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Abstract

Let A be a domain, with m ⊆ A a maximal ideal, and let F ⊆ A[x, y] be any
finite set generating set of an ideal with finitely many zeros (in an algebraic closure
of the fraction field K of A). We present a randomized m-adic algorithm to recover
the lexicographic Gröbner basis G of ⟨F⟩ ⊆ K[x, y], or of its primary component at the
origin. We observe that previous results of Lazard’s that use Hermite normal forms
to compute Gröbner bases for ideals with two generators can be generalized to a set
generating set F of cardinality greater than two. We use this result to bound the size
of the coefficients of G, and to control the probability of choosing a good maximal ideal
m ⊆ A. We give a complete cost analysis over number fields (K = Q(α)) and function
fields (K = k(z)), and we obtain a complexity that is less than cubic in terms of the
dimension of K/⟨G⟩ and softly linear in the size of its coefficients.

1 Introduction

1.1 Overview

This text is an extended version of [57]. Starting from a domain A contained in a field K, our
focus in this manuscript is on the complexity of computing the lexicographic Gröbner basis
of a zero-dimensional ideal in K[x, y], with a generating set in A[x, y], by means of m-adic
techniques, where m ⊆ A is a maximal ideal.

There already exists a rich literature dedicated to the solutions of systems of polynomial
equations in two variables [34, 24, 20, 1, 54, 6, 23, 11, 9, 41, 50, 42, 10, 18, 15], due in part
to their numerous applications in real algebraic geometry and computer-aided design.

Over Z, p-adic techniques have been considered in the context of Gröbner basis com-
putations (in an arbitrary number of variables) for decades. In 1983 and 1984, Ebert and
Trinks addressed the question of modular algorithms for Gröbner bases [21, 61], specifically
for systems without multiple roots; these techniques were used as well in the geometric
resolution algorithm [32, 31, 30, 33]. The absence of multiple roots allows for simple and
efficient algorithms; for arbitrary inputs, the question is more involved.
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Winkler gave the first p-adic algorithm to construct a Gröbner basis [64] that applies
to general inputs; Pauer refined the discussion of good prime numbers [53], and Arnold
revisited, and simplified, these previous constructions in [2]. No complexity analysis was
provided; these p-adic algorithms remain complex (they lift not only the Gröbner basis but
also the transformation matrix that turns the input system into its Gröbner basis) and, to
our knowledge, achieve linear convergence only. In addition, there is no quantitative analysis
of the number of unlucky primes.

In [56], we presented a form of Newton iteration specifically tailored to lexicographic
Gröbner bases in two variables, achieving quadratic convergence with no assumptions on
the input. It crucially rests on results due to Conca and Valla [13], who gave an explicit
parametrization of bivariate ideals with a given initial ideal: our lifting algorithm works
specifically with the parameters introduced by Conca and Valla.

Our contribution in this paper is to build on [56] to give a complete randomized m-adic
algorithm: we discuss “bad” maximal ideals m, analyze the cost of the initial computations
modulo m, and bound the size of the output. This can be done to some extent for general
A and m, as long as we have algorithms for operations modulo powers of m, and for
rational reconstruction. We give a precise cost analysis in the case A = Z or more generally
A = Z[α] ⊂ K = Q(α), for a number field K, where the cost is then given in bit operations,
and when A = k[z], k a field, where we count operations in k (our conference paper [57] only
covered the case A = Z).

We also point out that our algorithm can be refined using the observation that in generic
coordinates, the initial term ideal is Borel-fixed; we give a precise quantitative analysis of
those changes of variables that ensure this property, which was not in [57].

The following theorem gives the outline of our results over Q. In what follows, the height
of a nonzero integer u is log(|u|), and the height of a nonzero polynomial is the maximum of
the heights of its coefficients. Throughout, we use the lexicographic order induced by x ≺ y.

Theorem A (Building a lexicographic bivariate basis over Q). Fix an integer P ≥ 1.
Given polynomials F = (f1, . . . , ft) in Z[x, y] of degree d and height h, with finitely many
common complex solutions, one can compute the lexicographic Gröbner basis G of the ideal
they generate using

O (̃td2h+ tωdω+1 + δω + (td2δ + tδ3)b)

bit operations, where δ is the dimension of Q[x, y]/⟨F⟩ and b is the maximum height of the
numerators and denominators of the coefficients in G. The algorithm succeeds with probability
at least 1− 1/2P .

In this context, the input size is O(td2h) bits, and the output size is O(δ2b) bits. The
first term in the runtime essentially amounts to reading the input; the next two describe
computations done modulo small primes, and the last one gives the runtime of the lifting
process. The runtime depends on the choice of the parameter P ; we give details in Section 5.

Over k(z), we have an entirely similar result, given in terms of operations in k.
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Theorem B (Building a lexicographic bivariate basis over k(z)). Fix an integer P ≥ 1.
Given polynomials F = (f1, . . . , ft) in k[z, x, y] of degree d in (x, y) and h in z, with finitely
many common solutions in k(z), one can compute the lexicographic Gröbner basis G of the
ideal they generate in k(z)[x, y] using

O (̃td2h+ tωdω+1 + δω + (td2δ + tδ3)b)

operations in k, where δ is the dimension of k(z)[x, y]/⟨F⟩ and b is the maximum degree
of the numerators and denominators of the coefficients in G. The algorithm succeeds with
probability at least 1− 1/2P , and assumes that k has large enough cardinality.

The precise assumption on the cardinality of k is spelled out in Section 5. In this
introduction, we do not spell out the corresponding claim when K is a number field; see
Section 5 as well.

When ⟨F⟩ is radical, the local structure at the points in the vanishing locus is trivial.
In this case, previous forms of Newton iteration achieve better runtimes, softly linear in
the output size [33, 55, 16, 49]. These algorithms compute different outputs than us: those
in [16, 49] return a triangular decomposition of V (⟨F⟩), while those in [33, 55] apply a generic
change of coordinates before computing a lexicographic Gröbner basis of V (⟨F⟩) (which is
then is “shape position”).

In the presence of multiplicities, the algorithm in [50] computes a Gröbner basis of the
radical of the ideal F = (f1, . . . , ft), in generic coordinates, by means of a quadratic Newton
iteration. Therefore, it makes sense to consider applying our techniques only to multiple
solutions, i.e. the points at which the K[x, y]/⟨F⟩ has nilpotent elements, with the objective
of determining the local structure at these points. This motivates our second result, where
we compute the Gröbner basis of an isolated primary component.

Theorem C (Finding the ⟨x, y⟩-primary component over Q). Fix an integer P ≥ 1.
Given polynomials F = (f1, . . . , ft) in Z[x, y] of degree d and height h, with finitely many
common complex solutions, one can compute the lexicographic Gröbner basis G0 of the
⟨x, y⟩-primary component of the ideal they generate using

O (̃td2h+ tdωη + ηω + tη3c)

bit operations, where η is the dimension of Q[x, y]/⟨G0⟩ and c is the maximum height of
the numerators and denominators of the coefficients in G0. The algorithm succeeds with
probability at least 1− 1/2P .

Stating the analogue of this result for computations over k(z) raises no difficulty, see
Section 5.5. The extension to number fields is also presented.

Finally, we mention a different approach to compute Gröbner bases in a modular fashion:
using the Chinese Remainder Theorem. This is a natural idea, but we are not aware of
a quantitative analysis of it along the lines of what we do here for Newton iteration. In
the context of Chinese Remaindering, a single undetected “bad prime” may make rational
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reconstruction of the final result impossible; we refer in particular to [7] and references therein
for a discussion of how error-correcting techniques can be put to use to solve this issue. Using
the bounds we give on bad primes and output size, it might be possible to fully analyze this
kind of approach in the bivariate case.

1.2 An application

A natural application of Theorem C (or precisely, of its analogue over number fields) is to
combine it with the approach in [39], which shows how to put an arbitrary primary component
of ⟨f1, . . . , ft⟩ in correspondence with the ⟨x, y⟩-primary component of a related ideal in
K[x, y], for a finite extension K of the base field (typically, the base field is simply Q).

This is best illustrated on an example. Consider the following polynomials F = (f1, f2)
in Z[x, y]:

f1 = 6y8x4 + 32y8x3 + 48y8x2 + 32y8x+ 16y8 − 24y5x7 − 84y5x6 − 124y5x5 − 100y5x4−

4y5x3 + 52y5x2 + 52y5x+ 16y5 − 16y4x6 − 48y4x5 − 72y4x4 − 64y4x3 − 24y4x2+

8y4 + 9y2x10 + 45y2x9 + 147y2x8 + 318y2x7 + 511y2x6 + 609y2x5 + 549y2x4+

364y2x3 + 171y2x2 + 51y2x+ 7y2 + 12yx9 + 54yx8 + 152yx7 + 280yx6 + 384yx5 + 386yx4

+ 292yx3 + 156yx2 + 56yx+ 10y + 4x8 + 16x7 + 40x6 + 64x5 + 76x4 + 64x3 + 40x2 + 16x+ 4

f2 = 25y10x2 + 25y10x+ 25y10 − 20y7x4 − 40y7x3 + 20y7x+ 40y7 + 20y6x3 + 30y6x2 + 30y6x+

10y6 − 40y5x3 − 60y5x2 − 60y5x− 20y5 + 4y4x6 + 12y4x5 + 12y4x4 + 4y4x3+

15y4x2 + 15y4x+ 19y4 − 8y3x5 − 20y3x4 − 20y3x3 − 10y3x2 + 2y3x+ 2y3 + 16y2x5+

44y2x4 + 48y2x3 + 32y2x2 + 4y2x− 16yx4 − 32yx3 − 48yx2 − 32yx− 16y + 16x4 + 32x3

+ 48x2 + 32x+ 16.

The ideal they generate in Q[x, y] has two primary components, Q1 and Q2. The first one,
Q1, is prime and in so-called shape position: it consists of two polynomials, with respective
initial terms y and x90. Because the Jacobian determinant of (f1, f2) is a unit modulo Q1,
we may simply use the p-adic approach of [49] to compute its Gröbner basis.

