
Computing the Characteristic Polynomial of a Finite Rank Two
Drinfeld Module

Yossef Musleh

Cheriton School of Computer Science

University of Waterloo

Waterloo, Ontario, Canada

ymusleh@uwaterloo.ca

Éric Schost

Cheriton School of Computer Science

University of Waterloo

Waterloo, Ontario, Canada

eschost@uwaterloo.ca

Abstract
Motivated by finding analogues of elliptic curve point counting

techniques, we introduce one deterministic and two new Monte

Carlo randomized algorithms to compute the characteristic poly-

nomial of a finite rank-two Drinfeld module. We compare their

asymptotic complexity to that of previous algorithms given by

Gekeler, Narayanan and Garai-Papikian and discuss their practical

behavior. In particular, we find that all three approaches represent

either an improvement in complexity or an expansion of the pa-

rameter space over which the algorithm may be applied. Some

experimental results are also presented.

CCS Concepts
• Computing methodologies → Symbolic and algebraic algo-
rithms;

Keywords
Drinfeld module; algorithms; complexity.

ACM Reference Format:
Yossef Musleh and Éric Schost. 2019. Computing the Characteristic Polyno-

mial of a Finite Rank Two Drinfeld Module. In International Symposium on
Symbolic and Algebraic Computation (ISSAC ’19), July 15–18, 2019, Beijing,
China. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3326229.

3326256

1 Introduction
Drinfeld modules were introduced by Drinfeld in [9] (under the

name elliptic modules) to prove certain conjectures pertaining to the
Langlands program; they are themselves extensions of a previous

construction known as the Carlitz module [4].
In this paper, we consider so-called Drinfeld modules of rank

two over a finite field L. Precise definitions are given below, but this

means that we will study the properties of ring homomorphisms

from F𝑞 [𝑥] to the skew polynomial ring L{𝜏}, where 𝜏 satisfies the
commutation relation 𝜏𝑢 = 𝑢𝑞𝜏 for 𝑢 in L. Here, the rank of such a

morphism 𝜑 is the degree in 𝜏 of 𝜑 (𝑥).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’19, July 15–18, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6084-5/19/07. . . $15.00

https://doi.org/10.1145/3326229.3326256

Rank two Drinfeld modules enjoy remarkable similarities with

elliptic curves: analogues exist of good reduction, complex multi-

plication, etc. Based in part on these similarities, Drinfeld modules

have recently started being considered under the algorithmic view-

point. For instance, they have been proved to be unsuitable for usual

forms of public key cryptography [35]; they have also been used to

design several polynomial factorization algorithms [8, 30, 31, 39];

recent work by Garai and Papikian discusses the computation of

their endomorphism rings [11]. Our goal is to study in detail the

complexity of computing the characteristic polynomial of a rank

two Drinfeld module over a finite field.

A fundamental object attached to an elliptic curve 𝐸 defined

over a finite field F𝑞 is its Frobenius endomorphism 𝜋 : (𝑥,𝑦) ↦→
(𝑥𝑞, 𝑦𝑞); it is known to satisfy a degree-two relation with integer

coefficients called its characteristic polynomial. Much is known

about this polynomial: it takes the form 𝑇 2 − ℎ𝑇 + 𝑞, for some

integer ℎ called the trace of 𝜋 , with log
2
(|ℎ |) ≤ log

2
(𝑞)/2 + 1 (this

is known as the Hasse bound). In 1985, Schoof famously designed

the first polynomial-time algorithm for finding the characteristic

polynomial of such a curve [36].

Our main objective is to investigate the complexity of a Drinfeld

analogue of this question. Given a rank two Drinfeld module over a

degree 𝑛 extension L of F𝑞 , one can define its Frobenius endomor-

phism, and prove that it satisfies a degree-two relation𝑇 2 −𝐴𝑇 +𝐵,
where 𝐴 and 𝐵 are now in F𝑞 [𝑥]. As in the elliptic case, 𝐵 is rather

easy to determine, and of degree 𝑛. Hence, our main question is the

determination of the polynomial 𝐴, which is known to have degree

at most 𝑛/2 (note the parallel with the elliptic case).

Contrary to the elliptic case, computing the characteristic polyno-

mial of a Drinfeld module is easily seen to be feasible in polynomial

time: it boils down to finding the Θ(𝑛) coefficients of 𝑎, which are

known to satisfy certain linear relations. Gekeler detailed such an

algorithm in [14]; wewill briefly revisit it in order to analyse its com-

plexity, which turns out to be cubic in 𝑛. Our main contributions in

this paper are several new algorithms with improved runtimes; we

also present experimental results obtained by an implementation

based on NTL [38].

An implementation of Gekeler’s algorithm was described in [20]

and used to study the distribution of characteristic polynomials of

Drinfeld modules by computing several thousands of them.

2 Preliminaries
In this section, we introduce notation to be used throughout the

paper; we recall the basic definition of Drinfeld modules and state

precisely our main problem. For a general reference on these ques-

tions, see for instance [17].

https://doi.org/10.1145/3326229.3326256
https://doi.org/10.1145/3326229.3326256
https://doi.org/10.1145/3326229.3326256

2.1 The Fields F𝑞 , K and L
In all the paper, F𝑞 is a given finite field, of order a prime power 𝑞,

and L ⊃ F𝑞 is another finite field of degree 𝑛 over F𝑞 . Explicitly, we
assume that L is given as L = F𝑞 [𝑧]/𝔣, for some monic irreducible

𝔣 ∈ F𝑞 [𝑧] of degree 𝑛. When needed, we will denote by 𝜁 ∈ L the
class (𝑧 mod 𝔣).

In addition, we suppose that we are given a ring homomorphism

𝛾 : F𝑞 [𝑥] → L. The kernel ker(𝛾) of the mapping 𝛾 : F𝑞 [𝑥] → L is
a prime ideal of F𝑞 [𝑥] generated by a monic irreducible polynomial

𝔭, referred to as the F𝑞 [𝑥]-characteristic of L. Then, 𝛾 induces an

embedding K := F𝑞 [𝑥]/𝔭 → L; we will write𝑚 := [L : K], so that

𝑛 =𝑚𝑑 , with 𝑑 = deg𝔭. When needed, we will denote by 𝜉 ∈ K the

class (𝑥 mod 𝔭).
Although it may not seem justified yet, we may draw a parallel

with this setting and that of elliptic curves over finite fields. As

said before, one should see F𝑞 [𝑥] playing here the role of Z in the

elliptic theory. The irreducible 𝔭 is the analogue of a prime integer

𝑝 , so that the field K = F𝑞 [𝑥]/𝔭 is often thought of as the “prime

field”, justifying the term “characteristic” for 𝔭. The field extension

L will be the “field of definition” of our Drinfeld modules.

We denote by 𝜋 : L → L the 𝑞-power Frobenius 𝑢 ↦→ 𝑢𝑞 ; for

𝑖 ≥ 0, the 𝑖th iterate 𝜋𝑖 : L→ L is thus 𝑢 ↦→ 𝑢𝑞
𝑖
; for 𝑖 ≤ 0, 𝜋𝑖 is the

𝑖th iterate of 𝜋−1
.

2.2 Skew Polynomials
We write L{𝜏} for the ring of so-called skew polynomials

L{𝜏} = {𝑈 = 𝑢0 + 𝑢1𝜏 + · · · + 𝑢𝑠𝜏𝑠 | 𝑠 ∈ N, 𝑢0, . . . , 𝑢𝑠 ∈ L}. (1)

This ring is endowed with the multiplication induced by the relation

𝜏𝑢 = 𝑢𝑞𝜏 , for all 𝑢 in L. Elements of L{𝜏} are sometimes called

linearized polynomials, since there exists an isomorphism mapping

L{𝜏} to polynomials of the form 𝑢0𝑥 + 𝑢1𝑥
𝑞 + · · · + 𝑢𝑠𝑥𝑞

𝑠
, which

form a ring for the operations of addition and composition.

A non-zero element𝑈 of L{𝜏} admits a unique representation as

in (1) with𝑢𝑠 non-zero. Its degree deg𝑈 is the integer 𝑠 (as usual, we

set deg 0 = −∞). The ring L{𝜏} admits a right Euclidean division:

given𝑈 and 𝑉 in L{𝜏}, with 𝑉 non-zero, there exists a unique pair

(𝑄, 𝑅) in L{𝜏}2
such that𝑈 = 𝑄𝑉 + 𝑅 and deg𝑅 < deg𝑉 .

There is a ring homomorphism 𝜄 : L{𝜏} → EndF𝑞 [L] given by

𝜄 : 𝑢0 + 𝑢1𝜏 + · · · + 𝑢𝑠𝜏𝑠 ↦→ 𝑢0Id + 𝑢1𝜋 + · · · + 𝑢𝑠𝜋𝑠 ,

where Id : L→ L is the identity operator and 𝜋 and its powers are

as defined above. This mapping allows us to interpret elements in

L{𝜏} as F𝑞-linear operators L→ L.

2.3 Drinfeld Modules
Drinfeld modules can be defined in a quite general setting, involving

projective curves defined over F𝑞 ; we will be concerned with the

following special case (where the projective curve in question is

simply P1
).

Definition 1. Let L and𝛾 be as above. A rank 𝑟 Drinfeld module

over (L, 𝛾) is a ring homomorphism 𝜑 : F𝑞 [𝑥] → L{𝜏} such that

𝜑 (𝑥) = 𝛾 (𝑥) + 𝑢1𝜏 + · · · + 𝑢𝑟𝜏𝑟 ,

with 𝑢1, . . . , 𝑢𝑟 in L and 𝑢𝑟 non-zero.

