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Abstract. We improve an algorithm originally due to Chudnovsky and
Chudnovsky for computing one selected term in a linear recurrent se-
quence with polynomial coefficients. Using baby-steps / giant-steps tech-
niques, the nth term in such a sequence can be computed in time pro-
portional to

√
n, instead of n for a naive approach.

As an intermediate result, we give a fast algorithm for computing the
values taken by an univariate polynomial P on an arithmetic progression,
taking as input the values of P on a translate on this progression.
We apply these results to the computation of the Cartier-Manin operator
of a hyperelliptic curve. If the base field has characteristic p, this enables
us to reduce the complexity of this computation by a factor of order

√
p.

We treat a practical example, where the base field is an extension of
degree 3 of the prime field with p = 232 − 5 elements.

1 Introduction

In this paper, we investigate some complexity questions related to linear re-
current sequences. Specifically, we concentrate on recurrences with polynomial
coefficients; our main focus is on the complexity of computing one selected term
in such a recurrence.

A well-known particular case is that of recurrences with constant coefficients,
where the nth term can be computed with a complexity that is logarithmic in n,
using binary powering techniques.

In the general case, there is a significant gap, as for the time being no algo-
rithm with complexity polynomial in log(n) is known. Yet, in [10], Chudnovsky
and Chudnovsky proposed an algorithm that allows to compute one selected
term in such a sequence without computing all intermediate ones. This algo-
rithm appears as a generalization of those of Pollard [23] and Strassen [30] for
integer factorization; using baby-steps / giant-steps techniques, it requires a
number of operations which is roughly linear in

√
n to compute the nth term in

the sequence.



2 Alin Bostan, Pierrick Gaudry, Éric Schost

Our main contribution is an improvement of the algorithm of [10]; for sim-
plicity, we only give the details in the case when all coefficients are polynomials
of degree 1, as the study in the general case would follow in the same manner.
The complexity of our algorithm is still (roughly) linear in

√
n; Chudnovsky and

Chudnovsky actually suggested that this bound might be essentially optimal. We
improve the time and space complexities by factors that are logarithmic in n; in
practice, this is far from negligible, since in the application detailed below, n has
order 232. A precise comparison with Chudnovsky and Chudnovsky’s algorithm
is made in Section 3.

Along the way, we also consider a question of basic polynomial arithmetic:
given the values taken by a univariate polynomial P on a set of points, how fast
can we compute the values taken by P on a translate of this set of points? An ob-
vious solution is to make use of fast interpolation and evaluation techniques, but
we show that one can do better when the evaluation points form an arithmetic
sequence.

Computing the Cartier-Manin operator. Our initial motivation is an appli-
cation to point-counting procedures in hyperelliptic curve cryptography, related
to the computation of the Cartier-Manin operator of curves over finite fields. We
now present these matters in more detail.

The Cartier-Manin operator of a curve defined over a finite field, together
with the Hasse-Witt matrix, are useful tools to study the arithmetic properties of
the Jacobian of that curve. Indeed, the supersingularity, and more generally the
p-rank, can be read from the invariants of the Hasse-Witt matrix. In the case of
hyperelliptic curves, this matrix was used in [13, 21] as part of a point-counting
procedure for cryptographic-oriented applications.

Indeed, thanks to a result of Manin, computing the Cartier-Manin operator
gives the coefficients of the Zeta function modulo p; this partial information
can then be completed by some other algorithms. However, in [13] and [21],
the method used to compute the Hasse-Witt matrix has a complexity which is
essentially linear in p.

It turns out that one can do better. The entries of the Hasse-Witt matrix of
a hyperelliptic curve y2 = f(x) defined over a finite field of characteristic p are
coefficients of the polynomial h = f (p−1)/2, so they satisfy a linear recurrence
with rational function coefficients. Using our results on linear recurrences, this
remark yields an algorithm to compute the Hasse-Witt matrix whose complexity
now grows like

√
p, up to logarithmic factors, instead of p.

We demonstrate the interest of these techniques by a point-counting example,
for a curve of genus 2 defined over a finite field whose characteristic just fits in one
32-bit machine word; this kind of fields have an interest for efficiency reasons [3].

Note finally that other point-counting algorithms, such as the p-adic methods
used in Kedlaya’s algorithm [18], also provide efficient point-counting procedures
in small characteristic, but their complexity remains at least linear in p [12]. On
the other hand, Kedlaya’s algorithm outputs the whole Zeta function and should
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be preferred if available. Therefore, the range of application of our algorithm is
when the characteristic is too large for Kedlaya’s algorithm to be run.

Organization of the paper. We start in Section 2 with our algorithm for
shifting a polynomial given by its values on some evaluation points. This building
block is used in Section 3 to describe our improvement on Chudnovsky and
Chudnovsky’s algorithm. In Section 4 we apply these results to the computation
of the Cartier-Manin operator of a hyperelliptic curve. We conclude in Section 5
with a numerical example.

Notation. In what follows, we give complexity estimates in terms of number
of base ring operations (additions, subtractions, multiplications and inversions
of unit elements) and of storage requirements; this last quantity is measured
in terms of number of elements in the ring. We pay particular attention to
polynomial and matrix multiplications and use the following notation.

