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ABSTRACT
We study the representation of the solutions of a polynomial
system by triangular sets, and concentrate on the positive-
dimensional case. We reduce to dimension zero by placing
the free variables in the base-field, so the solutions can be
represented by triangular sets with coefficients in a rational
function field. First, we give bounds on the degree of these
coefficients; then we show how to apply lifting techniques
in this context, and point out the role played by the eval-
uation properties of the input system. Our algorithms are
implemented in Magma; we present two applications.

1. MAIN RESULTS
We first define triangular sets over a ring A. A triangular set
is a family of polynomials T = (T1, . . . , Tn) in A[X1, . . . , Xn]
such that, for k ≤ n: Tk depends only on (X1, . . . , Xk), Tk
is monic of degree dk > 0 in Xk and Tk has degree in Xj less
than dj , for j < k. We let (T ) denote the ideal generated
by T . Let now K be a field, V ⊂ An(K) a zero-dimensional
algebraic set defined over K; a family {T 1, . . . , TP } of tri-
angular sets with coefficients in K represents the zeros of V
if I(V) = ∩i≤P (T i), and if for i 6= j, T i and T j have no
common zero. Then all (T i) are radical ideals.

Our definition is inspired by that of reduced triangular sets
in [18]. If V is irreducible, the family we seek exists, is unique
and reduced to a single triangular set; then

Q
k≤n degXk Tk

is the cardinality of V. If V is not irreducible, a family
{T 1, . . . , TP } satisfying our conditions exists but is not uni-
que [18, Prop. 2 and Rem. 1]; then

P
i≤P

Q
k≤n degXk T

i
k is

the cardinality of V. If X1 separates the points in V, we ob-
tain a representation by primitive element, called geometric
resolution after [12, 10, 11, 13].

For a positive dimensional variety V ⊂ AN (K), several no-
tions of triangular sets exist [16, 19, 3, 6, 24]. In this situa-
tion, we choose to reduce to dimension zero, by considering
a projection of V on a suitable linear space L. We require
the projection V → L to be dominant with generically finite

fibers. As a motivation, note that many questions in polyno-
mial systems solving are of parametric nature: the systems
come with distinguished variables, some parameters, and ad-
mit a finite number of solutions for a generic value of the
parameters. Such situations are zero-dimensional over the
field of functions on the parameter-space L.

We formalize this situation the following way. We consider
a m-dimensional variety V ⊂ Am+n(K), defined over K. Let
{Vi}i∈I denote the K-irreducible components of V, and π
the projection Am+n(K) → Am(K). Our main assumption,
already done in [22], is that the image by π of each Vi is
dense in Am(K). Then the fibers of π are generically finite.

We denote by P = P1, . . . , Pm the first m coordinates, and
by X = X1, . . . , Xn the last coordinates in Am+n(K); the
variables P are called parameters. Let I ⊂ K[P,X] be the
radical ideal defining V, IP its extension in K(P )[X] and
AP the quotient K(P )[X]/IP . Our first assumption implies
that AP is a finite dimensional K(P )-algebra. Our second
assumption is that the extension K(P ) → AP is separable.
By [14, Prop. 1], its dimension is the generic number of
points in the fibers of π|V , which will be denoted by deg π.

We call generic zeros of V the roots of IP . Since they are
in finite number, they can be represented by a family of
triangular sets in K(P )[X]. If {T 1, . . . , TP } is such a family,P
i≤P

Q
k≤n degXk T

i
k equals deg π by the above discussion.

Our first result is a bound on the degrees in (P1, . . . , Pm) of
the coefficients of such triangular sets, using the geometric
notion of degree introduced in [14].

Theorem 1. Let W be the reunion of some of the ir-
reducible components of V, defined over K, such that the
generic zeros of W can be represented by a single triangular
set T = (T1, . . . , Tn), with Tk ∈ K(P )[X] for k ≤ n. For
k ≤ n, denote by Wk ⊂ Am+k(K) the projection of W on
Am+k(K) and by Dk its degree. Then all coefficients of Tk
are rational functions in K(P ) of degree at most

(2k2 + 4k + 3)k+1D2k+3
k .

This is in the continuity of the results of Gallo-Mishra [7] and
Szanto [24] for Ritt-Wu’s and Kalkbrener’s unmixed repre-
sentations. If V is given as the zero-set of a system of n equa-
tions of degree d, Gallo-Mishra’s bound is 2n(8n)2nd(d +

1)4n2
and Szanto’s is dO(n2).



With this notation, the Bézout inequality of [14] implies that
Dk is at most dn for all k. Thus according to Theorem 1,
in a worst-case scenario the degrees of the coefficients in
the triangular set (T1, . . . , Tn) are bounded by 81d5n for T1,

6859d7n for T2, . . . , (2n2 + n + 3)n+1dn
2+3n for Tn. This

improves the previous results, which gave the same bounds
for all Tk; yet we do not know if these bounds are sharp.

Another new feature is that our bounds are given in terms of
the intrinsic geometric quantitiesDk, which may be bounded
a priori. In the example presented in Section 4.2, the Bézout
bound is 1024, but an a priori estimate based on the seman-
tics of the problem gives Dk ≤ 80.

The second part of this article presents lifting techniques for
triangular sets. We restrict the context to a variety V given
as the zero-set of a system F = F1, . . . , Fn with indeter-
minates (P,X) = (P1, . . . , Pm, X1, . . . , Xn), with the addi-
tional assumption that the Jacobian determinant w.r.t. X is
invertible on an open subset of V. Then the previous two as-
sumptions are satisfied, and we want to compute triangular
sets in K(P )[X] that represent the generic zeros of V.