For𝑈 in F𝑞 [𝑥], we will abide by the convention of writing 𝜑𝑈
in place of 𝜑 (𝑈). Since 𝜑 is a ring homomorphism, we have 𝜑𝑈𝑉 =

𝜑𝑈𝜑𝑉 and𝜑𝑈 +𝑉 = 𝜑𝑈 +𝜑𝑉 for all𝑈 ,𝑉 in F𝑞 [𝑥]; hence, the Drinfeld
module 𝜑 is determined entirely by 𝜑𝑥 ; precisely, for 𝑈 in F𝑞 [𝑥],
we have 𝜑𝑈 = 𝑈 (𝜑𝑥).

We will restrict our considerations to rank two Drinfeld modules.

In particular, we will use the now-standard convention of writing

𝜑𝑥 = 𝛾 (𝑥) + 𝑔𝜏 + Δ𝜏2
. Hence, for a given (L, 𝛾), we can represent

any rank two Drinfeld module over (L, 𝛾) by the pair (𝑔,Δ) ∈ L2
.

Example 1. Let𝑞 = 5, 𝔣 = 𝑧4+4𝑧2+4𝑧+2 and L = F5 [𝑧]/𝔣 = F625,
so that 𝑛 = 4; we let 𝜁 be the class of 𝑧 in L. Let 𝛾 : F5 [𝑥] → F625 be
given by 𝑥 ↦→ 𝜁 , so that 𝔭 = 𝔣, K = L = F625 and𝑚 = 1. We define
the Drinfeld module 𝜑 : F5 [𝑥] → F625{𝜏} by 𝜑𝑥 = 𝜁 + 𝜏 + 𝜏2, so that
(𝑔,Δ) = (1, 1).

Suppose 𝜑 is a rank two Drinfeld module over (L, 𝛾). A central

element in L{𝜏} is called an endormorphism of 𝜑 . Since 𝑢𝑞
𝑛
= 𝑢

for all 𝑢 in L, 𝜏𝑛 is such an endomorphism. The following key

theorem [14, Cor. 3.4] defines the main objects we wish to compute.

Theorem 1. There is a polynomial𝑇 2 −𝐴𝑇 + 𝐵 ∈ F𝑞 [𝑥] [𝑇] such
that 𝜏𝑛 satisfies the equation

𝜏2𝑛 − 𝜑𝐴𝜏𝑛 + 𝜑𝐵 = 0, (2)

with deg𝐴 ≤ 𝑛/2 and deg𝐵 = 𝑛.

The polynomials 𝐴 and 𝐵 are respectively referred to as the

Frobenius trace and Frobenius norm of 𝜑 . Note in particular the

similarity with Hasse’s theorem for elliptic curves over finite fields

regarding the respective “sizes” (degree, here) of the Frobenius

trace and norm. The main goal of this paper is then to find efficient

algorithms to solve the following problem.

Problem 1. Given a rank two Drinfeld module 𝜑 = (𝑔,Δ), com-
pute its Frobenius trace 𝐴 and Frobenius norm 𝐵.

Example 2. In the previous example, we have 𝐴 = 3𝑥2 + 𝑥 + 3 and
𝐵 = 𝑥4 + 4𝑥2 + 4𝑥 + 2.

By composing 𝜑 : F𝑞 [𝑥] → L{𝜏} and 𝜄 : L{𝜏} → EndF𝑞 [L] as
defined in the previous subsection, we obtain another ring homo-

morphismΦ : F𝑞 [𝑥] → EndF𝑞 [L]; we will use the same convention

of writing Φ𝑈 = Φ(𝑈) for 𝑈 in F𝑞 [𝑥]. Thus, we see that a Drin-
feld module equips L with a new structure as an F𝑞 [𝑥]-module,

induced by the choice of Φ𝑥 = 𝛾 (𝑥)Id + 𝑔𝜋 + Δ𝜋2
, with 𝜋 : L→ L

the 𝑞-power Frobenius map

Applying 𝜄 to the equality in Theorem 1, we obtain that 𝜋2𝑛 +
Φ𝐴𝜋

𝑛+Φ𝐵 is the zero linearmappingL→ L. Since 𝜋𝑛 is the identity
map, and since we have Φ𝐴 = 𝐴(Φ𝑥), Φ𝐵 = 𝐵(Φ𝑥), this implies that

the polynomial 1−𝐴+𝐵 ∈ F𝑞 [𝑥] cancels the F𝑞-endormorphismΦ𝑥 .
Actually, more is true: 1−𝐴+𝐵 is the characteristic polynomial of this

endomorphism [14, Th. 5.1]. As it turns out, finding the Frobenius

norm 𝐵 is a rather easy task (see Section 4); as a result, Problem 1

can be reduced to computing the characteristic polynomial of Φ𝑥 .
This shows in particular that finding 𝐴 and 𝐵 can be done in

(𝑛 log𝑞)𝑂 (1)
bit operations (in all the paper, we will use a boolean

complexity model, which counts the bit complexity of all operations

on a standard RAM). The questions that interest us are to make

this cost estimate more precise, and to demonstrate algorithmic

improvements in practice, whenever possible. Our main results are

as follows.

Theorem 2. One can solve Problem 1

• in Monte Carlo time (𝑛1.885
log𝑞 +𝑛 log

2 𝑞)1+𝑜 (1) , if the min-
imal polynomial of Φ𝑥 has degree 𝑛 (Section 5);

• in time (𝑛2+𝜀
log𝑞 + 𝑛 log

2 𝑞)1+𝑜 (1) , for any 𝜀 > 0 (Section 6);
• in Monte Carlo time (𝑛2

log
2 𝑞)1+𝑜 (1) (Section 7).

Section 4 reviews previous work; it shows that our results are the

best to date, except when K = L (the “prime field case”), where a

runtime (𝑛1.5+𝜀
log𝑞+𝑛1+𝜖

log
2 𝑞)1+𝑜 (1)

is possible for any 𝜀 > 0 [8].

Section 8 discusses the practical behavior of these algorithms; in

particular, it highlights that among all of them, the Monte Carlo

algorithm of Section 7 features the best runtimes, except when

K = L, where the above-mentioned result of [8] is superior.

Input and output sizes are Θ(𝑛 log𝑞) bits, so the best we could

hope for is a runtime quasi-linear in 𝑛 log𝑞; as the theorem shows,

we are rather far from this, since the best unconditional results

are quadratic in 𝑛. On the other hand, Problem 1 is very similar

to questions encountered when factoring polynomials over finite

fields, and it was not until the work of Kaltofen and Shoup [23] that

subquadratic factorization algorithms were discovered. We believe

that finding an algorithm of unconditional subquadratic time in 𝑛

for Problem 1 is an interesting and challenging question.

The algorithm of Section 6 was directly inspired by Schoof’s

algorithm for elliptic curves. We believe this interaction has the

potential to yield further algorithms of interest, perhaps using other

“elliptic” techniques, such as 𝑝-adic approaches [34] or Harvey’s

amortization techniques [18].

3 Algorithmic Background
We now discuss the cost of operations in L and L{𝜏} with runtimes

given in bit operations. Notation (F𝑞,L, . . .) is as in 2.1. To simplify

cost analyses, we assume that 𝑥𝑞 mod 𝔭 is known; we will see below
the cost of computing it once and for all, at the beginning of our

algorithms.

3.1 Polynomial and matrix arithmetic

3.1.1. Elements of L are written on the power basis 1, 𝜁 , . . . , 𝜁𝑛−1
.

On occasion, we use F𝑞-linear forms L → F𝑞 ; they are given on

the dual basis, that is, by their values at 1, 𝜁 , . . . , 𝜁𝑛−1
.

Using FFT-based multiplication, polynomial multiplication, di-

vision and extended GCD in degree 𝑛, and thus addition, multipli-

cation and inversion in L, can be done in (𝑛 log𝑞)1+𝑜 (1)
bit opera-

tions [12]. In particular, computing 𝑥𝑞 mod 𝔭 by means of repeated

squaring takes (𝑛 log
2 𝑞)1+𝑜 (1)

bit operations.

3.1.2.We let𝜔 be such that over any ring, square matrix multiplica-

tion in size 𝑠 can be done in𝑂 (𝑠𝜔) ring operations; the best known
value to date is 𝜔 ≤ 2.373 [7, 28]. Using block techniques, multipli-

cation in sizes (𝑠, 𝑡) × (𝑡,𝑢) takes𝑂 (𝑠𝑡𝑢 min(𝑠, 𝑡, 𝑢)𝜔−3) ring opera-
tions. For matrices over F𝑞 , this is (𝑠𝑡𝑢 min(𝑠, 𝑡, 𝑢)𝜔−3

log𝑞)1+𝑜 (1)

bit operations; over L, it becomes (𝑠𝑡𝑢 min(𝑠, 𝑡, 𝑢)𝜔−3𝑛 log𝑞)1+𝑜 (1)
.

We could sharpen our results using the so-called exponent 𝜔2 of

rectangular matrix multiplication in size (𝑠, 𝑠) × (𝑠, 𝑠2). We can of

course take 𝜔2 ≤ 𝜔 + 1 ≤ 3.373, but the better result 𝜔2 ≤ 3.252 is

known [29]. We will not use these refinments in this paper.

