
On the complexities of multipoint evaluation

and interpolation

Alin Bostan and Éric Schost

Laboratoire STIX, École polytechnique, 91128 Palaiseau, France

Abstract

We compare the complexities of multipoint polynomial evaluation and interpolation.
We show that, over a field of characteristic zero, both questions have equivalent
complexities, up to a constant number of polynomial multiplications.

Key words: Polynomial evaluation, interpolation, complexity.

1 Introduction

Multipoint polynomial evaluation and interpolation are ubiquitous problems.
They can be stated as follows:

Evaluation: Given some evaluation points x0, . . . , xn and the coefficients
p0, . . . , pn of a polynomial P , compute the values P (xi) =

∑n
j=0 pjx

j
i , for

i = 0, . . . , n.
Interpolation: Given distinct interpolation points x0, . . . , xn and given some

values q0, . . . , qn, compute the unique coefficients p0, . . . , pn such that∑n
j=0 pjx

j
i = qi holds for i = 0, . . . , n.

Note in particular that we are concerned only in dense, univariate evaluation
and interpolation algorithms: we shall consider neither multivariate polyno-
mials, nor specific questions arising with sparse polynomials, as for instance
in (Ben-Or and Tiwari, 1988).

It is known that the complexities of evaluation and interpolation are closely
related: for instance, the interpolation algorithms of Lipson (1971), Fiduccia

Email addresses: Alin.Bostan@stix.polytechnique.fr (Alin Bostan),
Eric.Schost@stix.polytechnique.fr (Éric Schost).

Preprint submitted to Elsevier Science 28 September 2004



(1972), Moenck and Borodin (1972), Borodin and Moenck (1974) and Strassen
(1972/73) all require to perform a multipoint evaluation as a subtask. Thus in
this note, rather than describing particular algorithms, we focus on comparing
the complexities of both questions, that is, on reductions of one question to
the other.

Close links appear when one puts program transposition techniques into use.
Roughly speaking, such techniques prove that an algorithm that performs a
matrix-vector product can be transformed into an algorithm with essentially
the same complexity, and which performs the transposed matrix product.
These techniques are particularly relevant here, as many relations exist be-
tween Vandermonde matrices, their transposes, and other structured matrices
such as Hankel matrices.

Using such relations, reductions of interpolation to evaluation, and conversely,
have been proposed in, or can be deduced from (Kaltofen and Yagati, 1989;
Canny et al., 1989; Pan, 1989; Finck et al., 1993; Gohberg and Olshevsky,
1994a,b; Bini and Pan, 1994; Pan, 2001). Nevertheless, to our knowledge, no
equivalence theorem has been established for these questions. All results we are
aware of involve the following additional operation: given x0, . . . , xn, compute
the coefficients of

∏n
i=0(T −xi), that is, the elementary symmetric functions in

x0, . . . , xn. If we denote by E(n), I(n) and S(n) the complexities of multipoint
evaluation, interpolation and elementary symmetric functions computation on
n + 1 points, then the above references yield

I(n) ∈ O(E(n) + S(n)) and E(n) ∈ O(I(n) + S(n)).

The best currently known result gives S(n) ∈ O(M(n) log(n)), where M(n)
is the cost of degree n polynomial multiplication, see (von zur Gathen and
Gerhard, 1999, Ch. 10). Thus, the above estimates are of little help, since it
is already known that both E(n) and I(n) are in O(M(n) log(n)) (Moenck and
Borodin, 1972; Borodin and Moenck, 1974; Strassen, 1972/73; Bostan et al.,
2003).

Our purpose in this note is to reduce the gap, replacing the terms S(n) by M(n)
in the above estimates, in the case when the base field has characteristic zero.
With this improvement, such estimates become useful, since for instance they
now imply that improving the O(M(n) log(n)) bound for either evaluation or
interpolation entails a similar improvement for the other problem.

Actually, we prove a sharper statement: it is known that evaluation or interpo-
lation simplifies for particular families of points (e.g., geometric progressions),
see for instance (Aho et al., 1975; Bostan and Schost, 2003) and the comments
below. We take this specificity into account; roughly speaking, we prove that:

• given an algorithm that performs evaluation on some distinguished families

2



of points, one can deduce an algorithm that performs interpolation on the
same families of points, and with essentially the same complexity, up to a
constant number of polynomial multiplications.

• given an algorithm that performs interpolation on some distinguished fami-
lies of points, one can deduce an algorithm that performs evaluation on the
same families of points, and with essentially the same complexity, up to a
constant number of polynomial multiplications.