The underlying paradigm is that solving a zero-dimensional
system over K by means of triangular sets is a well-solved
task. Thus, the basic idea is first to specialize the inde-
terminates P in the system F , and solve the corresponding
system in the remaining variables X, by means of triangular
sets in K[X]. A lifting process then produces triangular sets
with coefficients in a formal power series ring, from which
we can recover the required information.

We do not give a full algorithm. Difficulties arise when re-
combining factorized triangular sets, so our first contribu-
tion treats the case when V is irreducible: its generic zeros
are represented by a single triangular set T = (T1, . . . , Tn),
and we propose an algorithm that computes T1, . . . , Tk for
any k. If V is not irreducible, we compute the minimal poly-
nomial of X1 in AP , which can be read off triangular sets.

The complexity of evaluation of the system F plays a crucial
role here: F is given by a Straight-Line Program of size L.
In the sequel, M(d,m) is the number of monomials of degree
at most d in m variables, and C a universal constant, see
Section 3.2. The algorithms are probabilistic in the choice
of the points p, p′ below: the choices leading to an error are
enclosed in a strict algebraic subset of A2m(K). The degree
analysis of this subset is done for Theorem 3 in [23, Ch. 18,
19], and has to be done for Theorem 2.

The following results were improved from an earlier version
thanks to the anonymous referees’ comments. All complex-
ities are stated in terms of number of operations in K.

Theorem 2. Assume that V is irreducible. Let p,p′ be
generic enough points in Km; assume that a description of
the zeros of the systems F (p, X), F (p′, X) by triangular sets
is available. Let T be the triangular set in K(P )[X] that
represents the generic zeros of V, choose k ≤ n and let Dk

be the maximal degree in P of the coefficients of T1, . . . , Tk.
Then T1, . . . , Tk can be computed by a probabilistic algorithm
in time polynomial in L,Cn,deg π,M(Dk,m).

Theorem 3. Let p,p′ be generic enough points in Km,
and assume that a description of the zeros of the systems
F (p, X), F (p′, X) by triangular sets which define prime ide-
als is available. Let M1 ∈ K(P )[X1] be the minimal polyno-
mial of X1 in AP , and D1 the maximal degree in P of its
coefficients. Then M1 can be computed by a probabilistic
algorithm in time polynomial in L,Cn,deg π,M(D1,m).

This work was greatly motivated by applications. The first
accounts for computations done in [9] to study genus 2 curves
with (2,2)-split Jacobian, which occur frequently in number
theory. The second shows how to compute the modular
equations for hyperelliptic curves defined in [8, 23] with a
view towards applications in cryptography; our result is now
used within Magma’s hyperelliptic curve package [1].

Comparison with primitive elements techniques.
The present results are in the continuation of [22], which
focuses on a representation by primitive elements, under the
same hypotheses. Caution must be taken when comparing
the two approaches. They answer different needs; as such,
their complexities cannot be compared directly, since they
are stated in terms of different quantities.

Assume for simplicity that the generic zeros of V are rep-
resented by a single triangular set. The degree bound in a
geometric resolution is linear in the degree of V, see Proposi-
tion 1 below. On the other hand, using a primitive element,
we cannot take into account the degrees of the projections
of V, which can be arbitrarily smaller than the degree of V.
This refinement makes the interest of the triangular repre-
sentation, using results such as Theorem 1.

Consider now the algorithmic aspect. The algorithm in [22]
computes a generic geometric resolution in time polynomial
in L,deg π,M(degV,m), where degV is the degree of V.
Here, using Theorem 1, the complexity in Theorems 2 and 3
is seen to depend on the degree of the projections of V on
the spaces of coordinates (P,X1, . . . , Xk) for Theorem 2, or
(P,X1) for Theorem 3, but not on the degree of V itself,
which can be arbitrarily bigger.

Thus, the present approach takes more refined complexity
measures into account. It will prove of interest for struc-
tured problems, when a partial information (e.g. a minimal
polynomial) is wanted: the computational cost will not de-
pend on the whole degree of V, as when using a primitive
element, but only on that of a suitable projection, which
might turn out to be smaller. The applications in Section 4
are examples of this phenomenon, and illustrate the practi-
cal interest of our approach in this situation. Their study
inspired this work in the first place.

Related results.
In dimension zero, a landmark paper for the representation
by triangular sets is [18]. In arbitrary dimension, several
notions and algorithms exist, see [16, 19, 3, 6, 24], and [4]
for a comparison of some of them. Our choice to reduce the
question to dimension zero over a field of rational functions
yields algorithms with good complexity, and easy to imple-
ment. Yet, our output is not as strong as for instance [19,
6], since it is only generically valid.



An important feature of our algorithms is the representation
of the input system by evaluation. This approach proved
successful for solving systems by primitive element tech-
niques, in a series of articles by the TERA group, see [12,
10, 11, 13] and references therein. In particular the arti-
cle [15], with a similar approach but under more restrictive
hypotheses, inspired [22] and the present work. Finally, par-
allel arithmetic circuits are used for triangular sets in [24].

Notation.
The letter T denotes a triangular set (T1, . . . , Tn). A family
of triangular sets is denoted with superscripts as T 1, . . . , TP ,
each T i being a triangular set (T i1 , . . . , T

i
n). The letter X

stands for X1, . . . , Xn, and P for P1, . . . , Pm. Bold let-
ters denote matrices or vectors. Finally, IP is an ideal in
K(P )[X], and AP the corresponding quotient algebra.

