);
3. until P 6= O;
4. Compute α← ηλ,S(P );
5. return α if k = Fq(α), FAIL otherwise.

Proposition 24. Algorithm 6 is correct. Assuming the heuristics about elliptic
periods are correct, it fails with probability ≤ 1/qr. On input r, q, E, t, `, λ it com-
putes its output using O(M(r)(r log(q) + (`/r) log(`)) operations in Fq on average,

or Õ(r2 log(q)) assuming ` ∈ o(r2).

Proof. Correctness follows immediately from Lemma 21. Success probability comes
from the assumption that ηλ,S(P ) behaves like a random element of Fq(x(P )).

From the knowledge of the trace t, we immediately determine the zeta function
of E, and hence the cardinality #E(k), at no algebraic cost.

To select the random point Q ∈ E(k) we take a random element x ∈ k, then
we verify that it is the abscissa of a point using a squareness test, at a costs of
O(rM(r) log(q)) operations. Then, using Montgomery’s formulas for scalar multi-
plication [31], we can compute the points P and [`]P without the knowledge of the
ordinate of Q, at a cost of O(rM(r) log(q)) operations. A valid point is obtained
after O(1) tries on average.

The computation of the elliptic period α requires O(`/r) scalar multiplications
by an integer less than `, for a total cost of O((M(r)(`/r) log(`)).

Finally, testing that α generates k is done by computing its minimal polynomial,
at a cost of O(r(ω+1)/2) operations in Fq using [39]. �

6. Algorithm selection

The algorithms presented in the previous sections have very similar complexities,
and no one stands out as absolute winner. The complexity of all algorithms depends
in a non-trivial way on the parameters q and r, and, for Rains’ algorithms, on the
search for a parameter ` and an associated elliptic curve.

This section studies the complexity of the embedding description problem from
a global perspective: we explain how to find parameters for Rains’ algorithms and
criteria to choose the best among the embedding algorithms.

Given parameters q = pd and r, Rains’ cyclotomic algorithm asks for a small
parameter ` such that:

(1) (Z/`Z)× = 〈q〉 × S for some S,
(2) 〈q〉 = rs for some integer s,
(3) gcd(ϕ(`), d) = 1 (see Note 18).

Since r is a prime power, the second condition lets us take a prime power for `
too. Indeed if Z/`Z ' Z/`1Z×Z/`2Z, then either q mod `1 or q mod `2 has order a
multiple of r. Furthermore, if gcd(`, r) = 1, then we can take ` prime, since higher
powers would not help satisfy the conditions. On the other hand if gcd(`, r) 6= 1,
then the algorithms of Section 3 have much better complexity. Hence we shall take
` prime.

Given the above constraints, we can rewrite the conditions as:

(1) ` = rsv + 1 for some s, u such that gcd(rs, v) = 1,
(2) ord`(q) = rs,



26 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

(3) gcd(rsv, d) = 1.

Remark. Rains remarked that, when q = 2 and r is a power of 2 greater than 4,
no ` can satisfy these constraints because 2 is a quadratic residue modulo any prime
of the form 8u+ 1. This case, however, is covered by the Artin–Schreier technique
in Section 3.2, we thus ignore it.

In the elliptic algorithm we look for an integer ` and a curve E/Fq that satisfy
the preconditions of Algorithm 6, i.e., such that

(1) the Frobenius endomorphism π satisfies a characteristic equation

(π − λ)(π − µ) = 0 mod `,

(2) (Z/`Z)× = 〈λ〉 × S for some S,
(3) #〈λ〉 = r, and
(4) µr 6= 1 mod `.

As before, we only need to look at prime `. Because µ = q/λ, the last condition
is equivalent to qr 6= 1 mod `. Hence, we can restate the conditions on ` as

(1) ` = ru+ 1 for some u such that gcd(r, u) = 1,
(2) qr 6= 1 mod `.

Once ` is found, we compile a list of acceptable traces

T = {λ+ q/λ mod ` | ord`(λ) = r},
and look for a random curve with trace in T . Note, however, that for there to be
such a curve, t must have a representative in the interval [−2

√
q, 2
√
q]. In order

to have a good chance of finding such curves, we are going to set an even more
stringent bound ` ∈ o( 4

√
q). Indeed, although it is well known that traces are not

evenly distributed modulo prime numbers [27], it is shown in [10, Th. 1] that the
probability that the trace of a random curve is in T approaches |T | /` ∼ r/`, as `
and q go to infinity, subject to ` ∈ o( 4

√
q).

