
Multivariate Power Series Multiplication

Éric Schost, LIX, École polytechnique
91128 Palaiseau, France

Eric.Schost@polytechnique.fr

ABSTRACT
We study the multiplication of multivariate power series. We
show that over large enough fields, the bilinear complexity of
the product modulo a monomial ideal M is bounded by the
product of the regularity of M by the degree of M . In some
special cases, such as partial degree truncation, this esti-
mate carries over to total complexity. This leads to complex-
ity improvements for some basic algorithms with algebraic
numbers, and some polynomial system solving algorithms.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algebraic Algorithms

General Terms
Algorithms, Experimentation, Theory

Keywords
Power series, multiplication

1. INTRODUCTION
We investigate the complexity of the multiplication of mul-
tivariate power series. We will work modulo a 0-dimensional
monomial ideal M in k[X1, . . . , Xn], where k is a field. This
is no loss of generality, since the k-algebras k[X1, . . . , Xn]/M
and k[[X1, . . . , Xn]]/M are isomorphic.

Complexity conventions. Once k is fixed, M is specified
by the number n of variables and the degrees of some gener-
ators. Thus, our complexity estimates are functions defined
on some subsets of NN, which may vary, depending on M
being arbitrary, or restricted to some special patterns, such
as total or partial degree truncation (unless specified other-
wise, the number of variables is not fixed). These estimates
will be expressed directly in terms of the degrees of the gen-
erators of M , or in terms of some quantities attached to the
algebra k[X1, . . . , Xn]/M : its dimension as a k-vector space,

also called the degree degM of M , and possibly the regularity
regM of M , which is defined later on.

If V is a set, and f and g are maps V → R>0, we say
that f ∈ O(g) if there exists C ∈ R such that f(v) ≤
Cg(v) holds for all v in V . To make expressions involv-
ing nested logarithms well-defined in all cases, we write
lg (x) = max(1, log2(max(x, 1))). The notation f ∈ Olg (g)
indicates the omission of logarithmic factors, that is, that
there exists a constant α such that f is in O(glg α(g)).

Previous work. In all that follows, we will distinguish the
bilinear complexity, which estimates the number of algebra
multiplications, and is also called rank, and the total com-
plexity, which counts linear operations as well (precise defi-
nitions are given in the next section). We start by reviewing
the previous results in one variable, i.e. when n = 1.

• The rank of k[X1]/(X
d
1) is at least 2d− 1 [33, 16], and if k

has cardinality at least 2d − 1, this is also an upper bound.
Hence, in this case, the rank of power series multiplication
equals that of polynomial multiplication.

• For some specific multiplication algorithms (with complex-
ity more than linear, such as Karatsuba or Toom-Cook algo-
rithms), truncated power series multiplication is faster than
polynomial multiplication by a constant factor, regarding
total and bilinear complexity [26, 18].

When n ≥ 2, the situation is more complex, and results
might depend on the shape of the quotient algebra. We will
in the first place focus on the “general” case, for which no as-
sumption is made on the ideal M . We will also mention two
important special cases, partial and total degree truncation.

• Truncating in partial degrees (d1, . . . , dn) amounts to com-

pute modulo the ideal (Xd1

1 , . . . , Xdn
n) of degree d1 · · · dn;

the support of such power series is a rectangular parallelo-
tope. Section 4 gives applications of this truncation pattern.

• Truncating in total degree d amounts to compute modulo
the ideal generated by all monomials of total degree d, which
has degree

`

d+n−1
n

´

; the support of such power series is a
simplex. This truncation pattern is used in various versions
of Newton-Hensel lifting algorithms, see [23] for references.

In the case n = 2, the following results are known for these
two special truncation patterns. For truncation in partial

degrees (d, d), Bläser [5] gave a lower bound for the rank of
7
3
d2−O(d), and an upper bound of 3d2+O(d) (for base fields

of characteristic 0, containing all roots of unity), improving
results of Schönhage [32]. For truncation in total degree d,
Bläser [5] gave a lower bound for the rank of 5

4
d2−O(d), and

an upper bound of 3
2
d2 + O(d) (with the same restrictions

on k), again improving results of [32].

Let now the number of variables be arbitrary. From now on,
we will denote by T the monomial basis of k[X1, . . . , Xn]/M .
The direct approach to power series multiplication consists
in expanding products. Then, obtaining the coefficient of a
single monomial Xt1

1 · · ·Xtn
n ∈ T in the output requires to

perform 2(t1 + 1) · · · (tn + 1) operations. For partial degree
truncation, the total cost is then approximately 1

2n (degM)2;

for total degree truncation, the total cost is about 1
n!

(degM)2.
In any case, the cost is at most quadratic in degM .

A second approach is to perform the product as that of poly-
nomials, and discard unwanted coefficients: the penalty in-
duced by computing more terms than necessary can be com-
pensated by the use of fast multiplication algorithms. To
give complexity estimates for this approach, let VM denote
the cardinality of the set of terms T×T: this is the number
of monomials that appear when power series are multiplied
as polynomials. Then over fields of characteristic 0, using
Emiris and Pan’s sparse multiplication algorithm [15] yields
a total complexity in Olg (nVM).

At worst, VM grows quadratically with degM . However,
better estimates hold in many cases. For instance, for partial
degree truncation, VM ≤ 2n degM ; thus in this case, the
product modulo M can be done with a total complexity in
Olg (2n degM). Note however that this particular result on
partial degree truncation actually holds more generally (it
suffices that k is a ring), using Kronecker’s substitution [14].