– Let R be a commutative ring; we suppose that R is unitary, its unit element
being denoted by 1R, or simply 1. Let ϕ be the map N → R sending n to
n · 1R = 1R + · · ·+ 1R (n times); the map ϕ extends to a map Z→ R. When
the context is clear, we simply denote the ring element ϕ(n) by n.

– We denote by M : N → N a function that represents the complexity of
univariate polynomial multiplication, i.e. such that over any ring R, the
product of two degree d polynomials can be computed within M(d) base
ring operations. Using the algorithms of [25, 24, 8], M(d) can be taken in
O(d log(d) log(log(d))).
We suppose that the function M verifies the inequality M(d1) + M(d2) ≤
M(d1 + d2) for all positive integers d1 and d2; in particular, the inequality
M(d) ≤ 1

2 M(2d) holds for all d ≥ 1. On the other hand, we make the
(natural) hypothesis that M(cd) ∈ O(M(d)) for all c ≥ 1.
We also assume that the product of two degree d polynomials can be com-
puted in space O(d); this is the case for all classical algorithms, such as naive,
Karatsuba and Schönhage-Strassen multiplications.

– We let ω be a real number such that for every commutative ring R, all n×n
matrices over R can be multiplied within O(nω) operations in R. The clas-
sical multiplication algorithm gives ω = 3. Using Strassen’s algorithm [29],
we can take ω = log2(7) ' 2.81. We assume that the product of two n × n
matrices can be computed in space O(n2), which is the case for classical as
well as Strassen’s multiplications.

In the sequel, we need the following classical result on polynomial arithmetic
over R. The earliest references we are aware of are [22, 4], see [31] for a detailed
account. We also refer to [6] for a solution that is in the same complexity class,
but where the constant hidden in the O( ) notation is actually smaller than that
in [31].
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Multipoint evaluation. If P is a polynomial of degree d in R[X] and r0, . . . , rd
are points in R, then the values P (r0), . . . , P (rd) can be computed using
O(M(d) log(d)) operations in R and O(d log(d)) space.

2 Shifting evaluation values

In this section, we address a particular case of the question of shifting evaluation
values of a polynomial. The question reads as follows: Let P be a polynomial of
degree d in R[X], where R is a commutative unitary ring. Let a and r0, . . . , rd be
in R. Given P (r0), . . . , P (rd), how fast can we compute P (r0 +a), . . . , P (rd+a)?

A reasonable condition for this question to make sense is that all differences
ri − rj , i 6= j, are units in R; otherwise, uniqueness of the answer might be lost.
Under this assumption, using fast interpolation and fast multipoint evaluation,
the problem can be answered within O(M(d) log(d)) operations in R. We now
show that the cost reduces to M(2d)+O(d) operations in R, in the particular case
when r0, . . . , rd are in arithmetic progression, so we gain a logarithmic factor.

Our solution reduces to the multiplication of two suitable polynomials of
degree at most 2d; O(d) additional operations come from additional pre- and
post-processing operations. As mentioned in Section 1, all operations made below
on integer values actually take place in R.

The algorithm underlying Proposition 1 is given in Figure 1; we use the
notation coeff(Q, k) to denote the coefficient of degree k of a polynomial Q. We
stress the fact that the polynomial P is not part of the input of our algorithm.

Input P (0), . . . , P (d) and a in R
Output P (a), . . . , P (a+ d)

– Compute

δ(0, d) =

d∏
j=1

(−j), δ(i, d) =
i

i− d− 1
δ(i− 1, d) i = 1, . . . , d

∆(a, 0, d) =

d∏
j=0

(a− j), ∆(a, k, d) =
a+ k

a+ k − d− 1
∆(a, k − 1, d) k = 1, . . . , d

– Let

P̃ =

d∑
i=0

P (i)

δ(i, d)
Xi, S =

2d∑
i=0

1

a+ i− dX
i, Q = P̃S.

– Return the sequence ∆(a, 0, d)·coeff(Q, d), . . . ,∆(a, d, d)·coeff(Q, 2d).

Fig. 1. Shifting evaluation values
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Proposition 1 Let R be a commutative ring with unity, and d ∈ N such that
1, . . . , d are units in R. Let P be in R[X] of degree d, such that the sequence

P (0), . . . , P (d)

is known. Let a be in R, such that a − d, . . . , a + d are units in R. Then the
sequence

P (a), . . . , P (a+ d)

can be computed within M(2d) +O(d) base ring operations, using space O(d).

Proof. Our assumption on R enables to write the Lagrange interpolation for-
mula:

P =
d∑
i=0

P (i)

∏d
j=0,j 6=i(X − j)∏d
j=0,j 6=i(i− j)

.

From now on, we denote by δ(i, d) the denominator
∏d
j=0,j 6=i(i − j) and by P̃i

the ratio P (i)/δ(i, d).
First note that all δ(i, d), i = 0, . . . , d, can be computed in O(d) operations

in R. Indeed, computing the first value δ(0, d) =
∏d
j=1(−j) takes d multiplica-

tions. Then for i = 1, . . . , d, δ(i, d) can be deduced from δ(i− 1, d) for two ring
operations using the formula

δ(i, d) =
i

i− d− 1
δ(i− 1, d),

so their inductive computation requires O(d) multiplications as well. Thus the
sequence P̃i, i = 0, . . . , d, can be computed in admissible time and space O(d)
from the input sequence P (i). Accordingly, we rewrite the above formula as

P =
d∑
i=0

P̃i

d∏
j=0,j 6=i

(X − j).