3.1.3. Of particular interest is an operation called modular com-
position, which maps (𝐹,𝐺, 𝐻) ∈ F𝑞 [𝑥]3

to 𝐹 (𝐺) mod 𝐻 , with

deg𝐻 = 𝑛 and deg 𝐹, deg𝐺 < 𝑛. Let 𝜃 ∈ [1, 2] be such that this can

be done in (𝑛𝜃 log𝑞)1+𝑜 (1)
bit operations for inputs of degree𝑂 (𝑛).

Modular composition is linear in 𝐹 ; we also require that its trans-

pose map can be computed in the same runtime (𝑛𝜃 log𝑞)1+𝑜 (1)
. In

an algebraic model, counting F𝑞-operations at unit cost, the trans-
position principle [25] guarantees this, but this is not necessarily
the case in our bit model, hence our extra requirement.

For long, the best known value for 𝜃 was Brent and Kung’s

𝜃 = (𝜔 +1)/2 [3]. A major result by Kedlaya and Umans proves that

we can actually take 𝜃 = 1 + 𝜀, for any 𝜀 > 0 [26]. In practical terms,

we are not aware of an implementation of Kedlaya and Umans’

algorithm that would be competitive: for practical purposes, 𝜃 is

either (𝜔 + 1)/2 (for deterministic approaches) or (𝜔 + 2)/3, and 𝜔

itself is either 3 or Strassen’s log
2

7 ≃ 2.81.

3.1.4. A useful application of modular composition is the applica-

tion of any power of the Frobenius map 𝜋 : given 𝑥𝑞 mod 𝔭, for

any 𝛼 in L and 𝑖 ∈ {−(𝑛 − 1), . . . , 𝑛 − 1}, we can compute 𝜋𝑖 (𝛼)
for 𝑂 (log𝑛) modular compositions, that is, in (𝑛𝜃 log𝑞)1+𝑜 (1)

bit

operations. See for instance [13, Algorithm 5.2] or Section 2.2 in [8].

For small values of 𝑖 , say 𝑖 = 𝑂 (1), the computation of 𝜋𝑖 (𝛼) can
also be done by repeated squaring, in (𝑛 log

2 𝑞)1+𝑜 (1)
bit operations.

Since for all implementations we are aware of, 𝜃 = (𝜔 + 1)/2, this

approach may be preferred for moderate values of log𝑞 (this also

applies to the operation in the next paragraph).

3.1.5. The previous item implies that if 𝜑 = (𝑔,Δ) is a rank two

Drinfeld module over (L, 𝛾), given 𝛼 in L, we can compute Φ𝑥 (𝛼) =
𝛾 (𝑥)𝛼 + 𝑔𝜋 (𝛼) + Δ𝜋2 (𝛼) in time (𝑛𝜃 log𝑞)1+𝑜 (1)

. Because of our

requirements on 𝜃 , the same holds for the transpose of Φ𝑥 : given
an F𝑞-linear form ℓ : L→ F𝑞 , with the convention of 3.1.1, we can
compute the linear form Φ⊥

𝑥 (ℓ) : 𝛼 ↦→ ℓ (Φ𝑥 (𝛼)) for the same cost.

3.2 Skew Polynomial Arithmetic

3.2.1. We continue with skew polynomial multiplication. This is

an intricate question, with several algorithms co-existing; which

one is the most efficient depends on the input degree. We will be

concerned with multiplication in degree 𝑘 , for some 𝑘 ≪ 𝑛; in

this case, the best algorithm to date is from [33, Th. 7]. For any

𝑘 , that algorithm uses 𝑂 (𝑘 (𝜔+1)/2) operations +,× in L, together

with 𝑂 (𝑘3/2) applications of powers of the Frobenius, for a total of
(𝑘 (𝜔+1)/2𝑛𝜃 log𝑞)1+𝑜 (1)

bit operations. For higher degrees 𝑘 , the

algorithms in [5] have a better runtime.

3.2.2. Our next question is to compute 𝜑𝑥𝑘 , for some 𝑘 ≥ 0; this

polynomial has Θ(𝑘) coefficients in L, so it uses Θ(𝑘𝑛 log𝑞) bits.
Since 𝜑𝑥2𝑘 = 𝜑𝑥𝑘𝜑𝑥𝑘 and 𝜑𝑥2𝑘+1 = 𝜑𝑥𝜑𝑥2𝑘 , we can obtain 𝜑𝑥𝑘

from 𝜑𝑥 ⌊𝑘/2⌋ using (𝑘 (𝜔+1)/2𝑛𝜃 log𝑞)1+𝑜 (1)
bit operations. The cu-

mulated time to obtain 𝜑𝑥𝑘 from 𝜑𝑥 admits the same upper bound.

3.2.3. We consider now the cost of computing 𝜑𝐶 , for some 𝐶 in

F𝑞 [𝑥]. To this end, we adapt the divide-and-conquer algorithm

of [12, Ch. 9], which applies to commutative polynomials.

(1) First, choose a power of two 𝑘 such that 𝑘/2 ≤ deg𝐶 < 𝑘 .

We compute 𝜑𝑥𝑖 , for all 𝑖 powers of two up to 𝑘/2; using

3.2.2, the cost is (𝑘 (𝜔+1)/2𝑛𝜃 log𝑞)1+𝑜 (1)
.

(2) Write𝐶 = 𝐶0 + 𝑥𝑘/2𝐶1, with deg𝐶0, deg𝐶1 < 𝑘/2. Compute

recursively 𝜑𝐶0
and 𝜑𝐶1

, and return 𝜑𝐶 = 𝜑𝐶0
+ 𝜑𝑥𝑘/2𝜑𝐶1

.

The cumulated cost of all recursive calls is (𝑘 (𝜔+1)/2𝑛𝜃 log𝑞)1+𝑜 (1)
,

which is (deg(𝐶) (𝜔+1)/2𝑛𝜃 log𝑞)1+𝑜 (1)
.

3.2.4. Next, we analyze the cost of computing 𝜑1, 𝜑𝑥 , . . . , 𝜑𝑥𝑘 , for

some 𝑘 ≥ 0. In this, we essentially follow a procedure used by

Gekeler [15, Sec. 3], although the cost analysis is not done in that

reference. These polynomials satisfy the following recurrence:

𝜑𝑥𝑖+1 = 𝜑𝑥𝜑𝑥𝑖 = (𝛾 (𝑥) + 𝑔𝜏 + Δ𝜏2)𝜑𝑥𝑖 .
For 𝑖 ≥ 0, write

𝜑𝑥𝑖 =
∑

0≤ 𝑗≤2𝑖

𝑓𝑖, 𝑗𝜏
𝑗 ,

for some coefficients 𝑓𝑖, 𝑗 ∈ L to be determined. We obtain∑
0≤ 𝑗≤2𝑖

𝑓𝑖, 𝑗𝜏
𝑗 =

∑
0≤ 𝑗≤2𝑖

𝛾 (𝑥) 𝑓𝑖, 𝑗𝜏 𝑗 +
∑
𝑗≤2𝑖

𝑔𝑓
𝑞

𝑖,𝑗
𝜏 𝑗+1 +

∑
𝑗≤2𝑖

Δ𝑓
𝑞2

𝑖, 𝑗
𝜏 𝑗+2,

so the 𝑓𝑖, 𝑗 satisfy the recurrence

𝑓𝑖+1, 𝑗 = 𝛾 (𝑥) 𝑓𝑖, 𝑗 + 𝑔𝑓 𝑞𝑖,𝑗−1
+ Δ𝑓

𝑞2

𝑖, 𝑗−2

with known initial conditions 𝑓0,0 = 1, 𝑓1,0 = 𝛾 (𝑥), 𝑓1,1 = 𝑔, and

𝑓1,2 = Δ. Evaluating one instance of the recurrence involves 𝑂 (1)
multiplications / additions in L and applications of the Frobenius

map 𝜋 , for (𝑛𝜃 log𝑞)1+𝑜 (1)
bit operations. Given 𝜑𝑥𝑖 , there are

Θ(𝑖) choices of 𝑗 , so the overall cost to obtain 𝜑1, 𝜑𝑥 , . . . , 𝜑𝑥𝑘 is

(𝑘2𝑛𝜃 log𝑞)1+𝑜 (1)
bit operations. In particular, taking 𝜃 = 1 + 𝜀, we

see that the runtime here is essentially linear in the output size,

which is Θ(𝑘2𝑛 log𝑞) bits; this was not the case for the algorithms

in 3.2.1 - 3.2.2 - 3.2.3.
However, in 3.1.3, we pointed out that in practice, Brent and

Kung’s modular composition algorithm is widely used, with 𝜃 =

(𝜔 +1)/2. In this case, for moderate values of log𝑞, one may use the

straightforward repeated squaring method to apply the Frobenius

map; this leads to a runtime of (𝑘2𝑛 log
2 𝑞)1+𝑜 (1)

bit operations,

which may be acceptable in practice. This also applies to Proposi-

tion 4 below, and underlies the design of the algorithm in Section 7.

3.2.5. We deduce from this an algorithm for inverting 𝜑 . Given

𝜑𝐶 =
∑

0≤𝑖≤2𝑘 𝛼𝑖𝜏
𝑖
, we want to recover 𝐶 =

∑
0≤𝑖≤𝑘 𝑐𝑖𝑥

𝑖
in F𝑞 [𝑥].