Finally, fast algorithms are known for total degree trunca-
tion. Let M ⊂ k[X1, . . . , Xn] be the ideal generated by all
monomials of total degree d. In [23], with Lecerf, we gave
sharp estimates for the product modulo M in characteristic
0: the total complexity is in O(degM lg 3(degM)lg lg (degM)),
and the bilinear complexity is at most degM lg (degM). An
algorithm of Griewank’s using similar ideas was previously
given in [4]; it has the same bilinear complexity, but the to-
tal complexity relies on results for evaluation / interpolation
that are not detailed there.

In [19], van der Hoeven extended the result of [23] to weighted
total degree; he gave better estimates in [20], but the algo-
rithm of [20, Section 5] does not seem to work as claimed,
leaving the correctness of these results pending. Finally,
Bläser gave in [5] the lower bound degM (3 − ε(degM)) for
the rank, for fixed d and n → ∞, with ε(degM) → 0.

Our contribution. We obtain two kinds of results: on the
rank of the multiplication modulo an arbitrary 0-dimensional
monomial ideal, and on the total complexity in some specific
cases. The core of these results is to prove that power series
modulo M can be approximately multiplied with a number
of multiplications that equals the degree of M , using the
idea of approximate algorithm introduced in [2, 1, 3].

In one variable, this approach is well-known, and can be
easily illustrated for multiplication modulo X2

1 [3, 30]. If A
and B ∈ k[X1] have degree at most 1, then computing AB
modulo X2

1 −ε2 (ε is a new variable) and letting ε = 0 in the
result yields AB modulo X2

1 . Now, the product AB modulo
X2

1−ε2 can be obtained by (i) evaluating A and B at ±ε, (ii)
multiplying the values, (iii) interpolating the result at ±ε.
Thus, this algorithm requires two bilinear multiplications
of degree 1 polynomials in ε, plus some linear operations.
Generalizing this to an arbitrary ideal M will show that the
rank of multiplication modulo M is essentially bounded by
the product of the regularity of M by the degree of M .

One would like a similar result to hold for total complex-
ity; to obtain that extension, the missing elements are fast
(linear-time) algorithms for some multivariate evaluation /
interpolation questions (which generalize evaluation / inter-
polation at ±ε used above). Even though no such result is
known for general M , we will however obtain suitable algo-
rithms in the specific case of partial degree truncation.

Acknowledgments. I thank Alin Bostan, Marc Giusti,
Andreas Griewank, Joris van der Hoeven, Grégoire Lecerf
and Bruno Salvy for fruitful discussions.

2. MAIN RESULTS
Basic definitions. Let k be a field. Given n ≥ 1, we write
k[X1, . . . , Xn] for the ring of polynomials in n variables over
k. A term is a product Xα1

1 · · ·Xαn
n , with all αi ≥ 0; if S is a

finite set of terms, Span(S) ⊂ k[X1, . . . , Xn] is the k-vector
space of all sums

P

t∈S
ctt, with all ct in k.

Let M be a 0-dimensional monomial ideal in k[X1, . . . , Xn],
so that Q = k[X1, . . . , Xn]/M is a finite-dimensional k-
vector space. Let T be the set of terms not in M : T is
the monomial basis of Q, so, as a k-vector space, Q is iso-
morphic to Span(T). The degree of M , written degM , is the
dimension of k[X1, . . . , Xn]/M over k, that is, degM = |T|.
The regularity of M , written regM , is the first degree d for
which the degree d component of the graded algebra Q is
zero. Any term in T has a total degree less than regM .

For 1 ≤ i ≤ n, let di be the least integer such that Xdi
i

belongs to M (di is well-defined, since M has dimension 0).
We will work under the following assumption.

For all i, di is less than or equal to the cardinality of k.

For 1 ≤ i ≤ n and 0 ≤ j < di, let ai,j be in k, with the
requirement that ai,j 6= ai,j′ for all j 6= j′. We will write

A1 = [a1,0, . . . , a1,d1−1], . . . , An = [an,0, . . . , an,dn−1].

Then, to the set T we associate AT ⊂ A1 ×· · ·×An given by

AT = [(a1,c1 , . . . , an,cn) | Xc1
1 · · ·Xcn

n ∈ T] ;

for definiteness, we may suppose that T is ordered in some
way, so that AT inherits its order. The set of points AT is a
parameter for our algorithms: in our computational model,
any value depending on these points only will be available
for free (the cost of computing the relevant such values could
be estimated as well, using a more involved model).

To illustrate this last definition, take for instance ai,j = j, if

the characteristic of k allows this. Then, the set AT equals

[(c1, . . . , cn) | Xc1
1 · · ·Xcn

n ∈ T] ,

so it equals the set of exponents of the terms in T. In any
case, we have the equality |AT| = |T| = degM , and the set
AT has the same “shape” as the above set of exponents.

Model of computation. We will estimate both the rank
(which counts bilinear multiplications) and the total com-
plexity of the multiplication in Q. The former quantity is
defined in the bilinear algorithm computational model, and
the later using linear straight-line programs.

Let R be a ring, and S be an R-algebra, which is also a
free R-module. The inputs and outputs of our algorithms
are given by means of their coordinates on an R-basis of S
(all cases considered below come with a natural choice of
a basis, which we will not mention explicitly). A bilinear
algorithm of length ` for the multiplication in S is the data
of 2` R-linear forms f1, . . . , f` and h1, . . . , h` over S, and `
elements w1, . . . , w` in S, such that the equality

AB =
X̀

i=1

fi(A)hi(B)wi

holds for all A and B in S. The rank of the multiplication
map in S is the smallest length of such a bilinear algorithm.
We will further say that a bilinear algorithm has total com-
plexity L if ` ≤ L, and if the linear map

A 7→ [f1(A), . . . , f`(A)], B 7→ [h1(B), . . . , h`(B)],
[λ1, . . . , λ`] 7→

P

i λiwi

can be computed by a R-linear straight-line program of size
at most L (see [11, Chapter 13] for the definition).