The second component Q2 is P2 = ⟨y, x2 + x + 1⟩-primary and has minimal, reduced
Gröbner basis G given by

1

45

(
45y8 + 18yx7 + 36yx6 + 54yx5 + 18yx4 − 18yx3 − 54yx2 − 36yx− 18y − 18x9

−146x8 − 476x7 − 1028x6 − 1526x5 − 1694x4 − 1364x3 − 812x2 − 314x− 74
)
,

1

729

(
729y2x2 + 729y2x+ 729y2 − 324yx7 − 1854yx6 − 4914yx5 − 8370yx4 − 9414yx3

−7398yx2 − 3618yx− 1044y − 64x9 − 288x8 − 120x7 + 924x6 + 3780x5

+6468x4 + 7596x3 + 5580x2 + 2724x+ 616
)
,

yx8 + 4yx7 + 10yx6 + 16yx5 + 19yx4 + 16yx3 + 10yx2 + 4yx+ y,

x10 + 5x9 + 15x8 + 30x7 + 45x6 + 51x5 + 45x4 + 30x3 + 15x2 + 5x+ 1;

here, dividing through by 45, resp. 729, makes the leading coefficients of these polynomials 1.
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Here is how the untangling idea of [39] (which was inspired by [36] in the univariate
case) works in this example. Let K = Q[x, y]/P2 be the number field defined by P2; we can
write it as K = Q[z]/⟨z2 + z + 1⟩. Let further α be the residue class field of z in K, and set
(x0, y0) = (α, 0) in K2. The point (x0, y0) is by construction a root of (f1, f2), which leads
us to define polynomials g1, g2 by g1 = f1(x+ x0, y + y0) and g2 = f2(x+ x0, y + y0). Then,
(0, 0) is a root of (g1, g2), and the ⟨x, y⟩-primary component of ⟨g1, g2⟩ admits the Gröbner
basis G ′ in K[x, y] given by:

1

5

(
5y8 + 18(α + 1)x3y − (18α + 74)x4

)
,

1

81

(
81xy2 + 240x3y + 54x2y − 392x4 − 108x2

)
,

x4y,

x5.

Knowing both P2 and G ′ is equivalent to the knowledge of G: for instance, the leading terms
of the latter are obtained by replacing x by x2 in the leading terms of G ′ (see [39] for details).
The degrees in G ′ are thus smaller than those in G, making it more advantageous to compute.
Now, the polynomials G ′ describe the ⟨x, y⟩-primary component of ⟨g1, g2⟩ in K[x, y]; this
falls precisely in the scope of Theorem C, but working over the base field K.

1.3 Leitfaden

Inspired by Lazard [48], we prove in Section 2 that the Hermite Normal form of an “extended
Sylvester matrix” built from f1, . . . , ft gives the coefficients of what we will call a detaching
basis of the ideal I they generate. We also present a variant of this result, where replacing
Hermite normal form by Howell normal form yields a Gröbner basis of a localization of I.

In Section 3, we use these results in two manners: to compute the initial Gröbner basis in
A/m for m ⊆ A a maximal ideal, prior to entering Newton iteration, and to obtain height
bounds for the output (over K) and quantify bad choices of maximal ideals m.

Our main algorithm can benefit from doing some computations in generic coordinates, due
to the initial ideal being “Borel-fixed” in this situation. Revisiting the proofs by Galligo [28],
Bayer-Stillman [5] and Pardue [52], we give a constructive proof that the initial ideal of a
zero-dimensional ideal in generic coordinates is Borel-fixed, from which we derive a degree
bound for a hypersurface containing those changes of variables for which it is not the case.
This is shown in Section 4. Finally, the main algorithm and its analysis are in Section 5.
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2 Lexicographic Gröbner bases via matrix normal forms

In this section, we assume I = ⟨f1, . . . , ft⟩ ⊂ K[x, y], for t ≥ 2, and we show how to derive
the lexicographic Gröbner basis of I, or its primary component at the origin, from either
Hermite or Howell normal forms of matrices over K[x], for an arbitrary field K. These are
direct extensions of previous work of Lazard’s [48], who already used Hermite forms in the
case t = 2; they will be used during the first stage of our main algorithm, with for instance
K = Fp if we are working in a p-adic context. These results will also allow us to use properties
established by Storjohann that quantify ideals of bad reduction for Hermite form computation;
we will use them in the context of Gröbner basis computation in the next section.

In what follows, for a subset S ⊂ K[x, y] and n ≥ 0, we let S<(.,n) be the subset of all f in
S with degy(f) < n; notation such as S≤(.,n) is defined similarly. In particular, if S is an ideal
of K[x, y], S<(.,n) is a free K[x]-module of rank at most n. For S = K[x, y] itself, K[x, y]<(.,n)

is a free K[x]-module of rank n, equal to
⊕

0≤i<nK[x]yi.
For such an n, we also let πn denote the K[x]-module isomorphism K[x, y]<(.,n) → K[x]n,

which maps f0 + · · ·+ fn−1y
n−1 to the vector [fn−1 · · · f0]⊤.

2.1 Detaching bases

Let I be an ideal in K[x, y] and let G = (g0, . . . , gs) be its reduced minimal Gröbner basis for
the lexicographic order induced by y ≻ x, listed in decreasing order; we write ni = degy(gi)
for all i (so these exponents are decreasing). We define polynomials A0, A1, . . . as follows:

• for 0 ≤ i < ns, Ai = 0,

• if there exists k in {0, . . . , s} such that nk = i, Ai = gk

• otherwise, Ai is obtained by starting from yAi−1, and reducing all its terms of y-degree
less than i by G.

For example, if I has a Gröbner basis of the form (y − f(x), g(x)), the polynomials Ai are
given by A0 = g, A1 = y − f and for i ≥ 2, Ai = yi − (f i mod g). See for instance [3] for a
previous discussion of such notions.

Lemma 2.1. For i ≥ ns, degy(Ai) = i.

Proof. This is true for i of the form nk. For i in nk, . . . , nk−1 − 1, we proceed by induction,
with the remark above establishing the base case (for k = 0, we consider all i ≥ n0). Assume
degy(Ai−1) = i− 1, so that degy(yAi−1) = i. Because we use the lexicographic order x ≺ y,
the reduction of the terms of y-degree less than i in yAi−1 does not introduce terms of
y-degree i or more.
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Lemma 2.2. For n ≥ ns, the K[x]-module I≤(.,n) is free of rank n − ns + 1, with basis
Ans , . . . , An.

Proof. The polynomials Ans , . . . , An are all nonzero, with pairwise distinct y-degrees, so they
are K[x]-linearly independent. Visibly, they all belong to I≤(.,n), so it remains to prove that
they generate I≤(.,n), as a K[x]-module.

This is done by induction on n ≥ ns. Take f in I≤(.,n), and write it as f = fny
n + g, with

fn in K[x] and g in K[x, y]≤(.,n−1). Let hn ∈ K[x] be the polynomial coefficient of yn in An,
so that An = hny

n+Bn, with Bn in K[x, y]≤(.,n−1). Write the Euclidean division fn = qhn+ r
in K[x], with degx(r) < degx(hn), and rewrite f as

f = (qhn + r)yn + g

= qhny
n + ryn + g

= qAn − qBn + ryn + g.

The polynomial −qBn + ryn + g is in I, so its normal form modulo G is zero. The terms
−qBn + g have y-degree less than n, so their normal form has y-degree less than n as well;
since ryn is already reduced modulo G, it must be zero.

It follows that f = qAn + g − qBn, with g − qBn in I≤(.,n−1). If n = ns, this latter
polynomial must vanish; this proves the base case of our induction. Else, by induction
assumption, it is a K[x]-linear combination of Ans , . . . , An−1; this finishes the proof.

For n ≥ n0, the detaching basis of I in degree n is the sequence (Ans , . . . , An). Because
we take n ≥ n0, this is (in general) a non-minimal Gröbner basis of I, and we can recover
G from it by discarding redundant entries (that is, all polynomials whose leading term is a
multiple of another leading term).

2.2 Using Hermite normal forms

Given F = (f1, . . . , ft) in K[x, y], we prove that the Hermite normal form of a certain
Sylvester-like matrix associated to them gives a lexicographic detaching basis of the ideal I
they generate. In [48], Lazard covered the case t = 2, under an assumption on the leading
coefficients (in y) of the fi’s.

We extend his work (in a direct manner) to situations where such assumptions do not
hold. First, to polynomials F = (f1, . . . , ft) in K[x, y], we associate an integer ∆(F), defined
as follows.

Definition 2.3. Let F = (f1, . . . , ft) be in K[x, y] and let (Ans , . . . , An0) be their detaching
basis in degree n0, with n0 and ns the maximal, resp. minimal y-degree of the polynomials in
the lexicographic Gröbner basis of ⟨f1, . . . , ft⟩, for the order x ≺ y.

We let ∆(F) be the minimal integer ∆ such that for i = ns, . . . , n0, there exist wi,1, . . . , wi,t

in K[x, y]t, all of y-degree less than ∆, and such that Ai = wi,1f1 + · · ·+ wi,tft.

7



The following proposition gives the basic application we will make of this integer, allowing
us to extract a detaching basis from a Hermite form computation. Our convention for Hermite
normal forms (here, for matrices over K[x]) is the following: we use column operations, with
Hermite normal forms being lower triangular. The first nonzero entry in a nonzero column is
called its pivot, its index being called the . By convention, pivots in nonzero columns of a
matrix in Hermite form are monic in x.

Proposition 2.4. Let F = (f1, . . . , ft) be in K[x, y], for t ≥ 2, of y-degree at most dy, and
assume that they generate an ideal I = ⟨f1, . . . , ft⟩ of dimension zero. For i = 1, . . . , t, write
fi = fi,0 + · · ·+ fi,dyy

dy , with all fi,j in K[x].
For D ≥ ∆(F), let c1, . . . , cK be the nonzero columns of the Hermite normal form H of

S = [S1 · · ·St] ∈ K[x](dy+D)×tD, where

Si =


fi,dy
...

. . .

fi,0 fi,dy
. . .

...
fi,0

 ∈ K[x](dy+D)×D.

Then, there exists K ′ ≤ K such that π−1
dy+D(cK′) is monic in y; with K ′ the largest such

integer, π−1
dy+D(cK), . . . , π

−1
dy+D(cK′) is a detaching basis of I.

In particular, while we do not know the y-degrees ni of the elements in the Gröbner basis
of I, as long as D ≥ ∆(F), it is enough to consider the last nonzero columns of H , stopping
when we find (through π−1

dy+D) a polynomial that is monic in y. Remark also that we do not
assume that the polynomials fi have y-degree exactly dy.

Proof. Let D ≥ ∆(F) be as in the proposition. Let us index the columns of each block
Si by yD−1, . . . , y, 1, and its rows by ydy+D−1, . . . , y, 1. Then, Si is the matrix of the map
K[x, y]<(.,D) → K[x, y]<(.,dy+D) given by wi 7→ wifi. The matrix S itself maps a vector

(w1, . . . , wt), with all entries of y-degree less than D, to
∑t

i=1wifi ∈ I<(.,dy+D).
Let G = (g0, . . . , gs) be the lexicographic Gröbner basis of I = ⟨f1, . . . , ft⟩, listed in

decreasing order, with degy(gi) = ni for all i. Since we assume that I has dimension zero, we
have ns = 0, and g0 is monic in y.