For k in 0, . . . , d, let us evaluate P at a+ k:

P (a+ k) =
d∑
i=0

P̃i

d∏
j=0,j 6=i

(a+ k − j).

Using our assumption on a, we can complete each product by the missing factor
a+ k − i:

P (a+ k) =
d∑
i=0

P̃i

∏d
j=0(a+ k − j)
a+ k − i

=

 d∏
j=0

(a+ k − j)

 ·( d∑
i=0

P̃i
1

a+ k − i

)
.

(1)

Just as we introduced the sequence δ(i, d) above, we now introduce the sequence
∆(a, k, d) defined by ∆(a, k, d) =

∏d
j=0(a + k − j). In a parallel manner, we
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deduce that all ∆(a, k, d), k = 0, . . . , d can be computed in time and space O(d),
using the formulas:

∆(a, 0, d) =
d∏
j=0

(a− j), ∆(a, k, d) =
a+ k

a+ k − d− 1
∆(a, k − 1, d).

Let us denote Qk = P (a + k)/∆(a, k, d). We now show that knowing P̃i, i =
0, . . . , d, we can compute Qk, k = 0, . . . , d in M(2d) base ring operations and
space O(d); this is enough to conclude, by the above reasoning.

Using the coefficients ∆(a, k, d), Equation (1) reads

Qk =
d∑
i=0

P̃i
1

a+ k − i
. (2)

Let P̃ and S be the polynomials:

P̃ =
d∑
i=0

P̃iX
i, S =

2d∑
i=0

1
a+ i− d

Xi;

then by Equation (2), for k = 0, . . . , d, Qk is the coefficient of degree k + d in
the product P̃S. This concludes the proof. �

We will conclude this section by an immediate corollary of this proposition;
we first give a few comments.

– An alternative O(M(d)) algorithm which does not require any inversibility
hypotheses can be designed in the special case when a = d+ 1. The key fact
is that for any degree d polynomial P , the sequence P (0), P (1), . . . is linearly
recurrent, of characteristic polynomial Q(X) = (1−X)d+1. Thus, if the first
terms P (0), . . . , P (d) are known, the next d+1 terms P (d+1), . . . , P (2d+1)
can be recovered in O(M(d)) using the algorithm in [27, Theorem 3.1].

– The general case when the evaluation points form an arbitrary arithmetic
progression reduces to the case treated in the above proposition. Indeed,
suppose that r0, . . . , rd form an arithmetic progression of difference δ, that
P (r0), . . . , P (rd) are known and that we want to compute the values P (r0 +
a), . . . , P (rd + a), where a ∈ R is divisible by δ. Introducing the polynomial
Q(X) = P (δX + r0), we are under the hypotheses of the above proposition,
and it suffices to determine the shifted evaluation values of Q by a/δ.

– The reader may note the similarity of our problem with the question of
computing the Taylor expansion of a given polynomial P at a given point
in R. The algorithm of [2] solves this question with a complexity of M(d) +
O(d) operations in R and space O(d). The complexity results are thus quite
similar; it turns out that analogous generating series techniques are used in
that algorithm.
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– In [15], an operation called middle product is defined: Given a ring R, and
A,B in R[X] of respective degrees d and 2d, write AB = C0 + C1X

d+1 +
C2X

2d+2, with all Ci of degree at most d; then the middle product of A
and B is the polynomial C1. This is precisely what is needed in the above
algorithm.
Up to considering the reciprocal polynomial of A, the middle product by A
can be seen as the transpose of the map of multiplication by A. General
program transformation techniques [7, 15] then show that it can be computed
in time M(d) + O(d), but with a possible loss in space complexity. In [6], it
is shown how to keep the same space complexity, at the cost of a constant
increase in time complexity. Managing both requirements remains an open
question, already stated in [17, Problem 6].

Corollary 1 Let R be a commutative ring with unity, and d ∈ N such that
1, . . . , 2d + 1 are units in R. Let P be a degree d polynomial in R[X] such that
the sequence

P (0), . . . , P (d)

is known. For any s in N, the sequence

P (0), P (2s), . . . , P (2sd)

can be computed in time sM(2d) +O(sd) ∈ O(sM(d)) and space O(d).

Proof. For any s ∈ N, let us denote by Ps(X) the polynomial P (2sX). We
prove by induction that all values Ps(0), . . . , Ps(d) can be computed in time
sM(2d) +O(sd) and space O(d), which is enough to conclude. The case s = 0 is
obvious, as there is nothing to compute. Suppose then that Ps(0), . . . , Ps(d) can
be computed in time sM(2d)+O(sd) and using O(d) temporary space allocation.

