Some known results on polynomial factorization over towers of field extensions

Guénaël Renault, Éric Schost

July 21, 2009

1 Jacobians and conductors: the irreducible case

We consider the polynomial ring $\mathbb{S}\left[t_{1}, \ldots, t_{n}\right]$, with either:

- $\mathbb{S}=\mathbb{Z}$
- or $\mathbb{S}=\mathbb{F}_{q}$, with q a prime power, and in this case $n>0$.

We let \mathbb{K} be the fraction field of \mathbb{S} and introduce the field of fractions $\mathbb{K}\left(t_{1}, \ldots, t_{n}\right)$; we are interested in a field extension \mathbb{L} of $\mathbb{K}\left(t_{1}, \ldots, t_{n}\right)$ of the form

$$
\mathbb{L}=\mathbb{K}\left(t_{1}, \ldots, t_{n}\right)\left[x_{1}, \ldots, x_{k}\right] /\left\langle f_{1}, \ldots, f_{k}\right\rangle,
$$

where for $i=1, \ldots, k, f_{i}$ is in $\mathbb{K}\left(t_{1}, \ldots, t_{n}\right)\left[x_{1}, \ldots, x_{i}\right]$ and monic in x_{i} (thus, the ideal $\left\langle f_{1}, \ldots, f_{k}\right\rangle$ is maximal). Hereafter, we write $\mathbf{t}=t_{1}, \ldots, t_{n}, \mathbf{x}=x_{1}, \ldots, x_{k}$ and $d_{i}=$ $\operatorname{deg}\left(f_{i}, x_{i}\right)$; for $i=1, \ldots, k$, we let h_{i} be in $\mathbb{S}[\mathbf{t}]$ such that $f_{i}^{\star}=h_{i} f_{i}$ is in $\mathbb{S}[\mathbf{t}, \mathbf{x}]$ and we set $h=h_{1} \cdots h_{k}$.

We are interested in the possible denominators arising when factoring univariate polynomials modulo $\left\langle f_{1}, \ldots, f_{k}\right\rangle$. Precisely, we say that $\delta \in \mathbb{S}[\mathbf{t}]-\{0\}$ is a common denominator for $\left(f_{1}, \ldots, f_{k}\right)$ if the following property holds. Let A, B, C in $\mathbb{K}(\mathbf{t})[\mathbf{x}, Y]$ and α in $\mathbb{S}[\mathbf{t}]$ be such that:

1. A, B, C are reduced with respect to $\left(f_{1}, \ldots, f_{k}\right)$, in the sense that $\operatorname{deg}\left(A, x_{i}\right)<d_{i}$, $\operatorname{deg}\left(B, x_{i}\right)<d_{i}$ and $\operatorname{deg}\left(C, x_{i}\right)<d_{i}$ hold for all i;
2. $A=B C$ in $\mathbb{L}[Y]$;
3. αA is in the subring $\mathbb{S}[\mathbf{t}, \mathbf{x}, Y]$ of $\mathbb{K}(\mathbf{t})[\mathbf{x}, Y]$;
4. A, B, C are monic in Y.

Then, $\alpha \delta h^{b} B$ and $\alpha \delta h^{c} C$ are in $\mathbb{S}[\mathbf{t}, \mathbf{x}, Y]$, for some non-negative integers b, c (remark that our criterion is rather loose, as we impose no control on b and c, but sufficient for the application we have in mind).

Proposition 1. Let $\Delta \in \mathbb{K}(\mathbf{t})[\mathbf{x}]$ be a $k \times k$-minor of the Jacobian matrix of $\left(f_{1}, \ldots, f_{k}\right)$ with respect to $\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{k}\right)$, and let

$$
\delta=\operatorname{res}\left(\cdots \operatorname{res}\left(\Delta, f_{k}, x_{k}\right), \cdots, f_{1}, x_{1}\right)
$$

Then, if $\delta \neq 0$, there exists an integer $d \geq 0$ such that $h^{d} \delta$ is a common denominator of $\left(f_{1}, \ldots, f_{k}\right)$.

Suppose for simplicity that f_{i} is in $\mathbb{S}[\mathbf{t}, \mathbf{x}]$ for all i, so $h=1$. For $i \geq 1$, let Δ_{i} be the partial derivative of f_{i} with respect to x_{i}, and let $\Delta=\Delta_{1} \cdots \Delta_{k}$ and let as before δ be the iterated resultant

$$
\delta=\operatorname{res}\left(\cdots \operatorname{res}\left(\Delta, f_{k}, x_{k}\right), \cdots, f_{1}, x_{1}\right) \in \mathbb{S}[\mathbf{t}] .
$$

If $\mathbb{K} \rightarrow \mathbb{L}$ is separable, it is known [1] that δ is non-zero and that it is a common denominator for $\left(f_{1}, \ldots, f_{k}\right)$. If $\mathbb{K} \rightarrow \mathbb{L}$ is not separable, though, $\delta=0$. In this case, the proposition states that instead of considering Δ, some other $k \times k$ minor of the Jacobian matrix of $\left(f_{1}, \ldots, f_{k}\right)$ with respect to the whole set of variables \mathbf{t} and \mathbf{x} may do (actually, such a non-zero δ always exists). This result is not new; however, since it seems not widely known, it seems useful to restate it here.