Multiplication, evaluation and interpolation. Our al-
gorithms rely on polynomial multiplication, evaluation and
interpolation. We now give the corresponding notation.

We let MBil and M be two maps N → N such that for any
ring R and any integer s, the product of two polynomials
of degree at most s in R[T] can be computed by a bilinear
algorithm of length MBil(s) and total complexity M(s). We
also impose some standard growth conditions on these maps,
see for instance [17, Chapter 8]. It follows from [12] that
there exists a constant K such that one can take

MBil(s) ≤ Ks lg (s), M(s) ≤ Ks lg (s)lg lg (s). (1)

Next, we consider some questions of multivariate evaluation
and interpolation, for the family of points AT defined above.
We write Eval(AT) for the minimal size of a linear straight-
line program that computes the evaluation map

Span(T) → kAT

P 7→ [P (a) | a ∈ AT],

and Interp(AT) for the minimal size of a linear straight-line
program that computes the inverse map (Section 3 gives the
proof of invertibility). In our computational model, naive
estimates for Eval(AT) and Interp(AT) are quadratic in degM .

Main results: the general case. We can now give our
main result (proved in Section 3) on the rank and the total

complexity of multiplication modulo an arbitrary monomial
ideal. The algorithm is parametrized by the choice of points
AT: while the rank estimate does not depend on it, the total
complexity does, since evaluation and interpolation on AT

appear as “linear subroutines” of the underlying algorithm.

Theorem 1. The rank of the multiplication in Q admits
the upper bound MBil(regM) degM . The total complexity is
in O ((Eval(AT) + Interp(AT))regM + M(regM) degM) .

The best results one could obtain with these techniques
would be total complexity estimates in Olg (regM degM).
We already know that M(regM) is in Olg (regM). Thus, the
main missing elements are linear-type estimates for evalua-
tion and interpolation, that would hold for any choice of M .
For the moment, I am not aware of such results.

It should also be stressed that Theorem 1 does not improve
the previous results in all situations. Its worst case occurs for
n = 1: even with fast polynomial arithmetic, the algorithm
of Theorem 1 then requires quadratic time, versus an almost
linear complexity for the naive algorithm. Our algorithm is
efficient when the number of variables is large; we will see
that in a sense, it complements the previous approaches.

Partial degree truncation. More complete results are
obtained for multiplication truncated in partial degree, since
in this case, sharp estimates on Eval(AT) and Interp(AT) are
known in terms of univariate evaluation / interpolation. We
will prove the following corollaries in Section 4 (following the
convention given before, the constants in the big-O notation
are independent of the number of variables).

Corollary 1. Let M be the ideal (Xd1

1 , . . . , Xdn
n). Then

the total complexity of the multiplication modulo M is in

O

regM degM

X

i

M(di)lg (di)

di
+ M(regM) degM

!

.

Using regM ≤
P

i di and degM =
Q

i di, and Equations (1),
the total complexity is thus in the complexity class

Olg (regM degM) ⊂ Olg

““

X

i

di

”“

Y

i

di

””

.

As mentioned above, this algorithm is useful when the num-
ber of variables is large with respect to the degrees. Combin-
ing it with the algorithm using Kronecker’s substitution, we
will get the following corollary. It shows that multiplication
truncated in partial degree has an almost linear complexity
in degM .

Corollary 2. For any ε > 0, the total complexity of the
product modulo (Xd1

1 , . . . , Xdn
n) is in O((degM)1+ε).

Of course, estimates in Olg (degM) would be desirable, but
our methods do not seem to give such results.

Applications. We will conclude this paper by two appli-
cations. First, we show how to speed up algorithms for the

addition of algebraic numbers: over fields of small charac-
teristic, the algorithm of [7] uses multivariate power series
multiplication truncated in partial degree. The second ap-
plication is the resolution of polynomial systems: Lecerf’s
deflation algorithm for multiple roots [21] requires multipli-
cations modulo suitable “gradients of ideals”, which are here
similar to multiplications truncated in partial degree. Our
algorithms improve the known results for both questions.

3. PROOF OF THEOREM 1
We now prove Theorem 1, still using the notation of Sec-
tion 2. We first recall a deformation result of Macaulay’s [24].
Let g1, . . . , gR be monomial generators of M such that gi

does not divide gj , for i 6= j. For 1 ≤ r ≤ R, we write

gr = X
δ1,r

1 · · ·X
δn,r
n .

Let A1, . . . , An and AT be the sets of points introduced in
the previous section, and let ε be a new indeterminate over
k. Then, for 1 ≤ r ≤ R, we define the polynomial

Gr =
n
Y

i=1

δi,r−1
Y

j=0

(Xi − εai,j),

so that Gr is in k[ε, X1, . . . , Xn] ⊂ k(ε)[X1, . . . , Xn], and
gr = Gr(0, X1, . . . , Xn). Up to the use of the parameter ε,
this definition is due to [24]. Together with generalizations,
it is studied in more details in [25], who gives references to
other occurrences in the literature.

Let us fix a monomial order < that refines the total degree,
in both k[X1, . . . , Xn] and k(ε)[X1, . . . , Xn]: in particular,
for 1 ≤ r ≤ R, the leading term of Gr is gr. Then the
following results are proved in [25] (see also [29]).

