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1 Jacobians and conductors: the irreducible case

We consider the polynomial ring S[ty, ..., t,], with either:
e S=7
e or S =F,, with ¢ a prime power, and in this case n > 0.

We let K be the fraction field of S and introduce the field of fractions K(t1,...,t,); we are

interested in a field extension L of K(t1,...,t,) of the form

L= K(tl, .. .,tn)[Il, . ,I‘k]/<f1, .. .,fk>,
where for i = 1,...,k, fi is in K(t4,...,t,)[z1,...,2;] and monic in z; (thus, the ideal
(f1,-.., fr) is maximal). Hereafter, we write t = t1,...,t,, X = x1,...,2; and d; =

deg(fi,z;); for i = 1,...,k, we let h; be in S[t] such that f* = h;f; is in S[t,x]| and we
set h = hy---hy.

We are interested in the possible denominators arising when factoring univariate polyno-
mials modulo (fi,..., fx). Precisely, we say that 6 € S[t] — {0} is a common denominator
for (fi,..., fr) if the following property holds. Let A, B,C in K(t)[x,Y] and « in S[t] be
such that:

1. A, B,C are reduced with respect to (f1,..., fx), in the sense that deg(A,xz;) < d;,
deg(B,x;) < d; and deg(C, x;) < d; hold for all i;

2. A=BC in LY];
3. aA is in the subring S[t, x, Y] of K(t)[x, Y7;
4. A, B,C are monic in Y.

Then, adh®B and adh°C are in S[t, x, Y], for some non-negative integers b, ¢ (remark that our
criterion is rather loose, as we impose no control on b and ¢, but sufficient for the application
we have in mind).



Proposition 1. Let A € K(t)[x] be a k x k-minor of the Jacobian matriz of (fi,..., fr)
with respect to (t1,...,tn, x1,...,Tx), and let

o =res(---res(A, fr, zg), -+, f1, 1)

Then, if 6 # 0, there exists an integer d > 0 such that h%6 is a common denominator of

(fr,s fr)-

Suppose for simplicity that f; is in S[t,x] for all i, so h = 1. For ¢ > 1, let A; be the
partial derivative of f; with respect to z;, and let A = Ay --- A, and let as before § be the

iterated resultant
o= res(- ’ 'reS(Aa fk)zk)7 e afl)zl) € S[t]

If K — L is separable, it is known [1] that J is non-zero and that it is a common denominator
for (f1,..., fx). f K — L is not separable, though, § = 0. In this case, the proposition states
that instead of considering A, some other k x k minor of the Jacobian matrix of (f1,..., fx)
with respect to the whole set of variables t and x may do (actually, such a non-zero ¢ always
exists). This result is not new; however, since it seems not widely known, it seems useful to
restate it here.

Consider for example the simplest such case, with n = k =1 (so we write t; = ¢, 1 =«
and fi = f), K=S =F, and f(t,z) = 2P — p(t), with ¢ € F,[t] not a pth power. In this
case, § = 0f/0xr = 0; however, 0f /0t = —¢' € F,[t] is non-zero (otherwise f would be a
pth power). Then, ¢ is a common denominator for f; in this case, there is no need to take
resultants, since ¢’ is already in [F,[t]. For instance, the polynomial Y? —t factors modulo f

as G »
Yp - t — (Y - (t’/x)) )
¥

with G(t,z) in F,[t, z].

The rest of this section is devoted to prove the former proposition. Let Z be a new
indeterminates, and define A as the residue class ring S[t,x, Z]/{ff,..., f;,1 — hZ). One
easily checks that A is an integral domain, with field of fractions L. = K(t)[x]/(f1, ..., f&)-

Let B C L be the integral closure of A. The conductor € C A of the extension A — B
is the annihilator of the A-module B/A; that is, 6 € A is in € if and only if any b in B can
be written as b = a/d, with a in A. Following [5], the following classical result in the vein of
Gauss’ Lemma relates the conductor to our denominator problem.

Lemma 1. Any ¢ in €N S[t] — {0} is a common denominator for (fi,..., fx).