Consider for example the simplest such case, with $n=k=1$ (so we write $t_{1}=t, x_{1}=x$ and $\left.f_{1}=f\right), \mathbb{K}=\mathbb{S}=\mathbb{F}_{p}$ and $f(t, x)=x^{p}-\varphi(t)$, with $\varphi \in \mathbb{F}_{p}[t]$ not a p th power. In this case, $\delta=\partial f / \partial x=0$; however, $\partial f / \partial t=-\varphi^{\prime} \in \mathbb{F}_{p}[t]$ is non-zero (otherwise f would be a p th power). Then, φ^{\prime} is a common denominator for f; in this case, there is no need to take resultants, since φ^{\prime} is already in $\mathbb{F}_{p}[t]$. For instance, the polynomial $Y^{p}-t$ factors modulo f as

$$
Y^{p}-t=\left(Y-\frac{G(t, x)}{\varphi^{\prime}}\right)^{p}
$$

with $G(t, x)$ in $\mathbb{F}_{p}[t, x]$.
The rest of this section is devoted to prove the former proposition. Let Z be a new indeterminates, and define \mathbb{A} as the residue class ring $\mathbb{S}[\mathbf{t}, \mathbf{x}, Z] /\left\langle f_{1}^{\star}, \ldots, f_{k}^{\star}, 1-h Z\right\rangle$. One easily checks that \mathbb{A} is an integral domain, with field of fractions $\mathbb{L}=\mathbb{K}(\mathbf{t})[\mathbf{x}] /\left\langle f_{1}, \ldots, f_{k}\right\rangle$.

Let $\mathbb{B} \subset \mathbb{L}$ be the integral closure of \mathbb{A}. The conductor $\mathfrak{C} \subset \mathbb{A}$ of the extension $\mathbb{A} \rightarrow \mathbb{B}$ is the annihilator of the \mathbb{A}-module \mathbb{B} / \mathbb{A}; that is, $\delta \in \mathbb{A}$ is in \mathfrak{C} if and only if any b in \mathbb{B} can be written as $b=a / \delta$, with a in \mathbb{A}. Following [5], the following classical result in the vein of Gauss' Lemma relates the conductor to our denominator problem.

Lemma 1. Any δ in $\mathfrak{C} \cap \mathbb{S}[\mathbf{t}]-\{0\}$ is a common denominator for $\left(f_{1}, \ldots, f_{k}\right)$.
Proof. Consider $A, B, C \in \mathbb{K}(\mathbf{t})[\mathbf{x}, Y]$ and $\alpha \in \mathbb{S}[\mathbf{t}]$ that satisfy assumptions $1-4$. Thus, αA is in $\mathbb{S}[\mathbf{t}, \mathbf{x}, Y]$, and its residue class in $\mathbb{L}[Y]$ is actually in $\mathbb{A}[Y]$. Following the proof of [5, Lemma 7.1], we deduce that αB and αC are in $\mathbb{B}[Y]$, so that $\alpha \delta B$ and $\alpha \delta C$ are in $\mathbb{A}[Y] \subset \mathbb{B}[Y]$.

Considering B, this means that there exists a polynomial β in $\mathbb{S}[\mathbf{t}, \mathbf{x}, Z, Y]$ such that the residue classes of β and $\alpha \delta B$ coincide in $\mathbb{L}[Y]$. Since the normal form of β in \mathbb{L} admits a power of h as a denominator, there exists $b \geq 0$ such that $\alpha \delta h^{b} B$ is in $\mathbb{S}[\mathbf{t}, \mathbf{x}, Y]$.

The following result exhibits elements in the conductor. It is a direct consequence of the Lipman-Sathaye theorem [3] when $\mathbb{S}=\mathbb{Z}$, and is in [4, Remark 1.5] when $\mathbb{S}=\mathbb{F}_{q}$.

Lemma 2. Any $(k+1) \times(k+1)$-minor of the Jacobian matrix of $\left(f_{1}^{\star}, \ldots, f_{k}^{\star}, 1-h Z\right)$ with respect to $\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{k}, Z\right)$ is in \mathfrak{C}.

From this, one can exhibit an element in the conductor using only data obtained from $\left(f_{1}, \ldots, f_{k}\right)$.

Lemma 3. Let $\Delta \in \mathbb{K}(\mathbf{t})[\mathbf{x}]$ be a $k \times k$-minor of the Jacobian matrix of $\left(f_{1}, \ldots, f_{k}\right)$ with respect to $\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{k}\right)$. Then, there exists an integer $d \geq 0$ such that $h^{d} \Delta$ is $\mathbb{S}[\mathbf{t}, \mathbf{x}]$, and in \mathfrak{C}.

Proof. Let us define the following matrices:

- $J_{\mathbf{f}}$ is the Jacobian matrix of $\left(f_{1}, \ldots, f_{k}\right)$ with respect to $\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{k}\right)$,
- $J_{\mathbf{f}^{\star}}$ is the Jacobian matrix of $\left(f_{1}^{\star}, \ldots, f_{k}^{\star}\right)$ with respect to $\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{k}\right)$,
- $K_{\mathbf{f}^{\star}}$ is the Jacobian matrix of $\left(f_{1}^{\star}, \ldots, f_{k}^{\star}, 1-h Z\right)$ with respect to $\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{k}, Z\right)$.