We can infer two corollaries from these results: first, we deduce the estimates

I(n) ∈ O(E(n) + M(n)) and E(n) ∈ O(I(n) + M(n)),

as claimed above. Our second corollary relates to results from Aho et al.
(1975). That article studies the families of n + 1 points in C on which any
degree n polynomial can be evaluated in time O(M(n)). Our results show that
these are precisely the families of points on which any degree n polynomial can
interpolated in time O(M(n)). For instance, it is proved by Aho et al. (1975)
that given any a, b, c, z ∈ C4, any degree n polynomial can be evaluated on
the sequence a + bzi + cz2i in time O(M(n)). We deduce that as soon as all
these points are distinct, any degree n polynomial can be interpolated on this
sequence in time O(M(n)) as well.

Our approach closely follows the ideas given in the references mentioned above,
notably (Kaltofen and Yagati, 1989; Canny et al., 1989). We will use reductions
of one problem to the other; the underlying ideas are borrowed from these two
references. To perform both reductions, we have to compute the symmetric
functions in the sample points x0, . . . , xn. Technically, we will prove that the
cost of this operation reduces to that of either interpolation or evaluation, up
to a constant number of polynomial multiplications. To do so, the main ideas
are the following:

• Suppose that an algorithm that performs interpolation at x0, . . . , xn is given.
We cannot use it to deduce the polynomial F =

∏n
i=0(T −xi) directly, since

F has degree n+1. Nevertheless, we can recover the polynomial
∏n

i=1(T−xi)
by interpolation, since it has degree n, and its values at x0, . . . , xn are easy
to compute. Then, recovering F is immediate.

• Suppose that an algorithm that performs evaluation at x0, . . . , xn is given.
By transposition, this algorithm can be used to compute the power sums
of the polynomial F =

∏n
i=0(T − xi). Then one can deduce the coefficients

of F from its power sums using the fast exponentiation algorithm of Brent
(1975) and Schönhage (1982).

The rest of this paper is devoted to give a rigorous version of these con-
siderations and their consequences. In the next section, we first precise our
computational model, then state our results in this model. Then, we present

3



basic complexity results for polynomials and power series. The next two sec-
tions give the proofs of the main theorems and we conclude by discussing a
closely related problem.

Finally, let us mention other problems in a similar vein, namely to obtain
equivalence results for other evaluation and interpolation questions, notably
Newton or Hermite problems. We leave them as further work.

2 Computational model, main result

Our basic computational objects are straight-line programs (allowing divi-
sions), which are defined as follows: Let A = A0, . . . , Ar be a family of inde-
terminates over a field k. Let us define g−r = A0, . . . , g0 = Ar. A straight-line
program Γ is a sequence g1, . . . , gL ⊂ k(A) such that for 1 ≤ ` ≤ L, one of the
following holds:

• g` = λ, with λ ∈ k;

• g` = λ ? gi, with λ ∈ k, ? ∈ {+,−,×,÷} and −r ≤ i < `;

• g` = gi ? gj, with ? ∈ {+,−,×,÷}, or g` = −gi − gj, with in both cases
−r ≤ i, j < `.

These rational functions are the instructions of Γ. The size of Γ is L and
it is denoted s(Γ); the output of Γ is a sequence G0, . . . , Gs of elements in
{g−r, . . . , gL}. Γ is defined at a point a = a0, . . . , ar ∈ kr+1 if a cancels no
denominator in {g1, . . . , gL}; in this case, we say that Γ computes (Gi(a))0≤i≤s

on input a.

In the sequel, we have to consider algorithms that take as input both the sam-
ple points x = x0, . . . , xn and the coefficients (resp. values) of a polynomial P .
We will allow arbitrary operations on the sample points. On the other hand,
since we compute linear functions of the coefficients (resp. values) of P , we
will only allow linear operations on them; this is actually not a limitation,
because in this case any non-linear step can be simulated by at most 3 linear
steps, see (Strassen, 1973) and (Bürgisser et al., 1997, Th. 13.1).

Formally, we will thus consider straight-line programs taking as input two
families of indeterminates A and B, allowing only linear operations on the
second family of indeterminates. The straight-line programs satisfying these
conditions are called B-linear straight-line programs (or simply linear straight-
line programs) and are defined as follows, compare with (Bürgisser et al., 1997,
Ch. 13).

4



Let A = A0, . . . , Ar and B = B0, . . . , Bs be two families of indeterminates over
a field k. Let us define g−r = A0, . . . , g0 = Ar and γ−s = B0, . . . , γ0 = Bs. A
B-linear straight-line program Γ is the data of two sequences g1, . . . , gL ⊂ k(A)
and γ1, . . . , γM ⊂ k(A)[B] such that g1, . . . , gL satisfy the axioms of straight-
line programs and for 1 ≤ m ≤ M , one of the following holds:

• γm = λγi, with λ ∈ k ∪ {g−r, . . . , gL} and −s ≤ i < m;

• γm = ±γi ± γj, with −s ≤ i, j < m.

