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1 Jacobians and conductors: the irreducible case

We consider the polynomial ring S[t1, . . . , tn], with either:

• S = Z

• or S = Fq, with q a prime power, and in this case n > 0.

We let K be the fraction field of S and introduce the field of fractions K(t1, . . . , tn); we are
interested in a field extension L of K(t1, . . . , tn) of the form

L = K(t1, . . . , tn)[x1, . . . , xk]/〈f1, . . . , fk〉,

where for i = 1, . . . , k, fi is in K(t1, . . . , tn)[x1, . . . , xi] and monic in xi (thus, the ideal
〈f1, . . . , fk〉 is maximal). Hereafter, we write t = t1, . . . , tn, x = x1, . . . , xk and di =
deg(fi, xi); for i = 1, . . . , k, we let hi be in S[t] such that f ⋆

i = hifi is in S[t,x] and we
set h = h1 · · ·hk.

We are interested in the possible denominators arising when factoring univariate polyno-
mials modulo 〈f1, . . . , fk〉. Precisely, we say that δ ∈ S[t] − {0} is a common denominator

for (f1, . . . , fk) if the following property holds. Let A, B, C in K(t)[x, Y ] and α in S[t] be
such that:

1. A, B, C are reduced with respect to (f1, . . . , fk), in the sense that deg(A, xi) < di,
deg(B, xi) < di and deg(C, xi) < di hold for all i;

2. A = BC in L[Y ];

3. αA is in the subring S[t,x, Y ] of K(t)[x, Y ];

4. A, B, C are monic in Y .

Then, αδhbB and αδhcC are in S[t,x, Y ], for some non-negative integers b, c (remark that our
criterion is rather loose, as we impose no control on b and c, but sufficient for the application
we have in mind).
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Proposition 1. Let ∆ ∈ K(t)[x] be a k × k-minor of the Jacobian matrix of (f1, . . . , fk)
with respect to (t1, . . . , tn, x1, . . . , xk), and let

δ = res(· · · res(∆, fk, xk), · · · , f1, x1).

Then, if δ 6= 0, there exists an integer d ≥ 0 such that hdδ is a common denominator of

(f1, . . . , fk).

Suppose for simplicity that fi is in S[t,x] for all i, so h = 1. For i ≥ 1, let ∆i be the
partial derivative of fi with respect to xi, and let ∆ = ∆1 · · ·∆k and let as before δ be the
iterated resultant

δ = res(· · · res(∆, fk, xk), · · · , f1, x1) ∈ S[t].

If K → L is separable, it is known [1] that δ is non-zero and that it is a common denominator
for (f1, . . . , fk). If K → L is not separable, though, δ = 0. In this case, the proposition states
that instead of considering ∆, some other k × k minor of the Jacobian matrix of (f1, . . . , fk)
with respect to the whole set of variables t and x may do (actually, such a non-zero δ always
exists). This result is not new; however, since it seems not widely known, it seems useful to
restate it here.

Consider for example the simplest such case, with n = k = 1 (so we write t1 = t, x1 = x
and f1 = f), K = S = Fp and f(t, x) = xp − ϕ(t), with ϕ ∈ Fp[t] not a pth power. In this
case, δ = ∂f/∂x = 0; however, ∂f/∂t = −ϕ′ ∈ Fp[t] is non-zero (otherwise f would be a
pth power). Then, ϕ′ is a common denominator for f ; in this case, there is no need to take
resultants, since ϕ′ is already in Fp[t]. For instance, the polynomial Y p − t factors modulo f
as

Y p − t =

(

Y −
G(t, x)

ϕ′

)p

,

with G(t, x) in Fp[t, x].
The rest of this section is devoted to prove the former proposition. Let Z be a new

indeterminates, and define A as the residue class ring S[t,x, Z]/〈f ⋆
1 , . . . , f ⋆

k , 1 − hZ〉. One
easily checks that A is an integral domain, with field of fractions L = K(t)[x]/〈f1, . . . , fk〉.