Let next $I \subset\{1, \ldots, n\}$ and $J \subset\{1, \ldots, k\}$ be such that Δ is built on columns of $J_{\mathbf{f}}$ indexed by $\left(t_{i}, i \in I\right)$ and $\left(x_{j}, j \in J\right)$, and let Δ^{\star} be the $k \times k$-minor of $J_{\mathbf{f}^{\star}}$ built on the same columns. Consider the equalities

$$
\frac{\partial f_{i}^{\star}}{\partial t_{j}}=\frac{\partial h_{i}}{\partial t_{j}} f_{i}+h_{i} \frac{\partial f_{i}}{\partial t_{j}} \quad \text { and } \quad \frac{\partial f_{i}^{\star}}{\partial x_{j}}=h_{i} \frac{\partial f_{i}}{\partial x_{j}} .
$$

It follows that in $\mathbb{K}(\mathbf{t})[\mathbf{x}], \Delta^{\star}$ equals $h \Delta$ modulo $\left\langle f_{1}, \ldots, f_{k}\right\rangle$. Multiplying by a large enough power of h to clear all denominators, we obtain that $h^{c} \Delta^{\star}=h^{c+1} \Delta \bmod \left\langle f_{1}^{\star}, \ldots, f_{k}^{\star}\right\rangle$ holds in $\mathbb{S}[\mathbf{t}, \mathbf{x}]$, for some integer $c \geq 0$.

Let finally Γ be the $(k+1) \times(k+1)$-minor of $K_{\mathbf{f}^{\star}}$ built on columns indexed by $Z,\left(t_{i}, i \in I\right)$ and $\left(x_{j}, j \in J\right)$. Since the column of $J_{\mathbf{f}^{\star}}$ indexed by Z only contains the non-zero entry h, we deduce that $\Gamma= \pm h \Delta^{\star}$. This implies that $h^{c} \Gamma= \pm h^{c+2} \Delta \bmod \left\langle f_{1}^{\star}, \ldots, f_{k}^{\star}\right\rangle$ holds in $\mathbb{S}[\mathbf{t}, \mathbf{x}]$. By the previous lemma, Γ, and thus $h^{c} \Gamma$, are in \mathfrak{C}. Thus, $h^{c+2} \Delta$ is in \mathfrak{C} too.

Let $\Delta \in \mathbb{S}[\mathbf{t}, \mathbf{x}]$ be in \mathfrak{C}. If Δ is already in $\mathbb{S}[\mathbf{t}]$, we are essentially done. In general, though, Δ may not be in $\mathbb{S}[\mathbf{t}]$ but in $\mathbb{S}[\mathbf{t}, \mathbf{x}]$; the next lemma provides the classical workaround.

Lemma 4. Let $\Delta \in \mathbb{S}[\mathbf{t}, \mathbf{x}]$ be in \mathfrak{C}. Then

$$
\delta=\operatorname{res}\left(\cdots \operatorname{res}\left(\Delta, f_{k}^{\star}, x_{k}\right), \cdots, f_{1}^{\star}, x_{1}\right)
$$

is either zero, or a common denominator of $\left(f_{1}, \ldots, f_{k}\right)$.
Proof. δ is in $\mathbb{S}[\mathbf{t}]$ by construction. A direct induction shows that δ there exists a polynomial β in $\mathbb{S}[\mathbf{t}, \mathbf{x}]$ such that $\Delta \beta=\delta$ in \mathbb{A}. Since Δ is in the conductor \mathfrak{C}, δ is in \mathfrak{C} as well, so by Lemma 1 , it is a common denominator for $\left(f_{1}, \ldots, f_{k}\right)$.

We can now prove Proposition 1. Let $\Delta \in \mathbb{K}(\mathbf{t})[\mathbf{x}]$ be a $k \times k$-minor of the Jacobian matrix of $\left(f_{1}, \ldots, f_{k}\right)$ with respect to $\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{k}\right)$. By Lemma 3, there exists an integer $d \geq 0$ such that $h^{d} \Delta$ is $\mathbb{S}[\mathbf{t}, \mathbf{x}]$ and in \mathfrak{C}. By the previous lemma

$$
\gamma=\operatorname{res}\left(\cdots \operatorname{res}\left(h^{d} \Delta, f_{k}^{\star}, x_{k}\right), \cdots, f_{1}^{\star}, x_{1}\right)
$$

is either zero, or a common denominator of $\left(f_{1}, \ldots, f_{k}\right)$; we will assume it is not zero. Taking the factors h_{1}, \ldots, h_{k}, h out, we see that the polynomial δ can be rewritten as

$$
\gamma=h_{1}^{e_{1}} \cdots h_{k}^{e_{k}} h^{e} \operatorname{res}\left(\cdots \operatorname{res}\left(\Delta, f_{k}, x_{k}\right), \cdots, f_{1}, x_{1}\right),
$$

for some non-negative integers e_{1}, \ldots, e_{k}, e; using the notation of Proposition 1 , this can be rewritten as $\gamma=h_{1}^{e_{1}} \cdots h_{k}^{e_{k}} h^{e} \delta$. Multiplying by suitable powers of h_{1}, \ldots, h_{k}, we deduce

$$
h_{1}^{\ell_{1}} \cdots h_{k}^{\ell_{k}} \gamma=h^{\ell} \delta,
$$

for some non-negative integers $\ell_{1}, \ldots, \ell_{k}, \ell$. Since $h_{1}^{\ell_{1}} \cdots h_{k}^{\ell_{k}} \gamma$ is still a common denominator for $\left(f_{1}, \ldots, f_{k}\right)$, we are done.