Proposition 1. The polynomials Gr(1, X1, . . . , Xn), 1 ≤
r ≤ R, form the Gröbner basis in k[X1, . . . , Xn] of the
ideal of the set of points AT ⊂ An(k). The polynomials
G1, . . . , GR form the Gröbner basis in k(ε)[X1, . . . , Xn] of
the ideal of the set of points [εa | a ∈ AT] ⊂ An(k(ε)).

The first part of the proposition shows that the map

kAT → Span(T)
[P (a) | a ∈ AT] 7→ P

is well-defined, as claimed previously. The next interme-
diate result is to relate reductions modulo g1, . . . , gR and
G1, . . . , GR. For A in k(ε)[X1, . . . , Xn], we write Rg(A) and
RG(A) for its normal forms modulo respectively g1, . . . , gR

and G1, . . . , GR. For A in k[ε, X1, . . . , Xn], we write deg A
for its total degree in ε, X1, . . . , Xn.

Lemma 1. Let A ∈ k[X1, . . . , Xn] ⊂ k(ε)[X1, . . . , Xn].
Then RG(A) is in k[ε, X1, . . . , Xn] ⊂ k(ε)[X1, . . . , Xn], its
specialization at ε = 0 is Rg(A) and deg RG(A) ≤ deg A.

Proof. It suffices to prove the result for terms; we do
it by induction for the order <. The property holds for all
terms in T; let thus t /∈ T be a term, such that the property
holds for all terms less than t for the order <.

The remainder Rg(t) is 0; let δ be a term and 1 ≤ r ≤ R
be such that t = δgr, and let P = t − δGr. Then, P is in
k[ε, X1, . . . , Xn], and is less than t for the order <. Besides,
RG(P) = RG(t) and deg P = deg t (since Gr is homogeneous
in ε,X1, . . . , Xn).

Write P =
P

t′<t pt′t
′ with all pt′ in k[ε]; then RG(P) =

P

t′<t pt′RG(t′). By the induction assumption, RG(P) is in
k[ε, X1, . . . , Xn] and deg RG(P) ≤ maxt′{deg pt′+deg RG(t′)}
is upper bounded by maxt′{deg pt′ +deg t′} = deg P . So the
first and last properties hold for t.

To conclude, note that gr − Gr is in εk[X1, . . . , Xn]. Thus,
P = δ(gr − Gr) is in εk[X1, . . . , Xn] as well, and it is then
also the case for RG(P). Letting ε = 0 in RG(P) = RG(t)
yields 0 = Rg(t), concluding the proof.

We can then describe our multiplication algorithm. Given A
and B in Span(T) ⊂ k[X1, . . . , Xn], it outputs C = Rg(AB).
Let Cε = RG(AB). By Lemma 1, Cε can be written

Cε =
X

i≤µ

Ci,0 + Ci,1ε + · · · + Ci,ei
εei ,

for some µ and ei ≥ 0, with Ci,j homogeneous of degree i in
k[X1, . . . , Xn]. The same lemma shows that C =

P

i≤µ Ci,0

and that i + ei ≤ deg AB < 2 regM for all i, so µ < 2 regM .

Let us evaluate A and B on all points εa, for a ∈ AT, and
multiply these values. The last part of Proposition 1 shows
the equality Cε(εa) = A(εa)B(εa) for all a ∈ AT.

For i < 2 regM , let Γi =
P

j+`=i Cj,` ∈ k[X1, . . . , Xn]; then
Ci,0 is the homogeneous component of degree i of Γi. Since
Cε(εa) =

P

i Γi(a)εi is known for all a ∈ AT, Γi is obtained
by interpolation on AT. This yields the following algorithm.

Multiplication modulo g1, . . . , gR.

Input: A and B in Span(T).

Output: The product AB modulo g1, . . . , gR.

1. Let vA = [A(εa) | a ∈ AT] and vB = [B(εa) | a ∈ AT].

2. Compute the pairwise product vC of vA and vB .

3. For i < 2 regM , compute Γi by interpolating on AT the
degree-i coefficients of the entries of vC . Let Ci,0 be
the homogeneous component of degree i of Γi. Return
P

i<2 regM
Ci,0.

Analysis. Evaluating the polynomial A ∈ k[X1, . . . , Xn] at
[εa | a ∈ AT] is done as follows. Let A = A0 + · · ·+Aδ, with
Ai homogeneous of degree i; then A(εa) =

P

i≤δ Ai(a)εi.
Thus, vA is obtained by evaluating all polynomials Ai on
AT. Since A is in Span(T), δ is less than regM , and all
Ai are in Span(T) as well; thus, vA is obtained by less than
regM evaluations on AT. The same holds for vB . The entries
of vA and vB have degree in ε less than regM , so all entries
of vC are obtained for degM further multiplications in k[ε] in
degree less than regM . Finally, C is recovered by performing
at most 2 regM interpolations on AT.

Evaluations and interpolations do not contribute to the bi-
linear complexity, which is thus degM times the bilinear cost
of univariate polynomial multiplication in degree less than
regM . This gives the first part of Theorem 1. To get the
total complexity, one adds the costs of evaluation and inter-
polation, to the total cost of the polynomial multiplications.
This concludes the proof.

4. SPECIAL CASES AND APPLICATIONS
Giving precise total complexity estimates requires results
on the functions Eval and Interp, that is, on multivariate
evaluation and interpolation. I do not know sharp results
for this in general; however, it is easy to give estimates in
the particular case of partial degree truncation. This section
is devoted to present a standard algorithm for this task, and
some applications and extensions. We first review previous
results on univariate evaluation and interpolation.