2. DEGREE BOUNDS
Representation by primitive elements.
The following is a variation on the Primitive Element The-
orem. The version we use is a slight extension of [22, Prop.
2], and applies under the assumptions of Section 1; it is
inspired by [12, 21].

Proposition 1. There exists (u1, . . . , un) ∈ Kn such that
u0 :=

Pn
i=1 uiXi generates AP . Besides, there exists some

polynomials V, V1, . . . , Vn in K[P ][U ] such that

• the total degrees of V, V1, . . . , Vn, seen in K[P,U ], are
bounded by degV;

• V ′(u0) is invertible in AP , the relations

V (u0) = 0, V ′(u0)Xi = Vi(u0) (1 ≤ i ≤ n)

hold in AP , so the ideal IP + (U − u0) coincides with
�
V (U), V ′(U)X1 − V1(U), . . . , V ′(U)Xn − Vn(U)

�
.

Effective B́ezout bound.
The following is Lemma 5 in [17]; similar results can be seen
in [10], originating from [12]. As pointed out by a referee,
a bound similar to Theorem 1 can be obtained without this
result, by working out an explicit division procedure.

Proposition 2. Let K be a field, and (F1, . . . , FN ) a reg-
ular sequence in K[Y1, . . . , YN ]. Let d be a bound on the
degrees of the polynomials F , and δ the maximum of the de-
grees of the varieties V(F1, . . . , Fi), for i = 1, . . . , N−1. For
i = 0, . . . , N − 1, let Bi be the quotient

K[Y1, . . . , YN ]/(F1, . . . , FN−i).

Assume that the extension K[Y1, . . . , Yi]→ Bi is integral and
that the jacobian of (F1, . . . , FN−i) w.r.t. (Yi+1, . . . , YN ) is
a non-zero divisor in Bi. Then if H belongs to (F1, . . . , FN ),
there exists polynomials (Q1, . . . , QN ) in K[Y1, . . . , YN ] such
that H = Q1F1 + · · · + QNFN , and, for i = 1, . . . , N ,
degQiFi ≤ 2N2dδ + δmax{degH, d}.

Proof of Theorem 1.
LetW be the reunion of some of the irreducible components
of V, such that the generic zeros ofW can be represented by
a single triangular set T = (T1, . . . , Tn). For k ≤ n, denote
byWk ⊂ Am+k(K) the projection ofW on Am+k(K) and by
Dk its degree. We now prove that all coefficients in Tk are
of degree bounded by (2k2 + 4k + 3)k+1D2k+3

k .

Let J ⊂ K[P,X] be the ideal defining W, JP its extension
in K(P )[X], and BP the algebra K(P )[X]/JP . Since AP is a
separable extension of K(P ), so is BP . Also, by definition of
T , JP is the ideal generated by T = (T1, . . . , Tn) in K(P )[X].

Denote by X≤k the variables X1, . . . , Xk, J≤k ⊂ K[P,X≤k]
the ideal defining Wk, that is, J ∩K[P,X≤k], and JP,≤k its
extension in K(P )[X≤k]. Under our first assumption that
none of the prime components of I contains a polynomial in
K[P ], it is a routine check that JP,≤k = JP ∩K(P )[X≤k], i.e.
the ideal generated by (T1, . . . , Tk) in K(P )[X≤k]. Besides,
since K(P )→ BP is separable, it is also the case for K(P )→
K(P )[X≤k]/JP,≤k.

ThusWk satisfies the hypotheses of Proposition 1, so, using

a new variable U , there exist scalars u1, . . . , uk in Kk, and
polynomials V, V1, . . . , Vk such that the ideal generated by
Tk and U −

Pk
i=1 ukXk in K(P )[X≤k, U ] coincides with

�
V (U), V ′(U)Xk − Vk(U), . . . , V ′(U)X1 − V1(U)

�
.

Let us consider the systems

S =
�
V (U), V ′(U)Xk − Vk(U), . . . , V ′(U)X1 − V1(U)

�
,

and for 0 ≤ i ≤ k,

Si =
�
V (U), V ′(U)Xk − Vk(U), . . . , V ′(U)Xi+1 − Vi+1(U)

�
,

in K(P )[X≤k, U ]. We check that the hypotheses of Propo-
sition 2 are satisfied for S, with K = K(P ), N = k + 1,
and Y1, . . . , YN = X1, . . . , Xk, U . By Proposition 1, V ′(U)
is invertible modulo V (U). Thus modulo V (U), each equa-
tion V ′(U)Xj −Vj(U) can be written Xj −Wj(U), for some
polynomial Wj(U) in K(P )[U ].

This shows that S is a regular sequence. For i in 0, . . . , k,
the ring Bi in Proposition 2 is K(P )[X≤k, U ]/Si, which is
an integral extension of K(P )[X1, . . . , Xi]. Finally, the ja-
cobian determinant of Si with respect to Xi+1, . . . , Xk, U
is the (k − i)-th power of V ′(U), so it is invertible in Bi.
Consequently, the hypotheses of Proposition 2 are satisfied.
Since the variables P are in the basefield K = K(P ), we es-
timate all degrees in terms of the variables (X≤k, U) only.
By Proposition 1, the degrees of all polynomials in S are
bounded by Dk. The varieties V(Si) are cylinders built upon
zero-dimensional varieties of degree at most Dk over K, so
their degree over K is at most Dk.

All polynomials T1, . . . , Tk belong to the ideal generated by
S. Consequently, for i ≤ k, there exist some polynomials
Q0,i, . . . , Qk,i in K(P )[X≤k, U ] such that the equality

Ti = Q0,iV (U) +

kX

j=1

Qj,i
�
V ′(U)Xi − Vi(U)

�
(1)

holds in K(P )[X≤k, U ].



