
Fast arithmetic for the algebraic closure of finite fields

Luca De Feo
Laboratoire PRiSM

Université de Versailles
luca.de-feo@uvsq.fr

Javad Doliskani
Computer Science

Department
Western University
jdoliska@uwo.ca

Éric Schost
Computer Science

Department
Western University

eschost@uwo.ca

ABSTRACT
We present algorithms to construct and do arithmetic oper-
ations in the algebraic closure of the finite field Fp. Our ap-
proach is inspired by algorithms for constructing irreducible
polynomials, which first reduce to prime power degrees, then
use composita techniques. We use similar ideas to give effi-
cient algorithms for embeddings and isomorphisms.

Categories and Subject Descriptors
F.2.1 [Theory of computation]: Analysis of algorithms
and problem complexity—Computations in finite fields; G.4
[Mathematics of computing]: Mathematical software

General Terms
Algorithms,Theory

Keywords
Finite fields, irreducible polynomials, extensions.

1. INTRODUCTION
Several computer algebra systems or libraries, such as

Magma [3], Sage [39], NTL [37], PARI [31] or Flint [25], of-
fer built-in features to build and compute in arbitrary finite
fields. At the core of these designs, one finds algorithms for
building irreducible polynomials and algorithms to compute
embeddings and isomorphisms. The system used in Magma
(one of the most complete we know of) is described in [4].

Previous algorithms typically rely on linear algebra tech-
niques, for instance to describe embeddings or isomorphisms
(this is the case for the algorithms in [4], but also for those
in [29, 1]). Unfortunately, linear algebra techniques have
cost at least quadratic in the degree of the extensions we con-
sider, and (usually) quadratic memory requirements. Our
goal here is to replace linear algebra by polynomial arith-
metic, exploiting fast polynomial multiplication to obtain
algorithms of quasi-linear complexity. As we will see, we
meet this goal for several, but not all, operations.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ISSAC’14, July 23–25, 2014, Kobe, Japan.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
Copyright 20XX ACM 978-1-4503-2501-1/14/07 ...$15.00.
http://dx.doi.org/10.1145/2608628.2608672 ...$15.00.

Setup. Let p be a prime (that will be fixed throughout this
paper). We are interested in describing extensions Fpn of Fp;
such an extension has dimension n over Fp, so representing
an element in it involves n base field elements.

It is customary to use polynomial arithmetic to describe
these extensions (but not necessary: Lenstra’s algorithm [29]
uses a multiplication tensor). For an extension degree n, a
first step is to construct an irreducible polynomial Qn of de-
gree n in Fp[x]. Identifying Fpn with Fp[x]/〈Qn〉, operations
(+,×,÷) in Fp[x]/〈Qn〉 all take quasi-linear time in n.

However, this is not sufficient: we also want mechanisms
for e.g. field embeddings. Given irreducible polynomials Qm

and Qn over Fp, with deg(Qm) = m dividing deg(Qn) = n,
there exist algorithms to embed Fp[x]/〈Qm〉 in Fp[x]/〈Qn〉
(for the system to be consistent, these embeddings must be
compatible [4]). However, most algorithms use linear algebra
techniques.

To bypass these issues, we use an approach inspired by
Shoup’s algorithm for computing irreducible polynomials [35,
36] (see also [16, 30]): first reduce to the case of prime power
degrees, then use composita techniques, in a manner that
ensures compatibility of the embeddings automatically.

Background: towers. Suppose that for any prime `, an
`-adic tower over Fp is available. By this, we mean a family
of polynomials (T`,i)i≥1, with T`,i ∈ Fp[x1, . . . , xi], monic of
degree ` in xi, such that for all i the ideal 〈T`,1, . . . , T`,i〉 is

maximal in Fp[x1, . . . , xi]. Our model of the field with p`
i

elements could then be K`i = Fp[x1, . . . , xi]/〈T`,1, . . . , T`,i〉,
but we prefer to work with univariate polynomials (the cost
of arithmetic operations is higher in the multivariate basis).

For 1 ≤ i ≤ n, let then Q`,i be the minimal polynomial
of xi in the extension K`n/Fp. This polynomial does not
depend on n, but only on i; it is monic, irreducible of degree
`i in Fp[xi] and allows us to define F

p`
i as Fp[xi]/〈Q`,i〉.

For 1 ≤ i ≤ j ≤ n, let further Q`,i,j−i be the minimal
polynomial of xj in the extension Fp[xi]/〈Q`,i〉 ↪→ K`n (as
above, it does not depend on n). This polynomial is monic,
irreducible of degree `j−i in F

p`
i [xj] = Fp[xi]/〈Q`,i〉[xj].

Thus, Fp[xj]/〈Q`,j〉 and Fp[xi, xj]/〈Q`,i, Q`,i,j−i〉 are two
models for F

p`
j . Provided conversion algorithms between

these representations are available, we can perform embed-
dings (that will necessarily be compatible) between different
levels of the `-adic tower, i.e. extensions of degrees (`i)i≥1.

Such towers, together with efficient conversion algorithms,
were constructed in the cases ` = p in [13, 15, 19], ` = 2
in [21], and for other values of ` in [18]. Thus, it remains to
give algorithms to “glue” towers defined for different values
of `. This is the purpose of this paper.

Our contribution. The algorithms used to construct tow-
ers are inspired by those used in [35, 36, 16] to build ir-
reducible polynomials. Also used in these references is the
following idea: let Qm(x) and Qn(y) be irreducible polyno-
mials over Fp, with coprime degrees m,n > 1, and having
respectively (ai)1≤i≤m and (bj)1≤j≤n as roots in an alge-
braic closure of Fp. Then their composed product Qmn =∏

1≤i≤m,1≤j≤n(z−aibj) is irreducible of degree mn in Fp[z].
In this paper, we use an algebraic complexity model, where

the cost of an algorithm is counted in terms of the number
of operations (+,×,÷) in Fp. If the goal is building irre-
ducible polynomials, then computing Qmn is enough: an
algorithm given in [6] has quasi-linear cost in mn. Our goal
here is to give algorithms for further operations: computing
embeddings of the form ϕx : Fp[x]/〈Qm〉 → Fp[z]/〈Qmn〉
or ϕy : Fp[y]/〈Qn〉 → Fp[z]/〈Qmn〉, and the isomorphism
Φ : Fp[x, y]/〈Qm, Qn〉 → Fp[z]/〈Qmn〉 or its inverse.

Standard solutions to these questions exist, using mod-
ular composition techniques: once the image S = Φ(x) is
known, computing ϕx(a) amounts to computing a(S) mod
Qmn; similarly, computing Φ(b), for b in Fp[x, y]/〈Qm, Qn〉,
amounts to computing b(S, T) mod Qmn, with T = Φ(y).
This can be done using the Brent and Kung algorithm [11]:

the resulting cost is O(mn(ω+1)/2) ⊂ O(mn1.69) for ϕx (see

the analysis in [36]) and O((mn)(ω+1)/2) ⊂ O(m1.69n1.69)
for Φ or its inverse [33]. Here, we denote by ω a constant
in (2, 3] such that one can multiply matrices of size m over
any ring A using O(mω) operations (+,×) in A; using the
algorithms of [14, 40], we can take ω ≤ 2.38.