Under our assumption on R, Proposition 1 shows that the values Ps(d +
1), . . . , Ps(2d + 1) can be computed in time M(2d) + O(d), using again O(d)
temporary space allocation. The values Ps(0), Ps(2), . . . , Ps(2d) coincide with
Ps+1(0), Ps+1(1), . . . , Ps+1(d), so the corollary is proved. �

3 Computing one selected term of a linear sequence

In this section, we recall and improve the complexity of an algorithm due to
Chudnovsky and Chudnovsky [10] for computing selected terms of linear recur-
rent sequences with polynomial coefficients. The results of the previous section
are used as a basic subroutine for these questions.

As in the previous section, R is a commutative ring with unity. Let A be a
n × n matrix of polynomials in R[X]. For simplicity, in what follows, we only
treat the case of degree 1 polynomials, since this is what is needed in the sequel.
Nevertheless, all results extend mutatis mutandis to arbitrary degree.

For r in R, we denote by A(r) the matrix over R obtained by specializing all
coefficients of A at r. In particular, for k in N, A(k · 1R) is simply denoted by
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A(k), following the convention used up to now. Given a vector of initial conditions
U0 = [u1, . . . , un]t ∈ Rn and given k in N, we consider the question of computing
the kth term of the linear sequence defined by the relation Ui = A(i)Ui−1 for
i > 0, that is, the product

Uk = A(k)A(k − 1) · · ·A(1)U0.

For simplicity, we write

Uk =

(
k∏
i=1

A(i)

)
U0,

performing all successive matrix products, i = 1, . . . , k, on the left side. We use
this convention hereafter.

In the particular case when A is a matrix of constant polynomials, and taking
only the dependence on k into account, the binary powering method gives a time
complexity of order O(log(k)) base ring operations.

In the general case, the naive solution consists in evaluating all matrices
A(i) and performing all products. With respect to k only, the complexity of this
approach is of order O(k) base ring operations. In [10], Chudnovsky and Chud-
novsky propose an algorithm that reduces this cost to essentially O

(√
k
)
. We

first recall the main lines of this algorithm; we then present some improvements
in both time and space complexities.

The algorithm of Chudnovsky and Chudnovsky. The original algorithm
uses baby-step / giant-step techniques, so for simplicity we assume that k is a
square in N. Let C be the n× n matrix over R[X] defined by

C =

√
k∏

i=1

A(X + i),

where A(X + i) denotes the matrix A with all polynomials evaluated at X + i.
By assumption on A, the entries of C have degree at most

√
k. For r in R, we

denote by C(r) the matrix C with all entries evaluated at r. Then the requested
output Uk can be obtained by the equation

Uk =

√k−1∏
j=0

C(j
√
k)

U0. (3)

Here are the main steps of the algorithm underlying Equation (3), originally
due to [10].

Baby steps. The “baby steps” part of the algorithm consists in computing the
polynomial matrix C. In [10], this is done within O(nωM(

√
k)) base ring

operations, as products of polynomial matrices with entries of degree O(
√
k)

are required.



Linear recurrences and Cartier-Manin operator of hyperelliptic curves 9

Giant steps. In the second part the matrix C is evaluated on the arithmetic
progression 0,

√
k, 2
√
k, . . . , (

√
k − 1)

√
k and the value of Uk is obtained us-

ing Equation (3). Using fast evaluation techniques, all evaluations are done
within O(n2 M(

√
k) log(k)) base ring operations, while performing the

√
k

successive matrix-vector products in Equation (3) adds a negligible cost of
O(n2

√
k) operations in R.

Summing all the above costs gives an overall complexity bound of

O
(
nωM

(√
k
)

+ n2 M
(√
k
)

log(k)
)

base ring operations for computing a selected term of a linear sequence. Due
to the use of fast evaluation algorithms in degree

√
k, the space complexity is

O(n2
√
k +
√
k log(k)).

In the particular case when A is the 1×1 matrix [X], the question reduces to
the computation of

∏k
j=1 j in the ring R. For this specific problem, note that the

ideas presented above were already used in [23, 30], for the purpose of factoring
integers.

Avoiding multiplications of polynomial matrices. In what follows, we
show how to avoid the multiplication of polynomial matrices, and reduce the
cost of the above algorithm to O(nω

√
k+n2 M(

√
k) log(k)) base ring operations,

storing only O(n2
√
k) elements of R.

Our improvements are obtained through a modification of the baby steps
phase; the underlying idea is to work with the values taken by the polynomial
matrices instead of their representation on the monomial basis. This idea is
encapsulated in the following proposition.

Proposition 2 Let A be a n×n matrix with entries in R[X], of degree at most 1.
Let N ≥ 1 be an integer and let C be the n× n matrix over R[X] defined by

C =
N∏
i=1

A(X + i).

Then one can compute all scalar matrices C(0), C(1), . . . , C(N) within O(nωN)
operations in R and with a memory requirement of O(n2N) elements in R.

Proof. We first compute the scalar matrices [A(1), A(2), . . . , A(2N)] . Since all
entries of A are linear in X, the complexity of this preliminary step is O(n2N),
both in time and space.