In particular, γ1, . . . , γM are linear forms in B, as requested. The sequences
g1, . . . , gL and γ1, . . . , γM form the instructions of Γ. The size of Γ is L + M ,
and is denoted s(Γ) as above; the output of Γ is a sequence G0, . . . , Gs of
elements of {γ−s, . . . , γM}. Γ is defined at a point a = a0, . . . , ar ∈ kr+1 if a
cancels no denominator in {g1, . . . , gL}; in this case we say that Γ computes
the linear forms (Gi(a, B))0≤i≤s on input a.

We use a function denoted by M(n), which represents the complexity of uni-
variate polynomial multiplication. It is defined as follows: For any n ≥ 0, let
us introduce the indeterminates A = A0, . . . , An, B = B0, . . . , Bn, and let us
define the polynomials C0, . . . , C2n in k[A, B] by the relation(

n∑
i=0

AiT
i

)(
n∑

i=0

BiT
i

)
=

2n∑
i=0

CiT
i

in k[A, B][T ]. The polynomials Ci are linear in B (they are of course actually
bilinear in A, B); then, we require that they can be computed by a B-linear
straight-line program of size M(n), that performs no division in the indetermi-
nates A. Again, imposing such conditions is no limitation, since allowing arbi-
trary operations would at best gain a constant factor. We also suppose that the
function M verifies the inequality M(n1)+M(n2) ≤ M(n1+n2) for all n1, n2 ≥ 0.
For instance, the algorithms of Schönhage and Strassen (1971) and Cantor and
Kaltofen (1991) show that M(n) can be taken in O(n log(n) log(log(n))).

Main results. With these definitions, our results are the following. Roughly
speaking, Theorem 1 shows that, up to a constant number of polynomial multi-
plications, evaluation is not harder than interpolation, and Theorem 2 proves
the converse assertion. As mentioned above, we want to take into account
the possibility of specialized algorithms, which may give the result only for
some distinguished families of sample points: this is obtained using suitable
hypotheses on the points x. All results apply on a field of characteristic zero.

Theorem 1 Let Γ be a Q-linear straight-line program of size L, taking as in-
put X = X0, . . . , Xn and Q = Q0, . . . , Qn, and let G = G0, . . . , Gn ∈ k(X)[Q]
be the output of Γ. Then there exists a P -linear straight-line program ∆ of size

5



2L + O(M(n)), taking as input X and P = P0, . . . , Pn, and with the following
property.

Let x = x0, . . . , xn be pairwise distinct points such that Γ is defined at x and
such that the sequence Gj(x, Q) satisfies

n∑
j=0

Gj(x, Q)xj
i = Qi, for i = 0, . . . , n.

Then ∆ is defined at x and the output H0, . . . , Hn of ∆ satisfies

Hi(x, P ) =
n∑

j=0

Pjx
j
i , for i = 0, . . . , n.

Theorem 2 Let ∆ be a P -linear straight-line program of size L, taking as
input X = X0, . . . , Xn and P = P0, . . . , Pn, and let H0, . . . , Hn ∈ k(X)[P ] be
the output of ∆. Then there exists a Q-linear straight-line program Γ of size
3L+O(M(n)), taking as input X and Q = Q0, . . . , Qn, and with the following
property.

Let x = x0, . . . , xn be pairwise distinct points such that ∆ is defined at x and
such that the sequence Hi(x, P ) satisfies

Hi(x, P ) =
n∑

j=0

Pjx
j
i , for i = 0, . . . , n.

Then Γ is defined at x and the output G0, . . . , Gn of Γ satisfies

n∑
j=0

Gj(x, Q)xj
i = Qi, for i = 0, . . . , n.

3 Preliminaries

In this section, we present preliminary results that are needed for what follows.
The first of them is our basic tool, that relates the complexity of computing
a linear map to that of its transpose. Next, we recall some basic complexity
results for power series and polynomials. Finally, we describe how complexity
behaves through the composition or evaluation of rational functions or linear
forms.

All straight-line programs considered below are defined over some field k; we
suppose that k has characteristic zero so as to be able to apply some fast
algorithms of Brent (1975) and Schönhage (1982).

6



3.1 Program transposition

Inspired by (Kaltofen and Yagati, 1989; Canny et al., 1989; Pan, 2001), we will
use the following idea: any algorithm that performs interpolation (resp. eval-
uation) can be transformed into one that performs the transposed operation.
Originating from (Bordewijk, 1956), and sometimes referred to as Tellegen’s
theorem (Tellegen, 1952), the transposition principle precisely gives this kind
of result, and predicts the difference of complexity induced by the transposi-
tion operation; see (Bürgisser et al., 1997) for a proof and (Kaltofen, 2000) for
a detailed discussion. In our context, we easily obtain the following result:

Lemma 1 Let Γ be P -linear straight line program of size L, taking as input
X = X0, . . . , Xn and P = P0, . . . , Pn and let G = G0, . . . , Gn ∈ k(X)[P ] be
the output of Γ. Then there exists a Q-linear straight line program Γ† of size
L + O(n), with input X and Q = Q0, . . . , Qn, with output H = H0, . . . , Hn,
and with the following property.