2 Application

As an application, we consider the following situation. As before, we start from the base ring \mathbb{S}, with either $\mathbb{S}=\mathbb{Z}$ or $\mathbb{S}=\mathbb{F}_{q}$. We still let \mathbb{K} be the fraction field of \mathbb{S}, and we consider a triangular family of polynomials g_{1}, \ldots, g_{k} in $\mathbb{K}(\mathbf{t})[\mathbf{x}]$, with g_{i} in $\mathbb{K}(\mathbf{t})\left[x_{1}, \ldots, x_{i}\right]$, monic in x_{i} and reduced with respect to $\left(g_{1}, \ldots, g_{i-1}\right)$ for all i; we do not assume that the ideal $\left\langle g_{1}, \ldots, g_{k}\right\rangle$ is maximal. Besides, we consider the following data:

- if $\mathbb{S}=\mathbb{Z}$, let $\mathbb{S}^{\prime}=\mathbb{F}_{p}$, for some prime p, and let $\tau_{1}, \ldots, \tau_{n}$ and ξ_{1}, \ldots, ξ_{k} be in \mathbb{F}_{p};
- if $\mathbb{S}=\mathbb{F}_{q}$, let $\mathbb{S}^{\prime}=\mathbb{F}_{q}$ and let $\tau_{1}, \ldots, \tau_{n}$ and ξ_{1}, \ldots, ξ_{k} be in \mathbb{F}_{q}.

For $0 \leq i \leq k$, let φ_{i} be the evaluation map

$$
\begin{aligned}
& \varphi_{i}: \mathbb{S}[\mathbf{t}][\mathbf{x}] \rightarrow \mathbb{S}^{\prime}[\mathbf{x}] \\
& t_{i} \quad \mapsto \quad \tau_{i} \\
& x_{j} \quad \mapsto \quad \xi_{j} \quad j \leq i \\
& x_{j} \quad \mapsto \quad x_{j} \quad j>i ;
\end{aligned}
$$

In particular, φ_{0} only evaluates the \mathbf{t} variables, and φ_{n} evaluates all \mathbf{t} and \mathbf{x} variables. We let D_{0} be the following subring of $\mathbb{K}(\mathbf{t}): f \in \mathbb{K}(\mathbf{t})$ is in D_{0} if and only if it can be written as a / b, with a and b in $\mathbb{S}[\mathbf{t}]$, and with $\varphi_{0}(b) \neq 0$. If we let $D=D_{0}[\mathbf{x}]$, all φ_{i} remain defined at D. Then, we make the following assumptions:
\mathbf{H}_{1}. The polynomials g_{1}, \ldots, g_{k} are in D.
\mathbf{H}_{2}. For $\ell \leq k, \varphi_{n}\left(g_{\ell}\right)=0$.
\mathbf{H}_{3}. For $\ell \leq k$, either g_{ℓ} is purely inseparable, or $\varphi_{0}\left(\partial g_{\ell} / \partial x_{\ell}\right)$ is invertible in the residue class ring $\mathbb{S}^{\prime}\left[x_{1}, \ldots, x_{\ell}\right] /\left\langle\varphi_{0}\left(g_{1}\right), \ldots, \varphi_{0}\left(g_{\ell}\right)\right\rangle$.

For $\ell \leq k$, let J_{ℓ} be the Jacobian matrix of $\left(g_{1}, \ldots, g_{\ell}\right)$ with respect to $\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{\ell}\right)$. Since all g_{i} are in D, all entries of J_{ℓ} are in D. Then, we can define $\varphi_{0}\left(J_{\ell}\right)$ in the obvious manner, applying φ_{0} entrywise, and we make the following further assumption:
\mathbf{H}_{4}. For $\ell \leq k$, there exists an $\ell \times \ell$ minor Δ_{ℓ} of J_{ℓ} such that $\varphi_{0}\left(\Delta_{\ell}\right)$ is invertible in $\mathbb{S}^{\prime}\left[x_{1}, \ldots, x_{\ell}\right] /\left\langle\varphi_{0}\left(g_{1}\right), \ldots, \varphi_{0}\left(g_{\ell}\right)\right\rangle$.

Remark that if no g_{i} is purely inseparable, \mathbf{H}_{3} implies \mathbf{H}_{4}. Under $\mathbf{H}_{1}, \ldots, \mathbf{H}_{4}$, our conclusion is the following.