Then, we construct the matrices (C ′j)0≤j≤N and (C ′′j )0≤j≤N , which are de-
fined as follows: we let C ′0 and C ′′0 equal the identity matrix In and we recursively
define

C ′j = A(N + j)C ′j−1 for 1 ≤ j ≤ N,
C ′′j = C ′′j−1A(N − j + 1) for 1 ≤ j ≤ N.
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Explicitly, for 0 ≤ j ≤ N , we have

C ′j = A(N + j) · · ·A(N + 1)

and
C ′′j = A(N) · · ·A(N − j + 1),

thus
C ′′N−j = A(N) · · ·A(j + 1).

Computing all the scalar matrices (C ′j) and (C ′′j ) requires 2N matrix multiplica-
tions with entries in R; their cost is bounded by O(nωN) in time and by O(n2N)
in space. Lastly, the formula

C(j) = A(N + j) · · ·A(N + 1)A(N) · · ·A(j + 1) = C ′jC
′′
N−j , 0 ≤ j ≤ N

enables to recover C(0), C(1), . . . , C(N) in time O(nωN) and space O(n2N). �

From this proposition, we deduce the following corollary, which shows how
to compute the scalar matrices used in the giant steps.

Corollary 2 Let A and C be polynomial matrices as in Proposition 2. If the
elements 1, . . . , 2N + 1 are units in R, then for any integer s ≥ 1, the sequence

C(0), C(2s), . . . , C(2s(N − 1))

can be computed using O(nωN+n2sM(N)) operations in R and O(n2N) memory
space.

Proof. This is an immediate consequence of Proposition 2 and Corollary 1. �

The above corollary enables us to perform the “giant steps” phase of Chud-
novsky and Chudnovsky’s algorithm in the special case when N = 2s; this yields
the 4sth term in the recurrent sequence. Using this intermediate result, the fol-
lowing theorem shows how to compute the kth term, for arbitrary k, using the
4-adic expansion of k.

Theorem 1 Let A be a n× n matrix with linear entries in R[X] and let U0 be
in Rn. Suppose that (Ui) is the sequence of elements in Rn defined by the linear
recurrence

Ui+1 = A(i+ 1)Ui, for all i ≥ 0.

Let k > 0 be an integer and suppose that 1, . . . , 2d
√
ke+ 1 are units in R. Then

the vector Uk can be computed within O
(
nω
√
k + n2 M

(√
k
)

log(k)
)

operations
in R and using memory space O(n2

√
k).

The proof of Theorem 1 is divided in two steps. We begin by proving the
proposition in the particular case when k is a power of 4, then we treat the
general case.
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The case k is a power of 4. Let us suppose that N = 2s and k = N2,
so that k = 4s. With this choice of k, Corollary 2 shows that the values
C(0), C(N), . . . , C((N − 1)N) can be computed within the required time and
space complexities. Then we go on to the giant step phase described at the be-
ginning of the section, and summarized in Equation (3). It consists in performing√
k successive matrix-vector products, which has a cost in both time and space

of O(n2
√
k).

The general case. We now consider the general case. Let k =
∑s
i=0 ki4

i be
the 4-adic expansion of k, with ki ∈ {0, 1, 2, 3} for all i. Given any t, we will
denote by dket the integer

∑t−1
i=0 4iki. Using this notation, we define a sequence

(Vt)0≤t≤s as follows: we let V0 = U0 and, for 0 ≤ t ≤ s we set

Vt+1 = A(dket + 4tkt) · · ·A(dket + 1)Vt. (4)

It is easy to verify that Vs+1 = Uk. Therefore, it suffices to compute the se-
quence (Vt) within the desired complexities.

Supposing that the term Vt has been determined, we estimate the cost of
computing the next term Vt+1. If kt is zero, we have nothing to do. Otherwise,
we let V (0)

t+1 = Vt, and, for 1 ≤ j ≤ kt, we let A(j)(X) = A (X + dket + 4t(j − 1)).
Then we define V (j)

t+1 by

V
(j)
t+1 = A(j)(4t) · · ·A(j)(1)V (j−1)

t+1 , j = 1, . . . , kt.

By Equation (4), we have V ktt+1 = Vt+1. Thus, passing from Vt to Vt+1 amounts
to computing kt selected terms of a linear recurrence of the special form treated
in the previous paragraph. Using the complexity result therein and the fact that
all kt are bounded by 3, the total cost of the general case is thus

O

(
s∑
t=0

(
nω2t + n2tM(2t)

))
= O

(
nω2s + n2s

(
s∑
t=0

M(2t)

))
.

Using the fact that 2s ≤
√
k ≤ 2s+1 and the assumptions on the func-

tion M, we easily deduce that the whole complexity fits into the bound O
(
nω
√
k+

n2 M
(√
k
)

log(k)
)
, as claimed. Similar considerations also yield the bound con-

cerning the memory requirements. This concludes the proof of Theorem 1.

Comments. The question of a lower time bound for computing Uk is still
open. The simpler question of reducing the cost to O

(
nω
√
k + n2 M

(√
k
))

base
ring operations, that is gaining a logarithmic factor, already raises challenging
problems.

