Solving the Birkhoff Interpolation Problem via the Critical Point
Method: an Experimental Study

F. Rouillier', M. Safey El Din?, E. Schost?

1 LORIA, INRIA-Lorraine, Nancy, France
Fabrice.Rouillier@loria.fr
2 CALFOR team, LIP6, Université de Paris VI, Paris, France
Mohab.Safey@lip6.fr
3 Laboratoire GAGE, Ecole polytechnique, 91128 Palaiseau Cedex, France
schost@gage.polytechnique.fr

Abstract. Following the work of Gonzalez-Vega, this paper is devoted to show how to use recent
algorithmic tools of computational real algebraic geometry to solve the Birkhoff Interpolation Problem.
We recall and partly improve two algorithms to find at least one point in each connected component
of a real algebraic set defined by a single equation or a polynomial system of equations, both based on
the computation of the critical points of a distance function.

These algorithms are used to solve the Birkhoff Interpolation Problem in a case which was known to
be an open problem. The solution is available at the U.R.L.:

http://www-calfor.lip6.fr/ safey/applications.html.

1 Introduction

The problem of interpolating a function f : R — R by a univariate polynomial from the values of f and
some of its derivatives on a set of sample points is one of the main questions in Numerical Analysis and
Approximation Theory.

Let x = {z1,... ,2,} be a set of real numbers such that x; < ... < z,, r an integer, and let Z C {1,... ,n} x
{0,...,7} be the set of pairs (¢, j) such that the value f; ; = @) (x;) is known. The problem of determining
the existence and uniqueness of a polynomial @ in R[X] of degree bounded by r such that:

V(Zh?) GI? Q(j)(xi) = fi,j
is called the Birkhoff Interpolation Problem.

In [17], Gonzalez-Vega focuses on determining, for fixed integers n and r, the family of Z’s for which this
question is solvable for any choice of x and the values f; ;. To this end, he shows that the problem can
be reduced to decide if some hypersurfaces contain real points with non zero coordinates. In [17] the cases
n=2,r¢€{l1,2,3,4,56},n=3,r€{1,2,3} and n =4, r € {1,2,3,4} are solved, using techniques adapted
from the Cylindrical Algebraic Decomposition. In 1998, the case n = 5 and r = 4 is presented as an open
problem in [18]. The aim of the paper is to show how we solved this case.

The most popular algorithm deciding the emptiness of semi-algebraic sets — as a particular case of deciding
the truth of a first order formula — is Colling’ Cylindrical Algebraic Decomposition (CAD) [12,11] whose
complexity is doubly exponential in the number of variables in terms of basic arithmetic operations and size
of output.

From Grigoriev and Vorobjov’s paper [16], new algorithms appeared, based on the critical point method.
These algorithms have a single exponential complexity in the number of variables, in terms of basic arithmetic
operations and size of output. Still, in [20], Hong shows that the algorithms proposed in the papers [24]
and [16] are not usable in practice. According to the experiments in [31], the same conclusions apply for
more recent methods like in [9, 30, 19]. These algorithms adopt strategies of the following kind:

— In the first place, solve the problem in favorable cases, such as a compact and smooth variety.

— Get back from general situations to the favorable cases using various tricks, such as infinitesimal defor-
mations or sums of squares.

The papers of the TERA group [7, 8] treat the case of a smooth complete intersection variety, and propose an
algorithm based on evaluation techniques, whose complexity is polynomial in terms of intrinsic real degrees.
Still, these favorable situations, in particular compactness, are not easily detectable, and systematically
applying the tricks above makes the computations difficult in practice.

In the papers [28, 6], two algorithms inspired by the ideas in [16, 19, 24,9, 30] are proposed. Both are based on
the computation of the critical points of a distance function (thus avoiding the hypothesis of compactness)
and improve the aforementioned algorithms. The first algorithm [28] computes at least one point in each
connected component of a real algebraic set defined by a single equation. The second [6] applies to a real
algebraic set defined by a polynomial system, in the spirit of [10,13]. The experiments in [28, 6] show that
these strategies are competitive with the CAD on small examples and allow to deal with more significant
ones, unreachable with the CAD.