Proposition 2. Consider $\ell<k$, and suppose that f_{1}, \ldots, f_{ℓ} are polynomials in $\mathbb{K}(\mathbf{t})[\mathbf{x}]$ such that the following holds:

1. for $i \leq \ell, f_{i}$ is in $\mathbb{K}(\mathbf{t})\left[x_{1}, \ldots, x_{i}\right]$, monic in x_{i} and reduced with respect to $\left(f_{1}, \ldots, f_{i-1}\right)$;
2. for $i \leq \ell, f_{i}$ is in D;
3. the ideal $\left\langle f_{1}, \ldots, f_{\ell}\right\rangle$ is maximal in $\mathbb{K}(\mathbf{t})\left[x_{1}, \ldots, x_{\ell}\right]$ and contains $\left\langle g_{1}, \ldots, g_{\ell}\right\rangle$.

Let $f_{\ell+1} \in \mathbb{K}(\mathbf{t})\left[x_{1}, \ldots, x_{\ell+1}\right]$ be a monic factor of $g_{\ell+1}$ modulo $\left\langle f_{1}, \ldots, f_{\ell}\right\rangle$. Then, $f_{\ell+1}$ is in D.

Proof. We will establish the following claim below: there exists a common denominator $\gamma \in \mathbb{S}[\mathbf{t}]$ of $\left(f_{1}, \ldots, f_{\ell}\right)$ such that $\varphi_{0}(\gamma) \neq 0$. Taking it for granted, let $\alpha \in \mathbb{S}[\mathbf{t}]$ be such that $\varphi_{0}(\alpha) \neq 0$ and $\alpha g_{\ell+1}$ is in $\mathbb{S}\left[\mathbf{t}, x_{1}, \ldots, x_{\ell+1}\right]$. Then, applying the characteristic property of γ, we see that $\alpha \gamma h^{e} f_{\ell+1}$ is in $\mathbb{S}\left[\mathbf{t}, x_{1}, \ldots, x_{\ell+1}\right]$, for some integer $e \geq 0$, where $h=h_{1} \cdots h_{\ell} \in \mathbb{S}[\mathbf{t}]$ and h_{i} is such that $h_{i} f_{i}$ is in $\mathbb{S}[\mathbf{t}, \mathbf{x}]$. Since f_{i} is in D, we can take h_{i} with $\varphi_{0}\left(h_{i}\right) \neq 0$. Since $\alpha \gamma$ is in $\mathbb{S}[\mathbf{t}]$ and satisfies $\varphi_{0}(\alpha \gamma) \neq 0$ as well, $f_{\ell+1}$ is in D, as requested.

We conclude by showing how to obtain the required common denominator γ of $\left(f_{1}, \ldots, f_{\ell}\right)$. Let $J_{\mathbf{g}, \ell}\left(\right.$ resp. $\left.J_{\mathbf{f}}\right)$ be the Jacobian matrix of $\left(g_{1}, \ldots, g_{\ell}\right)$ (resp. $\left.\left(f_{1}, \ldots, f_{\ell}\right)\right)$ with respect to $\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{\ell}\right)$. As said before, all entries of both $J_{\mathbf{g}, \ell}$ and $J_{\mathbf{f}}$ are in D. Besides, by assumption, there exists an $\ell \times \ell$ minor Δ_{ℓ} of $J_{\mathbf{g}, \ell}$ such that $\varphi_{0}\left(\Delta_{\ell}\right)$ is invertible modulo $\left\langle\varphi_{0}\left(g_{1}\right), \ldots, \varphi_{0}\left(g_{\ell}\right)\right\rangle$.

As a consequence, we claim that there exists an $\ell \times \ell$ minor Δ_{ℓ}^{\prime} of $J_{\mathbf{f}}$ such that $\varphi_{0}\left(\Delta_{\ell}^{\prime}\right)$ is invertible modulo $\left\langle\varphi_{0}\left(f_{1}\right), \ldots, \varphi_{0}\left(f_{\ell}\right)\right\rangle$. Indeed, remember that $\left\langle f_{1}, \ldots, f_{\ell}\right\rangle$ contains $\left\langle g_{1}, \ldots, g_{\ell}\right\rangle$. Differentiating the corresponding membership equalities, this shows that J_{ℓ} factors as $J_{\ell}=$ $A J_{\mathbf{f}}$ modulo $\left\langle f_{1}, \ldots, f_{\ell}\right\rangle$, where A is a square $\ell \times \ell$ matrix; applying φ_{0} and considering the columns contributing to the minor Δ_{ℓ} proves our claim. As previously, we define

$$
\delta=\operatorname{res}\left(\cdots \operatorname{res}\left(\Delta_{\ell}^{\prime}, f_{\ell}, x_{\ell}\right), \cdots, f_{1}, x_{1}\right) \in \mathbb{K}(\mathbf{t}) ;
$$

remark that δ is in D. Then, we claim that $\varphi_{0}(\delta)$ is non-zero. Indeed, since all f_{i} are monic, one can (up to sign) commute the application of φ_{0} and the resultant, so that

$$
\varphi_{0}(\delta)=\operatorname{res}\left(\cdots \operatorname{res}\left(\varphi_{0}\left(\Delta_{\ell}^{\prime}\right), \varphi_{0}\left(f_{\ell}\right), x_{\ell}\right), \cdots, \varphi_{0}\left(f_{1}\right), x_{1}\right) \in \mathbb{S}^{\prime}
$$