Our main result improves on these former ones. We de-
note by M : N → N a function such that for any ring A,
polynomials in A[x] of degree at most n can be multiplied in
M(n) operations (+,×) in A, and we make the usual super-
linearity assumptions on M [22, Chapter 8].

Theorem 1. One can apply ϕx (resp. ϕy) to an element
of Fp[x]/〈Qm〉 (resp. Fp[x]/〈Qn〉), or invert it on its image,
using O(nM(m) +mM(n)) operations in Fp.

Suppose that m ≤ n. Then one can apply Φ to an element
of Fp[x, y]/〈Qm, Qn〉 or invert it using either O(m2M(n)) or

O(M(mn)n1/2 + M(m)n(ω+1)/2) operations in Fp.

Using the O˜ notation to neglect polylogarithmic factors,
we can take M(n) ∈ O (̃n). Our algorithm for embeddings
and their inverses has quasi-linear cost O (̃mn). Those for Φ

or Φ−1 have respective costs O (̃m2n) and O (̃mn(ω+1)/2);

the minimum of the two is in O (̃(mn)2ω/(ω+1)); for ω ∈
(2, 3], the resulting exponent is in (1.333 . . . , 1.5].

If S = Φ(x) and T = Φ(y) are known, a result by Kedlaya
and Umans [26] for modular composition, and its extension
in [32], yield an algorithm with bit complexity essentially
linear in mn and log(p) on a RAM. Unfortunately, making
these algorithms competitive in practice is challenging; we
are not aware of any implementation of them. It is also
worth noting that our algorithms apply in a more general
setting than finite fields (mild assumptions are required).

Outline. Section 2 presents basic algorithms for polyno-
mials and their transposes. Section 3 introduces the main
idea behind our algorithms: the trace induces a duality on
algebras of the form Fp[x]/〈Q〉, and some conversion algo-
rithms are straightforward in dual bases; the algorithms are
detailed in Section 4. Section 5 explains how the results in
this paper can be used in order to construct the algebraic
closure of Fp. We conclude with experimental results.

2. PRELIMINARIES
We recall first previous results concerning polynomial arith-

metic and transposition of algorithms. In all this section, a
ground field k, not necessarily finite, is fixed. For integers
m,n, we denote by k[x]m (resp. k[x, y]m,n) the set of poly-
nomials P in k[x] with deg(P) < m (resp. P in k[x, y] with
deg(P, x) < m and deg(P, y) < n).

2.1 Polynomial multiplication and remainder
We start with some classical algorithms and their com-

plexity. For all the algorithms that follow, all polynomials
are written on the canonical monomial basis (this is innocu-
ous for the moment, but other bases will be discussed below).

The product of two polynomials of respective degrees at
most m and n can be computed in M(max(m,n)) operations
in k. If P is a monic polynomial of degree m in k[x], for
n ≥ 1, we let rem(., P, n) be the operator

rem(., P, n) : k[x]n → k[x]m
a 7→ a mod P.

For n ≤ m, this is free of cost. For n > m, this can be com-
puted in time O(nM(m)/m) using the Cook-Sieveking-Kung
algorithm and blocking techniques [5, Ch. 5.1.3]. Defining
A = k[x]/〈P 〉, and choosing a fixed b ∈ A, we can then
define the mapping mulmod(., b, P), which maps a ∈ A to
ab mod P ; it can be computed in time O(M(m)). Finally,
given an integer m, the reversal operator in length m is

rev(.,m) : k[x]m → k[x]m
a 7→ xm−1a(1/x).

2.2 Duality and the transposition principle
The transposition principle is an algorithmic result which

states that, given an algorithm that performs a matrix-
vector product u 7→ Mu, one can deduce an algorithm
with essentially the same cost which performs the trans-
posed matrix-vector product v 7→M tv [12, Ch. 13].

Following [20], we give here a more abstract presentation
of the transposition principle, using the algebraic theory of
duality (see [9, Ch. IX.1.8]). The added level of abstraction
will pay off by greatly simplifying the proofs of the next
sections.

Let E and F be k-vector spaces, with dim(E) = dim(F) <
∞, and suppose that 〈., .〉 : E × F → k is a non-degenerate
bilinear form. Then, to any vector space basis ξ = (ξi)i of
E, we can associate a unique dual basis ξ∗ = (ξ∗i)i of F such
that 〈ξi, ξ∗j 〉 = δi,j (the Kronecker symbol). In other words,
given a in F , the coefficients (ai) of a on the basis ξ∗ are
given by ai = 〈ξi, a〉.

For example, denote by E∗ the dual space of E, i.e. the
k-linear forms on E. The bilinear form on E × E∗ defined
by with 〈v, `〉 = `(v) for all v ∈ E and ` ∈ E∗ is non-
degenerate. This is indeed the canonical example, and any
non-degenerate form, is isomorphic to this one. We will see
in the next section another family of examples, with E = F .

Let E′, F ′ be two further vector spaces, with dim(E′) =
dim(F ′) <∞ and let 〈., .〉′ be a bilinear form E′ × F ′ → k.
Then, to any linear mapping u : E → E′, one associates
its dual (with respect to 〈., .〉 and 〈., .〉′), which is a lin-
ear mapping ut : F ′ → F characterized by the equality
〈u(a), b′〉′ = 〈a, ut(b′)〉, for all a ∈ E and b′ ∈ F ′.

Let as above ξ be a basis of E, and let ξ∗ be the dual
basis of F ; consider as well a basis υ of E′ and its dual basis

υ∗ of F ′. If M is the matrix of u in the bases (ξ,υ), the
matrix of ut in the bases (υ∗, ξ∗) is the transpose of M .

As presented in [8, 20], the transposition principle is an
algorithmic technique that, given an algorithm to compute
u : E → E′ in the bases (ξ,υ), yields an algorithm for
the dual map ut : F ′ → F in the bases (υ∗, ξ∗). The two
algorithms have same cost, up to O(dim(E) + dim(E′)). In
a nutshell, starting from an algorithm relying on a few basic
operations (such as polynomial or matrix multiplication), its
transpose is obtained by transposing each basic subroutine,
then reversing their order.

Let us briefly review the transposes of operations described
in the previous subsection. The transpose of polynomial
multiplication is described in [8]; it is closely related to the
middle product [24]. Let next P be monic of degree m, and
define A = k[x]/〈P 〉. As shown in [8], the dual map of rem

remt(., P, n) : A∗ → k[x]∗n

is equivalent to linear sequence extension: it takes as input
the initial m values of a linear recurring sequence of minimal
polynomial P , and outputs its first n values. The transposed
version of the Cook-Sieveking-Kung fast Euclidean division
algorithm yields an algorithm with cost O(nM(m)/m) op-
erations in k [23, 38].