Let A0, . . . , An0 be the detaching basis of I in degree n0. We denote by c1, . . . , cK the
nonzero columns of the Hermite form H of S, and we let Hi = π−1

dy+D(ci), for i = 0, . . . , n0.
We will prove that Ai = HK−i for i = 0, . . . , n0. Since g0 is the only polynomial in A0, . . . , An0

which is monic in y, this will establish the proposition, with K ′ = K − n0.
Since both Ai and HK−i are in I, to prove that they are equal, it is enough to prove that

for all i, Ai −HK−i is reduced with respect to the Gröbner basis G of I.
Because D ≥ ∆(F), we deduce that A0, . . . , An0 are in the column span of S. Since

they have respective y-degrees 0, . . . , n0, we see that degy(HK−i) = degy(Ai) = i for all

i = 0, . . . , n0. In addition, for all such i, we can write Ai =
∑i

j=0 ai,jHK−j, for some ai,j in
K[x].
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On the other hand, Lemma 2.2 shows that for the same index i, we can write HK−i =∑i
j=0 bi,jAj , for some bi,j in K[x]. Because both Ai and HK−i have leading y-coefficients that

are monic in x, it follows that bi,i = ai,i = 1 for all i. This proves that Ai and HK−i have the
same coefficient of y-degree i (call it Mi ∈ K[x]), and thus that Ai −HK−i has y-degree less
than i.

By definition of a detaching basis, all terms of y-degree less than i in Ai are reduced
with respect to G. On the other hand, by the property of Hermite forms, for j < i, the
coefficient of y-degree j in HK−i is reduced with respect to Mj. Since we saw that Mj is
also the coefficient of yj in Aj, this proves that all terms of y-degree less than i in HK−i are
reduced with respect to A0, . . . , Ai−1, and thus with respect to G. Altogether, Ai − HK−i

itself is reduced with respect to G, which is what we set out to prove.

We callHermiteGroebnerBasis(F , D) a procedure that takes as input F = (f1, . . . , ft)
and D, and returns the lexicographic Gröbner basis of I = ⟨f1, . . . , ft⟩ obtained by computing
the Hermite normal form of S as above, extracting the Gröbner basis of I from its detaching
basis. Here, we take for dy the maximum degree of the fi’s, and we assume that we have
D ≥ ∆(F) and D ≥ dy.

The assumption that the ideal I has dimension zero implies that it contains a non-zero
polynomial in K[x]; as a result, its detaching basis has entries of y-degrees 0, 1, . . . , so that
the Hermite form of S is lower triangular with dy +D non-zero diagonal entries. In other
words, S has rank dy +D (seen as a matrix over K(x)).

If t = 2 and D = dy, this matrix is square, but in general, it may have more columns
than rows (recall that we assume D ≥ dy). Using the algorithm of [45], we can permute the
columns of S to find a (dy +D)× tD matrix S′ whose leading (dy +D)× (dy +D) minor is
nonzero; this takes O (̃tDωd) operations in K, with d the maximum degree of the fi’s. Let us
define the tD × tD square matrix

Ssq =

[
S′

0(t−1)D−dy ,dy+D I(t−1)D−dy ,(t−1)D−dy

]
(1)

together with its Hermite form Hsq; the first dy +D rows of it give us the Hermite form H
of S. The Hermite form of Ssq is computed in O (̃tωDωd) operations in K [46]. This gives
the overall cost of computing the lexicographic Gröbner basis of I, assuming an upper bound
on ∆(F) is known.

To our knowledge, not much exists in the literature on a complete cost analysis for
Gröbner bases of bivariate ideals, apart from Buchberger’s analysis of his algorithm in the
bivariate case [12], with an estimate of O((t + d2)4) base field operations. In the same
conference proceedings, Lazard [47] derived comparable results, using the grevlex order and
for homogeneous systems (but in an arbitrary number of variables).

Of course, we should point out more recent approaches such as Faugère’s F5 algorithm [25],
which is tailored to the grevlex order. Bardet, Faugère and Salvy analyzed its cost in [4], but
their results are valid under certain regularity assumptions; it would be of interest to revisit
this analysis in the bivariate case and attempt to remove all assumptions from it. In any
case, given a grevlex basis, order-changing algorithms such as FGLM [27] pave the way, by
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means of an additional O(δ3) operations, to two-step strategies for bivariate lexicographic
bases (this cost can itself be reduced to O(dω) operations [26, 51], again under favorable
assumptions). Finally, improved alternatives exist for some particular cases of interest, such
as ideals with two generators satisfying genericity assumptions [62].

The following proposition gives various bounds on ∆(F), whose strength depends on the
assumptions we make on F . The first one is a direct extension of Lazard’s [48, Lemma 7],
and is linear in the y-degree of the input. The others are based on results from [43, 19], which
involve total degree considerations.

Proposition 2.5. Let F = (f1, . . . , ft) be in K[x, y] of degree at most d ≥ 1, and y-degree at
most dy, and let I = ⟨f1, . . . , ft⟩ ⊂ K[x, y]. Define d′ = max(d, 3). Then the following hold

• if there exists i in {1, . . . , t} such that the coefficient of yd in fi is a nonzero constant,
then ∆(F) ≤ ∆1(dy) := dy;

• if t = 2 and I has finitely many zeros over K, then ∆(F) ≤ ∆2(d) := 2d′2 + d′ ∈ O(d2);

• if I has finitely many zeros over K, then ∆(F) ≤ ∆3(d) := 16d′4 + 2d′2 + 2d′ ∈ O(d4).

First item. In what follows, without loss of generality, we assume that the coefficient of ydy

in ft is 1. We prove a slightly more general claim: any polynomial f in I<(.,2dy) can be written
as f = w1f1 + · · ·+ wtft, with all wi in K[x, y]<(.,dy). This is enough to conclude, since (with
the notation used in the definition of ∆) all entries Ans , . . . , An0 in the detaching basis of I
in degree n0 have y-degree at most dy ≤ 2dy − 1 (this is because we use a lexicographic order
with x ≺ y).

Let thus f be given in I<(.,2dy). There exists at least one family w = (w1, . . . , wt) in K[x, y]
such that

f =
t∑

i=1

wifi, (2)

since f is in I. For such a family w, we define Sw = {i | degy(wi) ≥ dy}. For any w such
that Sw is not empty, we further set νw = min(Sw) ∈ {1, . . . , t}, and we let ν be the maximal
value of these νw’s. To see that ν is well-defined, note that there is a vector w for which Sw
is not empty (we can replace (wt−1, wt) by (wt−1 + gft, wt − gft−1) for any g in K[x, y]).

Let w be such that ν = νw. We claim that Sw ̸= {t}: otherwise we would have
degy(wtft) ≥ 2dy, while degy(wifi) < 2dy for all other i’s; this would contradict the assumption
degy(f) < 2dy. This shows that ν < t.

Let us further refine our choice of w, by taking it such that, among all those vectors
for which Sw is not empty and νw = ν, the y-degree of wν is minimal. Let us then write
e = degy(wν) (so that e ≥ dy) and let c ∈ K[x] be the coefficient of ye in wν . We can use it
to rewrite f as

f =
t∑

i=1

wifi + cye−dyfνft − cye−dyftfν .
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If we set

w′
i =


wν − cye−dyft when i = ν;

wt + cye−dyfν when i = t;

wi otherwise,

then we still have

f =
t∑

i=1

w′
ifi.

By construction, degy(w
′
i) = degy(wi) < dy for all i < ν, so none of 1, . . . , ν − 1 is in Sw′ . If

ν is in Sw′ , then the inequality degy(w
′
ν) < degy(wν) contradicts the choice of w, so that ν

is not in Sw′ . This shows that Sw′ is empty, since otherwise its minimum element would be
greater than ν.

For the second and third items, we use results from [19], for which we need total degree
bounds on the input polynomials F = (f1, . . . , ft) and the elements A0, . . . , An0 in the
detaching basis (here, ns = 0, since I having finitely many solutions implies that it contains
a nonzero polynomial in K[x]). For the inputs fi, we have the degree bound deg(fi) ≤ d ≤ d′.
For the Ai’s, we have the bounds degx(Ai) ≤ d2 (by Bézout’s theorem) and degy(Ai) ≤ d, for
i ≤ n0, so their total degree is at most D = d′2 + d′.

Second item. When t = 2 and I has dimension zero (that is, has a finite, nonzero number of
solutions in K), f1, f2 are in complete intersection, so that we have Ai = wi,1f1 +wi,2f2, with
degy(wi,j) ≤ D + d′2 for all i, j, by Theorem 5.1 in [19]. Overall, the resulting degree bound

is 2d′2 + d′.
If we assume that I = K[x, y], then we know that there are g1, g2 in K[x, y] such that

g1f1 + g2f2 = 1, with deg(gi) ≤ d′2 [43]. Multiplying this by Aj, for j ≤ n0, we obtain the
expression (g1Aj)f1 + (g2Aj)f2 = Aj, with degy(giAj) ≤ d′2 + d in this case.

Third item. We apply Corollary 3.4 from [19]. It gives an upper bound on the total degree
(and thus y-degree) of the coefficients in a membership equality Ai = wi,1f1 + · · · + wi,tft,
showing that we can take degy(wi,j) ≤ D + 16d′4 + d′2 + d′ for all i, j.

As pointed out by a referee, our integer ∆(F) is an analogue to the degree in which one
can truncate the Macaulay matrix to compute a homogeneous Gröbner basis, as introduced
in [47]; the key difference is that here we do linear algebra over a univariate polynomial ring,
instead of the base field. It would be very interesting to study this connection further.

2.3 Using the Howell form

We now investigate how using another matrix normal form, the Howell form [38], yields
information about certain primary components of an ideal I as above.

Howell forms are defined for matrices with entries in a principal ideal ring A; below,
we will take A = K[x]/xk, for an integer k. As for the Hermite form, we consider column
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operations; then, an n × m matrix H over A = K[x]/xk is in Howell normal form if the
following items (taken from [60, Chapter 4]) hold:

1. let r ≤ m be the number of nonzero columns in H ; then these nonzero columns have
indices 1, . . . , r

2. H is in lower echelon form: for i = 1, . . . , r, let ji ∈ {1, . . . , n} be the index of the first
nonzero entry in the ith column; then, j1 < · · · < jr

3. all pivots Hji,i, for i = 1, . . . , r, are of the form xci

4. for i = 1, . . . , r and k = 1, . . . , i− 1, Hji,k is reduced modulo Hji,i

5. for i = 0, . . . , r, any column in the column span of H with at least ji leading zeros is
an A-linear combination of columns of indices i+ 1, . . . , r (here, we set j0 = 0)

For any matrix M in An×m, there is a unique H in Howell normal form in An×m, and a
not necessarily unique invertible matrix U in Am×m such that H = MU . The matrix H is
called the Howell normal form of M .