Let B be d pairwise distinct points in k. We will write
EvalUni(B) for the minimal size of a linear straight-line pro-
gram that computes the linear map P 7→ [P (b) | b ∈ B],
where P ∈ k[T] has degree less than d; similarly, we write
InterpUni(B) for the minimal size of a linear straight-line
program that computes the inverse univariate interpolation
map. The coefficients of these linear straight-line programs
are functions of B: in our computational model, we do not
take the cost of computing these coefficients into account.

For arbitrary points, EvalUni(B) and InterpUni(B) belong to
O(M(d)lg (d)), see [17] and references therein, as well as [8]
for more recent algorithms. Better estimates are known
in special cases, if the points B form a geometric progres-
sion [28, 6, 10] or are suitable powers of a root of unity [20].

4.1 Truncation in partial degree
We consider here truncation in partial degrees (d1, . . . , dn);
we prove Corollaries 1 and 2 and present an application to
computation with algebraic numbers. The notation of Sec-
tion 2 is still in use.

Evaluation and interpolation on a rectangular grid.

When truncating in partial degree, the basis T is the set of
all monomials Xt1

1 · · ·Xtn
n , with 0 ≤ ti < di for 1 ≤ i ≤ n.

The multivariate evaluation and interpolation problems we
have to solve then become the following: Evaluation requires
to evaluate a polynomial in Span(T) on the rectangular grid
AT = A1 × · · · × An, with

A1 = [a1,0, . . . , a1,d1−1], . . . , An = [an,0, . . . , an,dn−1],

and interpolation is the inverse operation. Fast solutions
to these problems are well known. Let P ∈ Span(T) ⊂
k[X1, . . . , Xn]. To perform evaluation, we proceed with one
variable at a time. We first compute the d1 polynomials

P (a1,0, X2, . . . , Xn), . . . , P (a1,d1−1, X2, . . . , Xn)

in k[X2, . . . , Xn]. Proceeding separately with each mono-
mial in X2, . . . , Xn, we see that the cost of this operation
is EvalUni(A1) d2 · · · dn operations in k. Then, we evaluate
these d1 polynomials on A2, etc . . . Summing up, the whole
cost of these operations is

d1 · · · dn

X

i

EvalUni(Ai)

di
= degM

X

i

EvalUni(Ai)

di
.

Interpolation is performed in the same manner, interpolat-
ing one variable after the other; similarly, the total cost is

d1 · · · dn

X

i

InterpUni(Ai)

di
= degM

X

i

InterpUni(Ai)

di
.

See for instance [34, Chapter 14.1] for the details of this
algorithm. Using the most general estimates on EvalUni and
InterpUni, we deduce the following estimates:

Eval(AT), Interp(AT) ∈ O

degM

X

i

M(di)lg (di)

di

!

.

(Of course, these estimates can be improved for the special
choices of A1, . . . , An mentioned above.) This suffices to
prove Corollary 1. Indeed, plugging these estimates into
those of Theorem 1, we deduce that the total complexity of
multiplication truncated in partial degrees (d1, . . . , dn) is in
the requested class

O

regM degM

X

i

M(di)lg (di)

di
+ M(regM) degM

!

.

Combining algorithms. To conclude our discussion, we
prove Corollary 2: For any ε > 0, the total complexity of the
product modulo M = (Xd1

1 , . . . , Xdn
n) is in O((degM)1+ε).

The idea behind the proof is the following. The algorithm of
Corollary 1 is efficient when the number of variables is large
compared to the truncation degrees, whereas the naive al-
gorithm using Kronecker’s substitution is efficient when the
degree is large compared to the number of variables. Com-
bining these two strategies leads to the proof of Corollary 2.

First we give some preliminary formulas, which explicit the
above statements. Corollary 1 shows that there exist L and
α in R such that for all ` and all d1, . . . , d`, the total com-
plexity of the product in the k-algebra

k[X1, . . . , X`]/(X
d1

1 , . . . , Xd`

`)

is at most C(d1, . . . , d`) := LSP lg α(SP), with S = d1+· · ·+
d` and P = d1 · · · d`. On the other hand, we can use Kro-
necker’s substitution to multiply series as polynomials, and
discard unwanted coefficients. Using [14, Section 3.5], we ob-
tain that for any ring R, any ` and n, and any d`+1, . . . , dn,
the total complexity of the product in the R-algebra

R[X`+1, . . . , Xn]/(X
d`+1

`+1 , . . . , Xdn
n)

is at most D(d`+1, . . . , dn) := KP ′lg (P ′)lg lg (P ′), where K
is the constant introduced in Equation (1) of Section 2, and
P ′ equals 2n−` d`+1 · · · dn.

We can then prove the corollary itself. Let ε > 0, let n and
d1, . . . , dn be integers; let M = (Xd1

1 , . . . , Xdn
n) and

Q = k[X1, . . . , Xn]/(Xd1

1 , . . . , Xdn
n).

Due to the k-algebra isomorphisms k[X]/(X) ' k and
k[X, Y]/(Xd, Y e) ' k[X, Y]/(Xe, Y d), we can without loss
of generality suppose that 2 ≤ d1 ≤ · · · ≤ dn; note then
that degM = d1 · · · dn ≥ 2n. We define ω = 2

ε
, and ` by the

condition that d` ≤ 2 ω < d`+1 (we let d0 = 0 and dn+1 = ∞
to make ` well-defined).

Lemma 2. The total complexity of the product in Q is at
most 6CD, with C = C(d1, . . . , d`) and D = D(d`+1, . . . , dn).