For a fixed b ∈ A, the transpose of mulmod is the map

mulmodt(., b, P) : A∗ → A∗

` 7→ b · `,

where b · ` is defined by (b · `)(a) = `(ab). Algorithms for
mulmodt have been subject to much research (for instance,
Berlekamp’s bit serial multiplication [2] is a popular arith-
metic circuit for mulmodt in the case k = F2); algorithms of
cost O(M(m)) are given in [38, 8].

Lastly, the reversal operator on k[x]m is its own transpose.

3. TRACE AND DUALITY
Next, we discuss some classical facts about the trace form,

and give algorithms to change between monomial bases and
their duals. In all this section, k is a perfect field. General
references for the following are [27, 17].

Traces in reduced algebras. Let s be a positive inte-
ger and I a zero dimensional radical ideal in k[x1, . . . , xs].
Thus, A = k[x1, . . . , xs]/I is a reduced k-algebra of finite

dimension d, where d is the cardinality of V = V (I) ⊂ k
s

(in general, A is not a field).
Let a be in A. As we did in the case of one variable,

we associate to a the endomorphism of multiplication-by-a
Ma : A→ A given by Ma(b) = ab. Even though A may not
be a field, we still define the minimal polynomial of a as the
minimal polynomial ofMa; since I is radical, this polynomial
is squarefree, with roots a(x), for x in V . Similarly, the trace
of a is the trace of Ma, and denote it by τI(a). Because I is
radical, the trace defines a non-degenerate bilinear form on
A×A, given by 〈a, b〉I = τI(ab).

Thus, to any basis ξ = (ξi)0≤i<d of A, one can associate
a dual basis ξ∗ = (ξ∗i)0≤i<d, such that 〈ξi, ξ∗j 〉I = δi,j for
all i, j. It will be useful to keep in mind that for a ∈ A, its
expression on the dual basis ξ∗ is a =

∑
0≤i<d〈a, ξi〉Iξ

∗
i .

We now describe algorithms for converting between the
monomial basis and its dual, in two particular cases, in-
volving respectively univariate and bivariate polynomials.

In both cases, our conclusion will be that such conversions
have quasi-linear complexity.

Univariate conversion. Let P be monic of degree m and
squarefree in k[x], and define A = k[x]/〈P 〉. We denote by
P ′ its derivative and by τP the trace modulo the ideal 〈P 〉.

The k-algebra A is endowed with the canonical monomial
basis ξ = (xi)0≤i<m. In view of what was said in the previ-
ous subsection, the coefficients of an element a ∈ A on the
dual basis ξ∗ are the traces τP (axi)0≤i<m. The following
lemma shows that the generating series of these traces is ra-
tional, with a known denominator; this will be the key to the
conversion algorithm. This is a restatement of well-known
results, see for instance the proof of [34, Theorem 3.1].

Lemma 1. For a in A, the following holds in k[[x]]:∑
i≥0

τP (axi)xi =
rev(P ′a mod P,m)

rev(P,m+ 1)
.

Some well-known algorithms to convert between ξ and ξ∗

follow easily. In these algorithms, and all that follows, input
and output are vectors (written in sans serif font).

Algorithm 1: MonomialToDual(a, P)

Input a = (ai)0≤i<m ∈ km,
P monic squarefree in k[x] of degree m
Output (τP (axi))0≤i<m, with a =

∑
0≤i<m aix

i

1. T = 1/rev(P,m+ 1) mod xm

2. b = rev(P ′
∑

0≤i<m aix
i mod P,m)T mod xm

3. return (coefficient(b, xi))0≤i<m

Algorithm 2: DualToMonomial(b, P)

Input b = (bi)0≤i<m ∈ km,
P monic squarefree in k[x] of degree m
Output (ai)0≤i<m such that τP (

∑
0≤i<m aix

i+j) = bj for all j
1. S = 1/P ′ mod P
2. b = rev(P,m+ 1)

∑
0≤i<m bix

i mod xm

3. c = rev(b,m)
4. d = c S mod P
5. return (coefficient(d, xi))0≤i<m

Lemma 2. Algorithms 1 and 2 are correct. The former
uses O(M(m)) operations in k, the latter O(M(m) log(m)).
If the polynomial S = 1/P ′ mod P is known, the running
time of Algorithm 2 drops to O(M(m)).

Proof. Correctness follows from Lemma 1. Once we
point out that power series inversion modulo xm can be done
in time O(M(m)), the running time analysis of the former is
straightforward. For Algorithm 2, the dominant part is the
computation of S, which takes time O(M(m) log(m)) by fast
XGCD; all other steps take O(M(m)) operations in k.

Bivariate conversions. Now we consider two monic square-
free polynomials P in k[x] of degree m, and Q in k[y] of
degree n. We define A = k[x, y]/I, with I = 〈P,Q〉, then
A has the canonical monomial basis (xiyj)0≤i<m,0≤j<n. We
denote by τI the trace modulo I, and by τP and τQ the
traces modulo respectively 〈P 〉 and 〈Q〉.

In addition to its monomial basis, A can be endowed with
a total of four natural bases, which are described as follows.
Let ξ = (xi)0≤i<m and υ = (yi)0≤j<n be the monomial
bases of respectively k[x]/〈P 〉 and k[y]/〈Q〉; let ξ∗ and υ∗

be their respective dual bases, with respect to τP and τQ.

The monomial basis seen above is ξ⊗υ; the other combina-
tions ξ∗ ⊗υ, ξ⊗υ∗ and ξ∗ ⊗υ∗ are bases of A as well. Af-
ter a precomputation of cost O(M(m) log(m)+M(n) log(n)),
Lemma 2 shows that conversions between any pair of these
bases can be done using O(nM(m) +mM(n)) operations in
k (by applying the univariate conversion algorithms n times
x-wise and / or m times y-wise). Using fast multiplication,
this is quasi-linear in the dimension mn of A.

The following easy lemma will help us exhibit the duality
relationships between these bases; it follows from the fact
that A is the tensor product of k[x]/〈P 〉 and k[y]/〈Q〉.

Lemma 3. Let b be in k[x]/〈P 〉 and c in k[y]/〈Q〉. Then
we have τI(bc) = τP (b) τQ(c).

This lemma implies that ξ ⊗ υ and ξ∗ ⊗ υ∗ are dual to one
another with respect to 〈., .〉I , as are ξ∗ ⊗ υ and ξ ⊗ υ∗.

4. EMBEDDING AND ISOMORPHISM
This section contains the main algorithms of this paper.

We consider two squarefree polynomials P (x) and Q(y) of
respective degrees m and n, with coefficients in a perfect
field k. Let us then set A = k[x, y]/I, where I is the ideal
〈P (x), Q(y)〉 in k[x, y]. In all this section, we assume that
xy is a generator of A as a k-algebra.