We thus have a procedure to produce parameters for Rains’ algorithms: test
integers of the form ` = ur + 1 for increasing u, until a suitable one is found.
The procedure is relatively efficient: the cost in r is negligible compared to that of
actually computing the isomorphism. On the other hand, the cost in q is relatively
high, because of the need to count points of many random curves defined over Fq,
thus the elliptic variant may only be useful for not too large q.

Nevertheless, we are left with a question: when does the procedure stop? It is not
easy to give a precise answer: already the condition that ` = ur + 1 is prime poses
some difficulties. Heuristically, we expect that about u/ log(u) of those numbers
are prime. However the best lower bound on primes of the form ` = ur + 1, even
under GRH, is ` ∈ O(r2.4+ε) [20]. Empirical data show that the reality is much
closer to the heuristic bound: in Figure 1 we plot for all prime powers r < 108 the
smallest u such that ur + 1 is prime. It appears that u is effectively bounded by
O(log(r)) for any practical purpose.

For the cyclotomic algorithm we also require that ord`(q) is a multiple of r.
Assuming that q is uniformly distributed5 in (Z/`Z)×, its order is exactly ` − 1
with probability (` − 1)/`, hence we can assume that asymptotically ord`(q) ∈
O(`) = O(r log(r)). Similar considerations can be made for the elliptic algorithm,

5This assumption is obviously false for any fixed q, but it is a good enough approximation in
practice.



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 27

100 101 102 103 104 105 106 107 108

50

100

150

200

250 degree 3 polynomial regression

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Figure 1. Prime powers r (abscissa) versus smallest integer u
(ordinate) such that ur+ 1 is prime. Abscissa in logarithmic scale,
density normalized by log(x)/x and colored in logarithmic scale.

assuming that ` ∈ o( 4
√
q). Finally, we must also take into account the possibility

that the elliptic algorithm fails. Under the heuristics about the random distribution
of elliptic periods, this possibility only discards one in O(qr) curves, and is thus
negligible.

Summarizing, we can expect heuristically to find a ` ∈ O(r log(r)) that satisfies
all the constraints for the cyclotomic algorithm, leading to an expected running time
of Õ(r(ω+1)/2+M(r) log(q)) operations in Fq. Similarly, if we assume that r log(r) ∈
o( 4
√
q), we can expect to find suitable parameters for the elliptic algorithm, leading

to an expected running time of Õ(r2 log(q)) operations in Fq.
Although the complexity of the cyclotomic algorithm looks better, it must not

be neglected that the Õ notation hides the cost of taking an auxiliary extension
of degree O(log(r)); whereas the elliptic algorithm, when it applies, does not incur
such overhead. The impact of the hidden terms in the complexity can be extremely
important, as we will show in the next section.

The same considerations also apply when comparing Rains’ algorithms to Al-
lombert’s. Indeed, the latter performs extremely well when the degree s of the
auxiliary extension is small, but becomes slower as this degree increases.

In practice, it is hopeless to try and determine the appropriate bounds for each
algorithm from a purely theoretical point of view. The best approach we can
suggest, is to determine parameters at runtime, and set bounds and thresholds
experimentally. To summarize, given parameters q and r, we suggest the following
approach:

(1) If gcd(q, r) 6= 1, run the Artin–Schreier algorithm of Section 3.2.
(2) If r is a power of a small prime v, run the algorithm of Section 3.3.
(3) Determine the order s of q in (Z/rZ)×. If it is small enough, run one of

the variants of Allombert’s algorithm presented in Section 3.
(4) Search for suitable parameters for Rains’ algorithms. Depending on the best

parameters found, run the best option among Rains’ cyclotomic algorithm,
Rains’ elliptic algorithm, and Allombert’s algorithm.

In the next section we shall focus on the last two steps, by comparing our im-
plementations of the algorithms involved, thus giving an estimate of the various
thresholds between them. However we stress that these thresholds are bound to



28 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

vary depending on the implementation and the target platform, thus it is the imple-
menter responsibility to determine them at the moment of configuring the system.