Given f1, . . . , ft as before, we are interested here in computing the lexicographic Gröbner
basis of J = ⟨f1, . . . , ft, xk⟩, for a given integer k. In particular, if (0, 0) is in V (f1, . . . , ft), and
no other point (0, β) is, for β ̸= 0, then J is the ⟨x, y⟩-primary component of I = ⟨f1, . . . , ft⟩
when k is large enough.

The following proposition shows how to reduce this computation to a Howell normal
form calculation. In what follows, the canonical lift of an element in A = K[x]/xk to K[x] is
its unique preimage of degree less than k; this carries over to vectors and matrices (and in
particular to the output of the Howell form computation).

Contrary to what happens for Hermite forms, there is no guarantee that the polynomials
extracted from the Howell form are a detaching basis, as we may be missing the first
polynomial (that belongs to K[x]) and its multiples. The proposition below restores this by
considering a few extra columns, if needed.

Proposition 2.6. Let f1, . . . , ft be in K[x, y], for t ≥ 2, of y-degree at most dy, and assume
that they generate an ideal of dimension zero. Let k be a positive integer and A = K[x]/xk.

For D ≥ ∆(f1, . . . , ft, x
k), let B ∈ A(dy+D)×tD be the Howell normal form of S̄ =

S mod xk, with S as in Proposition 2.4, and let Blift be its canonical lift to K[x](dy+D)×tD.
Let h1, . . . , hL be the nonzero columns of Blift, and let r ∈ {1, . . . , dy +D} be the pivot

index of hL. Set L
′′ = L+dy+D−r and, for i = L+1, . . . , L′′ let hi = [0 · · · 0 xk 0 · · · 0]⊤,

with xk at index r + i− L ∈ {r + 1, . . . , dy +D}.
There exists an integer L′ ≤ L such that π−1

dy+D(hL′) is monic in y. Let L′ be the largest

such integer, then π−1
dy+D(hL′′), . . . , π−1

dy+D(hL′) is a detaching basis of ⟨f1, . . . , ft, xk⟩.

Proof. Let Γ = (Γ0, . . . ,Γσ) be the lexicographic Gröbner basis of J = ⟨f1, . . . , ft, xk⟩, listed
in decreasing order, with Γi of y-degree νi for all i; since xk is in J , νσ = 0. We can then let
C0, . . . , Cν0 be the detaching basis of J in degree ν0, with degy(Ci) = i for all i.
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We know that the first polynomials in the detaching basis are of the form C0 = xℓ, C1 =
yxℓ, . . . , Cνσ−1−1 = yνσ−1−1xℓ, for some ℓ ≤ k. If ℓ = k, then they all vanish modulo xk, but
the next polynomial Cνσ−1 does not. If ℓ < k, then none of them vanishes modulo xk. Thus,
we define ρ = νσ−1 in the former case and ρ = 0 in the latter.

Let further D ≥ ∆(f1, . . . , ft, x
k) be as in the proposition. If we consider the extended

Sylvester matrix T ∈ K[x](dy+D)×(t+1)D built from f1, . . . , ft, x
k, then the assumption on

D shows that each πdy+D(Ci) is in the column span of T . For i = 0, . . . , ν0, we let vi be
the column vector πdy+D(Ci) mod xk ∈ Ady+D; the discussion in the previous paragraph
shows that the nonzero vectors vi are precisely vρ, . . . , vν0 . By reduction modulo xk of the
membership relations above, we see that vρ, . . . , vν0 are in the A-span of the columns of S̄.

Lazard’s structure theorem for bivariate lexicographic Gröbner bases [48, Theorem 1]
shows that every polynomial Γj in the reduced Gröbner basis of J is of the form Γj = xmjγj,
with γj monic in y and mj ≤ ℓ (the inequality is strict, except for j = 0). It follows that for
i = ρ, . . . , ν0, the pivot in vi is also a power of x, at index dy +D − i (precisely, it is xmj , for
j the largest integer such that νj ≤ i).

Let η1, . . . , ηL be the nonzero columns in the Howell form B of S̄. By definition of the
Howell form, the former observation implies that for i = ρ, . . . , ν0, the vector vi is in the
A-span of those ηj’s starting with at least dy + D − i − 1 zeros. For such an i, since the
entry at index dy +D − i in vi is nonzero, there must exist (exactly) one ηj with pivot index
dy +D − i.

We now prove that the pivot in ηL is precisely at index dy +D − ρ. Recall that we write
h1, . . . , hL for the canonical lifts of η1, . . . , ηL to vectors in K[x]dy+D; in particular, the pivot
index r of hL, as defined in the proposition, is also the pivot index of ηL, so that our claim is
that r = dy +D − ρ.

Suppose that the pivot in ηL is at an index different from dy +D − ρ. By the previous
discussion, it can only lie at a larger index, say m > dy +D − ρ; this may happen only if
ρ > 0, in which case we saw that ρ = νσ−1 = degy(Γσ−1) and Γσ = xk.

Let H1, . . . , HL be the polynomials obtained by applying π−1
dy+D to h1, . . . , hL. It follows

that HL has y-degree dy +D −m < ρ = degy(Γσ−1), and x-degree less than k = degx(Γσ).
Thus, HL is reduced with respect to the Gröbner basis Γ of J . On the other hand, because
ηL is in the column span of S̄, its canonical lift hL is in the column space of S, up to the
addition of a vector with entries in xkK[x]. In other words, HL is in J , so that HL must be
zero, a contradiction.

Thus, the pivot index of ηL is exactly dy +D − ρ, that is, the same as that of vρ. Our
previous discussion on the pivots in the vectors ηi then implies that for i = ρ, . . . , ν0, the
pivot index of ηL+ρ−i is dy +D − i, that is, the same as that of vi. This implies that

vi =
i∑

j=ρ

αi,jηL+ρ−j, (3)

for some coefficients αi,j in A = K[x]/xk. On the other hand, all polynomials HL, . . . , HL+ρ−ν0

are in J (by the argument we used for HL). By Lemma 2.2, we deduce that for i = ρ, . . . , ν0,
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the polynomial HL+ρ−i can be written as HL+ρ−i =
∑i

j=ρ βi,jCj, for some coefficients βi,j in

K[x]. After application of πdy+D and reduction modulo xk, this gives the equality

ηL+ρ−i =
i∑

j=ρ

β̄i,jvj, (4)

with β̄i,j = βi,j mod xk for all i, j. We know that the pivots of both vi and ηL+ρ−i are powers
of x (the latter, by the properties of the Howell form), so Eq. (3) and Eq. (4) show that the
pivots in vi and ηL+ρ−i are the same, for i = ρ, . . . , ν0.

Back in K[x, y], we deduce that Ci and HL+ρ−i have the same coefficient in yi, for
i = ρ, . . . , ν0. Proceeding as in the proof of Proposition 2.4, we deduce that we actually have
Ci = HL+ρ−i for i = ρ, . . . , ν0: we observe that their terms of y-degree less than i are reduced
with respect to Γ; it follows that Ci −HL+ρ−i is both in J and reduced with respect to its
lexicographic Gröbner basis, so it vanishes.

Taking i = ν0, we deduce in particular that HL+ρ−ν0 is monic in y (and no Hi of larger
index has this property), so the index L′ defined in the proposition is L′ = L+ ρ− ν0; the
corresponding polynomials are Cν0 , . . . , Cρ.

Since we saw that r = dy +D − ρ, the integer L′′ in the proposition is L′′ = L+ ρ, and
through π−1

dy+D, the columns hL+1, . . . , hL+ρ become yρ−1xk, . . . , xk (there is no such column

if ρ = 0). These are precisely the polynomials Cρ−1, . . . , C0 that were missing if ρ > 0.

We callHowellGroebnerBasis(F , k,D) a procedure that takes as input F = (f1, . . . , ft),
k and D, and returns the lexicographic Gröbner basis of ⟨f1, . . . , ft, xk⟩ obtained from the
Howell form of S̄, taking for dy the maximum of the degrees of f1, . . . , ft, and choosing for D
the integer prescribed by Proposition 2.5. In this case, there is no need to make S̄ square:
the algorithm of [60, Chapter 4] computes its Howell form using O (̃tDωk) operations in K.

The main application we will make of Howell form computation is to obtain the Gröbner
basis of the ⟨x, y⟩-primary component J of an ideal such as I = ⟨f1, . . . , ft⟩. In order to do
so, we will assume that we are in “nice” coordinates, in the sense that there is at most one
point in V (F) lying over x = 0 (if this point is not (0, 0), then the ⟨x, y⟩-primary component
J of I is trivial).

Lemma 2.7. Let F = (f1, . . . , ft) be in K[x, y], and suppose that f1(0, y), . . . , ft(0, y) have
at most one common root. Let further J be the ⟨x, y⟩-primary component of I = ⟨f1, . . . , ft⟩,
with m the smallest integer such that xm is in J . Then:

• for k ≥ 0, the smallest power of x in the ideal H = ⟨f1, . . . , ft, xk⟩ is xmin(m,k).

• for k ≥ m, H = J .

Proof. First, we establish that J = ⟨f1, . . . , ft, xm⟩. For one direction, all fi’s, as well as
xm, are in J by definition. Conversely, the assumption on V (F) implies that we can write
⟨f1, . . . , ft⟩ = JJ ′, with J ′ having no solution above x = 0 (J and J ′ are coprime); in
particular, there exist polynomials u, v with uxm + v = 1 and v in J ′. From this, we get
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J = (uxm + v)J , and every element in uxmJ is a multiple of xm, while every element in vJ
is in ⟨f1, . . . , ft⟩.

Suppose k ≥ m. As above, we also have polynomials u′, v′ with u′xk−m + v′ = 1 and v′ in
J ′. Multiplying by xm shows that xm is in the ideal H = ⟨f1, . . . , ft, xk⟩, so that H = J (this
proves the last claim in the lemma). In this case, the smallest power of x in H is thus xm.

Suppose k ≤ m. In this case, we prove that the minimal power of x in H = ⟨f1, . . . , ft, xk⟩
is xk. First, note that in this case, H = ⟨f1, . . . , ft, xm, xk⟩ = J + ⟨xk⟩, and let xe be the
minimum power of x in H; suppose e < k, so that e < m. It follows that xe is the normal
form of a polynomial of the form fxk, modulo the Gröbner basis G of J . However, Lazard’s
structure theorem [48, Theorem 1] implies that through reduction modulo such a Gröbner
basis, no term of x-degree less than k can appear, a contradiction.

This allows us to design an algorithm GroebnerBasisAtZero that computes the
Gröbner basis of J (under the geometric assumption in the lemma), even though we do
not know m in advance: we call HowellGroebnerBasis with inputs the polynomials
(f1, . . . , ft, x

k), for k = 2i, with i = 0, 1, . . . , until the output does not contain xk. Indeed, the
lemma shows that if xk is in the Gröbner basis of H = ⟨f1, . . . , ft, xk⟩, then we have k ≤ m,
while if it is not, then we have reached k > m, and the output is the Gröbner basis of J .