Proof. Consider A, B,C € K(t)[x,Y] and a € S[t] that satisfy assumptions 1 — 4. Thus,
aA is in S[t,x,Y], and its residue class in L[Y] is actually in A[Y]. Following the proof
of [5, Lemma 7.1], we deduce that B and aC are in B[Y], so that adB and adC are in
AlY] C B[Y].

Considering B, this means that there exists a polynomial 3 in S[t, x, Z, Y] such that the
residue classes of § and adB coincide in L[Y]. Since the normal form of 5 in L admits a
power of h as a denominator, there exists b > 0 such that adh’B is in S[t,x,Y]. O

2



The following result exhibits elements in the conductor. It is a direct consequence of the
Lipman-Sathaye theorem [3] when S = Z, and is in [4, Remark 1.5] when S =TF,,.

Lemma 2. Any (k+ 1) x (k + 1)-minor of the Jacobian matriz of (ff,..., fi,1—hZ) with
respect to (ti, ..., tn, @1, .., x5, Z) is in €.

From this, one can exhibit an element in the conductor using only data obtained from

(fro-- o)

Lemma 3. Let A € K(t)[x] be a k x k-minor of the Jacobian matriz of (fi,..., fr) with
respect to (ty,. .., tn, T1,...,xx). Then, there exists an integer d > 0 such that h’A is S[t, x],
and in €.

Proof. Let us define the following matrices:
e J; is the Jacobian matrix of (f1,..., fx) with respect to (t1,...,tn, 21, .., Tk),
o Jp« is the Jacobian matrix of (ff,..., ff) with respect to (t1,...,tn, 21,. .., 2k),
o K. is the Jacobian matrix of (f7, ..., f, 1—hZ) with respect to (¢y,...,tn, 1, ..., 2k, Z).

Let next I C {1,...,n}and J C {1,...,k} be such that A is built on columns of J¢ indexed
by (t;,i € I) and (z;,j € J), and let A* be the k x k-minor of Jg« built on the same columns.
Consider the equalities

ofs  Oh,

O O, 0
o, ot

Zatj (9:17]- N 8—:17]

Jit+h

It follows that in K(t)[x], A* equals hA modulo (fi, ..., fx). Multiplying by a large enough
power of h to clear all denominators, we obtain that h°A* = h™'A mod (ff, ..., f) holds
in S[t, x|, for some integer ¢ > 0.

Let finally T be the (k+1) x (k+1)-minor of K¢+ built on columns indexed by Z, (¢;,i € )
and (z;,j € J). Since the column of J¢« indexed by Z only contains the non-zero entry h, we
deduce that I' = +hA*. This implies that AT’ = £h“™2A mod (fy, ..., f7) holds in S[t, x].
By the previous lemma, I', and thus AT, are in €. Thus, h°t?A is in € too. O

Let A € S[t,x] bein €. If A is already in S[t], we are essentially done. In general, though,
A may not be in S[t] but in S[t,x]; the next lemma provides the classical workaround.

Lemma 4. Let A € S[t, x| be in €. Then
o= I'GS(' ’ 'I'GS(A, flzvxk)v U 7f1*7x1)
is either zero, or a common denominator of (fi,..., fx)-

Proof. § is in S[t] by construction. A direct induction shows that ¢ there exists a polynomial
B in S[t,x] such that A = § in A. Since A is in the conductor €, § is in € as well, so by
Lemma 1, it is a common denominator for (fi, ..., fx). a
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We can now prove Proposition 1. Let A € K(t)[x] be a k x k-minor of the Jacobian
matrix of (fi,..., fx) with respect to (t1,...,¢n, ®1,..., 7). By Lemma 3, there exists an
integer d > 0 such that h?A is S[t, x| and in €. By the previous lemma

v = res(- - -res(RIA, £ ay), o [ 70)

is either zero, or a common denominator of (fi, ..., fx); we will assume it is not zero. Taking
the factors hq, ..., hg, h out, we see that the polynomial § can be rewritten as

v =hi'---hFheres(- - -res(A, fe,xk), -+, f1,21),

for some non-negative integers ey, ..., ey, e; using the notation of Proposition 1, this can be
rewritten as v = hj' - - - hi*h¢0. Multiplying by suitable powers of A4, ..., hj, we deduce

RSt hiky = RS,

for some non-negative integers 1, ..., ¢, £. Since hfl . hf;k + is still a common denominator
for (f1,..., fx), we are done.