7. Experimental Results

To validate our results, we implemented the algorithms described in the previ-
ous sections, and compared them to the implementation of Allombert’s algorithm
available in PARI/GP [41], and to that of Rains’ algorithm available in Magma [4].
The variants of Allombert’s algorithm described in Section 3.1 were implemented
in C on top of the Flint library [18]. Rains’ cyclotomic and elliptic algorithms were
implemented in Sage [15] (which itself uses PARI and Flint to implement finite
fields), with critical code rewritten in C/Cython. Our code only handles q prime
and m,n odd.

We ran tests for a wide range of primes q between 3 and 260 + 253, and prime
powers r between 3 and 2069. All tests were run on an Intel(R) Xeon(R) CPU
E5-4650 v2 clocked at 2.40GHz. We report in Figure 2 statistics only on the runs
for 100 < q < 220; other ranges show very similar trends. The source code and the
full datasets can be downloaded at https://github.com/defeo/ffisom.

We start by comparing our implementation of the three variants of Allombert’s
algorithm presented in Section 3.1.3 with the original one in PARI. In Figure 2a we
plot running times against the extension degree r, only for cases where the auxiliary
degree s = ordq(r) is at most 10: dots represent individual runs, continuous lines
represent degree 2 linear regressions. Analyzing the behavior for arbitrary auxiliary
degree s is more challenging. Based on the observation that all variants have
essentially quadratic cost in r, in Figure 2b we take running times, we scale them
down by r2, and we plot them against the auxiliary degree s.

The first striking observation is the extremely poor performance of PARI, espe-
cially as s grows. To provide a fairer comparison, we re-implemented Allombert’s
revised algorithm [3], as faithfully as possible, as described in Section 3.1.2; this
is the curve labeled “Allombert (rev)” in the graphs. For completeness we also
implemented the Paterson-Stockmeyer variant described previously; we do not plot
it here, because it overlaps almost perfectly with our “Divide & conquer” curve.
Although our re-implementations are considerably faster than PARI, it is apparent
that Allombert’s original algorithm does not behave as well as our new variants.

Focusing now on our three new variants presented in Section 3.1.3, one can’t fail
to notice that the second one, named “Automorphism evaluation”, beats the other
two by a great margin, both for small and large auxiliary degree. Although the
“Multipoint evaluation” approach is expected to eventually beat the other variants
as s grows, the cross point seems to be extremely far from the parameters we
explored. However, we notice that the naive variant of “Multipoint evaluation” not
using the iterated Frobenius technique (labeled “Multipoint evaluation (var)” in
the graphs), starts poorly, then quickly catches “Automorphism evaluation” as s
grows.

Now we shift to Rains’ algorithm and its variants. In comparing our implemen-
tation with Magma’s, discarding outliers, we obtain a fairly consistent speed-up of
about 30% (see Figure 3); hence we will compare these algorithms only based on
our timings. In Figure 2c we group runs of the cyclotomic algorithm by the degree
s of the auxiliary extension, and we plot median times against the degree r; only
the graphs for s < 10 are shown in the figure. We observe a very large gap between

https://github.com/defeo/ffisom


COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 29

100 200 300 400 500 600

degree r

0.0

0.5

1.0

1.5

2.0

2.5
se

co
n

d
s

Divide & conquer

Automorphism eval.

Multipoint eval.

Multipoint eval. (var)

PARI/GP

Allombert (rev)

(a) Comparison of various implementa-
tions of Allombert’s algorithm, in the case
where the auxiliary degree s = ordq(r) ≤
10. Dots represent individual runs, lines
represent degree 2 linear regressions.

0 500 1000 1500 2000

order of q mod r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ra
ti

o

Divide & conquer

Automorphism eval.

Multipoint eval.

Multipoint eval. (var)

PARI/GP

Allombert (rev)

r2

(b) Comparison of various implementations
of Allombert’s algorithm, as a function of
the auxiliary degree s = ordq(r). Individ-
ual running times are scaled by down by r2.
Dots represent individual runs, lines repre-
sent degree 2 linear regressions.