The main example we have in mind is the following: k
is a finite field and both P and Q are irreducible, with
gcd(m,n) = 1. Then our assumption is satisfied and in
addition A is a field, namely, the compositum of the fields
k[x]/〈P 〉 and k[y]/〈Q〉, see [10]. More generally, if we let
(ri)i<m be the roots of P in an algebraic closure of k, and
let (sj)j<n be the roots of Q, then as soon as the products
risj are pairwise distinct, xy generates A as a k-algebra.

Let R ∈ k[z] be the minimal polynomial of xy in the
extension A/k (equivalently, the roots of R are the products
risj); this polynomial is known as the composed product of
P and Q, and we will denote it R = P �Q. As k-algebras,
we have A ' k[x]/〈R〉, so there exist embeddings ϕx, ϕy,
and an isomorphism Φ of the form

ϕx : k[x]/〈P 〉 → k[z]/〈R〉

ϕy : k[y]/〈Q〉 → k[z]/〈R〉

and Φ : A = k[x, y]/〈P,Q〉 → k[z]/〈R〉
xy ← [z.

In this section, we give algorithms for computing R, apply-
ing ϕx, ϕy and their sections, and finally Φ and its inverse.
Except from the computation of R, these are all linear al-
gebra problems. If R and the images S = Φ(x), T = Φ(y)
are known, then as was explained in the introduction, direct
solutions are available for both ϕx (or ϕy) and Φ – modular
composition – but none of these approaches have a quasi-
linear running time.

We take a different path. Our algorithms have quasi-linear
running time for ϕx and ϕy and improve on the Brent-Kung
algorithm for Φ. Put together, Lemmas 5 to 9 below prove
Theorem 1. One of the key aspects of these algorithms is
that some are written in the usual monomial bases, whereas
others are naturally expressed in the corresponding dual
bases. From the complexity point of view, this is not an
issue, since we saw that all change-of-bases can be done in
quasi-linear time.

In what follows, we write τP , τQ, τR, τI for the traces mod-
ulo the ideals 〈P 〉 ⊂ k[x], 〈Q〉 ⊂ k[y], 〈R〉 ⊂ k[z] and

I = 〈P,Q〉 ⊂ k[x, y]; the corresponding bilinear forms are
denoted by 〈., .〉P , . . .

We let ξ = (xi)0≤i<m, υ = (yi)0≤j<n and ζ = (zi)0≤i<mn

be the monomial bases of respectively k[x]/〈P 〉, k[y]/〈Q〉
and k[z]/〈R〉. We also let ξ∗ = (ξ∗i)0≤i<m, υ∗ = (υ∗i)0≤i<n

and ζ∗ = (ζ∗i)0≤i<mn be the dual bases, with respect to
respectively 〈., .〉P , 〈., .〉Q and 〈., .〉R.

Finally, we denote by uP ∈ km the vector of the coor-
dinates of 1 ∈ k[x]/〈P 〉 on the dual basis ξ∗; the vector
uQ is defined similarly. These vectors can both be com-
puted in quasi-linear time, since we have, for instance, uP =
MonomialToDual((1, 0, . . . , 0), P). Thus, in what follows, we
assume that these vectors are known.

4.1 Embedding and computing R

We first show how to compute the embeddings ϕx and ϕy,
and their inverses in quasi-linear time in mn. We actually
give a slightly more general algorithm, which computes the
restriction of Φ to the set

Π = {bc | b ∈ k[x]/〈P 〉, c ∈ k[y]/〈Q〉} ⊂ k[x, y]/〈P,Q〉.

We will use the following lemma, which results from the base
independence of the trace (the second equality is Lemma 3).

Lemma 4. Let b be in k[x]/〈P 〉 and c in k[y]/〈Q〉. Then
we have τR(Φ(bc)) = τI(bc) = τP (b) τQ(c).

An easy consequence is that τR(zi) = τP (xi)τQ(yi). From
this lemma, we also immediately deduce Algorithm 3, which
computes the image in k[z]/〈R〉 of any element of Π, with
inputs and outputs written on dual bases.

Algorithm 3: Embed(b, c, r)

Input b = (bi)0≤i<m ∈ km, c = (ci)0≤i<n ∈ kn
an optional integer r ≥ mn set to r = mn by default
Output a = (ai)0≤i<r ∈ kr

1. (ti)0≤i<r = remt(b, P, r)

2. (ui)0≤i<r = remt(c, Q, r)
3. return(tiui)0≤i<r

Lemma 5. Let b ∈ k[x]/〈P 〉 and c ∈ k[y]/〈Q〉. Given the
coefficients b and c of respectively b and c in the bases ξ∗ and
υ∗, Embed(b, c, r) computes ai = τR

(
Φ(bc)zi

)
for 0 ≤ i < r

in time O(r(M(m)/m + M(n)/n)). If r = mn, (ai)0≤i<mn

are the coefficients of Φ(bc) in the basis ζ∗.

Proof. Recall that for 0 ≤ i < m, bi = τP (bxi), and
that for 0 ≤ i < n, ci = τQ(cyi). By definition of remt, the
sequences (ti) and (ui) encode the same traces, but up to
index r. By Lemma 4, the algorithm correctly computes(

τP (bxi)τQ(cyi)
)
i<r

=
(
τR(Φ(bc)zi))

)
i<r

.

For r = mn, this is indeed the representation of Φ(bc) on
the dual basis ζ∗ of k[z]/〈R〉. The cost of the calls to remt is
in Section 2.2; the last step takes r multiplications in k.

In particular, the map ϕx is computed as Embed(·, uQ),
and the map ϕy as Embed(uP , ·). Another interesting con-
sequence is that, when A is known to be a field, Embed allows
us to compute R, using the Berlekamp-Massey algorithm.

Algorithm 4: ComputeR(P,Q)

Input P in k[x], Q in k[y]
Output R in k[z]

1. (ti)0≤i<2mn = Embed(uP , uQ, 2mn),
2. return BerlekampMassey((ti)0≤i<2mn)

Algorithm 5: Project(a)

Input a = (ai)0≤i<mn ∈ kmn

Output b = (bi)0≤i<m ∈ km
1. c = (1, 0, . . . , 0)
2. (ui)0≤i<mn = remt(c, Q,mn)

3. d =
∑mn−1

i=0 aiuix
i mod P

4. return (coefficient(d, i))0≤i<m

Indeed, in this case, Embed(uP , uQ, 2mn) computes the
sequence (τR(zi))0≤i<2mn. If we know that A is a field, R
is irreducible, so the minimal polynomial of this sequence
(which is computed by the Berlekamp-Massey algorithm) is
precisely R; the running time is O(M(mn) log(mn)) opera-
tions in k. This algorithm for computing R is well-known;
see for instance [6] for a variant using power series exponen-
tials instead of Berlekamp-Massey’s algorithm (that applies
in large enough characteristic) and [7] for the specific case
of finite fields of small characteristic.

For the inverse of say ϕx, we take a in k[z]/〈R〉 of the form
a = ϕx(b), and compute b. Using the equality of Lemma 4
in the form τP (bxi) = τR(azi)/τQ(yi) would lead to a simple
algorithm, but some traces τQ(yi) may vanish.