In this paper, we pursue the investigations of [20] by analyzing the practical behavior of these two recent
algorithms on the Birkhoff Interpolation Problem. In sections 3, 4 and 5, we recall the algorithm given
in [28], our contribution being a new way to solve a system with infinitesimal parameters arising in its
course, then the algorithm given in [6]. We conclude this paper with our experimental results, which solve
the case n = 5, r = 4 of Birkhoff’s problem. This gives us the opportunity to compare the size of the outputs
and computational times of both algorithms.

Throughout this paper, the base field is the rational field Q. The algorithms presented here generalize to
the case of an ordered field K, replacing the field R by the real closure of K and the complex field C by its
algebraic closure.

2 The Birkhoff Interpolation Problem

2.1 Formulation

We want to determine the sets Z for which the Birkhoff Problem Interpolation admits a unique solution
for all choices of x and of the f; ;. To this end, we follow closely [17], and adopt his convenient matricial
formulation.

Consider the matrix £ = (e; ;) with n lines and r + 1 columns [17], filled with 0’s and 1’s, such that e; ; = 1
if and only if (7,j) € Z. The problem admits a solution only if £ has as many 1’s as columns. This amounts
to saying that the coefficients of the interpolating polynomial @) are solution of a linear square system, with
associated matrix Mg. This matrix is parametrized by x and its shape depends on £. We are interested in
determining the matrices £ for which the determinant of M¢ is non-zero for all x, in which case the matrix
£ is said to be poised.

Ezample 1. Let n = 4 and r = 3 and consider the matrix:

1100
E=10010
0100

Let Q(z) = ag + a1x + azx? + azz® be the generic polynomial of degree 3. Writing Q) (z;) = fi,; if and only
if e; ; = 1, we obtain the following linear system:

ap + a171 + azx? + azri = fia
a1 + 2asx1 + 3azx? = fi2

a1 + 2(12173 + 3&356:23 = f372

QCLQ + 6031'2 = f3,2

whose matrix is:

2 .3
lay 27 3

01 2z 323
0 1 2x3 323
00 2 6z

The interpolation problem is solvable if and only if
122329 + 637% — 122521 — 695?,
does not vanish for all values x1, xo, x3 satisfying x1 < z2 < x3.

In [17], Gonzalez-Vega shows that the question can be reduced to test if a particular factor of the determinant

of the matrix Mg has real roots with non zero coordinates. Replacing (x1,... ,2,) by (z1,21 +13,... ;21 +
t2 + ... +t2_,) yields a homogeneous polynomial in (t1,...,%,_1). Letting ¢t; = 1, we are brought to test if
a hypersurface defined by a polynomial P € Rlts,... ,t,—1] has real roots with non zero coordinates.

2.2 Sketch of the Resolution

In order to determine all the poised matrices in the case n =5 and r = 4, we have to study quasi-algebraic
sets defined by a unique equation in R[to,ts,t4] and several inequations. While algorithms deciding the
emptiness of real algebraic sets have known recent significant progress [13,28,6], more algorithmic work is
necessary in the semi-algebraic case [9].

We thus treat this question using and adapting the algorithms for the algebraic case described in [28] and [6].
The algorithm described in [28] will be named Algorithm 1. It takes as input a single polynomial equation
and returns at least one point in each connected component of the real algebraic variety defined by the
equation. The algorithm described in [6] will be named Algorithm 2. It takes as input a polynomial system
of equations and returns at least one point in each connected component of the real algebraic variety defined
by the system.

To solve our problem, given a polynomial P in Qlts, t3,t4], we adopt the following scheme.

First Step. We study the hypersurface defined by P = 0, using either Algorithm 1 or Algorithm 2. If
this subroutine returns no real point, or a real point with non zero coordinates, we can give a positive (resp.
negative) answer to the Interpolation Problem.

Second Step. We are in the case when all the real points we obtained have at least one coordinate equal to
zero. Using Algorithm 1, we study the hypersurface defined by P? + (Tt tot3 — 1)? = 0; when Algorithm
2 we study the polynomial system P = 0 and T't1t2t3 — 1 = 0.

Note that in some situations, we can avoid such extra computations, using for example the following result:

Lemma 1. Let P € R[ty,... ,t,] and V(P) the hypersurface defined by P = 0. Let M = (p1,... ,ptn) €
V(P)NR™ such that gradp(P) # 0, and I C {1,... ,n} the set of indexes for which u; is zero. If grady,(P)
is collinear to none of the azxes (t;);cr, then there exists a point M’ in V(P) NR™ with non zero coordinates.