Altogether, we do O(log(m)) calls to HowellGroebnerBasis, with always k ≤ 2m.
With d the maximum degree of f1, . . . , ft, the runtime is O (̃tDωm) operations in K, with D
in {∆1(dy),∆2(d),∆3(d)}, depending on our assumptions on f1, . . . , ft (recall that dy and d
are the maximum y-degree, resp. degree, of the input).

3 Coefficient size and bad reduction

In this section, we suppose that our base field K is endowed with a notion of height. We will
assume that our input polynomials F = (f1, . . . , ft) have coefficients in a certain subring A
of K, and that we have bounds d and h on their degrees and heights; then, we give height
bounds on the elements in the lexicographic Gröbner basis of the ideal they generate, and we
quantify the maximal ideals in A of “bad reduction” for this Gröbner basis.

3.1 Framework and main result

Our presentation below is inspired by that in [44]. We assume that we work with a set M
of absolute values over K. Recall that an absolute value | |v : K → R≥0 is a mapping that
satisfies the following properties:

(1) | |v vanishes at zero, and only at zero,

(2) |ab|v = |a|v |b|v, for a, b in K,

(3) |a+ b|v ≤ |a|v + |b|v, for a, b in K.
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If the stronger condition |a+ b|v ≤ max(|a|v, |b|v) holds instead of (3), then we say that | |v
is ultrametric, otherwise we say that | |v is Archimedean.

We also suppose that we are given positive coefficients {dv, | |v ∈ M}, with all dv ≤ 1,
such that the product formula

∏
| |v∈M |x|

dv
v = 1 holds for all nonzero x in K. For | |v in M ,

we can then define the local height of such an x as hv(x) = max(0, log(|x|v)), and its (global)
height h(x) =

∑
| |v∈M dvhv(x); the (local and global) heights of zero are zero.

More generally, we will define the height h(X) of a finite set X ⊂ K as follows: for | |v in
M , let the local height hv(X) be defined as

hv(X) = max(hv(x), x ∈ X),

and let h(X) =
∑

| |v∈M dvhv(X). This allows us to speak of the local heights, resp. height,

of a polynomial in K[x], or of a matrix over K or K[x], by considering the local heights, resp.
height, of the set of its coefficients.

Finally, we will consider a certain subring A of K; we will assume that our inputs have
coefficients in A and we will discuss their reduction modulo maximal ideals m in A.

The main examples we have in mind are the following. The first and second ones
are the simplest, and could be addressed with a much lighter formalism, but the case
of number fields is less straightforward (a key difference is that an inequality such as
h(a+ b) ≤ max(h(a), h(b)) + log(2) holds in Z, but not always for algebraic integers).

Example 3.1.

• We can take K = Q and let MQ be the set of all p-adic absolute values | |p for p prime,
together with the usual absolute value | |∞. The former are defined by |α|p = p−vp(α),
with vp the p-adic valuation, and are ultrametric; the latter is Archimedean. Setting
dv = 1 for all these absolute values, the product formula is satisfied. The height of a
rational number α = r/s in reduced form is max(log(|r|), log(|s|)). In this case, our
ring of coefficients will naturally be Z.

• Instead, we may consider K = k(t), for k a field. For f irreducible in k[z], the f -adic
absolute value is defined as |α|f = 2− deg(f)vf (α), where vf is the f-adic valuation. We
also let |r/s|∞ = 2deg(r)−deg(s), for r, s ̸= 0. All these absolute values are ultrametric,
they satisfy the product formula with dv = 1 for all | |v, and the height of α = r/s, with
r, s coprime, is max(deg(r), deg(s)). In this case, we will take A = k[z].

• Finally, we can more generally let K be a number field, and MK be the set of absolute
values on K that extend some absolute value in MQ to K. For | |v ultrametric in M
that extends | |p, set dv = [Kv : Qp]/[K : Q] ≤ 1, where Kv is the completion of K at
| |v. Then, the product formula is satisfied again, and the height of an element α in
K is known as its (logarithmic) Weil height. The choice of the dv’s make this height
well-defined for α in Q, regardless of which number field we consider it in.

Here, if K = Q(α), for some algebraic integer α, then we could take A = OK, the ring
of integers of K, but it will be simpler to only work with its subring A = Z[α].
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This notion of height is related to the size of the representation of elements of K. When
K = Q, the height of a nonzero rational tells us how many bits are used to write it in a
fixed base; similarly, when K = k(z), the height of a nonzero rational function expresses how
many coefficients in k are needed. Further, when either K = Q or K = k(z), the height of a
polynomial f (or a matrix, . . . ) with coefficients in K can be understood in simple terms: let
δ in Z, resp. k[z], be a minimal common denominator for all coefficients of f ; then the height
of f is simply the maximum of the logarithms (resp. degrees) of all non-zero coefficients of
δf , and of δ itself.

In the case of a general number field, however, the relationship between height and
representation size is less straightforward, since the latter depends on the choice of a basis of
K over Q; we discuss this further in Section 5.

Given polynomials F = (f1, . . . , ft) in A[x, y], the key quantity H(F), together with an
element βF ∈ A, are defined as follows.

Definition 3.2. Consider polynomials F = (f1, . . . , ft) in A[x, y], let I be the ideal they
generate in K[x, y], with lexicographic Gröbner basis G = (g0, . . . , gs). We define H(F) as
the smallest integer such that there exists βF nonzero in A for which we have:

• the polynomials βFg0, . . . , βFgs are in A[x, y]

• all coefficients of βFg0, . . . , βFgs (which include in particular βF) have height at most
H(F)

• for any maximal ideal m ⊂ A, with residual field F = A/m, if βF /∈ m, G mod m is the
lexicographic Gröbner basis of ⟨f1 mod m, . . . , ft mod m⟩ in F[x, y].

Note that if, for instance, we are in the case K = Q, the last condition simply means that
a prime p (the generator of the ideal m in the proposition) is a prime of “good reduction”
whenever p does not divide βF . Remark that simple conditions such as “p does not divide any
coefficient or any denominator in F and G” or “the initial ideals of F and F mod p are the
same” are not sufficient to guarantee good reduction: for the first one, see [64, Example 1];
for the second one, consider F = (4x+ 2, 2x2 + x) and p = 2.

Our goal is thus to give an upper bound on H(F). For this, we introduce two functions
B(n, d, h) and C(t, d,D, h). The first one, B(n, d, h), is defined by

B(n, d, h) = (N + 1)h+ τ(N log(N) + log(n(d+ 1))),

where τ is the number of Archimedean absolute values in M . In particular, τ = 1 for K = Q,
whereas in our second example K = k(z), we have τ = 0; for K a number field, we have
τ ≤ [K : Q]. Next, C(t, d,D, h) is the function defined by

C(t, d,D, h) = B(tD, d, h) + h+ τ log(2),

with τ as above. It follows that B(n, d, h) is in O (̃n2dh) and C(t, d,D, h) is in O (̃t2D2dh),
since τ is a fixed constant.
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Proposition 3.3. Let F = (f1, . . . , ft) be in A[x, y], for t ≥ 2, such that the ideal I =
⟨f1, . . . , ft⟩ ⊂ K[x, y] has dimension zero. Suppose that all fi’s have degree at most d and
coefficients of height at most h. Then the following hold

(i) if there exists i in {1, . . . , t} such that the coefficient of yd in fi is a nonzero constant,
then H(F) ≤ C(t, d,∆1(d), h) ∈ O (̃t2d3h);

(ii) if t = 2, then H(F) ≤ C(2, d,∆2(d), h) ∈ O (̃d5h);

(iii) in general, H(F) ≤ C(t, d,∆3(d), h) ∈ O (̃t2d9h).

The proposition will follow from height bounds for Hermite forms of matrices due to
Storjohann, which we recall in the first subsection; from this, the extension to lexicographic
Gröbner bases follows directly from the discussion in the previous section.

To our knowledge, no previous bounds were given in this setting; however, some results
are available for particular cases. We discuss them here in the particular case K = Q; the
results quoted below also cover more general cases.

Several previous results covered the case of radical ideals with generators in Z[x, y] and
finitely many solutions. If their Gröbner basis G is a triangular set (that is, G = (g0, g1),
with leading terms of the form yn0 and xms , respectively), the results in [17] show that the
polynomials in G have coefficients with numerator and denominator of height O (̃d3h+ d4).
Our result does not feature the term d4, but this might be due to the proof techniques of [17],
which are not limited to systems in two variables. If we keep the radicality assumption,
but allow arbitrary leading terms, the best previous bound we are aware of is O (̃d7h+ d8),
from [14].

3.2 Coefficient size and bad reductions for Hermite normal forms

We recall here results of Storjohann’s [59] on size bounds and unlucky reductions for Hermite
normal forms of matrices with entries in A[x] ⊂ K[x]. That reference deals with A = Z, but
the same treatment applies to our more general context. We briefly review the key elements
of the proof in [59], skipping the details that can be found in that reference.

Proposition 3.4 ([59, Section 6.2]). Let A be in A[x]n×n, with nonzero determinant, degree
at most d > 0 and height at most h. Let further H be the Hermite normal form of A. Then,
there exists α nonzero in A such that:

• all entries of αH are in A[x]

• αH has height at most B(n, d, h)

• for any maximal ideal m ⊂ A, with residual field F = A/m, if α /∈ m, then H mod m is
the Hermite normal form of A mod m in F[x]n×n.
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Sketch of proof. Since A is invertible over K(x), the transformation matrix U such that
H = AU is uniquely defined, and it has entries of degree at most D = (n− 1)d.

Storjohann showed how to linearize the computation of U . Set N = n(D + 1) ≤ n2d;
then, there exist N ′ ≤ N and matrices Glin,Alin,Ulin with entries in K and of respective sizes
N ′ × n, N ′ ×N ′ and N ′ × n such that

• Glin = AlinUlin,

• Glin has exactly one nonzero entry per column, which is 1,

• Alin is invertible, and its entries are coefficients of the entries of A,

• for 1 ≤ i ≤ n, the entries on the ith row of Ulin are the coefficients of degrees 0, . . . , D
of Ui,1, then of Ui,2, . . . , and finally of Ui,n.

Let α ∈ A− {0} be the determinant of Alin. The previous items show that αU is in A[x]n×n,
and the relation H = AU shows that is also the case for αH .

Let m be a maximal ideal in A such that α /∈ m, with residual field F = A/m. We deduce
from the above that H and U are in Am[x]

n×n. If we let H̄ , Ā and Ū be the reductions of
all these matrices modulo m, we see that we have H̄ = ĀŪ in F[x]n×n, and since H̄ is still
in Hermite normal form, and Ū still invertible, H̄ is the Hermite form of Ā. It remains to
give a bound on the height of α and of the coefficients of the entries of αH .