Writing the expansion

𝜑𝐶 =
∑

0≤𝑖≤𝑘
𝑐𝑖

∑
0≤ 𝑗≤2𝑖

𝑓𝑖, 𝑗𝜏
𝑗 =

∑
0≤ 𝑗≤2𝑘

©­«
∑

⌊ 𝑗/2⌋≤𝑖≤𝑘
𝑐𝑖 𝑓𝑖, 𝑗

ª®¬𝜏 𝑗 .
gives us 2𝑘 + 1 equations in 𝑘 + 1 unknowns. Keeping only those

equations corresponding to even degree coefficients leaves the

following upper triangular system of 𝑘 + 1 equations over L,
𝑓0,0 𝑓1,0 . . . 𝑓𝑘,0
0 𝑓1,2 . . . 𝑓𝑘,2
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . 𝑓𝑘,2𝑘



𝑐0

𝑐1

.

.

.

𝑐𝑘


=


𝛼0

𝛼2

.

.

.

𝛼
2𝑘


. (3)

Its diagonal entries are of the form 𝑓𝑖,2𝑖 ; these are the coefficients

of the leading terms of 𝜑𝑥𝑖 , so that for all 𝑖 , 𝑓𝑖,2𝑖 = Δ𝑒𝑖 for some

exponent 𝑒𝑖 . In particular, since Δ ≠ 0, the diagonal terms are non-

zero, which allows us to find 𝑐0, . . . , 𝑐𝑘 . Once we know all 𝑓𝑖, 𝑗 ’s, the

cost for solving the system is 𝑂 (𝑘2) operations in L, so the total is

(𝑘2𝑛𝜃 log𝑞)1+𝑜 (1)
bit operations.

3.2.6. Finally, we give an algorithm to evaluate a degree 𝑘 skew

polynomial𝑈 at 𝜇 elements 𝛼1, . . . , 𝛼𝜇 in L. This algorithm will be

used only in Section 5, so it can be skipped on first reading.

In the case of commutative polynomials, one can compute all

𝑈 (𝛼𝑖) faster than by successive evaluation of𝑈 at 𝛼1, 𝛼2, . . . ; see [12,

Ch. 10]. The same holds for skew polynomial evaluation: in [33,

Th. 15], Puchinger and Wachter-Zeh gave an algorithm that uses

𝑂 (𝑘max(log
2

3,𝜔2/2)
log𝑘) operations inL (including Frobenius-powers

applications) in the case 𝜇 = 𝑘 , where 𝜔2 ≤ 𝜔 + 1 as in 3.2.1.
We propose a baby-step / giant-step procedure that applies to

any 𝜇 and 𝑘 (but the cost analysis depends on whether 𝜇 ≤
√
𝑘 or

not). Suppose without loss of generality that our input polynomial

𝑈 = 𝑢0 + · · · + 𝑢𝑘−1
𝜏𝑘−1

has degree less than 𝑘 , for some perfect

square 𝑘 , and let 𝑠 =
√
𝑘 .

(1) Commute powers of 𝜏 with the coefficients of𝑈 to rewrite

it as𝑈 = 𝑈 ∗
0
+ 𝜏𝑠𝑈 ∗

1
+ · · · + 𝜏𝑠 (𝑠−1)𝑈 ∗

𝑠−1
. with all𝑈 ∗

𝑖
in L{𝜏}

of degree less than 𝑠 . This is 𝑂 (𝑘) applications of Frobenius
powers in L.

(2) Compute 𝛼𝑖, 𝑗 := 𝜋𝑖 (𝛼 𝑗), for 𝑖 = 0, . . . , 𝑠 − 1 and 𝑗 = 1, . . . , 𝜇;

this is 𝑂 (𝑠𝜇) applications of Frobenius powers.
(3) For 𝑖 < 𝑠 , let 𝑢∗

𝑖,0
, . . . , 𝑢∗

𝑖,𝑠−1
be the coefficients of 𝑈 ∗

𝑖
. Com-

pute the matrix (𝑠, 𝑠) × (𝑠, 𝜇) product
𝑢∗

0,0
· · · 𝑢∗

0,𝑠−1

.

.

.
.
.
.

𝑢∗
𝑠−1,0

· · · 𝑢∗
𝑠−1,𝑠−1



𝛼0,1 · · · 𝛼0,𝜇

.

.

.
.
.
.

𝛼𝑠−1,1 · · · 𝛼𝑠−1,𝜇

 ,
whose entries are the values 𝛽𝑖, 𝑗 := 𝑈 ∗

𝑖
(𝛼 𝑗). When we apply

this result, we will have 𝜇 ≤ 𝑠 =
√
𝑘 , so the cost is𝑂 (𝑘𝜇𝜔−2)

operations in L, by 3.1.2. For completeness, we mention that

if 𝜇 ≥
√
𝑘 , the cost is 𝑂 (𝑘 (𝜔−1)/2𝜇) operations in L.

(4) Using Horner’s scheme, for 𝑗 = 1, . . . , 𝜇, recover𝑈 (𝛼 𝑗) using
𝑈 (𝛼 𝑗) = 𝛽0, 𝑗 + 𝜏𝑠 (𝛽1, 𝑗 + 𝜏𝑠 (𝛽2, 𝑗 + · · ·)). The total is another
𝑂 (𝑠𝜇) operations in L, including Frobenius powers.

When 𝜇 ≤
√
𝑘 , the cost is (𝑘𝜇𝜔−2𝑛𝜃 log𝑞)1+𝑜 (1)

bit operations. If

we take 𝜇 ≥
√
𝑘 , the cost becomes (𝑘 (𝜔−1)/2𝜇𝑛𝜃 log𝑞)1+𝑜 (1)

.

4 Previous Work on Problem 1
Next, we briefly review existing algorithms for solving Problem 1,

and comment on their runtime. Notation are still from Section 2.1.

4.1 Gekeler’s Algorithm
As with elliptic curves, determining the Frobenius norm 𝐵 of Theo-

rem 1 is simply done using the following result from [15, Th. 2.11].

Proposition 3. Let 𝑁L/F𝑞 be the norm L→ F𝑞 . The Frobenius
norm 𝐵 of a rank two Drinfeld module 𝜑 = (𝑔,Δ) over (L, 𝛾) is

𝐵 = (−1)𝑛𝑁L/F𝑞 (Δ)
−1𝔭𝑚 .

In particular, 𝐵 can be computed in (𝑛 log𝑞)1+𝑜 (1)
bit operations.

Indeed, 𝔭𝑚 is a degree 𝑛 polynomial, and we can compute it in

the prescribed time by repeated squaring. Moreover 𝑁L/F𝑞 (Δ) =
resultant(𝔣,Δ) [32], so we can compute it in the same time [12].

Gekeler also gave in [15, Sec. 3] an algorithm that determines

the Frobenius trace𝐴 by solving a linear system for the coefficients

of 𝐴. The key subroutines used in this algorithm were described

in the previous section, and imply the following result (the cost

analysis is not provided in the original paper).

Proposition 4. One can solve Problem 1 using (𝑛𝜃+2
log𝑞 +

𝑛 log
2 𝑞)1+𝑜 (1) bit operations.

Proof. The algorithm is as follows.

(1) We compute 𝑥𝑞 mod 𝔭 with (𝑛 log
2 𝑞)1+𝑜 (1)

bit operations.

(2) Find 𝜑1, . . . , 𝜑𝑥𝑛 in (𝑛𝜃+2
log𝑞)1+𝑜 (1)

bit operations (3.2.4).
(3) Compute 𝐵 and deduce 𝜑𝐵 ; this takes comparatively neg-

ligible time (see above and 3.2.3) and gives us 𝜑𝐴 , since

Theorem 1 implies that 𝜏𝑛𝜑𝐴 = 𝜏2𝑛 + 𝜑𝐵 .
(4) Recover 𝐴 in (𝑛𝜃+2

log𝑞)1+𝑜 (1)
bit operations by 3.2.5. □

The cost of this procedure is at least cubic in 𝑛, due to the need

to compute the Θ(𝑛2) coefficients 𝑓𝑖, 𝑗 of 𝜑1, . . . , 𝜑𝑥𝑛 in L.

4.2 The Case L = K

The case where L = K, that is, when 𝛾 : F𝑞 [𝑥] → L is onto, allows
for some faster algorithms, based on two observations: we can

recover 𝐴 from its image 𝛾 (𝐴) in this case (since deg𝐴 ≤ ⌊𝑛/2⌋),
and 𝛾 (𝐴) can be easily derived from the Hasse Invariant of 𝜑 , which
is the coefficient of 𝜏𝑛 in 𝜑𝔭 = 𝔭(𝜑𝑥).

From this, Hsia and Yu [19] and Garai and Papikian [11] sketched

algorithms that compute 𝐴. When 𝜑𝔭 is computed in a direct man-

ner, they take Θ(𝑛2) additions, multiplications and Frobenius ap-

plications in L, so Ω(𝑛3) bit operations.
Gekeler [15, Prop. 3.7] gave an algorithm inspired by an analogy

with the elliptic case, where the Hasse invariant can be computed

as a suitable term in a recurrent sequence (with non-constant co-

efficients). A direct application of this result does not improve on

the runtime above. However, using techniques inspired by both

the elliptic case [2] and the polynomial factorization algorithm

of [23], it was shown in [8] how to reduce the cost to (𝑛𝜃+1/2
log𝑞+

𝑛 log
2 𝑞)1+𝑜 (1)

bit operations, which is subquadratic in 𝑛.