Proof. Let R = k[X1, . . . , X`]/(X
d1

1 , . . . , Xd`

`), so that

Q = R[X`+1, . . . , Xn]/(X
d`+1

`+1 , . . . , Xdn
n). We apply our al-

gorithm for the product in R, and Kronecker’s substitution
for the product in Q seen as an R-algebra.

Going back to the definition of our computational model,
we deduce that there exist c ≤ C, d ≤ D, R-linear forms
λi, µi : Q → R and ρi ∈ Q, with 1 ≤ i ≤ d, k-linear forms
fj , gj : R → k and wj ∈ R, with 1 ≤ j ≤ c, such that for all
A, B in Q one has

AB =
X

i≤d,j≤c

`

(fj ◦ λi)(A)
´ `

(gj ◦ µi)(B)
´

wjρi;

furthermore, the R-linear map

A 7→ [λ1(A), . . . , λd(A)], B 7→ [µ1(B), . . . , µd(B)],
[η1, . . . , ηd] 7→

P

i ηiρi
(2)

can be evaluated by a R-linear straight-line program Γ of
size D, and the k-linear map

a 7→ [f1(a), . . . , fc(a)], b 7→ [g1(b), . . . , gc(b)],
[η1, . . . , ηc] 7→

P

j ηjwj
(3)

can be evaluated by a k-linear straight-line program of size
C. Since cd ≤ 6CD, it remains to estimate the cost of
evaluating the map A 7→ (fj ◦ λi)(A), B 7→ (gj ◦ µi)(B),
[η1,1, . . . , ηc,d] 7→

P

ηi,jwjρi. In view of the multiplication
algorithm of [12], Γ can be taken with constants in the im-
age of Z in k; then, the above linear map can be read off the
tensor product of the maps (2) and (3). In view of the sizes
of the matrices involved, Lemma 13.7.5 in [11] shows that
this tensor product can be computed by a linear straight-line
program of size at most 3dC + 3cD ≤ 6CD.

Using the inequalities 2n ≤ degM and d1 + · · ·+ d` ≤ degM ,
this bound becomes 6KL(d1 + · · · + d`)∆2n−` degM , with
∆ = lg α+1((degM)2)lg lg ((degM)2).

Next, we write the inequalities d1 + · · ·+ d` ≤ nd` ≤ n2 ω ≤
2 ωlg (degM) and (2 ω)n−` ≤ d`+1 · · · dn ≤ degM , so that

2n−` ≤ (degM)
ε
2 . In particular, (d1 + · · ·+ d`)∆ is polyloga-

rithmic in degM , so it admits the upper bound Nε(degM)
ε
2 ,

for some constant Nε. Putting all these estimates together
finishes the proof, since it shows that the total complexity
of the product in Q is upper bounded by 6KLNε(degM)1+ε.

Application: computing with algebraic numbers. Let
f and g be monic polynomials in k[T], of degrees m and n.
We are interested in computing their composed sum f ⊕ g,
which is the polynomial of degree D = mn given by

f ⊕ g =
Y

α,β

`

T − (α + β)
´

,

the product running over all the roots α of f and β of g,
counted with multiplicities. See [7] for a review of some
applications of this basic operation on algebraic numbers.

In characteristic 0, the fastest known approach for comput-
ing f ⊕ g is due to Dvornicich and Traverso [13]. The key

idea is that the exponential generating series of the power
sums of f ⊕ g is the product of the exponential generating
series of the power sums of f and g. Using fast conversions
between coefficients and power sums, computing f ⊕ g then
has complexity O(M(D)), which is almost linear in D.

Suppose now that k has characteristic p < D. Then the pre-
vious approach does not apply anymore. The first difficulty
is that a polynomial is not determined by its power sums.
The second difficulty is that the relation between the power
sums of f , g and f⊕g is no more valid: the above generating
series cannot be defined, since they require division by p.

We first discuss how to handle the first problem: if the mul-
tiplicities of all roots of f ⊕ g are less than p, given its first
2D power sums, one can recover f ⊕ g in time

O

„

M(D) + p M

„

D

p

«

lg

„

D

p

««

,

in the computation tree model, using an elaboration by
Pan [27] of an idea of Schönhage’s [31]. On the other hand,
the first 2D power sums of f and g can still be computed in
O(M(D)) operations in k.

The article [7] gives a solution for the second problem. Let
T = (Ti)i≥0 be an infinite set of indeterminates; let Λ be the
set of finite sequences (of arbitrary length) i = (i0, . . . , is),
with all i` in {0, . . . , p−1}. For i ∈ Λ, we write i! = i0! · · · is!,
Ti = T i0

0 · · ·T is
s and λ(i) = i0 + i1p + · · · + isp

s. For a
univariate polynomial f ∈ k[T], let ni(f) be its ith power
sum. Writing

Np(f) =
X

i∈Λ

nλ(i)(f)

i!
T

i,

then the following identity holds:

Np(f ⊕ g) = Np(f)Np(g) mod (Tp),

where (Tp) denotes the ideal generated by all monomials of
the form T p

i in k[[T]]. Since 2D power sums of f ⊕ g are
requested, we only need the coefficients of the monomials in
T0, . . . , Ts, where s = blg (2D)/lg (p)c. Given the first 2D
power sums of f and g, this can be done by multiplying two
multivariate power series involving at most lg (2D)/lg (p)
variables and of degree less than p in each variable.

Suppose for simplicity that p is constant; based on this dis-
cussion, the algorithm of [7] has complexity O(D1+1/p) in
this case. Corollary 1 yields the following improved bound.

Corollary 3. Let f, g be as above, and suppose that all
roots of f ⊕ g have multiplicity less than p. Then f ⊕ g can
be computed in O(Dlg 2(D)lg 2lg (D)) operations in k.