2 Application

As an application, we consider the following situation. As before, we start from the base
ring S, with either S = Z or S = IF,. We still let K be the fraction field of S, and we consider

a triangular family of polynomials gq,...,gx in K(t)[x], with g; in K(t)[x,...,z;], monic
in z; and reduced with respect to (g¢i,...,¢g;—1) for all i; we do not assume that the ideal
(91, ---,0x) is maximal. Besides, we consider the following data:

o if S=7,let S’ =F,, for some prime p, and let 7,..., 7, and &, ..., & be in F);
o ifS=F, let S =F, and let 7,...,7, and &,...,& bein F,.

For 0 <i <k, let ; be the evaluation map

pi: Stlx] — Sx]
ti — Ti
N S N N
x; =Xy ] >

In particular, ¢g only evaluates the t variables, and ¢,, evaluates all t and x variables. We
let Dy be the following subring of K(t): f € K(t) is in Dy if and only if it can be written as
a/b, with a and b in S[t], and with o (b) # 0. If we let D = Dy[x], all ¢; remain defined at
D. Then, we make the following assumptions:

H,. The polynomials ¢y, ..., g are in D.
H,. For ¢ <k, ©,(g¢) = 0.



Hj. For ¢ < k, either g, is purely inseparable, or o(0dge/0z,) is invertible in the residue
class ring S'[x1, ..., 2]/ {@o(g1), - - -, o(ge)).

For ¢ < k, let J; be the Jacobian matrix of (g1, ..., ge) with respect to (t1,...,t,, 1,. .., T¢).
Since all g; are in D, all entries of J; are in D. Then, we can define ¢q(Jy) in the obvious
manner, applying ¢, entrywise, and we make the following further assumption:

H,. For ¢ < k, there exists an ¢ x ¢ minor A, of J; such that po(A,) is invertible in
S,[xlv cee 7$£]/<300(g1)7 ceey @0(95))

Remark that if no g; is purely inseparable, Hs implies Hy. Under Hy, ..., Hy, our conclusion
is the following.

Proposition 2. Consider { < k, and suppose that fi,. .., f; are polynomials in K(t)[x] such
that the following holds:

1. fori <, f; is in K(t)[z1, ..., x;], monic in z; and reduced with respect to (fi,..., fi—1);
2. fori </, fiisin D;
3. the ideal (f1,..., fo) is mazimal in K(t)[z1,. .., 2] and contains (g1, ..., ge).

Let foi1 € K(t)[z1, ..., 2041] be a monic factor of gey1 modulo (fi,..., fo). Then, foi1 is in
D.

Proof. We will establish the following claim below: there exists a common denominator
v € S[t] of (fi,..., fi) such that o(7y) # 0. Taking it for granted, let a € S[t] be such that
wo(a) # 0 and ageyq is in S[t, 21, ..., xe1]. Then, applying the characteristic property of +,
we see that ayh® fy 1 isin S[t, z1, ..., xe41], for some integer e > 0, where h = hy - - - hy € S|t]
and h; is such that h;f; is in S[t,x]. Since f; is in D, we can take h; with ¢g(h;) # 0. Since
ay is in S[t] and satisfies @o(ay) # 0 as well, foyq is in D, as requested.