Let B ⊂ L be the integral closure of A. The conductor C ⊂ A of the extension A → B

is the annihilator of the A-module B/A; that is, δ ∈ A is in C if and only if any b in B can
be written as b = a/δ, with a in A. Following [5], the following classical result in the vein of
Gauss’ Lemma relates the conductor to our denominator problem.

Lemma 1. Any δ in C ∩ S[t] − {0} is a common denominator for (f1, . . . , fk).

Proof. Consider A, B, C ∈ K(t)[x, Y ] and α ∈ S[t] that satisfy assumptions 1 − 4. Thus,
αA is in S[t,x, Y ], and its residue class in L[Y ] is actually in A[Y ]. Following the proof
of [5, Lemma 7.1], we deduce that αB and αC are in B[Y ], so that αδB and αδC are in
A[Y ] ⊂ B[Y ].

Considering B, this means that there exists a polynomial β in S[t,x, Z, Y ] such that the
residue classes of β and αδB coincide in L[Y ]. Since the normal form of β in L admits a
power of h as a denominator, there exists b ≥ 0 such that αδhbB is in S[t,x, Y ].
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The following result exhibits elements in the conductor. It is a direct consequence of the
Lipman-Sathaye theorem [3] when S = Z, and is in [4, Remark 1.5] when S = Fq.

Lemma 2. Any (k + 1)× (k + 1)-minor of the Jacobian matrix of (f ⋆
1 , . . . , f ⋆

k , 1− hZ) with

respect to (t1, . . . , tn, x1, . . . , xk, Z) is in C.

From this, one can exhibit an element in the conductor using only data obtained from
(f1, . . . , fk).

Lemma 3. Let ∆ ∈ K(t)[x] be a k × k-minor of the Jacobian matrix of (f1, . . . , fk) with

respect to (t1, . . . , tn, x1, . . . , xk). Then, there exists an integer d ≥ 0 such that hd∆ is S[t,x],
and in C.

Proof. Let us define the following matrices:

• Jf is the Jacobian matrix of (f1, . . . , fk) with respect to (t1, . . . , tn, x1, . . . , xk),

• Jf⋆ is the Jacobian matrix of (f ⋆
1 , . . . , f ⋆

k ) with respect to (t1, . . . , tn, x1, . . . , xk),

• Kf⋆ is the Jacobian matrix of (f ⋆
1 , . . . , f ⋆

k , 1−hZ) with respect to (t1, . . . , tn, x1, . . . , xk, Z).

Let next I ⊂ {1, . . . , n} and J ⊂ {1, . . . , k} be such that ∆ is built on columns of Jf indexed
by (ti, i ∈ I) and (xj , j ∈ J), and let ∆⋆ be the k×k-minor of Jf⋆ built on the same columns.
Consider the equalities

∂f ⋆
i

∂tj
=

∂hi

∂tj
fi + hi

∂fi

∂tj
and

∂f ⋆
i

∂xj

= hi

∂fi

∂xj

.

It follows that in K(t)[x], ∆⋆ equals h∆ modulo 〈f1, . . . , fk〉. Multiplying by a large enough
power of h to clear all denominators, we obtain that hc∆⋆ = hc+1∆ mod 〈f ⋆

1 , . . . , f ⋆
k 〉 holds

in S[t,x], for some integer c ≥ 0.
Let finally Γ be the (k+1)×(k+1)-minor of Kf⋆ built on columns indexed by Z, (ti, i ∈ I)

and (xj , j ∈ J). Since the column of Jf⋆ indexed by Z only contains the non-zero entry h, we
deduce that Γ = ±h∆⋆. This implies that hcΓ = ±hc+2∆ mod 〈f ⋆

1 , . . . , f ⋆
k 〉 holds in S[t,x].

By the previous lemma, Γ, and thus hcΓ, are in C. Thus, hc+2∆ is in C too.

Let ∆ ∈ S[t,x] be in C. If ∆ is already in S[t], we are essentially done. In general, though,
∆ may not be in S[t] but in S[t,x]; the next lemma provides the classical workaround.

Lemma 4. Let ∆ ∈ S[t,x] be in C. Then

δ = res(· · · res(∆, f ⋆
k , xk), · · · , f ⋆

1 , x1)

is either zero, or a common denominator of (f1, . . . , fk).