3 Preliminary Results

This section describes the basics of the critical point method, valid for both Algorithm 1 and Algorithm
2.

Let P be a square-free polynomial in Q[z1, ..., x,], and V(P) C C™ the complex variety defined by P = 0. Our
strategy to compute at least one point in each connected component of V(P) NR™ relies on the computation
of the critical points on V(P) NR"™ of a “distance function”. Given a point A = (ay,...,a,) in R", the

function da : M — ||[AM]|? admits a minimum on each connected component of V(P) N R". These minima
are solutions of the system

S(P.A) = {P(M) = 0, grady(P)//AM},

where the condition grad,;(P)//AM is expressed by setting the determinants to zero. The set of all complex
roots of this system is denoted by C(P, A).

Two cases will be distinguished, according to the dimension of the singular locus of V(P). The following
result from [28] deals with the first case, where there is a finite number of singularities:

Theorem 1. Let P be a square-free polynomial in Q[x1, ..., x,]. If V(P) contains a finite number of singular
points, there exists a Zariski-dense set F' C C™ such that for A in F', the system S(P, A) is zero-dimensional.

Moreover, if V(P) is a smooth hypersurface, there exists a Zariski-dense set F C C™ such that for A in F,
the system S(P, A) is zero-dimensional and radical.

Hence, if V(P) contains a finite number of singular points, one can choose a point A such that S(P, A) is
zero-dimensional. Since S(P, A) intersects each semi-algebraically connected component of V(P)(R™, the
problem is reduced to isolate the real roots of S(P, A).

Throughout this paper, we will represent the solutions of a zero-dimensional system with coefficients in
a field k using primitive element techniques, in a way that can be traced back to Kronecker [22]. Such a
representation consists in:

— a linear form u = > u;z; which separates the zeros of the system®;
— its minimal polynomial ¢ in k[t] and the parameterizations (v1,...,v,) in k[t]™, where degv; < degq,
such that the zeros of the system are described by

where g(t) is the derivative of the square-free part of ¢(t). We will denote this kind of representation
(u, R), where R is the vector [q, vy, ..., v,].

Modern presentations and algorithms include the Rational Univariate Representation [26, 25] or the Geomet-
ric Resolution [14, 15], which coincide in the case of radical ideals of dimension zero. Such representations are
useful, in that they allow to count and isolate the real roots of the system using for instance Sturm-Habicht
sequences [30].

When the singular locus of V(P) is of positive dimension, difficulties arise, as the system S(P, A) is also of
positive dimension for any choice of the point A. In the following sections, we focus on this case, and present
in turn the strategies used in algorithms 1 and 2.

— The algorithm described in [28] performs an infinitesimal deformation on the hypersurface V(P) to get
back to a smooth situation; the required information is extracted from the solution of the deformed
problem.

— The approach from [6] is based on the iterated study of singular loci, as varieties of lower dimension.

4 Algorithm 1: Using Infinitesimal Deformations

In the first subsection, we recall the main steps of the algorithm in [28], to which we refer for further details.
We then present our solution to the specific subproblem of computing a univariate representation depending
on the deformation parameter.

! the image of two distinct zeros by u are distinct

4.1 Overview of the Algorithm

Let € be an infinitesimal; we denote by C(e) the algebraically closed field of algebraic Puiseux series with
coefficients in C. The sub-ring of elements of non-negative valuation (called “bounded elements”) is naturally
equipped with the operation denoted lim._,q. If C is a set of elements of C(g), lim._,oC denotes the set of
the limits of the bounded of elements of C. Finally, if x is EDZ-O a1 € Cle), where iy € Z,q € Q,a; € C,
we denote by o(z) the rational number i¢/q.

The following result shows that the study of S(P — &, A) enables to solve the original problem.
Proposition 1. [28] The set (lime_oC(P — ¢, A)) NR™ intersects each connected component of V(P) NR™.

Since V(P — ¢) C C{e)™ is smooth, Theorem 1 implies that for a generic choice of the point A, the system
S(P —e,A) is radical of dimension zero. In this case, its solutions can be described by a univariate repre-
sentation (u,R), with coefficients in Q(e). The paper [28] then gives an algorithm to compute the limits of
the bounded solutions it describes, when u is a well separating element. This is the case when:

— forall € C(P —¢,A), o(u(a)) = min(o(X; (), i =1,... ,n),
— forall (o, B) € C(P—¢,A)? u(a) and u(f3) are infinitesimally close if and only if o and 3 are infinitesimally
close.