Let x ∈ kn+1 be such that Γ is defined at x and let ϕ : kn+1 → kn+1 be the
linear map p 7→ G(x, p). Then Γ† is defined at x and q 7→ H(x, q) is the
transposed map of ϕ.

3.2 Polynomial and power series algorithms

In what follows, we need to perform basic operations on polynomials, such as
recovering a polynomial from its Newton sums and conversely. We now discuss
fast algorithms for such questions, of complexity bounded by a constant times
that of polynomial multiplication.

Let first F be a polynomial of degree n + 1 in k[T ]. Writing F =
∏n

i=0(T −xi)
over an algebraic closure of k, the ith Newton sum of F is defined as

∑n
j=0 xi

j

(so the 0th Newton sum is n + 1). Our question will be to compute the first
2n + 1 Newton sums of F . The following lemma gives a complexity estimate
for this operation, using the fact that the generating series at infinity of the
Newton sums of F is the logarithmic derivative of F , see (Schönhage, 1982).

Lemma 2 Let n ∈ N. There exists a straight-line program Pn with input
F0, . . . , Fn, with output A0, . . . , A2n and with the following property. For all
f = f0, . . . , fn ∈ kn+1, Pn is defined at f and for 0 ≤ i ≤ 2n, Ai(f) is the ith
Newton sum of the polynomial

∑n
i=0 fiT

i + T n+1. Furthermore, the size of Pn

is in O(M(n)).

Conversely, we ask the question of recovering a monic polynomial of degree
n+1 from its first Newton sums. In characteristic zero, Newton formulas allow

7



one to do this, but using them has a complexity quadratic in n. The following
lemma shows that better can be done; this result originates from (Schönhage,
1982) and uses the exponentiation algorithm of Brent (1975).

Lemma 3 Let n ∈ N. There exists a straight-line program Nn with input
A1, . . . , An+1, with output F0, . . . , Fn and with the following property. For all
a = a1, . . . , an+1 ∈ kn+1, Nn is defined at a and for 1 ≤ i ≤ n + 1, ai is the ith
Newton sum of the polynomial

∑n
i=0 Fi(a)T i + T n+1. Furthermore, the size of

Nn is in O(M(n)).

Next, the following lemma states that a matrix-vector product by a Hankel
matrix can be performed in time proportional to that of polynomial multipli-
cation. This result is classical, see for instance (Bini and Pan, 1994).

Lemma 4 Let n ∈ N. There exists a A-linear straight-line program Hn with
input S0, . . . , S2n and A0, . . . , An, with output H0, . . . , Hn and with the follow-
ing property. The size of Hn is in O(M(n)); for all s = s0, . . . , s2n in k2n+1and
a = a0, . . . , an in kn+1, Hn is defined at a and we have

s0 . . . sn

...
...

sn . . . s2n




a0

...

an

 =


H0(s, a)

...

Hn(s, a)

 .

Let finally n ∈ N, and A = A0, . . . , An and B = B0, . . . , Bn be indeterminates.
Then we will denote by MulTruncn a B-linear straight-line program that out-
puts the coefficients of

(∑n
i=0 AiT

i
)(∑n

i=0 BiT
i
)

modulo T n+1, has size M(n),
and performs no division in the indeterminates A.

3.3 Composition rules

In the following sections, we will design algorithms from basic building blocks,
such as polynomial multiplication, or the algorithms mentioned above. Seeing
the output of an algorithm as a sequence of rational functions or linear forms,
such constructions correspond to composition. We now define the correspond-
ing rules for (linear) straight-line programs.

Let X = X0, . . . , Xn and P = P0, . . . , Pm be two sets of indeterminates. There
are several ways to compose or evaluate rational functions in k(X) and linear
forms in k(X)[P ]. We now review them, and show how to translate these
operations at the level of (linear) straight-line programs. Though technical,
these definitions bear no difficulty. We leave it to the reader to check that in
all cases, the axioms of (linear) straight-line programs are satisfied.

8



• We first consider the composition of rational functions. Let then G =
G0, . . . , Gn and G′ = G′

0, . . . , G
′
s be in k(X), and let us write G′(G) =

(G′
i(G0, . . . , Gn))0≤i≤s. Let also Γ and Γ′ be straight-line programs whose

outputs are G and G′; we now define a straight-line program that computes
G′(G).