22 23 24 25 26 27 28 29

degree r

2−6

2−4

2−2

20

22

24

26

28

se
co

n
d

s

Cyclotomic Rains’

Conic Rains’

Elliptic Rains’

(c) Cyclotomic, conic and elliptic variants
of Rains’ algorithm. Auxiliary extension
degrees s for cyclotomic Rains’ range be-
tween 1 and 9. Lines represent median
times.

21 22 23 24 25 26 27 28 29 210

degree r

2−15

2−13

2−11

2−9

2−7

2−5

2−3

2−1

21

23

25

se
co

n
d

s

Allombert (AE) s ∈ [1, 7]

Allombert (AE) s ∈ [8, 63]

Allombert (AE) s ∈ [64, 511]

Allombert (AE) s ∈ [512, 4095]

Cyclotmic Rains’ s = 1

Conic Rains’

Elliptic Rains’

(d) Comparison of Allombert’s (Automor-
phism evaluation variant) and Rains’ al-
gorithms at some fixed auxiliary exten-
sion degrees s. Lines represent median
times, shaded areas minimum and maxi-
mum times.

Figure 2. Benchmarks for Rains’ and Allombert’s algorithms. q
is a prime between 100 and 220, r is an odd prime power varying
between 3 and 2069. Plots c and d are in doubly logarithmic scale.
Full dataset available at https://github.com/defeo/ffisom.

s = 1 and larger s (s = 2 is 8− 16 times slower). This is partly due to the fact that
we use generic Python code to construct auxiliary extensions, rather than dedicated
C; however, a large gap is unavoidable, due to the added cost of computing in ex-
tension fields. We also plot median times for the elliptic variant and for the conic
variant (see Appendix A). It is apparent that the elliptic algorithm outperforms
the cyclotomic one as soon as s ≥ 3, and that the conic algorithm conveniently

https://github.com/defeo/ffisom


30 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

2−9 2−7 2−5 2−3 2−1 21 23 25 27 29 211

Cyclotomic Rains’ (seconds)

2−8

2−6

2−4

2−2

20

22

24

26

28

210

212

M
ag

m
a

(r
at

io
)

Figure 3. Comparison of our implementation of Rains’ algorithm
and Magma’s. Running time of our implementation in seconds vs
ratio of Magma running time over ours. Plot in doubly logarithmic
scale.

replaces the case s = 2. Thus, at least for the parameter ranges we have tested,
the cyclotomic algorithm with auxiliary extensions seems of limited interest.

Finally, in Figure 2d we compare Rains’ algorithms against Allombert’s. In
light of the excellent performances of the “Automorphism evaluation” variant of
Allombert’s algorithm, we only plot the performances for this variant. We plot,
against the degree r, runs of Allombert’s algorithm grouped by ranges of the aux-
iliary degree ordr(q): we shade the area between minimum and maximum running
times, and trace the median time. We also take from Figure 2c the graphs for the
cyclotomic (only s = 1), the conic and the elliptic variants of Rains’ algorithm. We
notice that Allombert’s algorithm, even with relatively large auxiliary degrees, is
extremely fast; the cyclotomic algorithm only beats it when ordr(q) goes beyond
10 to 50, the conic algorithm only beats extremely large ordr(q), and the elliptic
algorithm is never better. We also observe that Allombert’s algorithm has a better
asymptotic behavior as the degree r grows.

In light of these comparisons, it seems that the absolute winner is our Auto-
morphism evaluation variant of Allombert’s algorithm, with Rains’ cyclotomic al-
gorithm being only occasionally more interesting. Obviously, the comparisons are
only relevant to our own code and test conditions. Other implementations and
benchmarks will likely find slightly different cross-points for the algorithms.

Appendix A. Rain’s conic algorithm

We have seen that Rains’ cyclotomic algorithm suffers in practice from the need
to build a field extension k′ of k. The conic variant we are going to present reduces
the degree of the field extension from s = [k′ : k] to s/2 whenever s is even. This is
especially useful when s = 2, as highlighted in Section 7. The algorithm is similar



COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 31

in spirit to Williams’ p+ 1 factoring method [45], where the arithmetic of the norm
1 subgroup of k′

∗
is performed using Lucas sequences on a subfield of index 2 of k′.