5 On Narayanan’s Algorithm
In [30, Sec. 3.1], Narayanan gives the sketch of a Monte Carlo

algorithm to solve Problem 1 for odd 𝑞, which applies to those

Drinfeld modules (𝑔,Δ) for which the minimal polynomial Γ of

Φ𝑥 = 𝛾 (𝑥)Id + 𝑔𝜋 + Δ𝜋2
has degree 𝑛. In this case, it must coincide

with the characteristic polynomial of Φ𝑥 , which we saw is equal to

1−𝐴+𝐵 (this assumption on Γ holds for more than half of elements

of the parameter domain [30, Th. 3.6]). Since 𝐵 is easy to compute,

knowing 1 −𝐴 + 𝐵 gives us 𝐴 readily.

Narayanan’s algorithm computes the minimal polynomial Γℓ,𝛼
of a sequence of the form (𝑟𝑘)𝑘≥0

= (ℓ (Φ𝑘𝑥 (𝛼))𝑘≥0
∈ F𝑞N, for a ran-

dom F𝑞-linear map ℓ : L→ F𝑞 and a random 𝛼 ∈ L. Using Wiede-

mann’s analysis [40], one can bound below the fraction of ℓ and 𝛼

for which Γℓ,𝛼 = Γ. The bottleneck of this algorithm is the computa-

tion of sufficiently many elements of the above sequence: the first

2𝑛 terms are needed, after which applying Berlekamp-Massey’s

algorithm gives us Γℓ,𝛼 . To compute (𝑟𝑘)0≤𝑘<2𝑛 , Narayanan states

that we can adapt the automorphism projection algorithm of Kaltofen

and Shoup [23] and enjoy its subquadratic complexity. Indeed,

Kaltofen and Shoup’s algorithm computes terms in a similar se-

quence, namely ℓ (𝜋𝑘 (𝛼))𝑘≥0
, where 𝜋 is the Frobenius map. How-

ever, that algorithm actively uses the fact that 𝜋 is a field automor-

phism, whereas Φ𝑥 is not. Hence, whether a direct adaptation of

Kaltofen and Shoup’s algorithm is possible remains unclear to us.

We propose an alternative Monte Carlo algorithm, which estab-

lishes the first point in Theorem 2; it is inspired by Coppersmith’s

block Wiedemann algorithm [6].

The sequence (ℓ (Φ𝑘𝑥 (𝛼))𝑘≥0
used in Wiedemann’s algorithm is

linearly recurrent, so that its generating series is rational, with Γ
as denominator for generic choices of ℓ and 𝛼 . In Coppersmith’s

block version, we consider a sequence of 𝜇 × 𝜇 matrices (𝑹𝑘)𝑘≥0

over F𝑞 instead, for some given parameter 𝜇. These matrices are

defined by choosing 𝜇 many F𝑞-linear mappings L → F𝑞 , say
ℓ = (ℓ1, . . . , ℓ𝜇), and 𝜇 elements 𝜶 = (𝛼1, . . . , 𝛼𝜇) in L. They de-

fine sequences (𝑟𝑖, 𝑗,𝑘)𝑘≥0
:= (ℓ𝑖 (Φ𝑘𝑥 (𝛼 𝑗)))𝑘≥0

, which form the en-

tries of a sequence of 𝜇 × 𝜇 matrices (𝑹𝑘)𝑘≥0
. The generating se-

ries

∑
𝑘≥0

𝑹𝑘/𝑧𝑘+1
can be written as 𝑸−1𝑵 , for some 𝑸 and 𝑵 in

F𝑞 [𝑧]𝜇×𝜇 . For generic choices of ℓ and 𝜶 , 𝑸 has degree at most

⌈𝑛/𝜇⌉ and can be computed in (𝜇𝜔−1𝑛 log𝑞)1+𝑜 (1)
bit operations

from (𝑹𝑘)𝑘≤2𝑛/𝜇 , using the PM basis algorithm of [16]. Finally, we

will see that we can deduce the minimal polynomial Γ from the

determinant of 𝑸 .
Thus, Coppersmith’s algorithm requires fewer values of the ma-

trix sequence than Wiedemann’s (roughly 2𝑛/𝜇 instead of 2𝑛). As

we will see, the multipoint evaluation algorithm in 3.2.6 makes it

possible to compute all required matrices in subquadratic time. The

overview of the algorithm is thus the following.

(1) Fix 𝜇 = ⌊𝑛𝑏⌋, for some exponent 𝑏 to be determined later;

choose 𝜇 many F𝑞-linear mappings L→ F𝑞 , ℓ = (ℓ1, . . . , ℓ𝜇),
and 𝜇 elements 𝜶 = (𝛼1, . . . , 𝛼𝜇) in L.

(2) Compute (𝑹𝑘)0≤𝑘≤2𝑛/𝜇 , for 𝑹𝑘 as defined above. We will

discuss the cost of this operation below.

(3) Compute 𝑸 ; this takes (𝜇𝜔−1𝑛 log𝑞)1+𝑜 (1)
bit operations.

(4) Compute the determinant Γ∗ of 𝑸 . The cost of this step

is another (𝜇𝜔−1𝑛 log𝑞)1+𝑜 (1)
bit operations [27]. By [24,

Th. 2.12], Γ∗ divides the characteristic polynomial of Φ𝑥 ,
which we assume coincides with Γ. For generic ℓ1 and 𝛼1,

the minimal polynomial of (𝑟
1,1,𝑘)𝑘≥0

is Γ. If this is the case,
since Γ∗ cancels that sequence, Γ divides Γ∗, so that Γ = Γ∗.

Regarding the probabilistic aspects, combining the last para-

graphs of [24, Sec. 2.1] (that deal with the properties of 𝑸) and
the analysis in [21, 22] (for Step 4) shows that there is a non-zero

polynomial 𝐷 in F𝑞 [𝑳1, . . . , 𝑳𝜇 ,𝑨1, . . . ,𝑨𝜇], where each boldface

symbol is a vector of 𝑛 indeterminates, such that deg𝐷 ≤ 4𝑛, and

such that if 𝐷 (ℓ1, . . . , ℓ𝜇 , 𝛼1, . . . , 𝛼𝜇) ≠ 0, all properties above hold.

By the DeMillo-Lipton-Zippel-Schwartz lemma, the probability of

failure is thus at most 4𝑛/𝑞. If 𝑞 < 4𝑛, we may have to choose the

coefficients of ℓ and 𝜶 in an extension of F𝑞 of degree 𝑂 (log𝑛);
this affects the runtime only with respect to logarithmic factors.

It remains to explain how to compute the required matrix values

(𝑹𝑘)𝑘≤2𝑛/𝜇 at step (2). This is done by adapting the baby-steps /

giant steps techniques of [23, Algorithm AP] to the context of the

block-Wiedemann algorithm, and leveraging multipoint evaluation.

Let 𝐾 := ⌊(𝑛/2𝜇)𝑐 ⌋, for another constant 𝑐 to be determined, and

𝐾 ′
:= ⌈𝑛/(2𝐾𝜇)⌉; remark that 𝐾 ′𝜇 ≤ 𝑛. For our final choices of

parameters, we will also have the inequalities 𝐾 ′ ≤ 𝐾 , 𝜇 ≤
√
𝐾 .

(2.1) For 𝑖 ≤ 𝜇 and 𝑢 < 𝐾 , compute the linear mapping ℓ𝑖,𝑢 :=

Φ⊥
𝑥
𝑢 (ℓ𝑖), so that ℓ𝑖,𝑢 (𝛽) = ℓ𝑖 (Φ𝑢𝑥 (𝛽)) for 𝛽 in L. By 3.1.5, this

takes (𝐾𝜇𝑛𝜃 log𝑞)1+𝑜 (1)
bit operations.

(2.2) Compute 𝜑𝑥𝐾 ∈ L{𝜏}; this takes (𝐾 (𝜔+1)/2𝑛𝜃 log𝑞)1+𝑜 (1)

bit operations, by 3.2.2.
(2.3) For 𝑗 ≤ 𝜇 and 𝑣 < 𝐾 ′

, compute 𝛼 𝑗,𝑣 := Φ𝐾𝑣𝑥 (𝛼 𝑗), so that we
have ℓ𝑖,𝑢 (𝛼 𝑗,𝑣) = ℓ𝑖 (Φ𝑢+𝐾𝑣𝑥 (𝛼 𝑗)) for all 𝑖, 𝑗, 𝑢, 𝑣 .
Starting from (𝛼1,𝑣, . . . , 𝛼𝜇,𝑣), the application of 𝜑𝑥𝐾 gives

(𝛼1,𝑣+1, . . . , 𝛼𝜇,𝑣+1). This takes (𝐾𝜇𝜔−2𝑛𝜃 log𝑞)1+𝑜 (1)
bit op-

erations per index 𝑣 (by 3.2.6), so that the total cost is (𝜇𝜔−3𝑛𝜃+1
log𝑞)1+𝑜 (1)

(note that 𝜇 ≤
√
𝐾).

(2.4) Multiply the (𝐾𝜇, 𝑛) × (𝑛, 𝐾 ′𝜇) matrices with entries the

coefficients of (ℓ1,0, . . . , ℓ𝜇,𝐾−1), resp. (𝛼1,0, . . . , 𝛼𝜇,𝐾 ′−1), to
obtain all needed values 𝑟𝑖, 𝑗,𝑢+𝐾𝑣 . The inequalities above

imply that the smallest dimension is 𝐾 ′𝜇 so by 3.1.2, the
cost is (𝐾3−𝜔 𝜇𝑛𝜔−1

log𝑞)1+𝑜 (1)
bit operations.