Indeed, from a univariate representation associated to a well separating element

qle,)z = v1(g,t),
Q(Eat) =0,
q(e,)y = vn(e,),

if 13 ... g™ is the square-free decomposition of ¢(0,¢), then, Vj € {1,... ,;m}, one can compute polynomials
¢\ and vl(]) such that the limits of the bounded solutions are represented by

G (0,)z = 070, 1),

i _0)
g9 (0,t)x, = vy’ (0,1). je{l,...,m}

We can now give the first algorithm, which is the synthesis of all the previous points:

Algorithm 1

Input: A squarefree polynomial P
Output: At least one point on each connected component of V(P)

1. Find by trial and error a point A such that S(P — ¢, A) is zero-dimensional and radical.

2. Compute a parametric resolution (u, R) of its roots, with coeflicients in Q(e).

3. If u is a well-separating element for S(P —¢, A), compute the limits of the bounded solutions described
by R as € — 0.

4. else change u, check if it is a separating element for S(P — ¢, A) and return to step 3.

We briefly detail a solution to point 1. above. In [28] the authors prove the following results:

Lemma 2. Let G be a Grobner basis of the system S(P—e, A) in Qe, x1, ... ,x,], for a block-ordering such
that [e] < [x1,... ,xs]. Then G is a non-reduced Grébner basis of S(P — e, A) in Q(e)[x1,... ,xy)].

If there exists a value eq in Z which doesn’t cancel any of the leading coefficients of the polynomials in G, and
such that the system S(P —eg, A) is radical of dimension zero, then S(P —e, A) is radical of dimension zero.

Moreover, for such ey and A, if u is a separating element for S(P — g, A) then u is a separating element
for S(P —¢,A).

Given any point A that fits the hypothesis of Theorem 1, one can show that only a finite number of gy will
not fit the conditions of Lemma 2. Hence, a simultaneous search by trial and error of A € Z™ and ¢y € Z can
be performed to obtain a point A such that S(P — e, A) is radical. For a given A, this requires to compute
the basis G; testing that S(P — gg, A) is radical can be done using Hermite’s quadratic form (see [26] for
example).

4.2 Computing a Parametric Resolution

We now turn to the second of the tasks mentioned above, namely computing a resolution parametrized by e.
In [33], Schost proposes a probabilistic algorithm to do so, based on the work of the TERA group [14, 3, 15].
The algorithm relies on a formal Newton approximation process, which is an analog of numerical root-finding
techniques, and reminiscent of Hensel lifting methods. In the sequel, we first recall the main steps of this
algorithm, then provide solutions to certify its output in our case (radical and zero-dimensional ideal).

Overview of the Algorithm. For a random choice of ¢ in Q, given any resolution (u,Rp) of the system
S(P — g9, A), there exists a resolution (u,R) of the system S(P — &, A) with coefficients in Q(¢) whose
specialization at g¢ is (u, Rg). The strategy presented in [33] consists in approximating the solution (u,R)
starting from (u, Ro).

The output R can be rewritten in terms of ¢/ = & — ¢g, as a vector R’ of polynomials in Q(¢’)[¢], where
none of the denominators of the expressions in €’ vanishes at zero. Denote by R the vector of polynomials
of Q[[¢]][t], where all coefficients are expanded at precision 2¢. The initial value is obtained by solving the
system S(P —¢g, A); the formal Newton operator, denoted Lift(R}) computes R;, ; from the argument R;.

The whole algorithm is organized around a while loop. Each pass begins by computing the resolution R;_ ;,
of precision 2°*1. The subroutine RationalReconstruction then computes Padé approximants [35] of all
the coefficients, as rational functions in &/, with numerators and denominators of degree at most 2¢; a boolean
value b indicates success. If the reconstruction is possible, the subroutine StopCriterion, detailed below,
tests if the resolution, rewritten in terms of ¢, is correct. If this is not the case, we go trough another loop.

A Certified Result. The probabilistic aspect of the algorithm in [33] is twofold: it lies in the choice of the
specialization value ¢y, and in the test StopCriterion. We provide here certified versions of these subroutines.