Let F be a finite field of odd characteristic, let ∆ ∈ F be a quadratic non-residue,
let δ be an element of the algebraic closure of F such that δ2 = ∆, and define the
norm 1 subgroup of F[δ]∗ as

T2(F) = {(x+ δy)/2 | x, y ∈ F and x2 −∆y2 = 4};

it is easy to verify that T2(F) forms a group under multiplication. If we see the
elements (x + δy)/2 as points (x, y) on a conic x2 − ∆y2 = 4, the group law of
T2(F) induces a group law on the conic. By projecting onto the x-coordinate, a
straightforward calculation shows that, for any point (θ, ∗) on the conic, its n-th
power has coordinates (θn, ∗), where θn is defined by the Lucas sequence

θ0 = 2, θ1 = θ, θi+1 = θθi − θi−1.

We shall denote by [n] the map θ 7→ θn; notice how it does not depend on the
choice of ∆.

The generalization of Rains’ algorithm is now obvious: by projecting on the x-
coordinate, we work in a field extension twice as small compared to the original
algorithm. This is summarized in Algorithm 7.

Algorithm 7 Rains’ conic algorithm

Input: A field extension k/Fq of degree r; a prime ` such that

• (Z/`Z)× = 〈q〉 × S for some S,
• #〈q〉 = 2rs for some integer s;

a polynomial h of degree s irreducible over k.
Output: A normal generator of k over Fq, with a uniquely defined Galois orbit.

1. Construct the field extension k′ = k[Z]/h(Z);
2. repeat
3. repeat
4. Take a random element θ ∈ k′,
5. until θ2 − 4 is a quadratic non-residue;
6. Compute ζ = [(#k′ + 1)/`]θ,
7. until ζ 6= 2;
8. Compute η(ζ)←∑

σ∈S [σ]ζ;

9. return α← Trk′/k η(ζ) =
∑s−1
i=0 [qri]η(ζ).

Proposition 25. Algorithm 7 is correct: on input q, r, `, s it returns an element in
the same Galois orbit as Algorithm 5 on input q, r, `, 2s. It computes its output using
O(M(sr)(sr log(q) + (`/r) log(`))) operations in Fq on average, or Õ((sr)2 log(q))
assuming ` ∈ o(sr2).

Proof. By construction, all the `-th roots of unity are in T2(k′). Observe that
if (x + δy)/2 is in T2(k′), then its trace over k′ is equal to x. Hence, the value
ζ computed in Step 6 is the trace over k′ of a primitive `-th root of unity. We
conclude by comparing this algorithm with Algorithm 5.

The non-residuosity test in Step 5 is done by verifying that the (#k′ − 1)/2-
th power of θ is equal to −1. We do this in O(sr log(q)) operations in k′, or
O(srM(sr) log(q)) operations in Fq.



32 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

To implement the other steps, we need to evaluate the map [n] efficiently. We
have the following classical relationships for the Lucas sequence of θ:

θ2i = θ2
i − 2, θ2i+1 = θiθi+1 − θ, θ2i+2 = θ2

i+1 − 2.

Starting with θ0 = 2 and θ1 = θ, we use a binary scheme to deduce θi, θi+1 from
θbi/2c, θbi/2c+1. We reach θn after O(log(n)) steps, each requiring a constant number
of operations in k′.

Hence, Step 6 costs O(srM(sr) log(q)) operations in Fq, while Steps 8 and 9
together cost O((M(sr)(`/r) log(`)). �

Although this variant does not exploit the asymptotic improvement offered by
Proposition 2, the fact that its auxiliary degree s is half the one of the original al-
gorithm usually gives an interesting practical improvement. Step 6 can be modified
so as to avoid the premature projection on the x-axis, so that the algorithms of
Proposition 2 apply. We leave the details of this variant to the reader.

References

[1] Leonard M. Adleman and Hendrik W. Lenstra. Finding irreducible polynomials over finite

fields. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing,

STOC ’86, pages 350–355, New York, NY, USA, 1986. ACM.
[2] Bill Allombert. Explicit computation of isomorphisms between finite fields. Finite Fields

Appl., 8(3):332 – 342, 2002.