We know that we can take 𝜃 = 1 + 𝜀, for any 𝜀 > 0. To find 𝑏 and

𝑐 that minimize the overall exponent in 𝑛, we can thus replace 𝜃

by 1 and disregard the exponent 1 + 𝑜 (1) and the terms depending

on log𝑞; we will then round up the final result. The relevant terms

are {𝐾𝜇𝑛, 𝐾 (𝜔+1)/2𝑛, 𝜇𝜔−3𝑛2, 𝐾3−𝜔 𝜇𝑛𝜔−1, 𝜇𝜔−1𝑛}. For 𝜔 = 2.373,

taking 𝑏 = 0.183 and 𝑐 = 0.642, all inequalities we needed are

satisfied and the runtime is (𝑛1.885
log𝑞)1+𝑜 (1)

bit operations.

Taking into account the initial cost of computing 𝑥𝑞 in L, this
proves the first point in our main theorem. It should however be

obvious from the presentation of the algorithm that we make no

claims as to its practical behavior (for instance, parameters 𝑏, 𝑐

were determined using an exponent 2.373 for matrix multiplication,

which is currently unrealistic in practice).

6 A Deterministic Algorithm
We present next an alternative approach inspired by Schoof’s algo-

rithm for elliptic curves, establishing the second item in our main

theorem: we can solve Problem 1 in time (𝑛2+𝜀
log𝑞 +𝑛 log

2 𝑞)1+𝑜 (1) ,
for any 𝜀 > 0. As before, we assume that we know 𝑥𝑞 mod 𝔭.

6.1. We first compute the Frobenius norm 𝐵. The idea of the al-

gorithm is then to compute 𝐴𝑖 := 𝐴 mod 𝐸𝑖 , for some pairwise

distinct irreducible polynomials 𝐸1, . . . , 𝐸𝑠 in F𝑞 [𝑥] and recover 𝐴

by Chinese remaindering. Thus, we need deg(𝐸1 · · · 𝐸𝑠) > 𝑛/2, and

we will also impose that deg𝐸𝑖 ∈ 𝑂 (log𝑛) for all 𝑖 . First, we show
that we can find such 𝐸𝑖 ’s in (𝑛2

log𝑞)1+𝑜 (1)
bit operations.

If 𝑞 > 𝑛/2, it is enough to take 𝐸𝑖 = 𝑥 − 𝑒𝑖 , for pairwise dis-

tinct elements 𝑒𝑖 in F𝑞 ; enumerating 𝑛/2 + 1 elements of F𝑞 takes

(𝑛 log𝑞)1+𝑜 (1)
bit operations.

Otherwise, let 𝑡 = ⌈log𝑞 (𝑛 + 1)⌉. The sum of the degrees of the

monic irreducible polynomials of degree 𝑡 over F𝑞 is at least (1/2)𝑞𝑡 ,
which is greater than 𝑛/2. Thus, we test all monic polynomials of

degree 𝑡 for irreducibility. There are 𝑞𝑡 < 𝑞(𝑛 + 1) ≤ 𝑛2
such

polynomials (note that here 𝑞 ≤ 𝑛/2) and each irreducibility test

takes log
𝑂 (1) 𝑛 bit operations [13] (a term log𝑞 usually appears in

such runtime estimates, but here log𝑞 is in 𝑂 (log𝑛)).

Without loss of generality, we assume that no polynomial 𝐸𝑖 is

such that 𝐸𝑖 (𝛾 (𝑥)) = 0 (recall that 𝛾 is the structural homomor-

phism F𝑞 [𝑥] → L). Only one irreducible polynomial may satisfy

this equality, so we discard it and find a replacement if needed.

6.2. Let 𝐹 ∈ L{𝜏} be of degree 𝛿 and L{𝜏}𝛿 be the set of all elements

in L{𝜏} of degree less than 𝛿 . Our main algorithm will rely on the

following operation: define the operator T : L{𝜏}𝛿 → L{𝜏}𝛿 by

T(𝑈) := 𝜏𝑈 mod 𝐹 . We are interested in computing T𝑟 (𝑈), for some

𝑟 ≥ 0 and𝑈 in L{𝜏}𝛿 .
The operator T is F𝑞-linear but notL-linear; the coefficient vector

of T(𝑈) is 𝑴 𝜋 (𝒗𝑈), where 𝑴 is the companion matrix of 𝐹 (seen

as a commutative polynomial), 𝒗𝑈 is the coefficient vector of 𝑈

and where we still denote by 𝜋 the entry-wise application of the

Frobenius to a vector (or to a matrix). As a result, the coefficient

vector of T𝑟 (𝑈) is 𝑴 𝜋 (𝑴) · · · 𝜋𝑟−1 (𝑴) 𝜋𝑟 (𝒗𝑈).
Lemma 5.3 in [13] shows how to compute such an expression in

𝑂 (log 𝑟) applications of Frobenius powers (to matrices) and matrix

products (the original reference deals with scalars, but there is

no difference in the matrix case). When 𝑟 is 𝑂 (𝑛), the runtime is

(𝛿3𝑛𝜃 log𝑞)1+𝑜 (1)
bit operations (𝛿 will be small later on, so there

is no need to use fast matrix arithmetic).

6.3. We will also have to invert T. In order to be able do so, we

assume that the constant coefficient of 𝐹 is non-zero; as a result, 𝑴
is invertible. Given𝑉 = T(𝑈), we can recover the coefficient vector

of𝑈 = T−1 (𝑉) as 𝑵 𝜋−1 (𝒗𝑉), where 𝑵 = 𝜋−1 (𝑴−1). For 𝑟 in𝑂 (𝑛),
we can compute T−𝑟 (𝑉) in (𝛿3𝑛𝜃 log𝑞)1+𝑜 (1)

bit operations as well,

replacing the applications of powers of 𝜋 by powers of 𝜋−1
.

6.4. Using the results in 6.2 and 6.3, let us show how to compute

𝐴 mod 𝐸, for some irreducible 𝐸 in F𝑞 [𝑥]. As input, assume that

we know 𝐸 and 𝐵 mod 𝐸. We let 𝐹 = 𝜑𝐸 ∈ L{𝜏} and 𝛿 := deg 𝐹 =

2 deg𝐸. We suppose that 𝐸 (𝛾 (𝑥)) ≠ 0; as a result, the constant

coefficient of 𝐹 is non-zero, so 6.3 applies.

Start from the characteristic equation 𝜏2𝑛−𝜏𝑛𝜑𝐴+𝜑𝐵 = 0, which

we rewrite as 𝜏𝑛𝜑𝐴 = 𝜏2𝑛+𝜑𝐵 and reduce both sides modulo 𝐹 = 𝜑𝐸 .

On the left, we obtain (𝜏𝑛𝜑𝐴) mod 𝐹 = T𝑛 (𝜑𝐴 mod 𝐹), that is,
T𝑛 (𝜑𝐴 mod 𝐸). Similarly, on the right, we obtain T2𝑛 (1) + 𝜑𝐵 mod 𝐸 .

Thus, we can proceed as follows:

(1) Compute 𝐹 := 𝜑𝐸 and 𝑉0 := 𝜑𝐵 mod 𝐸 . By 3.2.3, the cost is
(𝛿 (𝜔+1)/2𝑛𝜃 log𝑞)1+𝑜 (1)

bit operations.

(2) Compute the companion matrix 𝑴 of 𝐹 in (𝛿2𝑛 log𝑞)1+𝑜 (1)

bit operations.

(3) Compute 𝑉1 := T2𝑛 (1) in (𝛿3𝑛𝜃 log𝑞)1+𝑜 (1)
bit operations

(6.2).
(4) Compute 𝜑𝐴 mod 𝐸 = T−𝑛 (𝑉0 +𝑉1) in (𝛿3𝑛𝜃 log𝑞)1+𝑜 (1)

bit

operations (6.3).
(5) Deduce 𝐴 mod 𝐸 in (𝛿2𝑛𝜃 log𝑞)1+𝑜 (1)

bit operations (3.2.5).
The overall runtime is (𝛿3𝑛𝜃 log𝑞)1+𝑜 (1)

bit operations.

6.5. We can finally present the whole algorithm.

(1) Compute the Frobenius norm 𝐵 (Proposition 3)

(2) Compute polynomials 𝐸1, . . . , 𝐸𝑠 as in 6.1.
(3) For 𝑖 = 1, . . . , 𝑠 , compute 𝐵𝑖 := 𝐵 mod 𝐸𝑖 .

(4) For 𝑖 = 1, . . . , 𝑠 , compute 𝐴𝑖 := 𝐴 mod 𝐸𝑖 by 6.4.
(5) Recover 𝐴 by the Chinese remainder map.

Steps (1), (2), (3) and (5) take a total of (𝑛2
log𝑞)1+𝑜 (1)

bit operations.

Since the degrees of all polynomials 𝐸𝑖 are𝑂 (log𝑛), the time spent

at Step (4) is (𝑛𝜃+1
log𝑞)1+𝑜 (1)

bit operations. Since we can take 𝜃 =

1+𝜀 for any 𝜀 > 0, and adding the cost (𝑛 log
2 𝑞)1+𝑜 (1)

of computing

𝑥𝑞 mod 𝔭, this establishes the second statement in Theorem 2.