We take a different path. Let c be a fixed element in
k[y]/〈Q〉 such that τQ(c) = 1; we will take for c the first
element υ∗0 of the dual basis of k[y]/〈Q〉, but this is not
necessary. Let us denote by ε : k[x]/〈P 〉 → k[z]/〈R〉 the
mapping defined by ε(b) = Φ(bc), and let εt : k[z]/〈R〉 →
k[x]/〈P 〉 be its dual map with respect to the bilinear forms
〈., .〉P and 〈., .〉R. Then, for b and b′ in k[x]/〈P 〉, we have

〈b, b′〉P = τP (bb′) = τP (bb′)τQ(c) = τR(Φ(bb′c))

= 〈ε(b),Φ(b′)〉R = 〈b, εt(Φ(b′))〉P ,

where the third equality comes from Lemma 4. Using the
non-degeneracy of 〈., .〉P , we get εt(Φ(b′)) = b′, that is,
εt(ϕx(b′)) = b′. Thus, εt is an inverse of ϕx on its image.

Writing c = (1, 0, . . . , 0), we remark that Embed(., c) pre-
cisely computes the mapping b 7→ ε(b). Since Embed is writ-
ten in the dual bases, the discussion of Section 2.2 shows
that transposing this algorithm (with respect to b) yields an
algorithm for εt written in the monomial bases.

Lemma 6. Let b ∈ k[x]/〈P 〉 and a = ϕx(b). Given the
coefficients a of a in the basis ζ = (zi)0≤i<mn, Project(a)
computes the coefficients of b in the basis ξ = (xi)0≤i<m

using O(nM(m) + nM(n)) operations in k.

Proof. We show correctness using transposition tech-
niques as in [8]. For fixed c, Embed(b, c) is linear in b and
can be written as πc ◦ remt, where πc is the map that multi-
plies a vector in kmn coefficient-wise by (τQ(cyi))i<mn, for
c =

∑
0≤i<n ciυ

∗
i ; hence, its transpose is rem ◦ πt

c . It is evi-

dent that πt
c = πc (since πc is a diagonal map), whereas rem

is just reduction modulo P . These correspond to steps 3
and 4. The discussion above now proves that the output is
εt(a). The cost analysis is similar to the one in Lemma 5.

4.2 Isomorphism
We are not able to give an algorithm for Φ that would be

as efficient as those for embedding; instead, we provide two
algorithms, with different domains of applicability. In what
follows, without loss of generality, we assume that m ≤ n.

Recall that ξ ⊗ υ, ξ∗ ⊗ υ, ξ ⊗ υ∗ and ξ∗ ⊗ υ∗ are four
bases of A, with (ξ⊗υ, ξ∗ ⊗υ∗) and (ξ∗ ⊗υ, ξ⊗υ∗) being

Algorithm 6: Phi1(b)

Input b = (bi,j)0≤i<m,0≤j<n ∈ km×n

Output a = (ai)0≤i<mn ∈ kmn

1. (ui)0≤i<m(n+1)−1 = remt(uP , P,m(n+ 1)− 1)

2. (ai)0≤i<mn = (0, . . . , 0)
3. for 0 ≤ i < m
4. (tj)0≤j<mn = remt((bi,j)0≤j<n, Q,mn)
5. (aj)0≤j<mn = (aj + tjui+j)0≤j<mn

6. return (ai)0≤i<mn

Algorithm 7: InversePhi1(a)

Input a = (ai)0≤i<mn ∈ kmn

Output b = (bi,j)0≤i<m,0≤j<n ∈ km×n

1. (ui)0≤i<m(n+1)−1 = remt(uP , P,m(n+ 1)− 1)
2. for i = m− 1, . . . , 0
3. d =

∑
0≤j<mn ajui+jy

j mod Q

4. (bi,j)0≤j<n = (coefficient(d, j))0≤j<n

5. return (bi,j)0≤i<m,0≤j<n

two pairs of dual bases with respect to 〈., .〉I . Our algorithms
will exploit all these bases; this is harmless, since conversions
between these bases have quasi-linear complexity.

Before giving the details of the algorithms, we make an
observation similar to the one we did regarding the transpose
of Embed. Let Φt be the dual map of Φ with respect to 〈., .〉I
and 〈., .〉R. Then, for any b, b′ ∈ k[z]/〈R〉, we have:

〈b, b′〉I = τI(bb′) = τR(Φ(bb′))

= 〈Φ(b),Φ(b′)〉R = 〈b,Φt(Φ(b′))〉I ;

hence, Φt = Φ−1. If b and b∗ are two bases of A = k[x, y]/I,
dual with respect to 〈., .〉I (such as the ones seen above) and
if c and c∗ are two bases of k[z]/〈R〉, dual with respect to
〈., .〉R, the previous equality, together with the transposition
principle, shows the following: if we have an algorithm for
Φ, expressed in the bases (b, c), transposing it yields an
algorithm for Φ−1, expressed in the bases (c∗,b∗).

First case: m is small. We start by a direct application
of the results in the previous subsection, which is well-suited
to situations where m is small compared to n.

Let b be in k[x, y]/I and let a = Φ(b). Writing b =∑
0≤i<m bix

i, with all bi in k[y]/〈Q〉, we obtain a straight-

forward algorithm to compute a: compute all Φ(bix
i) using

Embed, then sum. Since Embed takes its inputs written on
the dual bases, the algorithm requires that all bi be writ-
ten on the dual basis of k[y]/〈Q〉 (equivalently, the input is
given on the basis ξ ⊗ υ∗ of A). We also use the fact that
the expression of xi on the dual basis ξ∗ is uP shifted by i
positions to give a more compact algorithm, called Phi1.

Transposing this algorithm then gives an algorithm for
Φ−1. Its input is given on the monomial basis (zi)0≤i<mn

of k[z]/〈R〉; the output is written on the basis ξ∗ ⊗ υ of A.

Lemma 7. Let b ∈ k[x, y]/I. Given the coefficients b of b
in the basis ξ⊗υ∗, Phi1(b) computes the coefficients of Φ(b)
in the basis ζ∗ using O(m2M(n)) operations in k.

Let a ∈ k[z]/〈R〉. Given the coefficients a of a in the basis
ζ = (zi)0≤i<mn, InversePhi1(a) computes the coefficients of
Φ−1(a) in the basis ξ⊗υ∗ using O(m2M(n)) operations in k.

Proof. Correctness of Phi1 follows from the previous dis-
cussion; the most expensive step is m calls to remt, for a
cumulated cost of O(m2M(n)).

The correctness of the transposed algorithm is proved as
in Lemma 6, observing that it consists of the line-by-line

transposition of Phi1. The running time analysis is straight-
forward: the dominant cost is that of m remainders, each of
which costs O(mM(n)).
Second case: m is not small. The previous algorithms
are most efficient when m is small; now, we propose an al-
ternative solution that does better when m and n are of the
same order of magnitude (with still m ≤ n).