If the latter is zero, $\varphi_{0}\left(\Delta_{\ell}^{\prime}\right)$ would be a zero-divisor modulo $\left\langle\varphi_{0}\left(f_{1}^{\star}\right), \ldots, \varphi_{0}\left(f_{\ell}^{\star}\right)\right\rangle$, a contradiction. In particular, δ itself is non-zero. By Proposition 1 , there exists $d \geq 0$ such that $h^{d} \delta$ is a common denominator for $\left(f_{1}, \ldots, f_{\ell}\right)$, where $h=h_{1} \cdots h_{\ell} \in \mathbb{S}[\mathbf{t}]$ and h_{i} is such that $h_{i} f_{i}$ is in $\mathbb{S}[\mathbf{t}, \mathbf{x}]$. Since f_{i} is in D, we can take h_{i} with $\varphi_{0}\left(h_{i}\right) \neq 0$. Letting $\gamma=h^{d} \delta$ proves our conclusion.

Corollary 1. Let $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{L}$ be the maximal ideals containing $\left\langle g_{1}, \ldots, g_{k}\right\rangle$, and for $j \leq L$, let $\left(f_{j, 1}, \ldots, f_{j, n}\right)$ be the reduced Gröbner basis of \mathfrak{m}_{j} for the lexicographic order $x_{1}<\cdots<x_{n}$, Then all $f_{j, \ell}$ are in D.

Proof. The proof is an easy induction on $\ell=1, \ldots, k$, since $f_{j, \ell}$ is a factor of g_{ℓ} modulo $\left\langle f_{j, 1}, \ldots, f_{j, \ell-1}\right\rangle$.

Corollary 2. There exists a unique set of polynomials $\left(f_{1}, \ldots, f_{k}\right)$ such that the following holds:

1. for $i \leq k$, f_{i} is in $\mathbb{K}(\mathbf{t})\left[x_{1}, \ldots, x_{i}\right]$, monic in x_{i} and reduced with respect to $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$;
2. for $i \leq k$, f_{i} is in D and $\varphi_{n}\left(f_{i}\right)=0$;
3. the ideal $\left\langle f_{1}, \ldots, f_{k}\right\rangle$ is maximal in $\mathbb{K}(\mathbf{t})\left[x_{1}, \ldots, x_{k}\right]$ and contains $\left\langle g_{1}, \ldots, g_{k}\right\rangle$.

Proof. Suppose that we have proved the following property, written $\mathbf{P}(\ell)$: there exist unique polynomials $\left(f_{1}, \ldots, f_{\ell}\right)$ that satisfy

1. for $i \leq \ell, f_{i}$ is in $\mathbb{K}(\mathbf{t})\left[x_{1}, \ldots, x_{i}\right]$, monic in x_{i} and reduced with respect to $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$;
2. for $i \leq \ell, f_{i}$ is in D and $\varphi_{n}\left(f_{i}\right)=0$;
3. the ideal $\left\langle f_{1}, \ldots, f_{\ell}\right\rangle$ is maximal in $\mathbb{K}(\mathbf{t})\left[x_{1}, \ldots, x_{\ell}\right]$ and contains $\left\langle g_{1}, \ldots, g_{\ell}\right\rangle$.

We prove that $\mathbf{P}(\ell+1)$ holds; then by induction, we get $\mathbf{P}(k)$, which is the claim of the corollary.

Since the ideal $\left\langle f_{1}, \ldots, f_{\ell}\right\rangle$ is maximal in $\mathbb{K}(\mathbf{t})\left[x_{1}, \ldots, x_{\ell}\right]$, the polynomial $g_{\ell+1}$ factors uniquely into a product of powers of monic irreducible polynomials $f_{\ell+1,1}, \ldots, f_{\ell+1, N}$ in $\mathbb{L}\left[x_{\ell+1}\right]$, where \mathbb{L} is the field $\mathbb{K}(\mathbf{t})\left[x_{1}, \ldots, x_{\ell}\right] /\left\langle f_{1}, \ldots, f_{\ell}\right\rangle$.

Then, for any $j \leq N,\left(f_{1}, \ldots, f_{\ell+1, j}\right)$ satisfy points 1 and 3 of $\mathbf{P}(\ell+1)$. Conversely, any polynomial $f_{\ell+1}$ such that $\left(f_{1}, \ldots, f_{\ell+1}\right)$ satisfy $\mathbf{P}(\ell+1)$ must be one of the $f_{\ell+1, j}$. Hence, we are left to prove that there exists a unique j such that $f_{\ell+1, j}$ satisfies point 2 .