We conclude by showing how to obtain the required common denominator v of (f1,. .., fi).
Let Jg. (resp. J¢) be the Jacobian matrix of (g1,...,¢9¢) (resp. (fi,..., fe)) with respect
to (t1,...,tn, @1,...,2¢). As said before, all entries of both Jg, and J¢ are in D. Besides,
by assumption, there exists an ¢ x ¢ minor A, of Jg, such that ¢o(A,) is invertible modulo
{wolgn), - - - ©o(ge))-

As a consequence, we claim that there exists an ¢ x ¢ minor A of .Jg such that ¢ (A}) is in-
vertible modulo (¢o(f1), ..., ¢o(fe)). Indeed, remember that (fi, ..., f;) contains (g1, ..., ge).
Differentiating the corresponding membership equalities, this shows that J, factors as J, =
AJe modulo (f1,..., fo), where A is a square ¢ x ¢ matrix; applying ¢q and considering the
columns contributing to the minor A, proves our claim. As previously, we define

§ =res(---res(A}, fo, o), -+, f1,21) € K(t);

remark that § is in D. Then, we claim that ¢o(d) is non-zero. Indeed, since all f; are monic,
one can (up to sign) commute the application of ¢y and the resultant, so that

@o(0) = res(- - -res(po(A)), po(fe)s we), - -+ s polfr),21) € S'.
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If the latter is zero, po(A}) would be a zero-divisor modulo {(o(f7),...,wo(f))), a contra-
diction. In particular, ¢ itself is non-zero. By Proposition 1, there exists d > 0 such that

h%§ is a common denominator for (fi, ..., f;), where h = hy - - - hy € S[t] and h; is such that
hif; is in S[t,x]. Since f; is in D, we can take h; with g(h;) # 0. Letting v = h% proves
our conclusion. O
Corollary 1. Let my, ..., my be the maximal ideals containing (g1, ..., gx), and for j < L,
let (fia, ..., fin) be the reduced Grébner basis of m; for the lezicographic order x; < --- < xy,
Then all f;, are in D.

Proof. The proof is an easy induction on ¢ = 1,...,k, since f;, is a factor of g, modulo
(fia s fie-)- O

Corollary 2. There exists a unique set of polynomials (fi1, ..., fx) such that the following
holds:

1. fori <k, f; isin K(t)[z1, ..., x;], monic in x; and reduced with respect to (fi,..., fi—1);
2. fori <k, fiisin D and p,(f;) =0;
3. the ideal {f,..., fr) is maximal in K(t)[z1, ..., 2] and contains (g1, ..., gr).

Proof. Suppose that we have proved the following property, written P(¢): there exist unique
polynomials (fi,..., f¢) that satisfy

1. fori </, f;isin K(t)[z1, ..., x;], monic in z; and reduced with respect to (fi,..., fi—1);
2. fori < /¢, f;isin D and ¢,(f;) = 0;
3. the ideal (fi,..., f¢) is maximal in K(t)[z1, ..., z,] and contains (g1, ..., gs).

We prove that P(¢ + 1) holds; then by induction, we get P(k), which is the claim of the
corollary.

Since the ideal (fi,..., fr) is maximal in K(t)[zy,..., 2], the polynomial g,;, factors
uniquely into a product of powers of monic irreducible polynomials fyi11,..., fer1n in
L[z¢41], where L is the field K(t)[x1, ..., zd/{f1,. .., fo)

Then, for any j < N, (fi,..., fex1,;) satisfy points 1 and 3 of P(¢+ 1). Conversely, any
polynomial fr; such that (fi,..., fer1) satisfy P(¢ + 1) must be one of the f,1; ;. Hence,
we are left to prove that there exists a unique j such that f,;, ; satisfies point 2.

Proposition 2 shows that for all j < N, fey;; is in D. We conclude by proving that there
exists a unique j such that ¢, (fr41,;) = 0. Recall that f7}, |-+ f;Y) y = ger1 holds modulo
(f1,- .., fo), for some positive integer exponents e; Since all polynomials involved are in D,
and since ®(gg41) = 0, we deduce that o, (f;}; ;- f/l; x) = 0. Thus, since all fy,; are in
D, we have ¢,,(fi+1,;) = 0 for at least one j < N. It remains to prove that this j is unique:

o If g; is purely inseparable, then N = 1, so we are done.



e Else, & is aroot of p,_1(g,) of multiplicity 1. Since wo—1(9¢) = Yo—1(for1,:)" - - - o1 (for1.4)V,
the uniqueness of j follows (and e; = 1).