As the above paragraphs reveal, this improvement could be obtained by an-
swering the following question: Let P be a polynomial of degree d in R[X].
Given r in R, how fast can we compute P (0), P (r), . . . , P (rd) from the data of
P (0), P (1), . . . , P (d)? A complexity of order O(M(d)) would immediately give
the improved bound mentioned above. We leave it as an open question.
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4 The Cartier-Manin operator on hyperelliptic curves

We finally show how to apply the above results to the computation of the Cartier-
Manin operator, and start by reviewing some known facts on this operator.

Let C be a hyperelliptic curve of genus g defined over the finite field Fpd
with pd elements, where p is the characteristic of Fpd . We suppose that p > 2
and that the equation of C is of the form y2 = f(x), where f ∈ Fpd [X] is a monic
squarefree polynomial of degree 2g+1. The generalization to hyperelliptic curves
of the Hasse invariant for elliptic curves is the so-called Hasse-Witt matrix, which
is defined as follows:

Definition 1 Let hk be the coefficient of degree k in the polynomial f (p−1)/2.
The Hasse-Witt matrix is the g × g matrix with coefficients in Fpd given by

H = (hip−j)1≤i,j≤g.

This matrix was introduced in [16]; in a suitable basis, it represents the op-
erator on differential forms that was introduced by Cartier in [9]. Manin then
showed in [20] that this matrix is strongly related to the action of the Frobe-
nius endomorphism on the p-torsion part of the Jacobian of C. The article [33]
provides a complete survey about those facts; they can be summarized by the
following theorem:

Theorem 2 (Manin) Let C be a hyperelliptic curve of genus g defined over Fpd .
Let H be the Hasse-Witt matrix of C and let Hπ = HH(p) · · ·H(pd−1), where
the notation H(q) means element-wise raising to the power q. Let κ(t) be the
characteristic polynomial of the matrix Hπ and let χ(t) be the characteristic
polynomial of the Frobenius endomorphism of the Jacobian of C. Then

χ(t) ≡ (−1)gtgκ(t) mod p.

This result provides a quick method to compute the characteristic polyno-
mial of the Frobenius endomorphism and hence the group order of the Jacobian
of C modulo p, when p is not too large. Combined with a Schoof-like algorithm
and / or a baby-step / giant-step algorithm, it can lead to a full point-counting
algorithm, in particular for genus 2 curves, as was demonstrated in [13, 21].

The obvious solution consists in expanding the product f (p−1)/2. Using bal-
anced multiplications, and taking all products modulo Xgp this can be done in
O(M(gp)) base field operations, whence a time complexity within O(M(p)), if g
is kept constant. In what follows, regarding the dependence in p only, we show
how to obtain a complexity of O(M(

√
p) log(p)) base field operations, using the

results of the previous sections.
We will make the assumption that the constant term of f is not zero. Note

that if it is zero, the problem is actually simpler: writing f = Xf1, the coefficient
of degree ip−j in f (p−1)/2 is the coefficient of degree ip−j−(p−1)/2 in f (p−1)/2

1 .
Hence we can work with a polynomial of degree 2g instead of 2g + 1 and the
required degrees are slightly less.
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Furthermore, for technical reasons, we assume that g < p. This is not a true
restriction since for g ≥ p, all the coefficients of f (p−1)/2 up to degree g(p − 1)
are needed to fill in the matrix H.

Introduction of a linear recurrent sequence. In [11], Flajolet and Salvy
already treat the question of computing a selected coefficient in a high power of
some given polynomial, as an answer to a SIGSAM challenge. The key point
of their approach is that h = f (p−1)/2 satisfies the following first-order linear
differential equation

fh′ − p− 1
2

f ′h = 0.

From this, we deduce that the coefficients of h satisfy a linear recurrence of
order 2g + 1, with coefficients that are rational functions of degree 1.

Explicitly, let us denote by hk the coefficient of degree k of the polynomial h,
and for convenience, set hk = 0 for k < 0. Similarly, the coefficient of degree k
of f is denoted by fk. From the above differential equation, for all k in Z, we
deduce that

2g+1∑
i=0

(
k + 1− (p+ 1)i

2

)
fi hk+1−i = 0.

We set Uk = [hk−2g, hk−2g+1, . . . , hk]t, and let A(k) be the (2g + 1) × (2g + 1)
companion matrix:

A(k) =



0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0
. . . 1

f2g+1((2g+1)(p−1)/2−(k−2g−1))
f0k

· · · · · · · · · f1((p−1)/2−k+1)
f0k

 .

The initial vector U0 = [0, . . . , 0, f (p−1)/2
0 ]t can be computed using binary pow-

ering techniques in O(log(p)) base field operations; then for k ≥ 0, we have
Uk+1 = A(k + 1)Uk. Thus, to answer our specific question, it suffices to note
that the vector Uip−j gives the coefficients hip−j for j = 1, . . . , g that form the
ith row of the Hasse-Witt matrix of C.

Yet, Theorem 1 cannot be directly applied to this sequence, because A(k)
has entries that are rational functions, not polynomials. Though the algorithm
could be adapted to handle the case of rational functions, we rather use the very
specific form of the matrix A(k), so only a small modification is necessary. Let
us define a new sequence Vk by the relation

Vk = fk0 k!Uk.

Then, this sequence is linearly generated and we have Vk+1 = B(k+1)Vk, where

B(k) = f0kA(k).