This approach is based on baby steps / giant steps tech-
niques, as in Brent and Kung’s modular composition algo-
rithm, but uses the fact that z = Φ(xy) to reduce the cost.
Given b in A = k[x, y]/〈P,Q〉, let us write

b =

m−1∑
i=0

n−1∑
j=0

bi,jx
iyj =

m−1∑
i=0

n−1∑
j=0

bi,jx
iyiyj−i

=

n−1∑
h=−m+1

m−1∑
i=0

bi,i+h(xy)iyh =
1

ym−1

m+n−2∑
h=0

ch(xy)yh,

with ch(z) =
∑

0≤i<m bi,i+h−m+1z
i for all h (undefined in-

dices are set to zero). Hence a = Φ(b) has the form

a =
1

Tm−1
ã mod R with ã =

m+n−2∑
h=0

chT
h,

where T = Φ(y). We use baby steps / giant steps techniques
from [28] (inspired by Brent and Kung’s algorithm) to com-
pute a, reducing the problem to polynomial matrix multipli-
cation. Let n′ = m+n−1, p = d

√
n′e and q = dn′/pe, so that

n ≤ n′ ≤ 2n− 1 and p ' q '
√
n. For baby steps, we com-

pute the polynomials Ti = T i mod R, which have degree at
most mn−1; we write Ti =

∑
0≤j<n T

′
i,jz

jm, with T ′i,j of de-
gree less than m, and build the polynomial matrix MT ′ with
entries T ′i,j . We define the matrix MC = [ciq+j]0≤i<p,0≤j<q

containing the polynomials ch organized in a row-major fash-
ion, and compute the product MV = MCMT . We can then
construct polynomials from the rows of MV , and conclude
with giant steps using Horner’s scheme.

The previous discussion leads to Algorithm 8. Remark
that input and output are written on the monomial bases.

Lemma 8. Let b ∈ k[x, y]/I. Given the coefficients b of
b in the basis ξ ⊗ υ = (xiyj)0≤i<m,0≤j<n, Phi2(b) com-
putes the coefficients of Φ(b) in the basis ζ = (zi)0≤i<mn in

O(M(mn)n1/2 + M(m)n(ω+1)/2) operations in k.

Proof. Correctness follows from the discussion prior to
the algorithm. As to the cost analysis, remark first that
n′ = O(n), and that p and q are both O(

√
n). Steps 4

and 14 cost O(M(mn) log(mn)) operations. Steps 5 (the
baby steps) and the loop at Step 12 (the giant steps) cost
O(
√
nM(mn)). The dominant cost is the matrix product

at Step 8, which involves matrices of size O(
√
n) × O(

√
n)

and O(
√
n) × O(n), with polynomial entries of degree m:

using block matrix multiplication in size O(
√
n), this takes

O(M(m)n(ω+1)/2) operations in k.

As before, writing the transpose of this algorithm gives us
an algorithm for Φ−1, this time written in the dual bases.
The process is the same for the previous transposed algo-
rithms we saw, involving line-by-line transposition. The only
point that deserves mention is Step 13, where we transpose
polynomial matrix multiplication; it becomes a similar ma-
trix product, but this time involving transposed polynomial
multiplications (with degree parameters m−1 and m). The
cost then remains the same, and leads to Lemma 9.

Algorithm 8: Phi2(b)

Input b = (bi,j)0≤i<m,0≤j<n ∈ km×n

Output a = (ai)0≤i<mn ∈ kmn

1. n′ = m+ n− 1, p = d
√
n′e, q = dn′/pe

2. y = MonomialToDual((0, 1, 0, . . . , 0), Q)
3. T = DualToMonomial(Embed(uP , y), R)
4. U = 1/T mod R
5. T ′ = [T i mod R]0≤i≤q

6. MT ′ = [T ′i,j]0≤i<q,0,≤j<n T ′i,j are defined in the text

7. MC = [ciq+j]0≤i<p,0≤j<q ch are defined in the text
8. MV =MCMT ′

9. V = [
∑

0≤j<nMV i,jz
jm]0≤i<p

10. V ′ = [Vi mod R]0≤i<p

11. a = 0
12. for i = p− 1, . . . , 0
13. a = T ′q a+ V ′i mod R

14. a = aUm−1 mod R
15. return (coefficient(a, i))0≤i<mn

Algorithm 9: InversePhi2(a)

Input a = (ai)0≤i<mn ∈ kmn

Output b = (bi,j)0≤i<m,0≤j<n ∈ km×n

1. n′ = m+ n− 1, p = d
√
n′e, q = dn′/pe

2. y = MonomialToDual((0, 1, 0, . . . , 0), Q)
3. T = DualToMonomial(Embed(uP , y), R)
4. U = 1/T mod R
5. T ′ = [T i mod R]0≤i≤q

6. MT ′ = [T ′i,j]0≤i<q,0,≤j<n T ′i,j as defined above

7. a = mulmodt(a, Um−1, R)
8. for i = 0, . . . , p− 1
9. V ′i = a

10. a = mulmodt(a, T ′q , R)

11. V = [remt(V ′i , R,mn+m− 1)]0≤i<p

12. MV = [(Vi)jm,...,jm+2m−2]0≤i<p,0≤j<n

13. MC = mult(MV ,MT ′ ,m− 1,m)
14. c = [MC0,0, . . . ,MC0,q−1, . . . ,MCp−1,q−1]

15. return [coefficient(ci−j+m−1, i)]0≤i<m,0≤j<n

Lemma 9. Let a ∈ k[z]/〈R〉. Given the coefficients a of
a in the basis ζ∗, InversePhi2(a) computes the coefficients of

Φ−1(a) in the basis ξ∗⊗υ∗ in O(M(mn)n1/2+M(m)n(ω+1)/2)
operations in k.

5. THE ALGEBRAIC CLOSURE OF Fp
In this section, we explain how the algorithms of Section 4

can be used in order to construct and work in arbitrary ex-
tensions of Fp, when used in conjunction with algorithms
for `-adic towers over Fp. Space constraints prevent us from
giving detailed algorithms, so we only outline the construc-
tion. We reuse definitions given in the introduction relative
to `-adic towers: polynomials T`,i, Q`,i and Q`,i,j−i and
fields K`i = Fp[x1, . . . , xi]/〈T`,1, . . . , T`,i〉. We also assume
that algorithms for embeddings or change of basis in `-adic
towers are available (as in [18] and references therein).

Setup. For ` prime and i ≥ 1, the residue class of xi in K`i

will be written x`i . For a positive integer m = `e11 · · · `err ,
with `i pairwise distinct primes and ei positive integers, Km

denotes the tensor product K`
e1
1
⊗ · · · ⊗K`

er
r

; this is a field

with pm elements. If m divides n, then Km embeds in Kn.
Taking the direct limit of all Km under such embeddings, we
get an algebraic closure K of Fp. The residue classes written
x`e in K`e all lie in K and are still written x`e .

For any integer m of the form m = `e11 · · · `err with `i’s
pairwise distinct primes, we write xm = x`e11

· · ·x`err ∈ K.