The value ¢ must satisfy some genericity conditions: the system S(P — £p, A) must be zero-dimensional,
its roots must be simple and in maximal number. The algorithm in [33] is based on the fact that all choices
of g9 but a finite number fulfill these conditions, and that a bound on the number of bad values is readily
available. Instead, we use the following result: if 9 cancels none of the leading coefficients of the polynomials
in the basis G computed above, and if the system S(P — g9, A) is radical, then eg satisfies the genericity
conditions.

Finally, to check that a solution (u = > w;x;, R) is the correct solution, it is enough to check that the
minimal polynomial and the parameterizations in R, with ¢ evaluated at Y u;z;, reduce to zero modulo the
basis G. This implies that the resolution R describes a set of points containing C(P — ¢, A). As these two
sets have the same cardinality, we are done.

Computing the parametric resolution

Input : a point A such that the roots of the system S(P — ¢, A) are simple.
a Grobner basis G of S(P —¢,A) in Q(e)[z1,...,zn].
Output : a parametric resolution (u, R) of S(P —¢, A)

1. Find by trial and error a random rational number €o such that the system S(P — g9, A) is zero-
dimensional and has simple roots, in maximal number.

2. Compute a univariate representation R of the roots of S(P — &g, A)

3. Use the Newton-Hensel lifting process to compute the successive approximations R;:

i « 0; finished < false
while not finished do
Rip1 < Lift(RY)
b, R’ « RationalReconstruction(Rj,;)
if b then
R « Substitute ¢’ by € + o in R’
finished < StopCriterion(R)
end if
t—1+1
end while

4. return (u, R)

The output is a list of polynomials in Q(e)[t]. The degree in ¢, the degrees in £ of the numerators and
the denominators of the coefficients are bounded by the Bézout number d", where d is the degree of the
polynomial P [33]. The “size” of the output is thus O(n(d + 1)**) elements of the base-field Q.

The details of the computations done in Newton’s operator are given in [15, 33]. Following the usual numeric
Newton operator, they rely on the evaluation of the vector Jac(S(P—¢, A))~tS(P—e¢, A) in suitable quotient
rings, where Jac(S) denotes the jacobian matrix of the system S.

As in [7,15, 8], we use the Straight-Line Program model to encode the input polynomial P. In this model,
the complexity of the whole lifting process is polynomial in the size of the output, in the number of variables
n, and the number of operations L necessary to evaluate the polynomial P [33]. Still, the whole algorithm
requires the precomputation of the Grébner basis G, and the subroutine StopCriterion relies on normal
form computations. This part dominates the whole cost of the algorithm.

5 Algorithm 2: Iterated Study of Singular Loci

The second approach generalizes the critical point methods used here to the case of polynomial systems.
In the presence of infinitely many singular points, the infinitesimal deformation is avoided by studying the
singular locus as a variety of lower dimension.

Let V C C™ be an equidimensional algebraic variety of dimension d and P = {Py,..., P;} polynomials in
Q[z1,...,z,] such that Z(V) = (P4, ..., Ps). Following the notation of the two previous sections, given any
point A in C", we define the polynomial system:

S(P,A) = {Pi(M) = --- = P,(M) = 0, rank(grady;(P1), ... ,grady;(Ps), AM) < n —d},

where the rank condition is expressed by setting to zero the (n —d + 1) x (n — d + 1) minors of the matrix
[Jac(P), AM]. The roots of this system form a set denoted C(V, A).

The algorithm proposed in [6] is based on the following theorem:

Theorem 2. [6] The set C(V,A) meets every connected component of ¥V NR™. Moreover, there exists a
Zariski-dense subset F of C™ such that, for all A in F, C(V,A) can be written Sing(V) U Vy, where

— Vo is a finite set of points in C",
— Sing(V) = {M € V | rank(grady;(Py), ... ,grady;(Ps)) < n —d}.

In particular, in this case, dim(C(V, A)) < dim(V).

Suppose that ¥V C C"® and A € R™ satisfy the conditions of Theorem 2, and that V; is a finite set of points
that meets each connected component of Sing()) NR™. Theorem 2 implies that V; UV, meets each connected
component of VN R™. The set V; can in turn be obtained by applying Theorem 2 to each equidimensional
component of Sing(V). The algorithm in [6] consists in applying inductively the above process, performing at
each step equidimensional decompositions of intermediate varieties C(V;, A;). In the end, we obtain a family
of zero-dimensional sets which meets each connected component of ¥V NR™.