• The entries of αUlin are minors of Alin. Take an absolute value | |v in our set M . If
| |v is ultrametric, the bounds given in e.g. [44, Section 1.1.1] show that the entries of
αUlin, and thus of αU , have local height at most Nhv(A), whereas for Archimedean
| |v, the bound is Nhv(A) +N log(N).

• The matrix αH is the product of αU and A. For | |v in M , if | |v is ultrametric,
we saw that the former has local height at most Nhv(A), whereas the bound is
hv(A) for the latter, so we have hv(αH) ≤ (N + 1)hv(A). For an Archimedean
| |v, we have to take into account the degrees of αU and A, respectively at most
D = (n− 1)d and d. As a result, for such a | |v, the bound on the local height of αH
is hv(αH) ≤ (N + 1)hv(A) +N log(N) + log(n(d+ 1)) (see again [44, Section 1.1.1]).

Multiplying by the coefficients dv and summing over all absolute values in M , we end up
with an upper bound on the global height of αH of the form h(αH) ≤ (N + 1)h(A) +
τ(N log(N) + log(n(d+ 1))), with τ the number of Archimedean absolute values in M .

3.3 Application to Gröbner bases and proof of Proposition 3.3

Let F = (f1, . . . , ft) be as in Proposition 3.3. First, we define an element γ ∈ A and integer
D through the following case discussion:

• If we are in case (i), we know that at least one of the fi’s has a coefficient of degree d
(in y) in A− {0}; let γ be such a coefficient. We let D = ∆1(d) from Proposition 2.5.
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• in case (ii) or (iii), we let γ = 1, and we take respectively D = ∆2(d) or D = ∆3(d),
with notation from Proposition 2.5.

In any case, we know that ∆(F) ≤ D, so we can apply Proposition 2.4; it shows that we
can recover the (minimal, reduced) lexicographic Gröbner basis of I = ⟨f1, . . . , ft⟩ from the
columns of the Hermite form of the Sylvester-like matrix S defined in that proposition.

As in the previous section, there is a (d+D)× tD matrix S′ obtained by permuting the
columns of S whose leading (d+D)× (d+D) minor is nonzero. Consider again the tD× tD
square matrix Ssq of Eq. (1) and its Hermite form Hsq; the first d+D rows of Hsq are the
Hermite form H of S.

Since Ssq has nonzero determinant, we can let α be the non-zero element in A associated
to it by means of Proposition 3.4, and we let β = αγ. That proposition shows that αHsq, and
thus βH, have entries in A[x], with coefficients of height at most B(tD, d, h). Multiplying
by γ adds an extra term h+ τ log(2) (this is seen by considering all absolute values in M ,
similarly to the end of the proof of the previous proposition). By means of Proposition 2.4,
we deduce that these height bounds apply in particular to the Gröbner basis G = (g0, . . . , gs)
of I.

Suppose then that m ⊂ A is a maximal ideal that does not contain β. Then, because
α is not in m, Proposition 3.4 shows that H̄sq = Hsq mod m is the Hermite normal form
of S̄sq = Ssq mod m. Considering only the first tD rows, we see that H̄ = H mod m is the
Hermite normal form of S̄ = S mod m. Now, let us prove that we still have ∆(F̄) ≤ D.

• If we are in case (i), since γ is not in m, at least one of the polynomials f̄i = fi mod m
has its coefficient of y-degree d a nonzero constant in F = A/m. Since all f̄i’s have
degree at most d, we deduce ∆(F̄) = d in this case (first item of Proposition 2.5)

• If we are in case (ii) or (iii), the discussion above shows that ḡ0 and ḡs are in the ideal
⟨f̄1, . . . , f̄t⟩, so that this ideal admits finitely many solutions in an algebraic closure of
the residual field F = A/m. Using the second and third items of Proposition 2.5 gives
our claim.

We can then apply Proposition 2.4 to F̄ = (f̄1, . . . , f̄t), and deduce that the columns of the
Hermite form of S̄ give a detaching basis, and in particular the lexicographic Gröbner basis
of ⟨f̄1, . . . , f̄t⟩. This proves Proposition 3.3.

4 Applying generic changes of coordinates

In this section, we work over a base field K, and we quantify changes of coordinates that
ensure three desirable properties: curves in Noether position, one-to-one projections and
Borel-fixed-ness of the initial ideal. For our discussion here, it will be convenient to consider
changes of coordinates with entries in K (and thus to work in K[x, y]), but the algorithms
will take them with entries in K.

We write γ for a 2× 2 matrix γ = [γi,j]1≤i,j≤2 with entries in K, and we identify M2(K)
with K4 through γ 7→ [γ1,1, γ1,2, γ2,1, γ2,2]. For γ in GL2(K) as above and f in K[x, y], we write
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fγ = f(γ1,1x+ γ2,1y, γ1,2x+ γ2,2y). Note that for two matrices γ,γ ′, we have (fγ)γ
′
= fγ′γ ,

so GL2(K) acts on the left on K[x, y].

4.1 Equations in general position

For F = (f1, . . . , ft) as in the previous sections, the best degree and height bounds ∆(F) and
H(F) hold when the input equations have a particular property: at least one fi has a term
of maximal degree that involves y only. Geometrically, this means that the curve V (fi) ⊂ K2

has no vertical asymptote; we also say that it is in Noether position. The following lemma is
straightforward.

Proposition 4.1. Take f in K[x, y] of degree d. Then there exists a hypersurface X ⊂ K4

of degree at most d such that if γ is in K4 −X, the coefficient of yd in fγ is nonzero.

Proof. Let fd ∈ K[x, y] be the homogeneous component of degree d in f . Then the coefficient
of yd in fγ is fd(γ2,1, γ2,2).

Another favourable situation, that will play a role when we deal with the primary
component at the origin, is when the projection V (F)→ K given by (α, β) 7→ α is one-to-one.
Remark that when we use this proposition, we will choose the entries of γ independently
at random, and in particular, γ will not a priori be known to be invertible, so that being
invertible is one of the conditions we quantify. Again, the proof of the proposition is standard.

Proposition 4.2. Let F = (f1, . . . , ft) be in K[x, y] of degrees at most d, and suppose that
V (F) is finite. Then there exists a hypersurface X ⊂ K4 of degree at most d4 such that if γ
is invertible and in K4 −X, the projection on the first factor V (Fγ)→ K is one-to-one.

Proof. Since we assume that the zero-set V (F) is finite, its cardinal D is at most d2, by [35,
Proposition 2.3]; we write V (F) = (αi, βi)1≤i≤D.

For γ invertible of determinant g ̸= 0, the zero-set V (Fγ) is the point of coordinates
((γ2,2αi − γ2,1βi)/g, (−γ1,2αi + γ1,1βi)/g). It follows that the projection V (Fγ)→ K is one-
to-one if and only if, for 1 ≤ i < j ≤ D, we have γ2,2(αi − αj) − γ2,1(βi − βj) ̸= 0. Since
the vector (αi − αj, βi − βj) is nonzero, this imposes a linear constraint on γ. There are
D(D − 1)/2 ≤ D2 pairs i, j to consider, and the conclusion follows.

4.2 The initial ideal is Borel-fixed

The last property we consider concerns the initial ideal In(I) of an ideal I ⊂ K[x, y], respective
to a monomial order ≺ for which x ≺ y. We say that an ideal J ⊂ K[x, y] is Borel-fixed if
it is stable under the action of the group of lower-diagonal invertible matrices (this differs
from the convention in e.g. [22, Chapter 15], which uses upper-triangular matrices; this is
because we choose x ≺ y rather than y ≺ x). Our motivation for this discussion is that
for the lexicographic order induced by x ≺ y, our algorithm for m-adic lifting of Gröbner
bases [56] (which we will rely on here) benefits from this property.
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Galligo proved that for homogeneous ideals in multivariate power series rings (endowed
with local orders), initial ideals are Borel-fixed in generic coordinates [28]. Similar statements
hold in polynomial rings; most references consider homogeneous ideals (or degree orders),
but one could use Sherman’s proof [58] for weighted orders, and set the weights to emulate
the target order in the affine case, to handle arbitrary ideals.

However, we require a quantitative statement on the “degree of genericity”, which we could
not find in existing work. Thus in this subsection, we prove Borel-fixedness of the initial ideal
of I in generic coordinates, for I of dimension zero, for any order, without the homogeneity
assumption. The proof is a direct adaptation of those of Galligo [28], Bayer-Stillman [5] and
Pardue [52] (as summarized in [22]), using the dimension zero assumption to dispense with
the use of Dickson’s lemma. While the proof is given in the bivariate context of this paper, it
applies without modification in more than two variables.

For S ⊂ K[x, y] and γ in GL2(K), we let Sγ = {fγ | f ∈ S}. If S is a K-vector space,
resp. an ideal, Sγ is a K-vector space of the same dimension as S (resp. an ideal).

Proposition 4.3. Let I ⊂ K[x, y] be an ideal of dimension zero, and let δ = dimK(K[x, y]/I).
Then, there exists a hypersurface F3 ⊂ K4 of degree at most δ3+3 such that if γ is in K4−F3,
γ is invertible and the initial ideal of Iγ is Borel-fixed.

Before proving the proposition, we point out the main consequence we will derive from
it, regarding the shape of the Gröbner basis G = (g0, . . . , gs) of I

γ (as usual, we list them
in decreasing order). For any γ in GL2(K), the minimal monomial generators of In(Iγ) all
have total degree at most δ. Thus, if K has characteristic either zero or greater than δ,
Theorem 15.23 in [22] shows that if In(Iγ) is Borel-fixed, gi has y-degree s− i, for i = 0, . . . , s.
This makes it a favourable situation for certain Gröbner basis computations: reduction
modulo a Gröbner basis (which is the core operation that our lifting algorithm eventually
relies on) and applying changes of coordinates (see [51]).

The proof of the proposition occupies the rest of this section. In what follows, the
monomial order ≺ and the ideal I are fixed; the initial term of a nonzero f ∈ K[x, y] is
written in(f). We define the following:

• For d ≥ 0, we write I≤d = I ∩ K[x, y]≤d. One readily checks that for γ in GLn(K),
(Iγ)≤d = (I≤d)

γ , so we simply write this set Iγ≤d.

• In(I) is the initial ideal of I for the order ≺.

• For any K-vector space S ⊂ K[x, y], we let in(S) be the K-vector space spanned by all
in(f), for f in S.