Proposition 2 shows that for all $j \leq N, f_{\ell+1, j}$ is in D. We conclude by proving that there exists a unique j such that $\varphi_{n}\left(f_{\ell+1, j}\right)=0$. Recall that $f_{\ell+1,1}^{e_{1}} \cdots f_{\ell+1, N}^{e_{N}}=g_{\ell+1}$ holds modulo $\left\langle f_{1}, \ldots, f_{\ell}\right\rangle$, for some positive integer exponents e_{i} Since all polynomials involved are in D, and since $\Phi\left(g_{\ell+1}\right)=0$, we deduce that $\varphi_{n}\left(f_{\ell+1,1}^{e_{1}} \cdots f_{\ell+1, N}^{e_{1}}\right)=0$. Thus, since all $f_{\ell+1, j}$ are in D, we have $\varphi_{n}\left(f_{\ell+1, j}\right)=0$ for at least one $j \leq N$. It remains to prove that this j is unique:

- If g_{i} is purely inseparable, then $N=1$, so we are done.
- Else, ξ_{ℓ} is a root of $\varphi_{\ell-1}\left(g_{\ell}\right)$ of multiplicity 1 . Since $\varphi_{\ell-1}\left(g_{\ell}\right)=\varphi_{\ell-1}\left(f_{\ell+1, i}\right)^{e_{1}} \cdots \varphi_{\ell-1}\left(f_{\ell+1, i}\right)^{e_{N}}$, the uniqueness of j follows (and $e_{j}=1$).

This proves uniquess in both cases.
Lemma 5. The ideal $\left\langle g_{1}, \ldots, g_{k}\right\rangle$ is radical in $\mathbb{K}(\mathbf{t})[\mathbf{x}]$.
Proof. Let h_{1}, \ldots, h_{k} and $g_{1}^{\star}, \ldots, g_{k}^{\star}$ be as before. These polynomials form a regular chain in $\overline{\mathbb{K}}[\mathbf{t}, \mathbf{x}]$. In particular, we write the primary decomposition of $\left\langle g_{1}^{\star}, \ldots, g_{k}^{\star}\right\rangle$ in $\overline{\mathbb{K}}[\mathbf{t}, \mathbf{x}]$ as

$$
\left\langle g_{1}^{\star}, \ldots, g_{k}^{\star}\right\rangle=Q_{1} \cap \cdots \cap Q_{s} \cap R_{1} \cap \cdots \cap R_{t}
$$

where:

- all Q_{i} are n-dimensional, and contain no non-zero polynomial in $\overline{\mathbb{K}}[\mathbf{t}]$;
- all R_{i} contain a non-zero polynomial in $\mathbb{K}[\mathbf{t}]$, that divides a power of $h_{1} \cdots h_{k}$.

We are going to prove that all Q_{i} are prime. As a consequence of \mathbf{H}_{4}, there exists a minor Δ of J_{ℓ} invertible in $\mathbb{K}(\mathbf{t})[\mathbf{x}] /\left\langle g_{1}, \ldots, g_{k}\right\rangle$. Thus, there exists non-zero polynomial $\delta \in \mathbb{K}[\mathbf{t}]$ such that if $\delta\left(\tau_{1}, \ldots, \tau_{n}\right) \neq 0, \Delta$ is invertible at all solutions of $g_{1}^{\star}(\tau, \mathbf{x}), \ldots, g_{k}^{\star}(\tau, \mathbf{x})$.

Since Q_{i} are n-dimensional, contains no non-zero polynomial in $\overline{\mathbb{K}}[\mathbf{t}]$, there exists a maximal ideal $\mathfrak{m} \subset \overline{\mathbb{K}}[\mathbf{t}, \mathbf{x}]$ containing $\left\langle g_{1}^{\star}, \ldots, g_{k}^{\star}\right\rangle$, at which Δ is invertible. If $\left(r_{1}, \ldots, r_{m}\right)$ are generators of Q_{i}, we deduce (by differentiating the membership identities) that the Jacobian matrix of $\left(r_{1}, \ldots, r_{m}\right)$ has rank at least k at \mathfrak{m}. The Jacobian criterion [2, Th. 16.19] implies that the localization $Q_{i \mathfrak{m}}$ is prime, and thus Q_{i} as well.

Let now $a \in \mathbb{K}(\mathbf{t})[\mathbf{x}]$ be such that a^{r} is in $\left\langle g_{1}, \ldots, g_{k}\right\rangle$, for some $r \geq 1$. Write $a=A / \alpha$, with $A \in \mathbb{K}[\mathbf{t}, \mathbf{x}]$ and $\alpha \in \mathbb{K}[\mathbf{t}]$. After clearing denominators, we obtain that βA^{r} is in $\left\langle g_{1}^{\star}, \ldots, g_{k}^{\star}\right\rangle \subset \mathbb{K}[\mathbf{t}, \mathbf{x}]$, for some non-zero $\beta \in \mathbb{K}[\mathbf{t}]$. Thus, βA^{r} is in each Q_{i} and since Q_{i} is prime and contains no non-zero polynomial in $\overline{\mathbb{K}}[\mathbf{t}], A$ is in Q_{i}.

Therefore, for u large enough, $\left(h_{1} \cdots h_{k}\right)^{u} A$ is in the ideal generated by $\left\langle g_{1}^{\star}, \ldots, g_{k}^{\star}\right\rangle$ in $\overline{\mathbb{K}}[\mathbf{t}, \mathbf{x}]$, and thus in $\mathbb{K}[\mathbf{t}, \mathbf{x}]$. This is sufficient to conclude.