This algorithm was implemented using Shoup’s C++ NTL
library, available at www.shoup.net; timings were obtained
on an AMD 64 3500+, running in 64 bit mode. Fig-
ure 1 illustrates this algorithm taking F3 for base field, with
deg f = deg g in abscissae and time (in seconds) in ordinates;
we distinguish the time for power series multiplication from
the total running time. Since k = F3, the multivariate power
series are truncated in partial degree 3 in all variables, and

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400 450 500 550

Multiplication
Total

Figure 1: Composed sum over F3.

the number of variables grows with deg f . We compared our
multiplication algorithm to the naive one for this specific
task: ours becomes more efficient for 7 variables or more.

4.2 Gradient of ideals
Let again M = (Xd1

1 , . . . , Xdn
n), and T the terms not in

M . Following [21], the gradient ∇M of M is defined as the
0-dimensional monomial ideal generated by the monomials
not in T+, where T+ is the set of terms T ∪ ∪i≤nXiT.
Lecerf’s deflation algorithm [21], which yields a quadratic
Newton iteration for systems with multiple roots, relies on
computations modulo an ideal of the form ∇M . We obtain
the following estimate for this task.

Proposition 2. For any ε > 0, the total complexity of
the product modulo the gradient of M = (Xd1

1 , . . . , Xdn
n) is

in O(n (degM)1+ε).

Proof. The set T+ is the disjoint union T ∪ ∪i≤nTi,
where Ti is the set of terms Xt1

1 · · ·Xtn
n , with ti = di and

0 ≤ tj < dj for j 6= i. Let then A and B in Span(T+), with

A = AT +
X

i≤n

Ai, B = BT +
X

i≤n

Bi,

such that AT and BT are in Span(T), and Ai and Bi are
in Span(Ti) for all i. Computing AB mod ∇M is done by
“expanding” the product.

We first compute C = ATBT mod ∇M , which we write
C = CT +

P

i≤n Ci, with CT in Span(T) and Ci in Span(Ti).
The component CT is obtained by multiplication modulo
M . To obtain Ci, we write BT = bi + Xibi, with bi in
k[X1, . . . , Xi−1, Xi+1, . . . , Xn]. Let ci = ATbi mod M ; then
the coefficient of a monomial t in Ci is obtained as the co-
efficient of t/Xi in ci, so Ci is known as soon as ci is.

Next, we compute ATBi and AiBT mod ∇M , for all i. This
is done by writing Ai = Xdiαi and Bi = Xdiβi, so all
coefficients of the products above are known as soon as ATβi

mod M and αiBT mod M are known. Finally, notice that
for all i, j, AiBj is 0 mod ∇M . Summarizing, AB mod ∇M
can be computed for 3n + 1 products modulo M and less
than 3n degM additions. Corollary 2 ends the proof.

Application: polynomial system solving. As men-
tioned above, computing modulo gradients of ideals can

speed up the resolution of polynomial systems. Giving the
main result of [21] would require to introduce extensive no-
tation; we will simply repeat the main example given there.
Let F = F1, F2, F3 in Q[X1, X2, X3], with

F1 = 2X1 + 2X2
1 + 2X2 + 2X2

2 + X2
3 − 1,

F2 = (X1 + X2 − X3 − 1)3 − X3
1

F3 = (2X3
1 + 5X2

2 + 10X3 + 5X2
3 + 5)3 − 1000X5

1 .

Then x∗ = (0, 0,−1) ∈ Q3 is a root of this system. Given a
prime p, and the point (0, 0, p − 1) ∈ F3

p, we are interested
in computing approximations of x∗ in the p-adic topology.
However, x∗ is a root of multiplicity 18 of F , so the New-
ton iterator fails to converge with quadratic speed to this
root. Lecerf’s deflation algorithm enables one to recover a
quadratic convergence rate; it turns out that each step of the
modified Newton iteration now requires to compute modulo
the gradient of the ideal (X1, X

3
2 , X4

3).

In general, one has to compute modulo the gradient of an
ideal M = (Xd1

1 , . . . , Xdn
n), where degM is upper bounded

by the multiplicity of the root to approximate. Lecerf’s al-
gorithm uses a quadratic power series multiplication algo-
rithm, so each lifting step has a complexity quadratic in the
multiplicity; our algorithm reduces this to an almost linear
complexity (Lecerf’s result also counts the cost of handling
exponents, which is not taken into account in our model).
Note that this lifting algorithm is also a crucial part of a
more general equidimensional decomposition algorithm [22].

5. CONCLUSION, OPEN PROBLEMS
Our approach requires to solve specific but well-known [29]
evaluation / interpolation problems. Obtaining sharp com-
plexity estimates for these tasks is of independent interest.

Before considering the general case, one may want to look
at special cases first. We saw in Section 4 how to solve
these problems in quasi-linear time for partial degree trun-
cation, which corresponds to evaluation / interpolation on
a rectangular grid. Another important special case is that
of truncation in total degree, which corresponds to evalua-
tion / interpolation on a simplex. For the moment, a fast
algorithm (of linear complexity) for this purpose is missing.

To conclude, let us illustrate possible approaches on an-
other particular case, illustrated on Figure 2. The mono-
mial support T is on the leftmost picture; it consists in the
set-theoretic difference of two cubes in 3-space. The goal is
to evaluate or interpolate a polynomial P with this support
on a set of points which form the same pattern. A natural

SplitT T

T 1

 2

Figure 2: Splitting a monomial support.

idea is to apply a divide-and-conquer algorithm, by splitting
T along the X3-axis, into the two parts T1 and T2 displayed
on the rightmost picture. The analogue of the classical fast
evaluation algorithm is to reduce P modulo defining ideals of
the two corresponding sets of points, and go recursively. As
to interpolation, an interesting question would be whether

evaluation and interpolation are equivalent, as is essentially
the case when n = 1 [9]. Even for such special cases, precise
answers to these questions still have to be written.