[3] Bill Allombert. Explicit computation of isomorphisms between finite fields. Revised version.
https://www.math.u-bordeaux.fr/~ballombe/fpisom.ps, 2002.

[4] Wieb Bosma, John Cannon, and Catherine Playoust. The MAGMA algebra system I: the

user language. J. Symbolic Comput., 24(3-4):235–265, 1997.
[5] Wieb Bosma, John Cannon, and Allan Steel. Lattices of compatibly embedded finite fields.

Journal of Symbolic Computation, 24(3-4):351–369, 1997.

[6] Richard P. Brent and H.-T. Kung. Fast algorithms for manipulating formal power series.
Journal of the ACM, 25(4):581–595, 1978.

[7] Ludovic Brieulle, Luca De Feo, Javad Doliskani, Jean-Pierre Flori, and Éric Schost. Com-

puting isomorphisms and embeddings of finite fields (extended version). arXiv preprint

arXiv:1705.01221, 2017.
[8] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras.

Acta Informatica, 28(7):693–701, July 1991.
[9] David G. Cantor and Hans Zassenhaus. A new algorithm for factoring polynomials over finite

fields. Mathematics of Computation, 36:587–592, 1981.

[10] Wouter Castryck and Hendrik Hubrechts. The distribution of the number of points modulo

an integer on elliptic curves over finite fields. The Ramanujan Journal, 30(2):223–242, 2013.
[11] Jean-Marc Couveignes and Reynald Lercier. Galois invariant smoothness basis. Series on

Number Theory and Its Applications, 5:142–167, May 2008. World Scientific.
[12] Jean-Marc Couveignes and Reynald Lercier. Fast construction of irreducible polynomials over

finite fields. To appear in the Israel Journal of Mathematics, July 2011.

[13] Luca De Feo, Javad Doliskani, and Éric Schost. Fast algorithms for `-adic towers over finite
fields. In ISSAC’13, pages 165–172. ACM, 2013.

[14] Luca De Feo, Javad Doliskani, and Éric Schost. Fast arithmetic for the algebraic closure of
finite fields. In Proceedings of the 39th International Symposium on Symbolic and Algebraic

Computation, ISSAC ’14, pages 122–129, New York, NY, USA, 2014. ACM.

[15] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 7.2.0),
2016. http://www.sagemath.org.

[16] Javad Doliskani and Éric Schost. Taking roots over high extensions of finite fields. Mathe-

matics of Computation, 83(285):435–446, 2014.
[17] Sandra Feisel, Joachim von zur Gathen, and M. Amin Shokrollahi. Normal bases via general

Gauss periods. Mathematics of Computation, 68(225):271–290, 1999.

https://www.math.u-bordeaux.fr/~ballombe/fpisom.ps


COMPUTING ISOMORPHISMS AND EMBEDDINGS OF FINITE FIELDS 33

[18] William Hart. Fast library for number theory: an introduction. Mathematical Software-ICMS

2010, pages 88–91, 2010.

[19] David Harvey. Faster polynomial multiplication via multipoint Kronecker substitution. J.
Symbolic Comput., 44(10):1502–1510, October 2009.

[20] D. Roger Heath-Brown. Zero-free regions for Dirichlet L-functions, and the least prime in an

arithmetic progression. In Proceedings of the London Mathematical Society(3), volume 64,
pages 265–338, 1992.

[21] Erich Kaltofen. Computer algebra algorithms. Annual Review in Computer Science, 2:91–

118, 1987.
[22] Erich Kaltofen and Victor Shoup. Fast polynomial factorization over high algebraic extensions

of finite fields. In ISSAC ’97: Proceedings of the 1997 international symposium on Symbolic

and algebraic computation, pages 184–188, New York, NY, USA, 1997. ACM.
[23] Erich Kaltofen and Victor Shoup. Subquadratic-time factoring of polynomials over finite

fields. Math. Comp., 67(223):1179–1197, 1998.
[24] Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modular com-

position. SICOMP, 40(6):1767–1802, 2011.

[25] Serge Lang. Algebra. Springer, 3rd edition, January 2002.
[26] François Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC’14, pages 296–

303. ACM, 2014.

[27] Hendrik W. Lenstra. Factoring integers with elliptic curves. Annals of Mathematics, 126:649–
673, 1987.