14 Alin Bostan, Pierrick Gaudry, Éric Schost

Therefore, the entries of the matrix B(k) are polynomials of degree at most 1.
Note also that the denominators fk0 k! satisfy the recurrence relation

fk+1
0 (k + 1)! = (f0(k + 1)) · (fk0 k!).

Thus, we will compute separately, first Vp−1, V2p−1, . . . Vgp−1 and then the de-
nominators fp−1

0 (p− 1)!, . . . , fgp−1
0 (gp− 1)!.

To this effect, we proceed iteratively. Let us for instance detail the com-
putation of the sequence Vp−1, V2p−1, . . . Vgp−1. Knowing V0, we compute Vp−1

using Theorem 1. Then we shift all entries of B by p, so another application of
Theorem 1 yields V2p−1. Iterating g times, we obtain Vp−1, V2p−1, . . . Vgp−1 as re-
quested; the same techniques are used to compute fp−1

0 (p−1)!, . . . , fgp−1
0 (gp−1)!.

Then the vectors Up−1, U2p−1, . . . Ugp−1 are deduced from

Uk =
1

fk0 k!
Vk.

Lifting to characteristic zero. A difficulty arises from the fact that the char-
acteristic is too small compared to the degrees we are aiming to, so p! is zero
in Fpd . The workaround is to do computations in the unramified extension K
of Qp of degree d, whose residue class field is Fpd . The ring of integers of K
will be denoted by OK ; any element of OK can be reduced modulo p to give
an element of Fpd . On the other hand, K has characteristic 0, so p is invertible
in K.

We consider an arbitrary lift of f to OK [X]. The reformulation in terms of
linear recurrent sequence made in the above paragraph can be performed over K;
the coefficients of f (p−1)/2 are computed as elements of K and then projected
back onto Fpd . This is possible, as they all belong to OK .

Using the iteration described above, we separately compute the values in K
of the vectors Vip−1 and the denominators f ip−1

0 (ip−1)!, for i = 1, . . . , g. To this
effect, we apply g times the result given in Theorem 1; this requires to perform

O
(
gω+1√p+ g3M(

√
p) log(p)

)
,

operations in K and to store O(g2√p) elements of K.

Computing at fixed precision. Of course, we do not want to compute in
the field K at arbitrary precision: for our purposes, it suffices to truncate all
computations modulo a suitable power of p. To evaluate the required precision
of the computation, we need to check when the algorithm operates a division
by p.

To compute the vectors Vip−1 and the denominators f ip−1
0 (ip − 1)!, for i =

1, . . . , g, we use Theorem 1. This requires that all integers up to 2d√pe+ 1 are
invertible, which holds as soon as p ≥ 11.

Then, for all i = 1, . . . , g, to deduce Uip−1 from Vip−1, we need to divide
by f ip−1

0 (ip − 1)!. The element f0 is a unit in OK , so the only problem comes
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from the factorial term. With our assumption that g < p, we have i < p and
then the p-adic valuation of (ip− 1)! is exactly i− 1. Therefore the worst case is
i = g, for which we have to divide by pg−1. Hence computing the vectors Vip−1

modulo pg is enough to know the vectors Uip−1 modulo p, and then to deduce
the Hasse-Witt matrix.

Overall complexity. Storing an element of OK/pgOK requires O(dg log(p))
bits, and multiplying two such elements can be done with O(M(dg log(p))) bit-
operations. From the results of Section 3, we then deduce the following theorem
on the complexity of computing the Hasse-Witt matrix.

Theorem 3 Let p a prime, d ≥ 1 and C a hyperelliptic curve defined over Fpd
by the equation y2 = f(x), with f of degree 2g + 1. Then, assuming g < p, one
can compute the Hasse-Witt matrix of C with a complexity of

O
((
gω+1√p+ g3M(

√
p) log(p)

)
M(dg log(p))

)
bit-operations and O

(
dg3√p log(p)

)
storage.

The matrix H by itself gives some information on the curve C, for instance
H is invertible if and only if the Jacobian of C is ordinary [33, Corollary 2.3].
However, as stated in Theorem 2, the matrix Hπ and in particular its char-
acteristic polynomial χ(t) tell much more and are required if the final goal is
point-counting. Thus, we finally concentrate on the cost of computing the char-
acteristic polynomial of Hπ.

The matrix Hπ is the “norm” of H and as such can be computed with a
binary powering algorithm. For simplicity, we assume that d is a power of 2,
then denoting

Hπ,i = HH(p) · · ·H
(
p2i−1

)
.

we have
Hπ,i+1 = Hπ,i · (Hπ,i)

(
p2i
)
.

Hence the computation of Hπ,i+1 from Hπ,i costs one matrix multiplication
and 2i matrix conjugations. A matrix conjugation consists in raising all the
entries to the power p, therefore it costs O(g2 log(p)) operations in Fpd . The
matrix we need to compute is Hπ = Hπ,log2(d). Hence the cost of computing Hπ is

O
(
dg2 log(p) + gω log(d)

)
operations in Fpd . The general case where d is not a power of 2 is handled by
adjusting the recursive step according to the binary expansion of d and yields
the same complexity up to a constant factor.