Proof. δ is in S[t] by construction. A direct induction shows that δ there exists a polynomial
β in S[t,x] such that ∆β = δ in A. Since ∆ is in the conductor C, δ is in C as well, so by
Lemma 1, it is a common denominator for (f1, . . . , fk).
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We can now prove Proposition 1. Let ∆ ∈ K(t)[x] be a k × k-minor of the Jacobian
matrix of (f1, . . . , fk) with respect to (t1, . . . , tn, x1, . . . , xk). By Lemma 3, there exists an
integer d ≥ 0 such that hd∆ is S[t,x] and in C. By the previous lemma

γ = res(· · · res(hd∆, f ⋆
k , xk), · · · , f ⋆

1 , x1)

is either zero, or a common denominator of (f1, . . . , fk); we will assume it is not zero. Taking
the factors h1, . . . , hk, h out, we see that the polynomial δ can be rewritten as

γ = he1

1 · · ·hek

k heres(· · · res(∆, fk, xk), · · · , f1, x1),

for some non-negative integers e1, . . . , ek, e; using the notation of Proposition 1, this can be
rewritten as γ = he1

1 · · ·hek

k heδ. Multiplying by suitable powers of h1, . . . , hk, we deduce

hℓ1
1 · · ·hℓk

k γ = hℓδ,

for some non-negative integers ℓ1, . . . , ℓk, ℓ. Since hℓ1
1 · · ·hℓk

k γ is still a common denominator
for (f1, . . . , fk), we are done.

2 Application

As an application, we consider the following situation. As before, we start from the base
ring S, with either S = Z or S = Fq. We still let K be the fraction field of S, and we consider
a triangular family of polynomials g1, . . . , gk in K(t)[x], with gi in K(t)[x1, . . . , xi], monic
in xi and reduced with respect to (g1, . . . , gi−1) for all i; we do not assume that the ideal
〈g1, . . . , gk〉 is maximal. Besides, we consider the following data:

• if S = Z, let S
′ = Fp, for some prime p, and let τ1, . . . , τn and ξ1, . . . , ξk be in Fp;

• if S = Fq, let S
′ = Fq and let τ1, . . . , τn and ξ1, . . . , ξk be in Fq.

For 0 ≤ i ≤ k, let ϕi be the evaluation map

ϕi : S[t][x] → S
′[x]

ti 7→ τi

xj 7→ ξj j ≤ i
xj 7→ xj j > i;

In particular, ϕ0 only evaluates the t variables, and ϕn evaluates all t and x variables. We
let D0 be the following subring of K(t): f ∈ K(t) is in D0 if and only if it can be written as
a/b, with a and b in S[t], and with ϕ0(b) 6= 0. If we let D = D0[x], all ϕi remain defined at
D. Then, we make the following assumptions:

H1. The polynomials g1, . . . , gk are in D.

H2. For ℓ ≤ k, ϕn(gℓ) = 0.
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H3. For ℓ ≤ k, either gℓ is purely inseparable, or ϕ0(∂gℓ/∂xℓ) is invertible in the residue
class ring S

′[x1, . . . , xℓ]/〈ϕ0(g1), . . . , ϕ0(gℓ)〉.

For ℓ ≤ k, let Jℓ be the Jacobian matrix of (g1, . . . , gℓ) with respect to (t1, . . . , tn, x1, . . . , xℓ).
Since all gi are in D, all entries of Jℓ are in D. Then, we can define ϕ0(Jℓ) in the obvious
manner, applying ϕ0 entrywise, and we make the following further assumption:

H4. For ℓ ≤ k, there exists an ℓ × ℓ minor ∆ℓ of Jℓ such that ϕ0(∆ℓ) is invertible in
S
′[x1, . . . , xℓ]/〈ϕ0(g1), . . . , ϕ0(gℓ)〉.

Remark that if no gi is purely inseparable, H3 implies H4. Under H1, . . . ,H4, our conclusion
is the following.