Let g1, . . . , gL be the instructions of Γ and g′1, . . . , g
′
L′ those of Γ′. For

1 ≤ i ≤ L′, let gi+L = g′i(G0, . . . , Gn) ∈ k(X). We let Γ′ ◦ Γ be the straight-
line program with instructions g1, . . . , gL+L′ and output G′(G). Then, s(Γ′ ◦
Γ) = s(Γ′) + s(Γ).

• We can also compose linear forms. Let then G = G0, . . . , Gm, let
G′ = G′

0, . . . , G
′
s be linear forms in k(X)[P ], and write G′(G) =

(G′
i(G0, . . . , Gm))0≤i≤s. Let Γ and Γ′ be P -linear straight-line programs

whose outputs are G and G′; we now define a P -linear straight-line pro-
gram that computes G′(G).

Let g1, . . . , gL and γ1, . . . , γM be the instructions of Γ and g′1, . . . , g
′
L′ and

γ′1, . . . , γ
′
M ′ those of Γ′. For 1 ≤ i ≤ L′, let gi+L = g′i; for 1 ≤ i ≤ M ′, let

γi+M be the linear form γ′i(G0, . . . , Gm) obtained by composition. We let
Γ′ • Γ be the P -linear straight-line program with instructions g1, . . . , gL+L′

and γ1, . . . , γM+M ′ , and output G′(G). Then, s(Γ′ • Γ) = s(Γ′) + s(Γ).

• We next evaluate linear forms on rational functions. Let G = G0, . . . , Gm

in k(X), let G′ = G′
0, . . . , G

′
s be linear forms in k(X)[P ], and write

G′(G) = (G′
i(G0, . . . , Gm))0≤i≤s, which are in k(X). Let also Γ be a straight-

line program and Γ′ a P -linear straight-line program, whose outputs are G
and G′; we now define a straight-line program that computes G′(G).

Let g1, . . . , gL be the instructions of Γ and g′1, . . . , g
′
L′ and γ′1, . . . , γ

′
M ′

those of Γ′. For 1 ≤ i ≤ L′, let gi+L = g′i; for 1 ≤ i ≤ M ′ let gi+L+L′ be
the rational function γ′i(G0, . . . , Gm) ∈ k(X) obtained by evaluation. We let
Γ′ ? Γ be the straight-line program with instructions g1, . . . , gL+L′+M ′ and
output G′(G). Then, s(Γ′ ? Γ) = s(Γ′) + s(Γ).

• Let finally G = G0, . . . , Gn be in k(X) and G′ = G′
0, . . . , G

′
s be linear forms

in k(X)[P ]. For any linear form g ∈ k(X)[P ], writing g =
∑

0≤i≤m giPi

with all gi ∈ k(X), we define g(G, P ) =
∑

0≤i≤m gi(G0, . . . , Gn)Pi. Then, we
define G′(G, P ) = (G′

i(G, P ))0≤i≤s.

Let Γ be a straight-line program and Γ′ a P -linear straight-line program,
whose outputs are G and G′; we now define a P -linear straight-line program
that computes G′(G, P ).

Let g1, . . . , gL be instructions of Γ and g′1, . . . , g
′
L′ and γ′1, . . . , γ

′
M ′ those

of Γ′. For 1 ≤ i ≤ L′, let gi+L = gi(G0, . . . , Gn); for 1 ≤ i ≤ M ′, let
γi = γ′i(G, P ). We let Γ′ � Γ be the P -linear straight-line programs with
instructions g1, . . . , gL+L′ and γ1, . . . , γM ′ , and output G′(G, P ). Then, s(Γ′�
Γ) = s(Γ′) + s(Γ).

9



4 From interpolation to evaluation

We now prove Theorem 1: given an algorithm that performs interpolation, pos-
sibly on some distinguished families of points only, one deduces an algorithm
which performs evaluation, on the same families of points, and with essentially
the same complexity. The reduction is based on the following matrix identity,
which appeared in (Canny et al., 1989):

1 . . . 1
...

...

xn
0 . . . xn

n




1 . . . xn

0

...
...

1 . . . xn
n

 =


s0 . . . sn

...
...

sn . . . s2n

 ,

where si =
∑n

j=0 xi
j is the ith Newton sum of F =

∏n
i=0(T−xi). We rewrite this

identity as (V t)V = H, where H is the Hankel matrix made upon s0, . . . , s2n

and V the Vandermonde matrix made upon x0, . . . , xn. This in turn yields
V = (V t)−1H.

Using this last equality, we deduce the following algorithm to evaluate a
polynomial P on the points x0, . . . , xn; this algorithm appeared originally
in (Canny et al., 1989) in a “transposed” form, see also (Pan, 1989).

(1) Compute the Newton sums s0, . . . , s2n of F =
∏n

i=0(T − xi).

(2) Compute p′ = Hp, where H is defined as above and p is the vector of
coefficients of P .

(3) Compute (V t)−1p′.