At each step, we need to apply a subroutine taking as input a polynomial system S and returning a
set of generators of radical equidimensional ideals whose intersection is v/S. This can be done using the
algorithms mentioned in [4,31] or by performing a decomposition into regular and separable triangular
sets [5, 23, 21, 34] and computing a Grobner basis of the saturated ideal of each triangular set. We denote by
EquiDimDecomposition such a radical equidimensional decomposition algorithm.

Algorithm 2

Input: A polynomial system P
Output: At least one point on each connected component of V(P)

1. list <« EquiDimDecomposition(P), result « ||
2. while list # [] do
— P« first(list) and remove P from list,
— if dim(P) = 0 then result « result U P
— else find by trial and error a point A such that dim(C(V(P),A)) < dim(P) and list « list U
EquiDimDecomposition(S (P, A))
3. count and isolate the real roots of all the polynomial systems in result.

6 Experimental Results

6.1 Methodology and Basic Algorithms
Both algorithms presented above have been implemented, using the following softwares:

— Gb/AGb: implemented in C++ by J.-C. Faugere [4] and devoted to Grobner basis computations;

— RS: implemented in C by F. Rouillier, devoted to computing Rational Univariate Representations, and
to counting and isolating real roots of univariate polynomials;

— Kronecker: implemented in Magma by G. Lecerf [15], devoted to compute Geometric Resolutions, from
which we borrowed the formal Newton iterator.

The subroutine EquiDimDecomposition was implemented using Maple and a file connection with Gb, fol-
lowing the algorithm described in [31] and based on the results in [5, 23].

All the computations were done on the computers of the UMS MEDICIS [2], on a PC Pentium IT 400 MHz
with 512 MB of RAM.

6.2 Solution of the Problem

The case n = 5, 7 = 4 of Birkhoff’s problem generates 53130 matrices, which produces as many hypersurfaces
of C? to study.

— 42925 of these hypersurfaces are defined by constant polynomials.

— For the non-constant polynomials, to avoid unnecessary computations, we specialized all variables but one
at random non-zero values and applied Uspensky’s algorithm on the univariate polynomials we obtained,
looking for non-zero real roots. At the end of this preprocessing, about one thousand hypersurfaces
remained to study.

— About 900 of these hypersurfaces had zero or a finite number of singularities. In all these cases, the first
step given in section 2.2 was sufficient to conclude: the situation where C(P, A) had exclusively real roots
with a coordinate equal to zero was never encountered.

On a PC bi-Pentium 400 MHz with 512 MB of RAM, 4 hours are necessary to perform these 3 steps for all
hypersurfaces.

— There remained 102 hypersurfaces containing an infinity of singularities. We will see below that our
implementation of Algorithm 1 can not solve all of them, whereas Algorithm 2 succeeded in all cases.
In 60 out of these 102 cases, we had to go through the second step given in section 2.2.

On the same machine, 2 additional hours are necessary to perform this final step with Algorithm 2.

As a conclusion, 19092 out of the 53130 matrices are poised. Their complete list can be found in Maple
format at the web page [1].

6.3 Comparing Algorithm 1 and Algorithm 2

We give a more detailed account of the behavior of algorithms 1 and 2 on a sample of the family of
hypersurfaces with infinitely many singularities. These hypersurfaces are denoted Birk.3-1,...,Birk3-15. All
of them have degree less than 8; the whole list can be found at the web page [1].

Table 1 summarizes our results on this family. The sign oo indicates that the computations were stopped
after 24 hours.

— Algorithm 1: The first column gives the number of bounded roots we obtain, which is a measure of the
size of the output. The second and third columns give the degrees in ¢ and ¢ of the generic resolution,
which is a measure of the size of intermediate data. The last column gives the time necessary to perform
all computations, in seconds.

— Algorithm 2: The first column gives the sum of the degrees of the zero-dimensional systems produced
in the course of the computations; the second indicates the total time of computations, given in seconds.