Let us fix i, and apply Proposition 2. Our Conventions on
the elements of a triangular set show that the degree of Ti
in X1, . . . , Xk is at most Dk. Proposition 2 then shows that
the degree in X1, . . . , Xk of each summand in (1) can be
taken less than 2(k + 1)2D2

k +D2
k = (2k2 + 4k + 3)D2

k.

The conclusion is now similar to that of [7]. Writing Ti =

Xdi
i +Ri, with degXi Ri < di, identity (1) can be rewritten

Xdi
i = −Ri +Q0,iV (U) +

kX

j=1

Qj,i
�
V ′(U)Xi − Vi(U)

�
.

This in turn can be rewritten as a linear system in the coef-
ficients of Ri, Q0,i, . . . , Qk,i. Let G be the number of mono-
mials in k+ 1 variables of degree at most (2k2 + 4k+ 3)D2

k,
and let G′ ≤ G be the number of unknown coefficients in Ri.
This system can be written MA = B, where A is the vector
of (k+ 1)G+G′ unknowns, and B is the zero vector, except
for one entry equal to 1, corresponding to the coefficient of
Xdi
i . The matrix M has G rows and (k+ 1)G+G′ columns,

and its entries are either the constant 1, or the coefficients
of V, V ′, V1, . . . , Vn. These are polynomials in (P1, . . . , Pm)
of degree at most Dk, by Proposition 1.

The coefficients of Ri are uniquely determined: if there were
two possible choices for Ri, then their difference would yield
a polynomial in the ideal generated by the system S of de-
gree less than di in Xi, an impossibility. Consequently, by
Rouché-Fontené’s Theorem, the coefficients of Ri can be ex-
pressed as quotients of determinants of size at most G, with
entries that are polynomials in P1, . . . , Pm of degree at most
Dk. Then their numerators and denominators have degree
at most GDk, which is bounded by (2k2 + 4k+ 3)k+1D2k+3

k .
This concludes the proof of Theorem 1.

3. LIFTING TECHNIQUES
We now present some lifting techniques for triangular sets.
This requires a stronger assumption than before: V is now
supposed to be defined by some polynomials F = F1, . . . , Fn
in K[P,X], where P = P1, . . . , Pm and X = X1, . . . , Xn.
Furthermore, we assume that the jacobian determinant of
F with respect to X is invertible on an open subset of V.
For complexity statements, we assume that F is given by a
Straight-Line Program that performs L operations.

From the invertibility of the jacobian, Lazard’s lemma [5]
as proved in [20] implies that V satisfies the assumptions
of Section 1, so the generic zeros of V can be represented
by triangular sets. To be specific, we denote by T 1, . . . , TP

a family of triangular sets in K(P )[X] that represent the
generic zeros of V and define prime ideals in K(P )[X].

In the sequel, given p in Am(K), F (p, X) denotes the sys-
tem F where the variables P are evaluated at p; then there
remain n equations in the n unknowns X. The “special-
ization” of a triangular set T ∈ K(P )[X] at p denotes the
triangular set T ∈ K[X], obtained by specializing all coeffi-
cients of T at p, if p cancels none of their denominators.

Here is the description of a could-be lifting process. Choose
a generic value p in Am(K), and compute a family of trian-
gular sets that represent the solutions of F (p, X). Apply a
lifting process, to compute triangular sets with coefficients

in the formal power series ring centered at p. When the
precision of the power series is high enough, use a rational
reconstruction process to recover the requested information.
For the introduction of lifting techniques in the context of
polynomial systems solving, see [12, 11, 10, 15, 13].

Recovering completely T 1, . . . , TP using such techniques re-
quires delicate recombinations of factorized triangular sets.
We will not treat the general case here: we present proba-
bilistic algorithms to treat the case when V is irreducible,
and, in the general case, to recover the minimal polynomial
of the variable X1 (which comes from the first polynomials
of each triangular set). We refer to [23] for estimates on the
error probability for the minimal polynomial computation.

We now specify the genericity conditions imposed on the
specialization value p. There exists an hypersurface ∆ of
Am(K) such that, for p not in ∆: (H1) all coefficients in
T 1, . . . , TP can be specialized at p, and (H2) the jacobian
of F (p, X) is invertible on all solutions of F (p, X).

In the sequel, we assume that we are given a point p out-
side ∆ with coordinates in K; randomly choosing this point
is our first probabilistic aspect. The following condition is a
consequence of the above assumptions; since we do not give
the proof of this implication, we take this as a new assump-
tion on p, called H3: all solutions of F (p, X) are described
by the specialization of T 1, . . . , TP at p and if i 6= j, the
specializations of T i and T j at p have no common zero.

In 3.2, we recall some lifting techniques from in [22], that
enable the lifting of the specializations of T 1, . . . , TP at p.
Yet, the solutions of F (p, X) may not be given as the spe-
cialization of T 1, . . . , TP , since they may be more factorized.
Thus in 3.3, we show that the lifting techniques presented
in 3.2 can be applied independently to each factor of the spe-
cializations of T 1, . . . , TP . In 3.4, we treat the case when V
is irreducible. In 3.5, we drop the irreducibility assump-
tion, and show how to recover the minimal polynomial of
X1 modulo IP .

3.1 Additional subroutines

Initial resolution.
The first task is to compute a family of triangular sets
r1, . . . , rQ which represent the solutions of F (p, X); this is
called Solve(F,p). In Subsection 3.5, we also ask that all
triangular sets r1, . . . , rQ define prime ideals. To this effect,
we may use the zero-dimensional solving procedures of [18,
6, 4] . . . In the sequel, we do not take the cost of this phase
into account, all the more as the cost of the lifting phase is
predominant in practice.