Proposition 2. Consider ℓ < k, and suppose that f1, . . . , fℓ are polynomials in K(t)[x] such

that the following holds:

1. for i ≤ ℓ, fi is in K(t)[x1, . . . , xi], monic in xi and reduced with respect to (f1, . . . , fi−1);

2. for i ≤ ℓ, fi is in D;

3. the ideal 〈f1, . . . , fℓ〉 is maximal in K(t)[x1, . . . , xℓ] and contains 〈g1, . . . , gℓ〉.

Let fℓ+1 ∈ K(t)[x1, . . . , xℓ+1] be a monic factor of gℓ+1 modulo 〈f1, . . . , fℓ〉. Then, fℓ+1 is in

D.

Proof. We will establish the following claim below: there exists a common denominator

γ ∈ S[t] of (f1, . . . , fℓ) such that ϕ0(γ) 6= 0. Taking it for granted, let α ∈ S[t] be such that
ϕ0(α) 6= 0 and αgℓ+1 is in S[t, x1, . . . , xℓ+1]. Then, applying the characteristic property of γ,
we see that αγhefℓ+1 is in S[t, x1, . . . , xℓ+1], for some integer e ≥ 0, where h = h1 · · ·hℓ ∈ S[t]
and hi is such that hifi is in S[t,x]. Since fi is in D, we can take hi with ϕ0(hi) 6= 0. Since
αγ is in S[t] and satisfies ϕ0(αγ) 6= 0 as well, fℓ+1 is in D, as requested.

We conclude by showing how to obtain the required common denominator γ of (f1, . . . , fℓ).
Let Jg,ℓ (resp. Jf ) be the Jacobian matrix of (g1, . . . , gℓ) (resp. (f1, . . . , fℓ)) with respect
to (t1, . . . , tn, x1, . . . , xℓ). As said before, all entries of both Jg,ℓ and Jf are in D. Besides,
by assumption, there exists an ℓ × ℓ minor ∆ℓ of Jg,ℓ such that ϕ0(∆ℓ) is invertible modulo
〈ϕ0(g1), . . . , ϕ0(gℓ)〉.

As a consequence, we claim that there exists an ℓ×ℓ minor ∆′

ℓ of Jf such that ϕ0(∆
′

ℓ) is in-
vertible modulo 〈ϕ0(f1), . . . , ϕ0(fℓ)〉. Indeed, remember that 〈f1, . . . , fℓ〉 contains 〈g1, . . . , gℓ〉.
Differentiating the corresponding membership equalities, this shows that Jℓ factors as Jℓ =
AJf modulo 〈f1, . . . , fℓ〉, where A is a square ℓ × ℓ matrix; applying ϕ0 and considering the
columns contributing to the minor ∆ℓ proves our claim. As previously, we define

δ = res(· · · res(∆′

ℓ, fℓ, xℓ), · · · , f1, x1) ∈ K(t);

remark that δ is in D. Then, we claim that ϕ0(δ) is non-zero. Indeed, since all fi are monic,
one can (up to sign) commute the application of ϕ0 and the resultant, so that

ϕ0(δ) = res(· · · res(ϕ0(∆
′

ℓ), ϕ0(fℓ), xℓ), · · · , ϕ0(f1), x1) ∈ S
′.
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If the latter is zero, ϕ0(∆
′

ℓ) would be a zero-divisor modulo 〈ϕ0(f
⋆
1 ), . . . , ϕ0(f

⋆
ℓ )〉, a contra-

diction. In particular, δ itself is non-zero. By Proposition 1, there exists d ≥ 0 such that
hdδ is a common denominator for (f1, . . . , fℓ), where h = h1 · · ·hℓ ∈ S[t] and hi is such that
hifi is in S[t,x]. Since fi is in D, we can take hi with ϕ0(hi) 6= 0. Letting γ = hdδ proves
our conclusion.

Corollary 1. Let m1, . . . , mL be the maximal ideals containing 〈g1, . . . , gk〉, and for j ≤ L,

let (fj,1, . . . , fj,n) be the reduced Gröbner basis of mj for the lexicographic order x1 < · · · < xn,

Then all fj,ℓ are in D.

Proof. The proof is an easy induction on ℓ = 1, . . . , k, since fj,ℓ is a factor of gℓ modulo
〈fj,1, . . . , fj,ℓ−1〉.