[28] Hendrik W. Lenstra. Finding isomorphisms between finite fields. Mathematics of Computa-

tion, 56(193):329–347, 1991.
[29] Preda Mihailescu and Victor Vuletescu. Elliptic gauss sums and applications to point count-

ing. Journal of Symbolic Computation, 45(8):825 – 836, 2010.

[30] Robert T. Moenck. Another polynomial homomorphism. Acta Informatica, 6(2):153–169,
June 1976.

[31] Peter L. Montgomery. Speeding the pollard and elliptic curve methods of factorization. Math.
Comp., 48(177), 1987.

[32] Gary L. Mullen and Daniel Panario. Handbook of finite fields. CRC Press, 2013.

[33] Anand Kumar Narayanan. Fast computation of isomorphisms between finite fields using
elliptic curves. arXiv preprint arXiv:1604.03072, 2016.

[34] Cyril Pascal and Éric Schost. Change of order for bivariate triangular sets. In ISSAC ’06:

Proceedings of the 2006 international symposium on Symbolic and algebraic computation,
pages 277–284, New York, NY, USA, 2006. ACM.

[35] Michael S. Paterson and Larry J. Stockmeyer. On the number of nonscalar multiplications
necessary to evaluate polynomials. SIAM Journal on Computing, 2(1):60–66, 1973.

[36] Richard G. E. Pinch. Recognising elements of finite fields. In Cryptography and Coding II,

pages 193–197. Oxford University Press, 1992.

[37] Adrien Poteaux and Éric Schost. Modular composition modulo triangular sets and applica-

tions. Computational Complexity, 22(3):463–516, 2013.

[38] Eric M. Rains. Efficient computation of isomorphisms between finite fields. personal commu-
nication, 1996.

[39] Victor Shoup. Fast construction of irreducible polynomials over finite fields. In SODA ’93:
Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms, pages 484–

492, Philadelphia, PA, USA, 1993. Society for Industrial and Applied Mathematics.

[40] Victor Shoup. Fast construction of irreducible polynomials over finite fields. Journal of Sym-
bolic Computation, 17(5):371–391, 1994.

[41] The PARI Group, Bordeaux. PARI/GP, version 2.7.1, 2014.

[42] Joachim von zur Gathen and Jurgen Gerhard. Modern Computer Algebra. Cambridge Uni-
versity Press, New York, NY, USA, 1999.

[43] Joachim von zur Gathen and Victor Shoup. Computing Frobenius maps and factoring poly-

nomials. In STOC ’92: Proceedings of the twenty-fourth annual ACM symposium on Theory
of computing, pages 97–105, New York, NY, USA, 1992. ACM.

[44] Joachim von zur Gathen and Victor Shoup. Computing frobenius maps and factoring poly-

nomials. Computational complexity, 2(3):187–224, 1992.
[45] Hugh C. Williams. A p + 1 method of factoring. Mathematics of Computation, 39(159):225–

234, 1982.



34 L. BRIEULLE, L. DE FEO, J. DOLISKANI, J.-P. FLORI, AND É. SCHOST

Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay

Laboratoire de Mathématiques de Versailles, UVSQ, CNRS & Inria, Université Paris-

Saclay
E-mail address: luca.de-feo@uvsq.fr

E-mail address: http://orcid.org/0000-0002-9321-0773

Institute for Quantum Computing, University of Waterloo

E-mail address: javad.doliskani@uwaterloo.ca

Agence nationale de la sécurité des systèmes d’information

University of Waterloo


	1. Introduction
	2. Preliminaries
	2.1. Fundamental algorithms and complexity
	2.2. The Embedding Description problem

	3. Kummer-type algorithms
	3.1. Allombert's algorithm
	3.2. The Artin–Schreier case
	3.3. High-degree prime powers

	4. Rains' algorithm
	4.1. Uniquely defined orbits from Gaussian periods
	4.2. Rains' cyclotomic algorithm

	5. Elliptic Rains' algorithm
	5.1. Uniquely defined orbits from elliptic periods
	5.2. Elliptic variant of Rains' algorithm

	6. Algorithm selection
	7. Experimental Results
	Appendix A. Rain's conic algorithm
	References