As in [22], we introduce the exterior algebra ∧(K[x, y]) in order to describe the action of
GL2(K) on vector subspaces in K[x, y]. A nonzero exterior product m1 ∧ · · · ∧msd , with all
mi’s pairwise distinct monomials, admits a normal form, obtained by reordering all mi’s in
decreasing order. Two such expressions are compared using the lexicographic order on their
normal forms.
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Lemma 4.4. Let S ⊂ K[x, y] be a vector space of finite dimension s. Then in(S) has a
uniquely defined monomial basis (n1, . . . , ns) with n1 > · · · > ns, and for any basis (g1, . . . , gs)
of S, the maximal term in g1 ∧ · · · ∧ gs is cn1 ∧ · · · ∧ ns, for some non-zero constant c ∈ K.

Proof. Let (f1, . . . , fs) be a K-basis of S. Without loss of generality, assume that f1 has the
maximal leading term. By linear combinations, we can further assume that f2, . . . , fs have
leading terms less than that of f1. Continuing this way, we end up with generators f1, . . . , fs
of S with leading monomials n1 > · · · > ns.

By definition, these monomials are all in in(S), and they are linearly independent.
Conversely, if we take f in in(S), we have f =

∑
i∈B ciin(hi), for some hi in S. The leading

term of any (nonzero) hi must be one of n1, . . . , ns, so f is in the K-span of n1, . . . , ns. This
proves that {n1, . . . , ns} is a K-basis of in(S) (and thus, necessarily its unique monomial
basis).

For the second claim, expanding the product shows that the leading term in f1 ∧ · · · ∧ fs
is kn1∧ · · ·∧ns, for some nonzero k ∈ K. Now, for any other basis (g1, . . . , gs), f1∧ · · ·∧ fs =
αg1 ∧ · · · ∧ gs, for some nonzero α ∈ K (because the exterior power ∧sS has dimension 1); the
conclusion follows. Alternatively, as pointed out by a referee, one could echelonize g1, . . . , gs
as we did with f1, . . . , fs (this preserves the exterior product, up to nonzero constant), and
end up with polynomials that necessarily have n1, . . . , ns as leading monomials; this also
gives the conclusion.

We call the monomial basis (n1, . . . , ns) in this lemma, sorted in decreasing order, the
canonical basis of in(S).

Let further Γ = [ai,j]1≤i,j≤2 be a 2× 2 matrix with indeterminate entries. For d ≥ 0, let
sd = dimK(I≤d), take a K-basis fd,1, . . . , fd,sd of I≤d, and consider fΓ

d,1, . . . , f
Γ
d,sd

in K[a][x, y].

Lemma 4.5. The maximal term in fΓ
d,1 ∧ · · · ∧ fΓ

d,sd
has the form Cdnd,1 ∧ · · · ∧ nd,sd, for Cd

a nonzero polynomial of degree at most dsd in K[a] and monomials nd,1 > · · · > nd,sd (that
depend on x, y only).

Proof. Replacing Γ by the 2× 2 identity matrix gives fd,1 ∧ · · · ∧ fd,sd , which is nonzero, so
fΓ
d,1 ∧ · · · ∧ fΓ

d,sd
itself is nonzero, and thus it has a leading term of the claimed form (here,

we work with coefficients in K[a], whereas our indeterminates remain x and y). Each fd,i
has degree at most d in x, y, so fΓ

d,i has degree at most d in a and the degree bound on Cd

follows.

Lemma 4.6. The following hold:

• For any γ in M2(K) and any g1, . . . , gsd in Iγ≤d, all monomials in g1 ∧ · · · ∧ gsd are less
than or equal to nd,1 ∧ · · · ∧ nd,sd.

• If γ ∈ GL2(K) does not cancel Cd, (nd,1, . . . , nd,sd) is the canonical K-basis of in(Iγ≤d).
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Proof. First item: assume g1, . . . , gsd are linearly independent (otherwise, the wedge product
is zero). Then, they form a K-basis of Iγ≤d, and it follows that g1∧· · ·∧gsd = kfγ

d,1∧· · ·∧f
γ
d,sd

,

for some non-zero constant k in K. So the terms in g1 ∧ · · · ∧ gsd are obtained by evaluating
those of fΓ

d,1 ∧ · · · ∧ fΓ
d,sd

at the entries of γ, and the conclusion follows from the definition of
nd,1, . . . , nd,sd .

Second item: the assumption implies that the maximal term in fγ
d,1 ∧ · · · ∧ fγ

d,sd
is

cnd,1 ∧ · · · ∧ nd,sd , for c non-zero in K. Since fγ
d,1, . . . , f

γ
d,sd

are a K-basis of Iγ≤d, Lemma 4.4
shows that (nd,1, . . . , nd,sd) is the canonical basis of in(Iγ≤d).

For d ≥ 0, let Bd ⊂ K[x, y] be the K-span of nd,1, . . . , nd,sd . By the previous lemma, if
Cd(γ) ̸= 0, Bd = in(Iγ≤d).

Lemma 4.7. For d ≥ 0, Bd ⊂ Bd+1.

Proof. We first prove that each nd,i is in Bd+1. Take γ ∈ GL2(K) that cancels neither Cd

nor Cd+1. Then, we saw that nd,i is in in(Iγ≤d), so it is a linear combination
∑

j in(fj), for
some fj in Iγ≤d, and so, in fact, nd,i = in(f) for some f in Iγ≤d. Then, f is in Iγ≤d+1, so nd,i is

in in(Iγ≤d+1). By assumption on γ, nd,i is thus in Bd+1. Because Bd and Bd+1 are K-vector
spaces, this proves Bd ⊂ Bd+1.

An alternate approach, pointed out by a referee, is to establish that in(Iγ≤d) = In(Iγ≤d)≤d,
from which in(Iγ≤d) ⊂ in(Iγ≤d+1) follows. Then, choose γ that does not cancel CdCd+1.

Let B = ∪d≥0Bd. Note that by the previous lemma, for any D ≥ 0, we have B = ∪d≥DBd.

Lemma 4.8. B is a monomial ideal.

Proof. First, B is a K-vector space (the increasing union of vector spaces remains a vector
space). Next, we prove that xjBd is contained in Bd+1, for d ≥ 0 and j in {1, . . . , n}. Take γ
that cancels neither Cd nor Cd+1. As in the previous lemma, nd,i is of the form nd,i = in(f) for
some f in Iγ≤d. Now, xjf is in Iγ≤d+1, so its initial term xjnd,i is in in(Iγ≤d+1). By assumption
on γ, xjnd,i is thus in Bd+1. By additivity, xjBd is contained in Bd+1.

As a result, for any monomial m of degree e, mBd is contained in Bd+e (by induction),
and thus in B. It follows that mB is contained in B, so B is an ideal.

Finally, let M ⊂ B be the union of all sets {nd,1, . . . , nd,sd}, for d ≥ 0. Let f be in B, so
that f is in Bd for some d ≥ 0. Since Bd is generated by {nd,1, . . . , nd,sd} as a vector space, f
is in the K-span of M . Thus, M generates B as a vector space, and then also as an ideal, so
that B is a monomial ideal.

The next lemmas prove that for generic γ, B is the initial ideal of Iγ .

Lemma 4.9. For d ≥ 0 and γ in GL2(K), in(Iγ≤d) ⊂ In(Iγ)≤d.

Proof. Take f =
∑

i in(fi) in in(Iγ≤d), with all fi’s in Iγ≤d. Then, all fi’s are in Iγ , so f is in
In(Iγ). On the other hand, all fi’s, and thus all in(fi)’s, have degree at most d, so f is in
In(Iγ)≤d.
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Lemma 4.10. The ideal B has degree at least δ = deg(I).

Proof. Let h1, . . . , ht be ideal generators of B. Since each hi belongs to some Bdi , and the
sequence (Bd)d≥0 is increasing (Lemma 4.7), there exists D ≥ 0 such that all hi’s are in BD.

Take γ that does not cancel CD; then, BD = in(Iγ≤D), so that all hi’s are in in(Iγ≤D). By
Lemma 4.9, they are in In(Iγ)≤D, and thus in In(Iγ). As a result, the whole ideal B is in
In(Iγ), which implies deg(B) ≥ deg(Iγ) = deg(I).

Lemma 4.11. For d ≥ δ and γ in GL2(K), in(Iγ≤d) = In(Iγ)≤d.

Proof. We proved in Lemma 4.9 that we have the inclusion in(Iγ≤d) ⊂ In(Iγ)≤d, for d ≥ 0 and
any γ. Now, we prove that for d ≥ δ and any γ, dimK(in(I

γ
≤d)) = dimK(In(I

γ)≤d). The former
dimension is equal to dimK(I

γ
≤d), by Lemma 4.4. Now, for any γ, both Iγ and In(Iγ) have

dimension zero and degree δ, so for d ≥ δ, dimK(I
γ
≤d) = dimK(In(I

γ)≤d) = (δ+1)(δ+2)/2−δ
(for the former, compute it using the initial ideal with respect to a graded order).

Lemma 4.12. For γ in GL2(K) that does not cancel Cδ, In(I
γ) = B.

Proof. Take any γ in GL2(K). The ideal Iγ has degree δ, and thus so does In(Iγ). The
minimal monomial generating set of In(Iγ), say g1, . . . , gm, is thus made of monomials of
degree at most δ. So each gi is in In(Iγ)≤δ, and thus in in(Iγ≤δ), by Lemma 4.11.

If we suppose that γ does not cancel Cδ, then in(Iγ≤δ) = Bδ, so that each gi is in Bδ, and
thus in B. This proves the inclusion In(Iγ) ⊂ B, and in particular deg(B) ≤ deg(In(Iγ)) = δ.
Since we saw that deg(B) ≥ δ (Lemma 4.10), these two monomial ideals have the same
degree δ, and thus they are equal.

To prove Proposition 4.3, we define F3 as the vanishing set of either Cδ or the determinant
γ1,1γ2,2 − γ2,1γ1,2. We know that Cδ has degree at most δsδ, with sδ the dimension of I≤δ.
This gives sδ = (δ + 1)(δ + 2)/2− δ, and the degree bound deg(F3) ≤ δ3 + 3.

Finally, we establish that B is Borel-fixed; this part of the proof is very close to that
of [22, Theorem 15.20].

Lemma 4.13. B is Borel-fixed.

Proof. We prove that for any matrix I + η, with η having only one entry, that lies under the
diagonal, we have BI+η = B. It is enough to prove that (Bd)

I+η = Bd for d ≥ 0 (taking the
union will give the conclusion).

Take d ≥ 0 and recall that (nd,1, . . . , nd,sd) is the (unique, up to permutation) monomial

basis of Bd. The polynomials (nI+η
d,1 , . . . , nI+η

d,sd
) are then a basis of BI+η

d ; we will prove that

nI+η
d,1 ∧ · · · ∧ nI+η

d,sd
= nd,1 ∧ · · · ∧ nd,sd ; this implies our claim that (Bd)

I+η = Bd. Write

n = nd,1 ∧ · · · ∧ nd,sd , and suppose that nI+η is different from n. Then, because η is strictly
lower triangular, all new terms are greater than n (we are replacing x by x+ gy, for some
constant g). We want to prove that there are no such new terms, so we let n′ > n be one of
them and derive a contradiction.