Corollary 2. There exists a unique set of polynomials (f1, . . . , fk) such that the following

holds:

1. for i ≤ k, fi is in K(t)[x1, . . . , xi], monic in xi and reduced with respect to 〈f1, . . . , fi−1〉;

2. for i ≤ k, fi is in D and ϕn(fi) = 0;

3. the ideal 〈f1, . . . , fk〉 is maximal in K(t)[x1, . . . , xk] and contains 〈g1, . . . , gk〉.

Proof. Suppose that we have proved the following property, written P(ℓ): there exist unique
polynomials (f1, . . . , fℓ) that satisfy

1. for i ≤ ℓ, fi is in K(t)[x1, . . . , xi], monic in xi and reduced with respect to 〈f1, . . . , fi−1〉;

2. for i ≤ ℓ, fi is in D and ϕn(fi) = 0;

3. the ideal 〈f1, . . . , fℓ〉 is maximal in K(t)[x1, . . . , xℓ] and contains 〈g1, . . . , gℓ〉.

We prove that P(ℓ + 1) holds; then by induction, we get P(k), which is the claim of the
corollary.

Since the ideal 〈f1, . . . , fℓ〉 is maximal in K(t)[x1, . . . , xℓ], the polynomial gℓ+1 factors
uniquely into a product of powers of monic irreducible polynomials fℓ+1,1, . . . , fℓ+1,N in
L[xℓ+1], where L is the field K(t)[x1, . . . , xℓ]/〈f1, . . . , fℓ〉.

Then, for any j ≤ N , (f1, . . . , fℓ+1,j) satisfy points 1 and 3 of P(ℓ + 1). Conversely, any
polynomial fℓ+1 such that (f1, . . . , fℓ+1) satisfy P(ℓ + 1) must be one of the fℓ+1,j. Hence,
we are left to prove that there exists a unique j such that fℓ+1,j satisfies point 2.

Proposition 2 shows that for all j ≤ N , fℓ+1,j is in D. We conclude by proving that there
exists a unique j such that ϕn(fℓ+1,j) = 0. Recall that f e1

ℓ+1,1 · · ·f
eN

ℓ+1,N = gℓ+1 holds modulo
〈f1, . . . , fℓ〉, for some positive integer exponents ei Since all polynomials involved are in D,
and since Φ(gℓ+1) = 0, we deduce that ϕn(f e1

ℓ+1,1 · · · f
e1

ℓ+1,N) = 0. Thus, since all fℓ+1,j are in
D, we have ϕn(fℓ+1,j) = 0 for at least one j ≤ N . It remains to prove that this j is unique:

• If gi is purely inseparable, then N = 1, so we are done.
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• Else, ξℓ is a root of ϕℓ−1(gℓ) of multiplicity 1. Since ϕℓ−1(gℓ) = ϕℓ−1(fℓ+1,i)
e1 · · ·ϕℓ−1(fℓ+1,i)

eN ,
the uniqueness of j follows (and ej = 1).

This proves uniquess in both cases.

Lemma 5. The ideal 〈g1, . . . , gk〉 is radical in K(t)[x].

Proof. Let h1, . . . , hk and g⋆
1, . . . , g

⋆
k be as before. These polynomials form a regular chain in

K[t,x]. In particular, we write the primary decomposition of 〈g⋆
1, . . . , g

⋆
k〉 in K[t,x] as

〈g⋆
1, . . . , g

⋆
k〉 = Q1 ∩ · · · ∩ Qs ∩ R1 ∩ · · · ∩ Rt,

where:

• all Qi are n-dimensional, and contain no non-zero polynomial in K[t];

• all Ri contain a non-zero polynomial in K[t], that divides a power of h1 · · ·hk.

We are going to prove that all Qi are prime. As a consequence of H4, there exists a minor
∆ of Jℓ invertible in K(t)[x]/〈g1, . . . , gk〉. Thus, there exists non-zero polynomial δ ∈ K[t]
such that if δ(τ1, . . . , τn) 6= 0, ∆ is invertible at all solutions of g⋆

1(τ,x), . . . , g⋆
k(τ,x).