Our contribution is the remark that the first step can be essentially reduced
to perform a suitable interpolation. Consider indeed f =

∏n
i=1(T − xi). Then

we have the equalities

f(x0) =
n∏

i=1

(x0 − xi) and f(xi) = 0, i > 0.

The value f(x0) can be computed in O(n) operations. It then suffices to inter-
polate the values f(xi) at x0, . . . , xn to recover the coefficients of f , since this
polynomial has degree n. Then, the coefficients of F = (T − x0)f can be de-
duced for O(n) additional operations. Finally, we can compute the first 2n+1
Newton sums of F for O(M(n)) additional operations following Lemma 2; this
concludes the description of Step 1.

On input the Newton sums s0, . . . , s2n and the coefficients of P , Step 2 can be
done in time O(M(n)) since H is a Hankel matrix. It then suffices to perform
a transposed interpolation to conclude Step 3. To summarize, our algorithm

10



requires one interpolation and one transposed interpolation at x0, . . . , xn, and
O(M(n)) additional operations; in view of Lemma 1, this gives Theorem 1.

Let us now give a formal proof of our assertions. Let Γ be a linear straight-line
program of size L as in Theorem 1, and Γ† the linear straight-line program
obtained by applying Lemma 1 to Γ. Let x be as in Theorem 1 and let Pn

and Hn be as in Section 3.2.

Let next η1 be a straight-line program performing O(n) additions and multi-
plications, with input X0, . . . , Xn and output

∏n
i=1(X0 −Xi), 0, . . . , 0 and let

η2 = Γ ? η1. Then on input x, η2 computes the coefficients of the polynomial f
defined above.

Let η3 be obtained by adding O(n) additions and multiplications to η2, so as
to compute the coefficients of F , and let η4 = Pn ◦ η3. Then on input x, η4

computes the first 2n + 1 Newton sums of F .

We finally define η5 = Hn � η4 and η6 = Γ† • η5. Then on input x, η5 computes
the linear forms p′0, . . . , p

′
n defined above, and η6 computes the values of P at

the points p. The size estimates given in Section 3 show that the size of η6 is
2L + O(M(n)), as requested, concluding the proof.

Finally, we note that the idea of using interpolation algorithms to compute the
elementary symmetric functions (in the context of bounded-depth arithmetic
circuits) is attributed to Ben-Or by Grolmusz (2003).

5 From evaluation to interpolation

We finally prove Theorem 2: given an algorithm that performs evaluation,
possibly on some distinguished families of points only, one deduces an algo-
rithm which performs interpolation, on the same families of points, and with
essentially the same complexity. Consider the matrix-vector product


1 . . . xn

0

...
...

1 . . . xn
n




p0

...

pn

 =


q0

...

qn

 .

Our goal is to compute p = p0, . . . , pn on input q. To do so, we first consider
the transposed problem, that is, computing p′ = p′0, . . . , p

′
n on input q, where

11



p′ is given by 
1 . . . 1
...

...

xn
0 . . . xn

n




p′0
...

p′n

 =


q0

...

qn

 . (1)

To solve this question, we use a reduction that appeared in (Kaltofen and
Yagati, 1989) (see also (Pan, 2001) for an alternative formula originating
from (Gohberg and Olshevsky, 1994a), which requires essentially the same
operations). It is easily checked that the generating series Q =

∑n
i=0 qiT

i sat-
isfies the following identity:

Q ·
n∏

i=0

(1− xiT ) =
n∑

i=0

p′i

j 6=i∏
0≤j≤n

(1− xjT )

 mod T n+1.

Define

F =
n∏

i=0

(T − xi) and G = T n+1F (1/T ) =
n∏

i=0

(1− xiT ),

H =
n∑

i=0

p′i

j 6=i∏
0≤j≤n

(1− xjT )

 and I = T nH(1/T ) =
n∑

i=0

p′i

j 6=i∏
0≤j≤n

(T − xj)

 .

Then we have H = QG mod T n+1 and p′i = I(xi)/F
′(xi). We deduce the

following algorithm for recovering p′0, . . . , p
′
n from q0, . . . , qn. This originally

appeared in (Kaltofen and Yagati, 1989) and follows (Zippel, 1990).

(1) Compute F =
∏n

i=0(T − xi) and G = T n+1F (1/T ).

(2) Compute H = QG mod T n+1 and I = T nH(1/T ).

(3) Evaluate I and F ′ on x0, . . . , xn and output I(xi)/F
′(xi).

As in the previous section, our contribution concerns Step 1: we show that
computing F is not more costly than performing an evaluation and some
polynomial multiplications.