The cost of the characteristic polynomial computation is bounded by the cost
of a matrix multiplication [19] and is therefore negligible compared to the other
costs.

If we are interested only in the complexity in p and d, i.e. if we assume that
the genus is fixed, we get a time complexity for computing χ(t) mod p in

O ((M(
√
p) + d) M(d log(p)) log(p)) .
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Case of large genus. In case of large genus, the algorithm of Theorem 1 is
asymptotically not the fastest. In this paragraph, we assume that the function M
is essentially linear and we do not take into account the logarithmic factors;
adding appropriate epsilons in the exponents would yield a rigorous analysis.
The cost in bit-operations of Theorem 3 is at least g4√pd whereas the cost of
the naive algorithm is linear in gpd. If g > p1/6, then g4√p > gp, and therefore
the naive algorithm is faster.

5 Point-counting numerical example

We have implemented our algorithm using Shoup’s NTL C++ library [26]. NTL
does not provide any arithmetic of local fields or rings, but allows to work in
finite extensions of rings of the form Z/pgZ, as long as no division by p occur;
the divisions by p are well isolated in the algorithm, so we could handle them
separately. Furthermore, NTL multiplies polynomials defined over this kind of
structure using an asymptotically fast FFT-based algorithm.

To illustrate that our method can be used as a tool in point-counting al-
gorithms, we have computed the Zeta function of a (randomly chosen) genus 2
curve defined over Fp3 , with p = 232 − 5. Such a Jacobian has therefore about
2192 elements and should be suitable for cryptographic use if the group order
has a large prime factor. Note that previous computations were limited to p of
order 223 [21].

The characteristic polynomial χ of the Frobenius endomorphism was com-
puted modulo p in 3 hours and 41 minutes, using 1 GB of memory, on an AMD
Athlon MP 2200+. Then we used the Schoof-like algorithms of [13] and [14] to
compute χ modulo 128× 9× 5× 7, and finally we used the modified baby-step
/ giant-step algorithm of [21] to finish the computation. These other parts were
implemented in Magma [5] and were performed in about 15 days of computation
on an Alpha EV67 at 667 MHz. We stress that this computation was meant as an
illustration of the possible use of our method, so little time was spent optimizing
our code. In particular, the Schoof-like part and the final baby-step / giant-step
computations are done using a generic code that is not optimized for extension
fields.

Numerical data. The irreducible polynomial P (t) that was used to define Fp3

as Fp[t]/(P (t)) is

t3 + 1346614179t2 + 3515519304t+ 3426487663.

The curve C has equation y2 = f(x) where f is given by

f(x) = x5 + (2697017539t2 + 1482222818t+ 3214703725)x3+
(676673546t2 + 3607548185t+ 1833957986)x2+
(1596634951t2 + 3203023469t+ 2440208439)x+
2994361233t2 + 3327339023t+ 862341251.
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Then the polynomial characteristic χ(T ) of the Frobenius endomorphism is given
by T 4 − s1T

3 + s2T
2 − p3s1T + p6, where

s1 = 332906835893875, s2 = 142011235215638946167187570235.

The group order of the Jacobian is then

6277101691541605395917785080771825883860189465813625993977
= 33 × 13× 67× 639679× 417268068727536370810010172344236025455933953139.

This number has a large prime factor of size 2158, therefore that curve is
cryptographically secure.

Measure of the complexity in p. To check the practical asymptotic be-
haviour of our algorithm, we ran our implementation on a genus 2 curve defined
over Fp3 with p = 234− 41. We performed only the Cartier-Manin step, and not
the full point-counting algorithm. As the characteristic is about 4 times larger
than in the previous example, a complexity linear in

√
p means a runtime multi-

plied by about 2. On the same computer, the runtime is 8 hours and 48 minutes.
Hence the ratio of the runtimes is about 2.39. The defect of linearity can be
explained by taking into account the logarithmic factors. Assuming that M(n) is
O(n log(n) log(log(n))), and neglecting the multi-logarithmic factors, the com-
plexity announced in Theorem 3 is in O(

√
p(log(p))3). With this estimate, the

expected ratio between the runtimes becomes about 2.40, that is very close to
the measure. This validates our analysis.

6 Conclusion

In this paper, we have presented an improvement of an algorithm by Chudnovsky
and Chudnovsky to compute selected terms in a linear sequence with polynomial
coefficients. This algorithm is then applied to the computation of the Cartier-
Manin operator of hyperelliptic curves, thus leading to improvements in the
point-counting problems that occur in cryptography.

This strategy extends readily to curves of the form yr = f(x) with r > 2, for
which the Hasse-Witt matrix has a similar form. For more general curves, Mike
Zieve pointed to us the work of Stöhr and Voloch [28] that gives formulas that
still fit in our context in some cases.

Finally, Mike Zieve pointed out to us the work of Wan [32] that relates Nieder-
reiter’s polynomial factorization algorithm to the computation of the Cartier-
Manin operator of some variety. The link with our work is not immediate, as
that variety has dimension zero. Nevertheless, this remains intriguing, especially
if we think of Pollard-Strassen’s integer factoring algorithm as a particular case
of Chudnovsky and Chudnovsky’s algorithm.
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