Since Qi are n-dimensional, contains no non-zero polynomial in K[t], there exists a max-
imal ideal m ⊂ K[t,x] containing 〈g⋆

1, . . . , g
⋆
k〉, at which ∆ is invertible. If (r1, . . . , rm) are

generators of Qi, we deduce (by differentiating the membership identities) that the Jacobian
matrix of (r1, . . . , rm) has rank at least k at m. The Jacobian criterion [2, Th. 16.19] implies
that the localization Qim is prime, and thus Qi as well.

Let now a ∈ K(t)[x] be such that ar is in 〈g1, . . . , gk〉, for some r ≥ 1. Write a = A/α,
with A ∈ K[t,x] and α ∈ K[t]. After clearing denominators, we obtain that βAr is in
〈g⋆

1, . . . , g
⋆
k〉 ⊂ K[t,x], for some non-zero β ∈ K[t]. Thus, βAr is in each Qi and since Qi is

prime and contains no non-zero polynomial in K[t], A is in Qi.
Therefore, for u large enough, (h1 · · ·hk)

uA is in the ideal generated by 〈g⋆
1, . . . , g

⋆
k〉 in

K[t,x], and thus in K[t,x]. This is sufficient to conclude.

Corollary 3. For ℓ < k, let g′

ℓ+1
∈ K(t)[x1, . . . , xℓ+1] be a monic factor of gℓ+1 modulo

〈g1, . . . , gℓ〉. Then, g′

ℓ+1 is in D.

Proof. Hereafter, all ideals are in K(t)[x]. Let m1, . . . , mL be the maximal ideals containing
〈g1, . . . , gℓ〉, so that 〈g1, . . . , gℓ〉 can be written as m1 ∩ · · · ∩ mL (by Lemma 5).

Each mj is defined by unique polynomials fj,1, . . . , fj,ℓ that form a reduced Gröbner basis
for the lexicographic order x1 < · · · < xn. By Corollary 1, all fj,i are in D. Besides, by
Proposition 2, g′

ℓ+1 is a monic factor of gℓ+1 modulo mj = 〈fj,1, . . . , fj,ℓ〉, so that the normal
form g′

ℓ+1,j of g′

ℓ+1
modulo 〈fj,1, . . . , fj,ℓ〉 is in D. It remains to prove that g′

ℓ+1
is in D too,

using Chinese remaindering.
The inverse map of Chinese remaindering associates to a polynomial a ∈ K(t)[x1, . . . , xℓ],

reduced with respect to 〈g1, . . . , gℓ〉, its normal forms modulo all 〈fj,1, . . . , fj,ℓ〉. The matrix
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of M this K(t)-linear map (on the canonical bases) has entries in D; we want to prove that
the inverse of M does as well.

Let us for the moment assume that we have proved that 〈ϕ0(fj,1), . . . , ϕ0(fj,ℓ)〉 are pair-
wise coprime. This implies that the matrix ϕ0(M) is invertible, so that det(ϕ0(M)) =
ϕ0(det(M)) is non-zero, which is sufficient to conclude.

So, we need to prove that the ideals 〈ϕ0(fj,1), . . . , ϕ0(fj,ℓ)〉 are pairwise coprime. Consider
two such sequences fj,1, . . . , fj,ℓ and fj′,1, . . . , fj′,ℓ. By construction, we have fj,i = fj′,i up
to some i0 < ℓ, and fj,i0+1 and fj′,i0+1 are two distinct irreducible factors of gi0+1 modulo
〈fj,1, . . . , fj,i0〉 = 〈fj′,1, . . . , fj′,i0〉.

In particular, gi0+1 cannot be purely inseparable. Thus, H3 implies that ϕ0(∂gi0+1/∂xi0+1)
is a unit modulo 〈ϕ0(fj,1), . . . , ϕ0(fj,i0), ϕ0(gi0+1)〉. This implies that ϕ0(fj,i0+1) and ϕ0(fj′,i0+1)
are coprime modulo 〈ϕ0(fj,1), . . . , ϕ0(fj,i0)〉, and finishes the proof.
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