Minimal polynomials. We discuss first minimal polyno-
mials of monomials in K over Fp.

Take x`e in K, with ` prime. By construction, its minimal
polynomial over Fp is Q`,e, irreducible of degree `e in (say)
Fp[z]. Next, consider a term xm, with m = `e11 · · · `err , with
`i’s pairwise distinct primes. It equals x`e11

· · ·x`err , so it

is a root of the composed product Qm = Q`1,e1 � · · · �
Q`r,er . In Section 4, we pointed out that Qm is irreducible
of degree m = `e11 · · · `err in Fp[z], so it must be the minimal
polynomial of xm over Fp. In particular, this implies that
Fp(xm) is a field with pm elements, and that if we consider
terms xm and xn, with m dividing n, then xm is in Fp(xn).

Note that this process of constructing irreducible polyno-
mials over Fp is already in [35, 36, 16].

Embedding and change of basis. Consider a sequence
e = (e1, . . . , et) of positive integers, and let n = e1 · · · et.
The set

Be = {xa1
e1x

a2
e1e2 · · ·x

at
e1···et | 0 ≤ ai < ei for all i}

is a basis of Fp(xn). Important examples are sequences of
the form e = (e1), with thus n = e1, for which Be is the
univariate basis (xin)0≤i<n. Also useful for us are sequences
e = (e1, e2); letting m = e1 and n = e1e2, Be is the bivariate
basis (ximx

j
n)0≤i<m,0≤j<n/m.

Consider sequences d = (d1, . . . , ds) and e = (e1, . . . , et),
with m = d1 · · · ds and n = e1 · · · et, and suppose that m
divides n. The linear mapping Fm

p → Fn
p that describes the

embedding Fpm → Fpn in the bases Bd and Be is denoted by
Φe,d; when m = n, it is an isomorphism, with inverse Φd,e.
More generally, as soon as this expression makes sense, we
have Φf,d = Φf,e ◦ Φe,d, so these mappings are compatible.

To conclude this section, we describe how the algorithms
of this paper can be used in this framework to realize some
particular cases of mappings Φd,e (more general examples
can be deduced readily).

Embedding. Consider two integers m,n with m dividing
n. We describe here how to embed Fp(xm) in Fp(xn), that
is, how to compute Φ(n),(m). Without loss of generality, we
may assume that n = m`, with ` prime.

Assume first that gcd(m, `) = 1. Since then xn = xmx`,
and we have access to the polynomials Qm, Q` and Qn (see
above), we just apply the embedding algorithm of Section 4.

Suppose now that ` divides m, so m = m′`k, with m′, `
coprime. Using one of the inverse isomorphism algorithms
of Section 4, we can rewrite an element given on the ba-
sis (xim)0≤i<m on the basis (xim′x

j

`k
)0≤i<m′,0≤j<`k . Using

an algorithm for embeddings in the `-adic tower, we can
then embed on the basis (xim′x

j

`k+1)0≤i<m′,0≤j<`k+1 ; ap-
plying our isomorphism algorithm, we end up on the basis
(xim`)0≤i<m`, since xm` = xm′x`k+1 .

Further operations. Without entering into details, let us
mention that further operations are feasible, in the same
spirit as the embedding algorithm we just described.

For instance, for arbitrary integers m and n, it is possible
to compute the relative minimal polynomial of xmn over
Fp(xm); it is obtained as a composed product, with factors
deduced from the decomposition of m and n into primes.

As another example, we can compute Φ(m,n),(mn), that is,

go from the univariate basis (ximn)0≤i<mn to the bivariate
basis (ximx

j
mn)0≤i<m,0≤j<n. This can be used to compute

for instance relative traces, norms or minimal polynomials
of arbitrary elements of Fpmn over Fpm .

Figure 1: Timings in seconds, p = 5, n = m+ 1

6. IMPLEMENTATION
To demonstrate the practicality of our algorithms, we

made a C implementation and compared it to various ways
of constructing the same fields in Magma. All timings in
this section are obtained on an Intel Xeon E5620 CPU at
2.40GHz, using Magma V2.18-12, Flint 2.4.1 and Sage 6.

Our implementation is limited to finite fields of word-sized
characteristic. It is based on the C library Flint [25], and we
make it available as a Sage module in an experimental fork
at https://github.com/defeo/sage/tree/ff_compositum.
We plan to make it available as a standard Sage module, as
well as a separate C library, when the code has stabilized.

Based on the observation that algorithms Embed and
Project are simpler than conversion algorithms between
monomial and dual bases, we chose to implement a lazy
change of basis strategy. By this we mean that our Sage
module (rather than the C library itself) represents elements
on either the monomial or the dual basis, with one repre-
sentation computed from the other only when needed. For
example, two elements of the same field can be summed if
both have a monomial or if both have a dual representa-
tion. Similarly, two elements can be multiplied using stan-
dard multiplication if both have a monomial representation,
or using transposed multiplication if one of the two has a
monomial representation. In all other cases, the required
representation is computed and stored when the user input
prompts it. To implement this strategy efficiently, our Sage
module is written in the compiled language Cython.

We focus our benchmarks on the setting of Section 4: P
and Q are two irreducible polynomials of coprime degrees m
and n, and R = P �Q. We fix the base field Fp and make m
and n grow together with n = m+1. We measure the time to
compute R, to apply the algorithms Embed, Phi1, etc., and
to compute the changes of bases. We noticed no major differ-
ence between different characteristics, so we chose p = 5 for
our demonstration. As shown in Figure 1, the dominating
phase is the computation of R (line labeled R). Surprisingly,
transposed modular multiplication is slightly faster than or-
dinary modular multiplication. The cost of Embed is about
the same as that of multiplication, while DualToMonomial
is about 50% slower. Project and MonomialToDual have, re-
spectively, similar performances (only slightly faster) hence
they are not reported on the graph. This justifies our design
choice of lazy change of basis.

Unsurprisingly, the isomorphism algorithms take signifi-
cantly more time than the computation of R; for our choices
of degrees, Phi2 is asymptotically faster than Phi1 and the
crossover between them happens around m = 70.

https://github.com/defeo/sage/tree/ff_compositum

 0

 200

 400

 600

 800

 1000

 0 30 60 90 120 150 180

m

irred
P R
P Q
ext

 0

 0.01

 0.02

 0.03

 0.04

 0 30 60 90 120 150 180

m

embedding
inverse isomorphism

Figure 2: Magma timings in seconds, p = 5, n = m+1

We compare our implementation to four different strate-
gies available in Magma. For each of them we measure the
time to construct the finite fields and embedding data, as
well as the time to do operations equivalent to Embed, resp.
inverse isomorphism.

Figure 2 reports on the following experiments. In irred,
we supply directly P , Q and R to Magma’s finite field con-
structor, then we call the Embed routine to compute the em-
bedding data. In P R, we use Magma’s default constructor
to compute P and R (Magma chooses its own polynomials),
then we call the Embed routine to compute the embedding.
In P Q, we use Magma’s default constructor to compute P
and Q (Magma chooses its own polynomials), then use the
CommonOverfield routine to compute R, then Embed to com-
pute the embedding data. In ext, we use Magma’s default
constructor to compute P , then the ext operator to com-
pute an extension of degree n of Fp[x]/〈P 〉 (Magma chooses
its own polynomials).