Rational Reconstruction.
At the end of the lifting process, we need to recover some
rational functions in P = P1, . . . , Pm from their power series
expansion. More precisely, if c is a formal power series in
P of precision 2κ+1, we look for a rational function C with
denominators of degree at most 2κ of which c is the power
series expansion. Finding such a rational function, if it ex-
ists, amounts to solve a linear system for the coefficients of
C. This is done in time polynomial in M(2κ,m).



3.2 Lifting step
We now present the lifting techniques of [22]. Let T =
(T1, . . . , Tn) be one the triangular sets T 1, . . . , TP . Up to
a change of variables, we can assume that the specialization
value p is (0, . . . , 0). We denote by A the power series ring
K[[P1, . . . , Pm]], and m its maximal ideal, so A/m = K.

Since T generates a prime, hence radical, ideal in K(P )[X],
there exists a n× n matrix A with entries in K(P )[X] such
that F = AT, where T is the vector with entries T1, . . . , Tn,
and F is the vector F1, . . . , Fn. Assumption H1 on p shows
that all coefficients in T admit power series expansions in A.
Since all polynomials in T are monic in their main variable,
the denominators in A are products of those in T , so they
all admit power series expansions in A.

We now see F, T,A with coefficients in A, and denote T
mod m by t = (t1, . . . , tn), that is, T with all coefficients
specialized at p. The hypotheses we now use are the follow-
ing. The first is a consequence of H2 and H3, and the second
comes from the above discussion.

H′1 : The jacobian determinant of F with respect to X is
invertible in the quotient K[X]/(t1, . . . , tn).

H′2 : There exists a n × n matrix A with entries in A[X]
such that the equality F = AT holds.

For k > 0, denote by Ak the ring A/mk, so that A1 =
A/m = K. We want to compute the images of T in the rings
A2κ [X], for κ ≥ 0. This amounts to compute the powers
series expansions of all coefficients of T in K[[P1, . . . , Pm]] at
successive precisions 2κ. The initial value is t = T mod m,
which we assume to be known.

Let κ ≥ 0 be given, and suppose that we know a triangular
set τ = (τ1, . . . , τn) such that τ = T mod m2κ . Using τ , we

want to compute T mod m2κ+1
. We formalize our assump-

tion by seeing τ as a triangular set in A2κ+1 [X] such that

T = τ mod
�

m2κ ·A2κ+1 [X]
�

. Since τ is a triangular set,

all τj are monic, so degXj Tj = degXj τj for j ≤ n.

Let Qκ be A2κ+1 [X]/(τ1, . . . , τn). Then Qκ is a free A2κ+1 -
module, with a canonical monomial basis. We denote by
Jac(τ) and Jac(Fκ) the jacobian matrices of τ and F com-
puted in the matrix algebra over Qκ, and Fκ the image of
F in Qκ. In [22], we prove the following.

Proposition 3. The matrix Jac(Fκ) is invertible in the
matrix algebra over Qκ. Let then δ = (δ1, . . . , δn) be the
product Jac(τ)Jac(Fκ)−1Fκ evaluated over the ring Qκ,

and eδ its canonical preimage in A2κ+1 [X]. Then the equal-

ity T = τ + eδ holds in A2κ+1 [X]. Besides, it is enough to

compute the inverse of Jac(Fκ) modulo m2κ .

This result shows how to compute the new approximation

T mod m2κ+1
, which can be used instead of τ for the next

lifting step. In the sequel, given F , p and τ , we will denote
Lift(t,F,p) the subroutine which performs the operations

above, and outputs T mod m2κ+1
.

Example.
Let us take one parameter P1, two variables X1, X2 and

F1 : 2X2
1−P1+1−X1X

2
2P1−X1X

2
2−X2X

3
1 +X1X2P1−X1X2

F2 : X2
2P1 +X2

2 −X1 +X2X
2
1 −X2P1 +X2.

This system is constructed so that its solutions can be rep-
resented by the following triangular set in Q(P1)[X1, X2].

T1 = X2
1 − P1 + 1, T2 = X2

2 −X1/(P1 + 1).

To compute T1, T2, we choose the specialization value P1 =
0, and solve the specialized system. This gives:

t1 = X2
1 + 1, t2 = X2

2 −X1.

Here κ = 0, 2κ+1 = 2, so the base-ring A2 is Q[[P1]]/(P 2
1 );

τ = (X2
1 + 1, X2

2 −X1) and all computations are done over
Q0 = A2[X1, X2]/(τ1, τ2). The jacobian matrix of τ is

Jac(τ) =

�
2X1 0
−1 2X2

�
,

the inverse of the jacobian matrix of F , Jac(Fκ)−1, is

1

8

�
2P1X2 + (−2P1 − 4)X1 2P1X1X2 + 2P1 + 4
(P1 − 2)X2 + 2P1 − 4 (5P1 − 6)X1X2 − 4X1

�
,

and the image of F in Q0, denoted Fκ, is

(P1X1X2, −P1X2 + P1X1).

Then we apply Proposition 3: we compute the value δ =
(−P1, P1X1), so the approximation at precision P 2

1 is

X2
1 + 1− P1, X2

2 −X1 + P1X1.

This is indeed the expansion of T1, T2 at precision P 2
1 . The

terms in Jac(Fκ)−1 of degree in P1 > 0 are not used, since
Fκ has valuation 1 in P1; this is the last statement in Propo-
sition 3.