7 A Monte Carlo Algorithm
We now prove the last item in our main theorem: there exists a
Monte Carlo algorithm that solves Problem 1 in (𝑛2

log
2 𝑞)1+𝑜 (1) bit

operations. The runtime is now quadratic in log𝑞, but truly qua-

dratic in 𝑛, not of the form 𝑛2+𝜀
. The point is that we avoid applying

high powers of the Frobenius (and thus modular composition); the

applications of Φ𝑥 = 𝛾 (𝑥)Id +𝑔𝜋 +Δ𝜋2
are done by repeated squar-

ing. This algorithm behaves well in practice, whereas the behavior

of modular composition significantly hinders the implementation

of the algorithms in the previous sections; see 3.1.3 and 3.2.4.
The algorithm is inspired by [37, Th. 5]; it bears similarities with

Narayanan’s, but does not require the assumption that the minimal

polynomial Γ of Φ𝑥 = 𝛾 (𝑥)Id + 𝑔𝜋 + Δ𝜋2
have degree 𝑛. Whether

the subquadratic runtime obtained in Section 5 can be carried over

to the approach presented here is of course an interesting question.

7.1. When 𝑛 is even, we may need to determine the leading coef-

ficient 𝑎𝑛/2
of the Frobenius trace 𝐴 separately. We will use the

following result, due to Jung [15, 20]:

𝑎𝑛/2
= TrF

𝑞2/F𝑞 (NL/F𝑞2
(Δ)−1),

where F𝑞2 is the unique degree 2 extension of F𝑞 contained in L,

and Tr and N are (finite field) trace and norm. Using repeated squar-

ing for exponentation, 𝑎𝑛/2
can be computed in (𝑛2

log𝑞)1+𝑜 (1)

operations in F𝑞 , so (𝑛2
log

2 𝑞)1+𝑜 (1)
bit operations.

7.2. Let Γ ∈ F𝑞 [𝑥] be the minimal polynomial of Φ𝑥 and let 𝜈 ≤ 𝑛
its degree. We prove here that the inequality 𝜈 ≥ 𝑛/2 holds.

For any positive integers 𝑖, 𝑗 with 0 ≤ 𝑖 < 𝑗 < 𝑛, 𝜋𝑖 ≠ 𝜋 𝑗 . There-

fore, by independence of characters, Id, 𝜋, . . . , 𝜋𝑛−1
satisfy no non-

trivial L-linear relation; that is, there are no constants 𝑐0, . . . , 𝑐𝑛−1

in L, with at least one 𝑐𝑖 ≠ 0, such that 𝑐0 +𝑐1𝜋 + . . .+𝑐𝑛−1𝜋
𝑛−1 = 0

in EndF𝑞 [L].
Assume by way of contradiction that 2𝜈 ≤ 𝑛 − 1. We know

that Γ(Φ𝑥) = 0; since Γ has degree 𝜈 , we may write is as Γ =

𝑐0 + · · · + 𝑐𝜈−1𝑥
𝜈−1 + 𝑥𝜈 . Evaluating at Φ𝑥 = 𝛾 (𝑥)Id + 𝑔𝜋 + Δ𝜋2

,

we obtain a relation of the form 𝑐0Id + 𝑐1𝜋 + · · · + 𝑐2𝜈𝜋
2𝜈 = 0 with

coefficients in L, where all exponents are at most 𝑛 − 1. The leading

coefficient 𝑐2𝜈 is given by 𝑐2𝜈 = Δ(1−𝑞2𝜈)/(1−𝑞)
, so it is non-zero, a

contradiction. Thus, 2𝜈 ≥ 𝑛, as claimed.

7.3. The first step in the algorithm computes the minimal polyno-

mial Γ of Φ𝑥 . To do so, choose at random 𝛼 in L and an F𝑞-linear

projection map ℓ : L→ F𝑞 . The sequence (ℓ (Φ𝑖𝑥 (𝛼)))𝑖≥0 is linearly

generated, and its minimal polynomial Γℓ,𝛼 divides Γ. Given 2𝑛

entries in the sequence ℓ (Φ𝑖𝑥 (𝛼)), we apply the Berlekamp-Massey

algorithm to obtain Γℓ,𝛼 .
Assuming that ℓ and 𝛼 are chosen uniformly at random, Wiede-

mann proved [40] that the probability that Γℓ,𝛼 = Γ is at least

1/(12 max(1, log𝑞 𝜈)). Using the DeMillo-Lipton-Zippel-Schwartz

lemma gives another lower bound for the probability that Γℓ,𝛼
equals Γ, namely 1 − 2𝑛/𝑞 [21, 22]. We will assume henceforth that

this is the case (as in Section 5, we can work over an extension field

of F𝑞 of degree 𝑂 (log𝑛) if 𝑞 < 𝑛).

7.4. We start from 𝐴 =
∑ ⌊𝑛/2⌋
𝑖=0

𝑎𝑖𝑥
𝑖 ∈ F𝑞 [𝑥], for some unknown

coefficients 𝑎𝑖 . Since 𝑛/2 ≤ 𝜈 (by 7.2), we must have ⌊𝑛/2⌋ ≤ 𝜈 − 1,

except if 𝑛 is even and 𝑛/2 = 𝜈 . Hence, we may rewrite 𝐴 as

𝐴 =

𝜈−1∑
𝑖=0

𝑎𝑖𝑥
𝑖 + 𝑎𝜈𝑥𝜈 ,

where 𝑎𝑖 = 0 for 𝑖 = ⌊𝑛/2⌋ + 1, . . . , 𝜈 − 1 and either 𝑎𝜈 = 0 (if

⌊𝑛/2⌋ ≤ 𝜈 − 1) or 𝑎𝜈 can be determined as in 7.1 (if ⌊𝑛/2⌋ = 𝜈). In
any case, 𝑎𝜈 is known.

Theorem 1 implies that for 𝛼 as above, we have Φ𝐴 (𝛼) = 𝑟 with
𝑟 := 𝛼 + Φ𝐵 (𝛼) ∈ L. Using the expression of 𝐴 given above, this

yields

𝜈−1∑
𝑖=0

𝑎𝑖Φ𝑥𝑖 (𝛼) = 𝑟,

with 𝑟 = 𝑟 −𝑎𝜈Φ𝜈 (𝛼). For 𝑗 ≥ 0, applying Φ𝑥 𝑗 to this equality gives

𝜈−1∑
𝑖=0

𝑎𝑖Φ𝑥𝑖+𝑗 (𝛼) = Φ𝑥 𝑗 (𝑟) .

Finally, we can apply ℓ to both sides of such equalities, for 𝑗 =

0, . . . , 𝜈 − 1. This yields the following Hankel system:
ℓ (𝛼) . . . ℓ (Φ𝑥𝜈−1 (𝛼))
.
.
.

.

.

.

ℓ (Φ𝑥𝜈−1 (𝛼)) . . . ℓ (Φ𝑥2𝜈−2 (𝛼))



𝑎0

.

.

.

𝑎𝜈−1

 =


ℓ (𝑟)
.
.
.

ℓ (Φ𝑥𝜈−1 (𝑟))

 . (4)

Since we assumed that Γℓ,𝛼 = Γ, applying for instance Lemma 1

in [21], we deduce that the matrix of the system is invertible, allow-

ing us to recover 𝑎0, . . . , 𝑎𝜈−1.

7.5. We can now summarize the algorithm and analyze its runtime.

(1) Compute the Frobenius norm 𝐵 =
∑
𝑖≤𝑛 𝑏𝑖𝑥

𝑖
(Proposition 3);

this takes (𝑛 log𝑞)1+𝑜 (1)
bit operations.

(2) Compute the sequence (Φ𝑥𝑖 (𝛼))𝑖<2𝑛 using the recurrence

relation Φ𝑥𝑖+1 (𝛼) = (𝛾 (𝑥)Id + 𝑔𝜋 + Δ𝜋2) (Φ𝑥𝑖 (𝛼)). Using
repeated squaring to apply the Frobenius, we get all terms

in (𝑛2
log

2 𝑞)1+𝑜 (1)
bit operations.

(3) Apply ℓ to all terms of the sequence and deduce Γℓ,𝛼 by the

Berlekamp-Massey algorithm. This takes (𝑛2
log𝑞)1+𝑜 (1)

bit

operations. We assume Γℓ,𝛼 = Γ and let 𝜈 be its degree.

(4) If 𝑛 is even and 𝜈 = 𝑛/2, compute 𝑎𝜈 as in 7.1; otherwise, set
𝑎𝜈 = 0. This takes (𝑛2

log
2 𝑞)1+𝑜 (1)

bit operations.

(5) Compute 𝑟 = 𝛼 + ∑
𝑖≤𝑛 𝑏𝑖Φ𝑥𝑖 (𝛼) − 𝑎𝜈Φ𝜈 (𝛼); this takes

(𝑛2
log

2 𝑞)1+𝑜 (1)
bit operations.

(6) Compute the sequence (Φ𝑥𝑖 (𝑟))𝑖<𝜈 and apply ℓ to all entries
in this sequence. As above, this takes (𝑛2

log
2 𝑞)1+𝑜 (1)

bit

operations.

(7) Solve (4); since the matrix is Hankel and non-singular, this

takes (𝑛2
log𝑞)1+𝑜 (1)

bit operations.