Corollary 3. For $\ell<k$, let $g_{\ell+1}^{\prime} \in \mathbb{K}(\mathbf{t})\left[x_{1}, \ldots, x_{\ell+1}\right]$ be a monic factor of $g_{\ell+1}$ modulo $\left\langle g_{1}, \ldots, g_{\ell}\right\rangle$. Then, $g_{\ell+1}^{\prime}$ is in D.

Proof. Hereafter, all ideals are in $\mathbb{K}(\mathbf{t})[\mathbf{x}]$. Let $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{L}$ be the maximal ideals containing $\left\langle g_{1}, \ldots, g_{\ell}\right\rangle$, so that $\left\langle g_{1}, \ldots, g_{\ell}\right\rangle$ can be written as $\mathfrak{m}_{1} \cap \cdots \cap \mathfrak{m}_{L}$ (by Lemma 5).

Each \mathfrak{m}_{j} is defined by unique polynomials $f_{j, 1}, \ldots, f_{j, \ell}$ that form a reduced Gröbner basis for the lexicographic order $x_{1}<\cdots<x_{n}$. By Corollary 1, all $f_{j, i}$ are in D. Besides, by Proposition 2, $g_{\ell+1}^{\prime}$ is a monic factor of $g_{\ell+1}$ modulo $\mathfrak{m}_{j}=\left\langle f_{j, 1}, \ldots, f_{j, \ell}\right\rangle$, so that the normal form $g_{\ell+1, j}^{\prime}$ of $g_{\ell+1}^{\prime}$ modulo $\left\langle f_{j, 1}, \ldots, f_{j, \ell}\right\rangle$ is in D. It remains to prove that $g_{\ell+1}^{\prime}$ is in D too, using Chinese remaindering.

The inverse map of Chinese remaindering associates to a polynomial $a \in \mathbb{K}(\mathbf{t})\left[x_{1}, \ldots, x_{\ell}\right]$, reduced with respect to $\left\langle g_{1}, \ldots, g_{\ell}\right\rangle$, its normal forms modulo all $\left\langle f_{j, 1}, \ldots, f_{j, \ell}\right\rangle$. The matrix
of \mathbf{M} this $\mathbb{K}(\mathbf{t})$-linear map (on the canonical bases) has entries in D; we want to prove that the inverse of \mathbf{M} does as well.

Let us for the moment assume that we have proved that $\left\langle\varphi_{0}\left(f_{j, 1}\right), \ldots, \varphi_{0}\left(f_{j, \ell}\right)\right\rangle$ are pairwise coprime. This implies that the matrix $\varphi_{0}(\mathbf{M})$ is invertible, so that $\operatorname{det}\left(\varphi_{0}(\mathbf{M})\right)=$ $\varphi_{0}(\operatorname{det}(\mathbf{M}))$ is non-zero, which is sufficient to conclude.

So, we need to prove that the ideals $\left\langle\varphi_{0}\left(f_{j, 1}\right), \ldots, \varphi_{0}\left(f_{j, \ell}\right)\right\rangle$ are pairwise coprime. Consider two such sequences $f_{j, 1}, \ldots, f_{j, \ell}$ and $f_{j^{\prime}, 1}, \ldots, f_{j^{\prime}, \ell}$. By construction, we have $f_{j, i}=f_{j^{\prime}, i}$ up to some $i_{0}<\ell$, and $f_{j, i_{0}+1}$ and $f_{j^{\prime}, i_{0}+1}$ are two distinct irreducible factors of $g_{i_{0}+1}$ modulo $\left\langle f_{j, 1}, \ldots, f_{j, i_{0}}\right\rangle=\left\langle f_{j^{\prime}, 1}, \ldots, f_{j^{\prime}, i_{0}}\right\rangle$.

In particular, $g_{i_{0}+1}$ cannot be purely inseparable. Thus, $\mathbf{H}_{\mathbf{3}}$ implies that $\varphi_{0}\left(\partial g_{i_{0}+1} / \partial x_{i_{0}+1}\right)$ is a unit modulo $\left\langle\varphi_{0}\left(f_{j, 1}\right), \ldots, \varphi_{0}\left(f_{j, i_{0}}\right), \varphi_{0}\left(g_{i_{0}+1}\right)\right\rangle$. This implies that $\varphi_{0}\left(f_{j, i_{0}+1}\right)$ and $\varphi_{0}\left(f_{j^{\prime}, i_{0}+1}\right)$ are coprime modulo $\left\langle\varphi_{0}\left(f_{j, 1}\right), \ldots, \varphi_{0}\left(f_{j, i_{0}}\right)\right\rangle$, and finishes the proof.

References

[1] J. Abbott. On the factorization of polynomials over algebraic fields. PhD thesis, University of Bath, 1988.
[2] D. Eisenbud. Commutative algebra with a view toward algebraic geometry, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, 1995.
[3] J. Lipman and A. Sathaye. Jacobian ideals and theorem of Briançon-Skoda. Michigan Math. J., 28:199-222, 1981.
[4] A. K. Singh and I. Swanson. An algorithm for computing the integral closure. arXiv:0901.0871, 2009.
[5] P. J. Weinberger and L. P. Rothschild. Factoring polynomials over algebraic number fields. ACM Trans. Math. Soft., 2(4):335-350, 1976.