Complexity.
We let C be a universal constant such that, for any ring R
and any triangular set T , the operations +,×, and ÷ when it
is possible, can be done modulo T in a numbers of operations
in R polynomial in Cn and

Q
i≤n degXiTi . The inverse of

the determinant of Jac(Fκ) is computed by induction on κ
by Hensel’s Lemma [25, Ch. 9], using multiplications in Qκ:
the only inversion is done for κ = 0, and can be done in
K[X]/(t1, . . . , tn), according to Proposition 3.

An operation +,× in Qκ takes a number of operations in
A2κ+1 polynomial in Cn,

Q
i≤n degXiτi. In terms of opera-

tions in K, an operation in A2κ+1 has a cost polynomial in
M(2κ+1,m), the number of monomials of degree ≤ 2κ+1 in
m variables. Since degXi τi = degXi Ti, the number of oper-

ations in K is polynomial in Cn,
Q
i≤n degXiTi,M(2κ+1,m).

Computing Jac(Fκ) and Fκ requires to evaluate the system
F and its jacobian matrix in Qκ. Since we assume that F
is given by a Straight-Line Program that performs L oper-
ations, this cost is O(nL) operations in Qκ [13]. The other
operations are linear algebra with matrices of size n over
Qκ, which can be done in nO(1) ∈ O(Cn) operations in Qκ.
Finally, the total cost of procedure Lift, in operations in K,
is polynomial in L,Cn,

Q
i≤n degXiTi,M(2κ+1,m).



3.3 Factorized lifting
In practice, we cannot ensure that the resolution of the sys-
tem F (p, X) is given as the specialization of T 1, . . . , TP at
p, since it may be more factorized. Thus, we now prove that
the lifting can be applied to any factor of t = T mod m.

Proposition 4. Let r be a triangular set in K[X] such
that the ideal generated by r contains t. Then there exists a
triangular set R in A[X] such that R mod m = r and the
ideal generated by R contains T . The successive approxima-
tions R mod m2κ can be computed using Proposition 3.

Proof. First consider a particular case: we suppose that
there exists J ≤ n such that the following holds. Let B
denote A[X1, . . . , XJ−1]/(T1, . . . , TJ−1) and n the ideal of B
induced by m + (T1, . . . , TJ−1). Thus, the quotient B/n is
K[X1, . . . , XJ−1]/(t1, . . . , tJ−1). Our assumption is:

• r1, . . . , rJ−1 = t1, . . . , tJ−1;

• there exists a polynomial qJ in B/n [XJ ] such that
tJ = qJrJ holds in B/n [XJ ];

• for j in J + 1, . . . , n, we see tj as a polynomial in the
variables XJ+1, . . . , Xj with coefficients in B/n [XJ ],
and assume that rj is obtained by reducing all these
coefficients modulo rJ .

Since A is complete with respect to the m-adic topology, B
is complete with respect to the n-adic topology. Hypotheses
H′1 and H′2 imply that the derivative of tJ w.r.t. Xj is in-
vertible in B/n [XJ ]/(tJ). Hensel’s Lemma then shows that
there exists QJ and RJ in B such that TJ = QJRJ holds in
B[XJ ] and rJ = RJ mod n. The polynomial RJ is defined
in B[XJ ], but we may identify it to its canonical preimage
in A[X1, . . . , XJ ] ⊂ A[X1, . . . , Xn].

For j < J , we define Rj = Tj . For j > J , we define
Rj as follows. We see Tj as polynomial in the variables
XJ+1, . . . , Xj with coefficients in B[XJ ], and define Rj by
reducing all these coefficients modulo RJ . As such, this
polynomial is a multivariate polynomial in XJ+1, . . . , Xj
with coefficients in A[X1, . . . , XJ ] modulo T1, . . . , TJ−1, RJ ,
but as above, we may identify it with its canonical preim-
ages in A[X1, . . . , Xn]. Through this identification, r = R
mod m.

We then prove the existence of a matrix B such that the
equality T = BR holds, by successively constructing its
lines. For j < J , we have Tj = Rj , so we take a line
composed only of 0’s, with 1 at entry j. Let us now take
j = J . The equality TJ = QJRJ in B[XJ ] can be rewrit-
ten in A[X1, . . . , XJ ] as TJ = QJRJ + SJ , where SJ is in
the ideal (T1, . . . , TJ−1) = (R1, . . . , RJ−1), and RJ is seen
in A[X1, . . . , XJ ]. This enables to define the J-th line of
B. Finally, we take j > J . Then Rj is such that Rj = Tj
with all coefficients reduced modulo RJ in B[XJ ]. Thus,
Tj = Rj + sj , where sj is in the ideal generated by RJ in
B[XJ , . . . , Xj ]. From the definition of B, this can be rewrit-
ten as Tj = Rj + Sj in A[X1, . . . , Xj ], where Sj is in the
ideal (T1, . . . , TJ−1, RJ) = (R1, . . . , RJ). This enables to
complete the definition of B.

We now turn to the proposition itself. Let J be the least
integer such that rJ 6= tJ . If r = t, we take J = n + 1.
We prove by induction on J that if T satisfies hypotheses
H′1, H′2, and t = T mod m belongs to the ideal generated
by r, then there exists a triangular set R such that r = R
mod m, and a n × n matrix B with entries in A[X] such
that T = BR. We call this property P (J); P (n + 1) is
obvious, so we suppose that J ≤ n and that P is proved for
J + 1, . . . , n+ 1.