Altogether, this takes (𝑛2
log

2 𝑞)1+𝑜 (1)
bit operations, as claimed.

8 Experimental Results
In support of our theoretical analysis, the algorithms presented in

sections 6 and 7, as well as Gekeler’s algorithm in [15, Section 3],

were implemented in C++ using Shoup’s NTL library [38]; our

implementation currently supports prime 𝑞. When𝑚 = 1, we also

compare our implementation with that of the algorithm in [8].

Table 1 provides sample runtimes for several parameters. Fig-

ure 1 is made up of 24 data points for 𝑞 = 499,𝑚 = 2, and varied

𝑛, averaged over 4 runs. The randomized algorithm of section 7

demonstrated a significant runtime advantage over both Gekeler’s

original algorithm and the deterministic alternative. Due to its

heavy dependency on modular composition, and a lack of read-

ily available implementations of the Kedlaya-Umans algorithm on

which we rely, the deterministic algorithm demonstrates a signifi-

cantly higher complexity than expected. For𝑚 = 1, as predicted by

the cost analysis, the algorithm in [8] is overall the fastest.

The code used to generate these results is publicly available at

https://github.com/ymusleh/Drinfeld-paper/tree/master/code.

Randomized Deterministic Gekeler Hasse [8]

𝑞 = 571, 𝑛 =

32,𝑚 = 1

0.065341 1.19282 0.37291 0.02087

𝑞 = 571, 𝑛 =

32,𝑚 = 4

0.060729 1.17222 0.38341 -

𝑞 = 850853,

𝑛 = 64,𝑚 = 1

0.598883 25.4512 8.97046 0.12814

𝑞 = 850853,

𝑛 = 64,𝑚 = 8

0.615858 25.6425 9.12075 -

Table 1: Various parameter test cases; time in seconds.

Figure 1: Log-log plot of 𝑛 versus runtime with 𝑞 = 499,𝑚 = 2

Acknowledgments
We wish to thank Jason Bell and Mark Giesbrecht for their com-

ments on Musleh’s MMath thesis [?], which is the basis of this

work, and Anand Kumar Narayanan for answering many of our

questions. Schost was supported by an NSERC Discovery Grant.

References
[1] A. O. L. Atkin. 1992. The number of points on an elliptic curve modulo a prime

(II). (1992). Available at http://listserv.nodak.edu/archives/nmbrthry.html.

[2] A. Bostan, P. Gaudry, and É. Schost. 2007. Linear recurrences with polynomial

coefficients and application to integer factorization and Cartier-Manin operator.

SIAM J. Comput. 36, 6 (2007), 1777–1806.
[3] R. P. Brent and H. T. Kung. 1978. Fast Algorithms for Manipulating Formal Power

Series. J. ACM 25, 4 (1978), 581–595.

[4] L. Carlitz. 1935. On certain functions connected with polynomials in a Galois

field. Duke Math. J. 1, 2 (1935), 137–168.
[5] X. Caruso and J. Le Borgne. 2017. Fast multiplication for skew polynomials. In

ISSAC’17. ACM, 77–84.

[6] D. Coppersmith. 1994. Solving homogeneous linear equations over GF(2) via
block Wiedemann algorithm. Math. Comp. 62, 205 (1994), 333–350.

[7] D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic

progressions. J. Symb. Comput. 9, 3 (1990), 251–280.
[8] J. Doliskani, A. K. Narayanan, and É. Schost. 2017. Drinfeld modules with

complex multiplication, Hasse invariants and factoring polynomials over finite

fields. arXiv:1712.00669

[9] V. G. Drinfel’d. 1974. Elliptic modules. Matematicheskii Sbornik 94, 23 (1974),

561–593.

[10] N. Elkies. 1992. Explicit isogenies. (1992). Draft.

[11] S. Garai and M. Papikian. 2018. Endomorphism rings of reductions of Drinfeld

modules. arXiv:1804.07904

[12] J. von zur Gathen and J. Gerhard. 2013. Modern Computer Algebra (3 ed.). Cam-

bridge University Press, New York, NY, USA.

[13] J. von zur Gathen and V. Shoup. 1992. Computing Frobenius maps and factoring

polynomials. Computational Complexity 2, 3 (1992), 187–224.

[14] E.-U. Gekeler. 1991. On finite Drinfeld modules. Journal of Algebra 141, 1 (1991),
187 – 203.

[15] E.-U. Gekeler. 2008. Frobenius distributions of Drinfeld modules over finite fields.

Trans. Amer. Math. Soc. 360 (04 2008), 1695–1721.
[16] P. Giorgi, C.-P. Jeannerod, and G. Villard. 2003. On the complexity of polynomial

matrix computations. In ISSAC’03. ACM, 135–142.

[17] D. Goss. 1996. Basic Structures of Function Field Arithmetic. Springer Berlin

Heidelberg.

[18] David Harvey. 2014. Counting points on hyperelliptic curves in average polyno-

mial time. Annals of Mathematics 179, 2 (2014), 783–803.
[19] L.-C. Hsia and J. Yu. 2000. On characteristic polynomials of geometric Frobenius

associated to Drinfeld modules. Compositio Mathematica 122, 3 (2000), 261–280.
[20] F. Jung. 2000. Charakteristische Polynome von Drinfeld-Moduln. Diplomarbeit,

U. Saarbrücken.

[21] E. Kaltofen and V. Pan. 1991. Processor efficient parallel solution of linear systems

over an abstract field. In SPAA ’91. ACM, 180–191.

[22] E. Kaltofen and B. D. Saunders. 1991. On Wiedemann’s method of solving sparse

linear systems. In AAECC-9. Springer-Verlag, 29–38.
[23] E. Kaltofen and V. Shoup. 1998. Subquadratic-time factoring of polynomials over

finite fields. Math. Comp. 67, 223 (1998), 1179–1197.
[24] E. Kaltofen and G. Villard. 2004. On the complexity of computing determinants.

Computational Complexity 13, 3-4 (2004), 91–130.

[25] M. Kaminski, D.G. Kirkpatrick, and N.H. Bshouty. 1988. Addition requirements

for matrix and transposed matrix products. J. Algorithms 9, 3 (1988), 354–364.
[26] K. S. Kedlaya and C. Umans. 2011. Fast polynomial factorization and modular

composition. SIAM J. Comput. 40, 6 (2011), 1767–1802.
[27] G. Labahn, V. Neiger, and W. Zhou. 2017. Fast, deterministic computation of the

Hermite normal form and determinant of a polynomial matrix. J. Complexity 42

(2017), 44–71.

[28] F. Le Gall. 2014. Powers of tensors and fast matrix multiplication. In ISSAC’14.
ACM, 296–303.

[29] F. Le Gall and F. Urrutia. 2018. Improved rectangular matrix multiplication using

powers of the Coppersmith-Winograd tensor. In SODA ’18. SIAM, 1029–1046.

[30] A. K. Narayanan. 2018. Polynomial factorization over finite fields by computing

Euler-Poincaré characteristics of Drinfeld modules. Finite Fields Appl. 54 (2018),
335–365.

[31] A. Panchishkin and I Potemine. 1989. An algorithm for the factorization of

polynomials using elliptic modules. In Constructive methods and algorithms in
number theory. 117.

[32] M. Pohst and H. Zassenhaus (Eds.). 1989. Algorithmic Algebraic Number Theory.
Cambridge University Press.

[33] S. Puchinger and A.Wachter-Zeh. 2017. Fast operations on linearized polynomials

and their applications in coding theory. J. Symb. Comput. (2017).
[34] T Satoh. 2000. The canonical lift of an ordinary elliptic curve over a finite field

and its point counting. J. Ramanujan Math. Soc. 15 (2000), 247–270.
[35] T. Scanlon. 2001. Public Key cryptosystems based on Drinfeld modules Are

insecure. Journal of Cryptology 14, 4 (2001), 225–230.

[36] R. Schoof. 1985. Elliptic curves over finite fields and the computation of square

roots mod𝑝 . Math. Comp. 44, 170 (1985), 483–494.
[37] V. Shoup. 1994. Fast construction of irreducible polynomials over finite fields. J.

Symb. Comput. 17, 5 (1994), 371–391.
[38] V. Shoup. 2019. NTL: A library for doing number theory. http:/www.shoup.net/

ntl.

[39] G. J. van der Heiden. 2004. Factoring polynomials over finite fields with Drinfeld

modules. Math. Comp. 73 (2004), 317–322.
[40] D H Wiedemann. 1986. Solving Sparse Linear Equations over Finite Fields. IEEE

Trans. Inf. Theor. 32, 1 (1986), 54–62.

https://github.com/ymusleh/Drinfeld-paper/tree/master/code
http://listserv.nodak.edu/archives/nmbrthry.html
http://arxiv.org/abs/1712.00669
http://arxiv.org/abs/1804.07904
http:/www.shoup.net/ntl
http:/www.shoup.net/ntl

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The fields Fq, K and L
	2.2 Skew polynomials
	2.3 Drinfeld Modules

	3 Algorithmic background
	3.1 Polynomial and matrix arithmetic
	3.2 Skew polynomial arithmetic

	4 Previous work on Problem 1
	4.1 Gekeler's Algorithm
	4.2 The Case L= K

	5 A variant of Narayanan's algorithm
	6 A deterministic algorithm
	7 A Monte Carlo algorithm
	8 Experimental Results
	Acknowledgments
	References