This proves uniquess in both cases. O
Lemma 5. The ideal (¢1,...,gx) is radical in K(t)[x].

Proof. Let hy, ..., h; and g7, ..., g; be as before. These polynomials form a regular chain in
K[t,x]. In particular, we write the primary decomposition of (gj, ..., g5) in K[t,x] as

(91,00 =QiN- - NQsNRIN- N Ry,
where:
e all Q; are n-dimensional, and contain no non-zero polynomial in K[t];
e all R; contain a non-zero polynomial in K[t], that divides a power of hy - - - hy.

We are going to prove that all (); are prime. As a consequence of Hy, there exists a minor
A of J, invertible in K(t)[x]/{(g1,...,gr). Thus, there exists non-zero polynomial § € K]t]
such that if §(7,...,7,) # 0, A is invertible at all solutions of ¢7(7,x),..., gi(7, X).

Since @; are n-dimensional, contains no non-zero polynomial in K[t], there exists a max-
imal ideal m C K|t, x| containing (g7, ..., g;), at which A is invertible. If (ry,...,7,,) are
generators of @Q);, we deduce (by differentiating the membership identities) that the Jacobian
matrix of (r1,...,r,) has rank at least k at m. The Jacobian criterion [2, Th. 16.19] implies
that the localization @);,, is prime, and thus (); as well.

Let now a € K(t)[x] be such that a” is in (g1,...,gx), for some r > 1. Write a = A/a,
with A € K[t,x] and o € KJt]. After clearing denominators, we obtain that SA” is in
(g7, --.,9%) C K[t,x], for some non-zero § € K[t]. Thus, SA" is in each @; and since Q); is
prime and contains no non-zero polynomial in K[t], A is in Q;.

Therefore, for u large enough, (hy---hg)*A is in the ideal generated by (gf,...,g}) in
K[t,x], and thus in K[t,x]. This is sufficient to conclude. O

Corollary 3. For { < k, let g;,, € K(t)[x1,...,241] be a monic factor of gin modulo
(91,---.90). Then, g, isin D.

Proof. Hereafter, all ideals are in K(t)[x]. Let my,..., m; be the maximal ideals containing
(g1, .-, 9e), so that (g1,...,ge) can be written as my N---Nmy (by Lemma 5).

Each m; is defined by unique polynomials f; 1, ..., f;¢ that form a reduced Grobner basis
for the lexicographic order z; < --- < x,. By Corollary 1, all f;; are in D. Besides, by
Proposition 2, g;,; is a monic factor of g,1 modulo m; = (f;1,..., fj¢), so that the normal
form g;, ; of g;; modulo (fj1,..., fjr) is in D. It remains to prove that gy, is in D too,
using Chinese remaindering.

The inverse map of Chinese remaindering associates to a polynomial a € K(t)[z1,. .., z/],
reduced with respect to (g1, ..., gs), its normal forms modulo all (f;1,..., fj¢). The matrix



of M this K(t)-linear map (on the canonical bases) has entries in D; we want to prove that
the inverse of M does as well.

Let us for the moment assume that we have proved that (wo(fj1),...,%o(f;¢)) are pair-
wise coprime. This implies that the matrix ¢o(M) is invertible, so that det(po(M)) =
o(det(M)) is non-zero, which is sufficient to conclude.

So, we need to prove that the ideals (@o(fj1),- -, o(f;e¢)) are pairwise coprime. Consider
two such sequences f;1,..., fj¢ and fj1,..., f¢. By construction, we have f;; = fj;;, up
to some iy < ¢, and f;;+1 and fj ;.41 are two distinct irreducible factors of g;,41 modulo
(fins-- o Fiao) = (s firo)-

In particular, g; 41 cannot be purely inseparable. Thus, Hs implies that ©o(9¢gi,+1/0%iy+1)

is a unit modulo (po(fj1), - - -, 0(fji0)s P0(gio+1)). This implies that po(f;io+1) and wo(firig+1)
are coprime modulo (po(fj1),---,¢o(fji,)), and finishes the proof. O
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