Timings for constructing the extension and the embedding
vary from one method to the other; once this is done, timings
for applying embeddings or (inverse) isomorphisms are the
same across these methods.

The Magma implementation cannot construct the embed-
ding data in large cases (m = 150) in less than 1000 seconds,
while our code takes a few seconds. Once the embedding
data is known, Magma can apply the embeddings or iso-
morphisms extremely fast; in our case, one may do the same,
using our algorithms to compute the matrices of Φ and Φ−1,
when precomputation time and memory are not a concern.
Acknowledgements. We would like to thank the refer-
ees for their insightful remarks. Part of this work was fi-
nanced by NSERC, the CRC program and the ANR project
ECLIPSES (ANR-09-VERS-018).

7. REFERENCES
[1] B. Allombert. Explicit computation of isomorphisms between

finite fields. Finite Fields Appl., 8(3):332 – 342, 2002.

[2] E. R. Berlekamp. Bit-serial Reed-Solomon encoders. IEEE
Trans. Inf. Theory, 28(6):869–874, 1982.

[3] W. Bosma, J. Cannon, and C. Playoust. The MAGMA algebra
system I: the user language. J. Symb. Comput.,
24(3-4):235–265, 1997.

[4] W. Bosma, J. Cannon, and A. Steel. Lattices of compatibly
embedded finite fields. J. Symb. Comput., 24(3-4):351–369,
1997.

[5] A. Bostan. Algorithmes rapides pour les polynômes, séries
formelles et matrices, volume 1 of Les cours du CIRM. 2010.

[6] A. Bostan, P. Flajolet, B. Salvy, and É. Schost. Fast
computation of special resultants. J. Symb. Comput.,
41(1):1–29, 2006.

[7] A. Bostan, L. González-Vega, H. Perdry, and É. Schost. From
Newton sums to coefficients: complexity issues in characteristic
p. In MEGA’05, 2005.

[8] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into
practice. In ISSAC’03, pages 37–44. ACM, 2003.

[9] N. Bourbaki. Éléments de mathématique. Springer, 2007.
Algèbre. Chapitre 9.

[10] J. V. Brawley and L. Carlitz. Irreducibles and the composed
product for polynomials over a finite field. Discrete Math.,
65(2):115–139, 1987.

[11] R. P. Brent and H.-T. Kung. Fast algorithms for manipulating
formal power series. Journal of the ACM, 25(4):581–595, 1978.

[12] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic
Complexity Theory. Springer, February 1997.

[13] D. G. Cantor. On arithmetical algorithms over finite fields. J.
Combin. Theory Ser. A, 50(2):285–300, 1989.

[14] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. J. Symb. Comput., 9(3):251–280, 1990.

[15] J.-M. Couveignes. Isomorphisms between Artin-Schreier towers.
Math. Comp., 69(232):1625–1631, 2000.

[16] J.-M. Couveignes and R. Lercier. Fast construction of
irreducible polynomials over finite fields. Israel J. Math.,
194(1):77–105, 2013.

[17] D. A. Cox, J. Little, and D. O’Shea. Using Algebraic
Geometry. Springer-Verlag, 2005.

[18] L. De Feo, J. Doliskani, and É. Schost. Fast algorithms for
`-adic towers over finite fields. In ISSAC’13, pages 165–172.
ACM, 2013.

[19] L. De Feo and É. Schost. Fast arithmetics in Artin-Schreier
towers over finite fields. J. Symb. Comput., 47(7):771–792,
2012.

[20] Luca De Feo. Algorithmes Rapides pour les Tours de Corps

Finis et les Isogénies. PhD thesis, École Polytechnique X,
December 2010.

[21] J. Doliskani and É. Schost. Computing in degree 2k-extensions
of finite fields of odd characteristic. Des. Codes Cryptogr., to
appear.

[22] J. von zur Gathen and J. Gerhard. Modern Computer Algebra.
Cambridge University Press, New York, NY, USA, 1999.

[23] J. von zur Gathen and V. Shoup. Computing Frobenius maps
and factoring polynomials. Comput. Complexity, 2:187–224,
1992.

[24] G. Hanrot, M. Quercia, and P. Zimmermann. The middle
product algorithm I. Appl. Algebra Engrg. Comm. Comput.,
14(6):415–438, 2004.

[25] William Hart. Fast library for number theory: an introduction.
Mathematical Software-ICMS 2010, pages 88–91, 2010.

[26] K. S. Kedlaya and C. Umans. Fast polynomial factorization and
modular composition. SICOMP, 40(6):1767–1802, 2011.

[27] E. Kunz. Kähler differentials. Friedr. Vieweg & Sohn, 1986.

[28] R. Lebreton, E. Mehrabi, and É. Schost. On the complexity of
solving bivariate systems: The case of non-singular solutions. In
ISSAC’13, pages 251–258. ACM, 2013.

[29] H. W. Lenstra Jr. Finding isomorphisms between finite fields.
Math. Comp., 56(193):329–347, 1991.

[30] H. W. Lenstra Jr. and B. De Smit. Standard models for finite
fields: the definition, 2008.

[31] The PARI Group, Bordeaux. PARI/GP, version 2.7.0, 2014.

[32] A. Poteaux and É. Schost. Modular composition modulo
triangular sets and applications. Comput. Complexity,
22(3):463–516, 2013.

[33] A. Poteaux and É. Schost. On the complexity of computing
with zero-dimensional triangular sets. J. Symb. Comput.,
50:110–138, 2013.

[34] F. Rouillier. Solving Zero-Dimensional systems through the
Rational Univariate Representation. Appl. Algebra Engrg.
Comm. Comput., 9(5):433–461, 1999.

[35] V. Shoup. New algorithms for finding irreducible polynomials
over finite fields. Math. Comp., 54:435–447, 1990.

[36] V. Shoup. Fast construction of irreducible polynomials over
finite fields. J. Symb. Comput., 17(5):371–391, 1994.

[37] Victor Shoup. NTL: A library for doing number theory.
http://www.shoup.net/ntl.

[38] Victor Shoup. Efficient computation of minimal polynomials in
algebraic extensions of finite fields. In ISSAC’99, pages 53–58.
ACM, 1999.

[39] William A. Stein and Others. Sage Mathematics Software
(Version 5.5). The Sage Development Team, 2013.

[40] V. Vassilevska Williams. Multiplying matrices faster than
Coppersmith-Winograd. In STOC’12, pages 887–898. ACM,
2012.

http://www.shoup.net/ntl

	Introduction
	Preliminaries
	Polynomial multiplication and remainder
	Duality and the transposition principle

	Trace and duality
	Embedding and isomorphism
	Embedding and computing R
	Isomorphism

	The algebraic closure of Fp
	Implementation
	References