Hypersurface|| Algorithm 1 |[Algorithm 2
Birk.3-1 12(16 |3 | 5.6 [|12 0,08
Birk.3-2 7|16 5.2 || 7 0,13
Birk.3-3 25|| 34 32 1|25 0,37
Birk.3-4 16| 36 46 ||16 0,18
Birk.3-5 31| 40 116 ||31 0,46
Birk.3-6 37| 52 149 |37 0,86
Birk.3-7 38|| 52 115 ||38 0,72
Birk.3-8 45||130(19| 3927 ||45 7,11
Birk.3-9 47)|132|19| 2945 ||47 7,88
Birk.3-10 48||136/31|18843|(48 8,04
Birk.3-11 501|138|31]26536||50 8,88
Birk.3-12 50(/138|31|17508||50| 10,01
Birk.3-13 32(|1252|29] oo ||32 9,26
Birk.3-14 60(/264|31] oo ||60 67
Birk.3-15 60(|272|31] oo ||60 83

| 3| O] O] O] W

Table 1. Algorithms 1/2: Size of the output and computation times

For the last examples, the time spent in Algorithm 1 in the checking phase becomes largely predominant.
Other strategies to certify this output, based on a sufficient number of sample checks, could lower this time.
Even without this certification phase, the computation is longer than with Algorithm 2. Still, with regard
to the degrees in ¢ and € of the parametric resolution, we consider that our implementation of Algorithm
1 shows good performance.

A relevant criterion to analyze the algorithms based on the critical point method is the degrees of the zero-
dimensional systems they produce. For Algorithm 1, this is the cardinality of the set of bounded roots
lim,_,o C(P — ¢, A). To this regard, the outputs of Algorithm 1 and Algorithm 2 are of similar size. The
size of the intermediate data in Algorithm 1, such as the degree of the parametric resolution, is bigger, as
several points of C(P — ¢, A) collapse on a same point when ¢ — 0.

Nevertheless, the degrees of the output and of the intermediate bivariate polynomials in Algorithm 1 are
bounded by d", while we have no similar bound for Algorithm 2. An open problem is to precise such a
bound for Algorithm 2. In all these examples, the dimension of the singular locus was 1, so that there
was at most one recursive call in Algorithm 2. Experiments with more intricate singular loci should tell us
more about this question.

7 Conclusions

The case n = 5, r = 4 of the Birkhoff Interpolation Problem is now automatically solved. The case n = 6,
r = 5, requires to study 1947792 hypersurfaces in C*; this combinatorial number is now the limiting factor.
More research on qualitative nature should be devised to have a better control on this number; in this sense,
the conclusions and suggestions in [17] are still a topical question.

This problem gave us the opportunity to compare two recent algorithms of computational real algebraic
geometry and illustrate their practical use. It appears that the algorithms based on the critical point method
can now solve application problems.

In particular, we have implemented computations with an infinitesimal, considering it as a parameter. An-
other approach consists in implementing an infinitesimal arithmetic; we refer to [27] for such a realization in
Axiom. Nevertheless, obtaining good performance in practice using this type of arithmetic is still a computer
science challenge.

Besides, the use of infinitesimals in computational real algebraic geometry is not exclusive to the desingu-
larization of hypersurfaces: they are required in several algorithms to decide the emptiness of semi-algebraic
sets, such as [19,9, 30].

References

http://wuw-calfor.lip6.fr/ safey/applications.html

http://wuw.medicis.polytechnique.fr

http://wuw.tera.medicis.polytechnique.fr

http://wuw-calfor.lip6.fr/~jcf

P. AUBRY, Ensembles triangulaires de polynémes et résolution de systémes algébriques, Implantations en Aziom,

PhD thesis, Université de Paris VI, 1999.

6. P. AUBRy, F. ROUILLIER, M. SAFEY EL DIN, Real Solving for positive dimensional systems, Rapport de Recherche
du Laboratoire d’Informatique de Paris VI, Mars 2000.

7. B. BANK, M. GiusTi, J. HEINTZ, AND M. MBAKOP Polar Varieties and Efficient Real Equation Solving, Journal
of Complexity, vol.13:5-27, 1997, Best paper award 1997.

8. B. BANk, M. GiusTi, J. HEINTZ, AND M. MBAKOP Polar Varieties and Efficient Real Elimination, to appear in
Mathematische Zeitschrift (2000).

9. S. Basu, R. PoLLack, M.-F. Roy, On the combinatorial and algebraic complezity of Quantifier elimination. J.
Assoc. Comput. Machin., 43, 1002-1045, 1996.

10. E. BECKER, R. NEUHAUS, Computation of real radicals for polynomial ideals, in Computational Algebraic geom-

etry, Progress in Math., vol.109, 1-20, Birkhaiiser, 1993.