Since tJ is in the ideal generated by r, it is easy to deduce
that rJ divides tJ in K[X1, . . . , XJ−1]/(t1, . . . , tJ−1)[XJ ].
We then define a triangular set s in K[X1, . . . , Xn] as fol-
lows. We take s1, . . . , sJ = r1, . . . , rJ , and for j > J we
define sj as tj with all coefficient reduced modulo sJ . Thus
T and s satisfy the hypotheses of the previous paragraphs,
which enables to define a triangular set S and a matrix B
such that T = BS and s = S mod m.

The triangular set S satisfies H′1 and H′2. For j > J , sj − tj
is in the ideal generated by r. Since tj is in this ideal, sj is
in this ideal too. Consequently, we can apply our induction
argument on S and r, since now s and r coincide at least up
to level J . This shows the existence of a triangular set R and
a matrix B′ such that S = B′R, and R mod m = r. Thus,
T = BB′R. This shows P (J), which gives the first part of
the proposition. We have F = ABB′R, which gives H′2 for
R. It is easy to check that R satisfies H′1, so Proposition 3
applies to R. �

3.4 The irreducible case
We now assume that V is irreducible. Then its generic zeros
can be described by a single triangular set T . We fix k ≤ n,
and show how to compute (T1, . . . , Tk) by lifting techniques.

By assumption H3, the specialization of T at p gives a de-
scription of the solutions of the system F (p, X). Yet, the
specialized system may not define an irreducible set, and
could be represented by more than one triangular set. Thus,
we explicitly require that Solve(F,p) outputs a single tri-
angular set, which must then be the specialization of T at
p. Then the algorithm is straightforward:

r <- Solve(F,p)

while not(Finished) do

r <- Lift(r,F,p)

Finished,R1,...,Rk <- Stop(r)

end while

return R1,...,Rk

The subroutine Stop first tries to compute a rational recon-
struction of all the coefficients in r1, . . . , rk, yielding polyno-
mials R1, . . . , Rk. Even if the reconstruction is possible, it
might not coincide with T1, . . . , Tk, if we have stopped the
lifting too early. So we choose a witness value p′, which must
satisfy the same conditions as p, and compute a description
t′1, . . . , t

′
n of the solutions of the system F (p, X). Stop tests

if the specialization of R1, . . . , Rk at p′ is t′1, . . . , t
′
k. If the re-

construction is possible and R passes the test, Stop outputs
true and R; else it returns false. The choices of ,p,p′ that
lead to an error belong to a proper algebraic set of A2m(K).



For such lifting techniques, the whole cost is equivalent to
the cost of the last lifting step. Let Dk be the maximal
degree in P of the coefficients in T1, . . . , Tk. Then the lift-
ing must be run to precision 2p+1, with p = dlog2(Dk)e.
From the analysis of Subsection 3.2, the cost of the last lift-
ing step is polynomial in L,Cn,

Q
i≤n degXiTi,M(2p+1,m).

The product of the degrees is the number of generic solu-
tions, i.e. deg π (see the introduction); since M(2p+1,m) is
polynomial in M(Dk,m), the cost of the lifting is polyno-
mial in L,Cn,deg π,M(Dk,m). From Subsection 3.1, the
cost of the rational reconstruction fits into this bound, so
Theorem 2 is proved.

3.5 Computing a minimal polynomial
Let us drop the irreducibility assumption, and let M1 ∈
K(P )[X1] be the minimal polynomial of X1 modulo IP . We
now show how to compute M1 by lifting techniques.

The introduction mentions the use of primitive element tech-
niques for this question (X1 is not necessarily a primitive
element of AP ); we now relate this to triangular sets. The
first polynomials of each triangular set, T 1

1 , . . . , T
P
1 , may

not be all distinct. Without loss of generality, assume that
T 1

1 , . . . , T
p
1 are representatives of the distinct polynomials

among them, for some p ≤ P . Since T 1, . . . , T p define prime
ideals, T 1

1 , . . . , T
p
1 are irreducible, so their product is M1.

We need a new assumption on p. We denote by Vp the
zero-set of F (p, X), and by m1 the minimal polynomial of
X1 modulo I(Vp). Then we make the following assumption,
denoted H4, on p, which is satisfied on an open subset of
Am(K): m1 is the specialization of M1 at p.

Let r1, . . . , rQ be triangular sets that describe the solutions
of F (p, X), and define prime ideals in K[X]. By assumption
H3, T 1, . . . , TP can be specialized at p, and their specializa-
tions t1, . . . , tP also describe the solutions of F (p, X). Be-
sides, H3 shows that the intersection of the ideals generated
by t1, . . . , tP is actually their product. Then for i ≤ Q, there
exists j such that tj is in the ideal defined by ri, so Propo-
sition 3 shows that the lifting process can be applied to ri.
Let thus R1, . . . , RQ be triangular sets with coefficients in
K[[P ]] such that, for i ≤ Q, Ri mod m = ri, and there ex-
ists j such that T j is contained in the ideal generated by Ri.
In this case, we see that Ri1 divides T j1 .

The polynomials T j1 and M1 are actually in K(P )[X1], so if
we see them in K[[P ]][X1], their coefficients are the Taylor
expansions of some rational functions. This is likely not the
case for the polynomials Ri1, but we can still recover M1.

Proposition 5. Reorder r1, . . . , rQ so that r1
1, . . . , r

q
1 are

representatives of the distinct polynomials in r1
1, . . . , r

Q
1 , for

some q ≤ Q. Then
Q
i≤q R

i
1 = M1 in K[[P ]][X1].