Indeed, let us compute the transposed evaluation on the set of points x0, . . . , xn

with input values x0, . . . , xn: this gives the first Newton sums of F ,
∑n

i=0 xj
i ,

for 1 ≤ j ≤ n + 1. Then following Lemma 3 we can recover the coefficients of
the polynomial F for O(M(n)) operations. This concludes the description of
Step 1.

Step 2 can then be done for M(n) operations, and Step 3 for two multipoint
evaluations plus n + 1 scalar divisions. This algorithm thus requires two eval-

12



uations and one transposed evaluation at x0, . . . , xn, and O(M(n)) additional
operations. Transposing backwards answers our question.

We now give a formal proof of Theorem 2. Let ∆ be a linear straight-line
program of size L as in Theorem 2 and ∆† be obtained by applying Lemma 1
to ∆. We next take x as in Theorem 2. Let finally Nn be as in Section 3.2
and X the straight-line program of size 0 that has X0, . . . , Xn for input and
output.

We first define δ1 = ∆† ? X and δ2 = Nn ◦ δ1. Then on input x, δ2 computes
the coefficients of F . By adding O(n) operations to δ2, we define a straight-
line program δ3 that computes the coefficients of F ′; by reversing the order
of the output of δ2, we define a straight-line program δ4 that computes the
coefficients of G.

Let now MulTruncn be as in Section 3.2 and define δ5 = MulTruncn � δ4; then
on input x, δ5 computes the coefficients of H. By reversing the order of the
output of δ5, we define a linear straight-line program δ6 that computes the
coefficients of I.

Next, let us introduce δ7 = ∆•δ6 and δ8 = ∆?δ3. On input x, they respectively
compute the values I(xi) and F ′(xi). Let finally Div be the linear straight-
line program that takes X, Q as input and outputs Q0/X0, . . . , Qn/Xn. We
conclude by defining δ9 = Div � δ8 and δ10 = δ9 • δ7. Then on input x, δ10

computes the values p′ defined above. By the results of Section 3, it has size
3L + O(M(n)). Applying Lemma 1 to δ10 concludes the proof.

6 Further results

Given x = (x0, . . . , xn), let us denote by LinCombx the following operation of
linear combination:

c = (c0, . . . , cn) ∈ kn+1 7−→
n∑

i=0

ci

j 6=i∏
0≤j≤n

(T − xj)

The complexities of this operation and those of multipoint evaluation and
interpolation are closely related: the classical interpolation algorithms use
this operation as a subtask (which was also used in the previous section).
To conclude this paper, we will establish that this operation has a complexity
equivalent to evaluation and interpolation, up to suitable correcting terms in
O(M(n)). We will keep our discussion informal, leaving it to the reader to
formalize these arguments in our complexity model. In what follows, we write
F =

∏n
i=0(T − xi).

13



From linear combination to multipoint evaluation. Suppose that an
algorithm that performs the LinComb operation at x = x0, . . . , xn is given. We
show how to deduce an algorithm for evaluation at x.

Applying LinCombx to the vector (1, 0, . . . , 0), we obtain the coefficients of the
polynomial f = F/(x− x0); then, the polynomial F can be recovered from f
using O(n) additional operations. Suppose now that we want to evaluate a
polynomial P at x. Let G = T n+1F (1/T ), Q = T nP (1/T ) and R = Q/G
modulo T n+1. Then it was shown by Bostan et al. (2003) that the values
P (x0), . . . , P (xn) are obtained by applying the transpose of LinCombx to the
polynomial R. A power series division at precision n + 1 requires O(M(n))
operations. Using Lemma 1, we deduce that the complexity of multipoint
evaluation at x is bounded from above by twice the complexity of performing
LinComb at x and O(M(n)) additional operations.

From interpolation to linear combination. Suppose that an algorithm
that performs interpolation at x = x0, . . . , xn is given. We show how to deduce
an algorithm for performing the linear combination at x.

The Lagrange interpolation formula implies that the matrix of the linear com-
bination equals 

1 . . . xn
0

...
...

1 . . . xn
n


−1 

F ′(x0) . . . 0
. . .

0 . . . F ′(xn)

 .

On the other hand, the values F ′(x0), . . . , F
′(xn) can be recovered by perform-

ing a transposed interpolation at x, due to the equality


1 . . . 1
...

...

xn
0 . . . xn

n


−1 

0
...

1

 =


1/F ′(x0)

...

1/F ′(xn)

 .

These matrix equalities show that performing the linear combination amounts
to a transposed interpolation, followed by a direct interpolation at x. Thus, the
complexity of LinCombx is bounded from above by twice that of interpolation
at x and O(n) additional operations.

14



7 Acknowledgments

We wish to thank Richard Brent, Bruno Salvy and Gilles Villard and one
anonymous referee for their careful reading of this paper, and Jürgen Gerhard,
whose question on the possible existence of an “inversion principle” stimulated
this research.