AN il s

11. G. E. CoLLiNs, H. HONG, Partial Cylindrical Algebraic Decomposition, Journal of Symbolic Computation, vol.12,
No.3: 299-328, 1991.

12. G. E. CoLLINS, Quantifier elimination for real closed field by cylindrical algebraic decomposition, Lectures Notes
in Computer Science, 33, 515-532, 1975.

13. P. ConTi, C. TRAVERSO, Algorithms for the real radical, unpublished manuscript

14. M. GrusTi, J. HEINTZ, La détermination des points isolés et de la dimension d’une variété algébrique réelle peut
se faire en temps polynomial, Computational Algebraic Geometry and Commutative Algebra, Eds D. Eisenbud
and L. Robbiano, 1993.

15. M. GrusTti, G. LECERF, B. SALvY, A Grébner free alternative for solving polynomial systems, Journal of Com-
plexity, vol.17, No.1, 2001

16. D. GRIGOR’EV, N. VOROBJOV , Solving Systems of Polynomial Inequalities in Subexponential Time, Journal of
Symbolic Computation, vol.5, No.1-2: 37-64, 1988.

17. L. GONZALEZ-VEGA, Applying quantifier elimination to the Birkhoff Interpolation Problem, Journal of Symbolic
Computation vol.22, No.1, 1996.

18. M.-J. GONZALEZ-LOPEZ AND L. GONZALEZ-VEGA, Project 2 : The Birkhoff Interpolation Problem, In: Some
tapas of computer algebra, A. Cohen ed. Springer, 297-310, 1999.

19. J. HEINTZ, M.-F. ROY, P. SOLERNO, On the theoretical and practical complexity of the existential theory of the
reals, Comput. J. vol.36, No.5: 427-431, 1993.

20. H. HoNG, Comparison of Several Decision Algorithms for the Existential Theory of the Reals, Research report,
RISC, 1991.

21. M. KALKBRENER, Three contributions to elimination theory, PhD thesis, Johannes Kepler University, RISC, 1991.

22. L. KRONECKER, Grundziige einer arithmetischen Theorie de algebraischen Gréssen, J. reine angew. Math. 1882.

23. M. MORENO MAzA, Calculs de Pgcd au-dessus des Tours d’Extensions Simples et Résolution des Systémes
d’Equations Algébriques, PhD thesis, Université de Paris VI, 1997.

24. J. RENEGAR On the computational complexity and geometry of the first order theory of the reals, Journal of
Symbolic Computation vol.13, No.3: 255-352, 1992.

25. F. ROUILLIER, Algorithmes efficaces pour l’étude des zéros réels des systémes polynomiaux, PhD thesis, Université
de Rennes I, 1996.

26. F. ROUILLIER, Solving Zero-Dimensional Systems through the Rational Univariate Representation, Applicable
Algebra in Engineering Communications and Computing vol.9, No.5: 433-461, 1999.

27. R. R10BoO, Computing with infinitesimals, manuscript.

28. F. ROUILLIER, M.-F. Roy, M. SAFEY EL DIN, Finding at least one point in each connected component of a real
algebraic set defined by a single equation, Journal of Complexity, vol.16, No.4, 2000.

29. F. ROUILLIER, P. ZIMMERMANN, Uspensky’s algorithm : improvements and applications, in preparation (2000).

30. M.-F. Roy, Basic algorithms in real algebraic geometry: from Sturm theorem to the existential theory of reals,
Lectures on Real Geometry in memoriam of Mario Raimondo, Expositions in Mathematics 23, 1-67. Berlin, New
York: de Gruyter 1996.

31. M. SAFEY EL DIN, Résolution réelle des systémes polynomiauz en dimension positive, PhD thesis, Université
Paris VI, 2001.

32. E. SCHOST, Computing parametric geometric resolutions, preprint Ecole polytechnique, 2000.

33. E. SCHOST, Sur la résolution des systémes polynomiaux & paramétres, PhD thesis, Ecole polytechnique, 2000.

34. D. WANG, Computing Triangular Systems and Regular Systems, Journal of Symbolic Computation, vol.30, No.2:
221-236, 2000.

35. J. VON ZUR GATHEN, J. GERHARDT, Modern Computer Algebra, Cambridge University Press, 1999.