Proof. We first show that R1
1, . . . , R

Q
1 are irreducible in

the factorial ring K[[P ]][X1]. Suppose that Ri1 = GH in
K[[P ]][X1]. Since Ri1 is monic, we may suppose that G and
H are monic. Then ri1 = (G mod m)(H mod m). Since ri1
is irreducible, it follows that for instance G mod m is a unit.
Since G is monic, G is the constant 1, so Ri1 is irreducible.

The product
Q
i≤q r

i
1 is the minimal polynomial of X1 mod-

ulo I(Vp), that is m1. The corresponding R1
1, . . . , R

q
1 are

all pairwise distinct, hence pairwise coprime, since they are
irreducible. Since each of them divides one of the polyno-
mials T j1 , each of them divides M1. Thus

Q
i≤q R

i
1 divides

M1. The degree of
Q
i≤q R

i
1 is the degree of

Q
i≤q r

i
1, that is

the degree of m1. By hypothesis H4, it coincides with the
degree of M1. Thus,

Q
i≤q R

i
1 = M1. �

This gives the following algorithm to compute M1:

r^1,..,r^Q <- Solve(F,p)

## r^1,..,r^Q are chosen to define prime ideals.

## we reorder them and take q so that

## r^1_1,..,r^q_1 are a set of representatives of

## the distinct polynomials among r^1_1,..,r^Q_1.

while not(Finished) do

for i in [1..q] do r^i <- Lift(r^i,F,p)

Finished,M <- Stop(r^1,..,r^q)

end while

return M

The subroutine Stop computes the product of all polynomi-
als ri1, and if possible, a rational reconstruction of all coeffi-
cients of the product. This gives a polynomial M , on which
we apply a probabilistic check: as before, we test whether M
specializes on the minimal polynomial of X1 for a randomly
chosen witness p′.

Let D1 be the maximal degree in P of the coefficients in M1,
and p = dlog2(D1)e. As in Subsection 3.4, the complexity
is polynomial in L,Cn,M(D1,m) and

P
i≤q
Q
j≤n degXj r

i
j .

This last sum is at most the number of generic solutions of
the system F , i.e. deg π. This proves Theorem 3.

4. APPLICATIONS
We present two applications of our algorithms, from number
theory and cryptography. Our Magma [1] implementation
outperformed the built-in functions on these examples; the
probabilistic aspect was not a problem: problem-specific ar-
guments show that our output is correct. Our computations
were done on a Compaq XP/1000 EV6 from the MEDICIS
resource center [2].

4.1 Genus 2 curves with (2,2)-split Jacobian
Genus 2 curves with Jacobian (2,2)-isogeneous to a product
of elliptic curves appear frequently in number theory: cur-
rent rank and torsion records are obtained for such curves.
In [9], we give an explicit classification of such situations,
using the algorithms presented here. We now describe part
of the necessary computations.

Isomorphism classes of genus 2 (resp. elliptic) curves are
classified by the Igusa invariants j1, j2, j3 (resp. by their
j-invariant). There exists a polynomial T (J1, J2, J3) such
that a genus 2 curve has (2,2)-split Jacobian if and only if
its Igusa invariants cancel T ; then the j-invariants of the
elliptic curves are given by a polynomial of degree 2, whose
coefficients are rational functions of j1, j2, j3.

A genus 2 curve with (2,2)-split Jacobian admits the equa-
tion y2 = x6 +ax4 +bx2 +1; its Igusa invariants are rational



functions J1(a, b), J2(a, b), J3(a, b). The underlying elliptic
curves are isomorphic to the curves y2 = x3 + ax2 + bx+ 1;
their j-invariant is a rational function J(a, b).

Let F be the system {j − J(a, b), ji − Ji(a, b) (i ≤ 3)} in
Q[j1, j2, j3, j, a, b] and take j1, j2 for parameters: we work
in Q(j1, j2)[j3, j, a, b] modulo the ideal generated by F after
canceling denominators. This ideal is prime of dimension
zero, so its solutions are represented by a triangular set in
Q(j1, j2)[j3, j, a, b]. The first polynomial T1 ∈ Q(j1, j2)[j3]
is the relation T mentioned above. The second polynomial
T2 ∈ Q(j1, j2)[j3, j] gives j in terms of j1, j2, j3 when the
denominators of its coefficients do not vanish.

We use the algorithm of Section 3.4. T1 is computed in 22
sec., and T1, T2 in 140 sec. As a comparison, using the algo-
rithm of [22], a representation by primitive element requires
more than 400 sec. — see [23, Ch. 16, 20, 25] for details.
This illustrates the interest of our “triangular” approach,
when only a partial information is wanted.

4.2 Modular equations
In [8, 23], modular equations in high genus are defined. For a
hyperelliptic curve C, and a prime `, we study the `-torsion
divisors in the Jacobian of C: over a finite field, this enables
to compute the cardinality of the Jacobian, a question of
primary importance for hyperelliptic cryptosystems [8].

The `-torsion divisors form a finite group G`, and are so-
lutions of an algebraic system, in suitable coordinates. We
define t` as a well-chosen function defined on G`, and the
modular equation is the minimal polynomial Ξ` of t` in G`.
It behaves like a revolvent: in [8], it is shown how to use its
factorization patterns for cardinality determination.

Computing Ξ` for a generic curve is done following Sec-
tion 3.5. We treated the 3-torsion in genus 2; the corre-
sponding system has 3 equations in 3 unknowns X1, X2, X3

and 3 parameters P1, P2, P3 which parameterize curves of
genus 2. The output Ξ3 ∈ Q(P1, P2, P3)[T ] is computed
within 4.5 h.; for comparison, it takes more than 20 h. to
compute a representation by primitive element. Our result
is used within Magma’s hyperelliptic curves package CrvHyp.
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