References

Aho, A. V., Steiglitz, K., Ullman, J. D., 1975. Evaluating polynomials at fixed
sets of points. SIAM Journal on Computing 4 (4), 533–539.

Ben-Or, M., Tiwari, P., 1988. A deterministic algorithm for sparse multivariate
polynomial interpolation. In: STOC’88. ACM Press, pp. 301–309.

Bini, D., Pan, V. Y., 1994. Polynomial and matrix computations. Vol. 1.
Progress in Theoretical Computer Science. Birkhäuser Boston Inc.

Bordewijk, J. L., 1956. Inter-reciprocity applied to electrical networks. Appl.
Sci. Res. B. 6, 1–74.

Borodin, A., Moenck, R., 1974. Fast modular transforms. Journal of Computer
and System Sciences 8, 366–386.

Bostan, A., Lecerf, G., Schost, É., 2003. Tellegen’s principle into practice. In:
ISSAC’03. ACM Press, pp. 37–44.

Bostan, A., Schost, É., 2003. Evaluation and interpolation on special sets of
points. Tech. rep., École polytechnique.

Brent, R. P., 1975. Multiple-precision zero-finding methods and the complex-
ity of elementary function evaluation. Analytic Computational Complexity,
151–176.

Bürgisser, P., Clausen, M., Shokrollahi, M. A., 1997. Algebraic complexity the-
ory. Vol. 315 of Grundlehren der Mathematischen Wissenschaften. Springer–
Verlag.

Canny, J., Kaltofen, E., Yagati, L., 1989. Solving systems of non-linear poly-
nomial equations faster. In: ISSAC’89. ACM Press, pp. 121–128.

Cantor, D. G., Kaltofen, E., 1991. On fast multiplication of polynomials over
arbitrary algebras. Acta Informatica 28 (7), 693–701.

Fiduccia, C. M., 1972. Polynomial evaluation via the division algorithm: The
fast Fourier transform revisited. In: Conference Record, Fourth Annual
ACM Symposium on Theory of Computing. pp. 88–93.

Finck, T., Heinig, G., Rost, K., 1993. An inversion formula and fast algo-
rithms for Cauchy-Vandermonde matrices. Linear Algebra and its Applica-
tions 183, 179–191.

von zur Gathen, J., Gerhard, J., 1999. Modern computer algebra, 1st Edition.
Cambridge University Press.

15



Gohberg, I., Olshevsky, V., 1994a. Complexity of multiplication with vectors
for structured matrices. Linear Algebra and its Applications 202, 163–192.

Gohberg, I., Olshevsky, V., 1994b. Fast algorithms with preprocessing for
matrix-vector multiplication problems. Journal of Complexity 10 (4), 411–
427.

Grolmusz, V., 2003. Computing elementary symmetric polynomials with a
subpolynomial number of multiplications. SIAM Journal on Computing
32 (6), 1475–1487.

Kaltofen, E., 2000. Challenges of symbolic computation: my favorite open
problems. With an additional open problem by Robert M. Corless and David
J. Jeffrey. Journal of Symbolic Computation 29 (6), 891–919.

Kaltofen, E., Yagati, L., 1989. Improved sparse multivariate polynomial inter-
polation algorithms. In: ISSAC’88. Vol. 358 of Lecture Notes in Computer
Science. Springer Verlag, pp. 467–474.

Lipson, J. D., 1971. Chinese remainder algorithm and interpolation algorithms.
In: Proceedings 2nd ACM Symposium of Symbolic and Algebraic Manipu-
lation. ACM Press, pp. 372–391.

Moenck, R. T., Borodin, A., 1972. Fast modular transforms via division. Thir-
teenth Annual IEEE Symposium on Switching and Automata Theory (Univ.
Maryland, College Park, Md., 1972), 90–96.

Pan, V. Y., 1989. On computations with dense structured matrices. In: IS-
SAC’89. ACM Press, pp. 34–42.

Pan, V. Y., 2001. Structured matrices and polynomials. Birkhäuser Boston
Inc., Boston, MA.

Schönhage, A., 1982. The fundamental theorem of algebra in terms of compu-
tational complexity. Tech. rep., University of Tübingen.

Schönhage, A., Strassen, V., 1971. Schnelle Multiplikation großer Zahlen.
Computing 7, 281–292.

Strassen, V., 1972/73. Die Berechnungskomplexität von elementarsym-
metrischen Funktionen und von Interpolationskoeffizienten. Numerische
Mathematik 20, 238–251.

Strassen, V., 1973. Vermeidung von Divisionen. Journal für die reine und
angewandte Mathematik 264, 184–202.

Tellegen, B., 1952. A general network theorem, with applications. Technical
Report 7, 259–269, Philips Research.

Zippel, R., 1990. Interpolating polynomials from their values. Journal of Sym-
bolic Computation 9 (3), 375–403.

16