6. REFERENCES
[1] D. Bini. Relations between exact and approximate

bilinear algorithms. Applications. Calcolo,
17(1):87–97, 1980.

[2] D. Bini, M. Capovani, F. Romani, and G. Lotti.
O(n2.7799) complexity for n × n approximate matrix
multiplication. Inf. Proc. Lett., 8(5):234–235, 1979.

[3] D. Bini, G. Lotti, and F. Romani. Approximate
solutions for the bilinear form computational problem.
SIAM J. Comput., 9(4):692–697, 1980.

[4] C. Bischof, G. Corliss, and A. Griewank. Structured
second- and higher-order derivatives through
univariate Taylor series. Opt. Meth. and Soft.,
2:211–232, 1993.

[5] M. Bläser. The complexity of bivariate power series
arithmetic. TCS, 295(1-3):65–83, 2003.

[6] L. I. Bluestein. A linear filtering approach to the
computation of the discrete Fourier transform. IEEE
Trans. Electroacoustics, AU-18:451–455, 1970.

[7] A. Bostan, P. Flajolet, B. Salvy, and É. Schost. Fast
computation with two algebraic numbers, 2003.

[8] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s
principle into practice. In ISSAC’03, pages 37–44.
ACM, 2003.

[9] A. Bostan and É. Schost. On the complexities of
multipoint evaluation and interpolation. TCS,
329(2):223–235, 2004.

[10] A. Bostan and É. Schost. Polynomial evaluation and
interpolation on special sets of points, J. Complexity,
to appear.

[11] P. Bürgisser, M. Clausen, and M. A. Shokrollahi.
Algebraic complexity theory, volume 315 of Grund. der
Math. Wiss. Springer, 1997.

[12] D. G. Cantor and E. Kaltofen. On fast multiplication
of polynomials over arbitrary algebras. Acta Inform.,
28(7):693–701, 1991.

[13] R. Dvornicich and C. Traverso. Newton symmetric
functions and the arithmetic of algebraically closed
fields. In AAECC-5, volume 356 of LNCS, pages
216–224. Springer, 1989.

[14] I. Z. Emiris and V. Y. Pan. Applications of FFT. In
Algorithms and theory of computation handbook, pages
17–1–17–30. CRC, Boca Raton, FL, 1999.

[15] I. Z. Emiris and V. Y. Pan. Symbolic and numeric
methods for exploiting structure in constructing
resultant matrices. JSC, 33(4):393–413, 2002.

[16] C. M. Fiduccia and Y. Zalcstein. Algebras having
linear multiplicative complexities. J. Assoc. Comput.
Mach., 24(2):311–331, 1977.

[17] J. von zur Gathen and J. Gerhard. Modern computer
algebra. Cambridge University Press, 1999.

[18] G. Hanrot and P. Zimmermann. A long note on
Mulders’ short product. JSC, 37(3):391–401, 2004.

[19] J. van der Hoeven. Relax, but don’t be too lazy. JSC,
34(6):479–542, 2002.

[20] J. van der Hoeven. The Truncated Fourier Transform
and applications. In ISSAC’04, pages 290–296. ACM,
2004.

[21] G. Lecerf. Quadratic Newton iteration for systems
with multiplicity. Found. of Comput. Math.,
2(3):247–293, 2002.

[22] G. Lecerf. Computing the equidimensional
decomposition of an algebraic closed set by means of
lifting fibers. J. Complexity, 19(4):564–596, 2003.

[23] G. Lecerf and É. Schost. Fast multivariate power
series multiplication in characteristic zero. SADIO
Electronic Journal, 5(1), 2003.

[24] F. S. Macaulay. Some properties of enumeration in the
theory of modular systems. Proc. London Math. Soc.,
26:531–555, 1927.

[25] F. Mora. De nugis Groebnerialium 2: Applying
Macaulay’s trick in order to easily write a Gröbner
basis. AAECC, 13(6):437–446, 2003.

[26] T. Mulders. On short multiplications and divisions.
AAECC, 11(1):69–88, 2000.

[27] V. Y. Pan. New techniques for the computation of
linear recurrence coefficients. Finite Fields and their
Applications, 6(1):93–118, 2000.

[28] L. R. Rabiner, R. W. Schafer, and C. M. Rader. The
chirp z-transform algorithm and its application. Bell
System Tech. J., 48:1249–1292, 1969.

[29] T. Sauer. Lagrange interpolation on subgrids of tensor
product grids. Math. Comp., 73:181–190, 2004.

[30] A. Schönhage. Partial and total matrix multiplication.
SIAM J. Comput., 10(3):434–455, 1981.

[31] A. Schönhage. Fast parallel computation of
characteristic polynomials by Leverrier’s power sum
method adapted to fields of finite characteristic. In
Automata, languages and programming, volume 700 of
LNCS, pages 410–417. Springer, 1993.

[32] A. Schönhage. Bivariate polynomial multiplication
patterns. In AAECC-11, volume 948 of LNCS, pages
70–81. Springer, 1995.

[33] S. Winograd. Some bilinear forms whose multiplicative
complexity depends on the field of constants. Math.
Systems Theory, 10(2):169–180, 1976/77.

[34] R. Zippel. Effective Polynomial Computation. Kluwer
Academic Publishers, 1993.