Let γ be in GL2(K) that does not cancel Cd, so that Bd = in(Iγ≤d). Let g1, . . . , gsd be a
basis of Iγ≤d; without loss of generality, we can then assume that they have pairwise distinct
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leading terms nd,1, . . . , nd,sd . If we let g = g1 ∧ · · · ∧ gsd , then for a diagonal matrix ϕ with
diagonal entries ϕ1, ϕ2, the coefficient of n′ in the expansion of g(I+η)ϕ is a nonzero polynomial
A in ϕ1, ϕ2 (this calculation is in the end of the proof of [22, Theorem 15.20]).

Choose ϕi’s in K such that A(ϕ1, ϕ2) is nonzero and let hi = g
(I+η)ϕ
i for i = 1, . . . , sd,

so that h = h1 ∧ · · · ∧ hsd is equal to g(I+η)ϕ. By construction, h has a term greater than
n = nd,1 ∧ · · · ∧ nd,sd in its expansion. On the other hand, if we write γ ′ = (I + η)ϕγ, we

obtain that all hi’s are in Iγ
′

≤d. This contradicts the first item in Lemma 4.6.

5 Main algorithm

We can finally present our main algorithms, where we use Newton iteration to compute
lexicographic Gröbner bases: we are given F = (f1, . . . , ft) in A[x, y], where A is a domain
contained in a field K, and we compute either the Gröbner basis G = (g0, . . . , gs) of I =
⟨f1, . . . , ft⟩, or the Gröbner basis G0 = (g00, . . . , g

0
r ) of the ⟨x, y⟩-primary component of I using

m-adic approximation, for a maximal ideal m of A. In what follows, we give details for the
computation of G, for the cases highlighted in Example 3.1 (with K = Q, K = k(z) and K a
general number field, respectively); then, we show how to modify the procedure to get an
algorithm for G0.

The algorithms are randomized: given a parameter P ≥ 1, our goal is to obtain the correct
output with probability at least 1− 1/2P . Throughout, we make the following assumptions:

• f1 has maximum degree among the fi’s; we write d = deg(f1),

• all input polynomials have height at most h,

• I has dimension zero.

In terms of notation, we let δ = deg(I) = dimK K[x, y]/I, so that δ ≤ d2. The other important
quantity is the size of the output. To quantify it, we will let b be the height of the polynomials
in G, using the definition given in Section 3. At least in the cases K = Z and K = k(z),
we pointed out there that b gives an upper bound on the size of the coefficients of G: each
polynomial in G has at most δ + 1 coefficients, so the total size occupied by the output is
O(sδb) bits when K = Q and O(sδb) coefficients in k with K = k(z).

5.1 The Gröbner basis algorithm

We start by presenting the main steps of the algorithm over an abstract ring A and field
K, leaving out details of the analyses for the next subsections, where we discuss the cases
K = Q, K = k(t) and K a general number field separately (over a number field, we will see
that we need to modify this scheme to some extent).

In any case, the idea of the algorithm is the same: compute the Gröbner basis modulo two
different ideals m,m′, and lift the former modulo powers of m until we have enough precision
to recover polynomials over K.
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Then, we could attempt to test whether our candidate Gröbner basis is indeed a Gröbner
basis, and if it reduces the input equations to zero, as [2, 40] prove that this allows us to
test whether we have enough m-adic precision. However, this task itself can be expensive,
since it is done over K. Instead, we reduce the candidate modulo m′, and test whether the
result coincides with the Gröbner basis previously computed modulo m′. Some denominators
may vanish modulo m′; thus, the reduction step (Step 17) returns a boolean value bred that
indicates whether reduction was successful (we will analyze the probability that this happens).

For the lifting itself, we use Newton iteration for bivariate Gröbner bases, which we
introduced in [56]. This is done after changing to random coordinates; as pointed out in the
previous section, this has the expected effect of making the input polynomials monic, and
the initial ideal Borel-fixed.

Finally, the algorithm is written assuming there exists a fraction reconstruction algorithm
that attempts to recover an element of K as a fraction of “integer” elements in A from its
truncated m-adic expansion. For K = Q and K = k(t), this is well-known; here, the case of
number fields will require an adaptation (in general, it is unknown to us exactly what rings
support rational reconstruction). We return a boolean value brec that takes the value true if
rational reconstruction was successful.

The algorithm as presented below may raise errors at Steps 3 or 6. For our analysis, it is
convenient to treat both on a same footing, and abort as soon as an issue arises; in actual an
implementation, upon meeting the first possible error (choosing a change of variable that is
non invertible modulo m), one would just try again with another γ.
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Algorithm 5.1 GroebnerBasis(F)
Input: F = (f1, . . . , ft) in A[x, y]
Output: the lexicographic Gröbner basis of F in K[x, y], or error
1: choose two different maximal ideals m,m′ in A
2: choose γ in M2(A)
3: if γ mod m or γ mod m′ is not invertible then raise an error
4: Hm ← ChangeCoordinates(F ,γ) mod m
5: Hm′ ← ChangeCoordinates(F ,γ) mod m′

6: if the coefficient of yd in the first polynomial of Hm or Hm′ is zero then raise an error
7: Bm ← HermiteGroebnerBasis(Hm, d)
8: Bm′ ← HermiteGroebnerBasis(Hm′ , d)
9: Gm′ ← ChangeCoordinatesGroebner(Bm′ ,γ−1) mod m′

10: k ← 1
11: repeat
12: k ← 2k
13: Bmk ← LiftOneStepGroebner(ChangeCoordinates(F ,γ) mod mk,Bmk/2)
14: Gmk ← ChangeCoordinatesGroebner(Bmk ,γ−1) ▷ in A/mk

15: brec,Grec ← RationalReconstruction(Gmk)
▷ brec ∈ {true, false}; if false, then Grec is undefined

16: if brec is false then continue
17: bred,Gred ← Grec mod m′ ▷ bred ∈ {true, false}; if false, then Gred is undefined

18: if bred is false then continue
19: until Gred = Gm′

20: return Grec

5.2 Analysis over Q: proof of Theorem A

Let A = Z, K = Q and m,m′ are respectively generated by two primes p, p′ (so all notation
with subscripts m and m′ can be rewritten with subscripts such as p and p′). In this context,
runtimes are given in terms of bit operations; here, we use the fact that operations (+,×)
modulo a positive integer M take O (̃log(M)) bit operations, as does inversion modulo M if
M is prime [29].

5.2.1 Discussion of the subroutines

• Introducing a change of coordinates. We first choose a change of variables
γ with coefficients in Z. Applying it to the input equations F gives polynomials
H = (h1, . . . , ht), which we do not need to compute explicitly (as they may have
large height). We let B = (B0, . . . , Bσ) be the lexicographic Gröbner basis of these
polynomials in Q[x, y]. As with H, we do not compute it explicitly, but the analysis
will refer to it.
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We assume that γ satisfies the assumptions of Propositions 4.1 and 4.3, so that their
conclusions hold.

• Computing Gröbner bases modulo p. Our second step is to choose two primes
p, p′, and compute the Gröbner bases Bp of (H mod p), and Bp′ of (H mod p′) (in the
pseudo-code, H mod p is written Hm; similarly for H mod p′). We assume that neither
p nor p′ divides the integers βF and βH from Definition 3.2 applied to respectively F
and H. In particular, all denominators in B are invertible modulo p and p′, and we
have Bp = B mod p and Bp′ = B mod p′.

To compute Bp and Bp′ , the algorithm reduces the O(td2) coefficients of F modulo p
and p′. Then, we apply γ to the results, to obtain H mod p and H mod p′. Due to
Proposition 4.1, the coefficient of yd in h1 is a nonzero constant; if this is still the case
modulo p and p′, we use HermiteGroebnerBasis with D = d to get Bp and Bp′ ;
otherwise, we raise an error.

Cost: Reducing the input coefficients take O (̃td2(h+ log(pp′))) bit operations. Chang-
ing coordinates uses O (̃td2 log(pp′)) bit operations, by [29, Corollary 9.16]. Calling
HermiteGroebnerBasis uses O (̃tωdω+1 log(pp′)) bit operations, as we saw in Sec-
tion 2.2.

• Changing coordinates in Bp′. Using the Gröbner basis Bp′ of (H mod p′), we compute
the Gröbner basis of (F mod p′). This is done using the algorithm of [51] (this is a
variant of the FGLM algorithm featuring a sub-cubic cost, using the fact that the initial
ideal of H mod p′ is Borel-fixed). Since p′ does not divide βF , we deduce that we obtain
Gp′ = G mod p′.

Cost: Thanks to Proposition 4.3, the initial ideal of B, and thus of Bp′ is assumed to be
Borel-fixed. In this case, the algorithm in [51] takes O (̃δω) operations in Fp′ , which is
O (̃δω log(p′)) bit operations.

• Computing Bpk. At each step of the main loop, we start from Bpk/2 = B mod pk/2,
and we compute Bpk = B mod pk. For this, we first need H mod pk: this is done by
reducing the O(td2) coefficients of F modulo pk, and applying the change of variables γ.
Then, we use procedure LiftOneStepGroebner from [56, Remark 7.3] to obtain Bpk .

Cost: Coefficient reduction takes O (̃td2(h + k log(p))) bit operations, and changing
coordinates O (̃td2k log(p)). Due to the Borel-fixed assumption on B, and thus Bpk ,
Algorithm LiftOneStepGroebner takes a one-time cost of tδω log(p) bit operations,
plus

O (̃tδ(d2 + dmσ + σδ)k log(p))

bit operations per iteration. Here, we recall that σ is the number of polynomials in
B = (B0, . . . , Bσ), and thus in Bpk , and we write mσ = degx(Bσ).

• Computing Gpk . Knowing Bpk , we now compute Gpk = G mod pk. This is again done
using the algorithm of [51]. Here, we are not working over a field, but since p does not
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divide βF , we can still apply the algorithm. The only steps requiring inverses are the
inversion of a certain matrix of size δ, which is then known to be invertible modulo p.

Cost: Again, since the initial ideal of Bpk is Borel-fixed, the algorithm in [51] takes
O (̃δω) operations modulo pk, which is O (̃δωk log(p)) bit operations.

• Rational reconstruction. We next attempt to recover all rational coefficients of G
starting from those of Gpk = G mod pk. For each coefficient α of Gpk , we attempt to
recover a pair (η, θ) in Z × N, with |η| < pk/2/2 and θ ≤ pk/2, θ invertible modulo p
and α = η/θ mod pk.

Recall that we assume that all nonzero coefficients of G have numerators and denomi-
nators of height at most b. It follows that if pk/2 > 2eb, we will succeed and correctly
recover the corresponding coefficient in G [29, Theorem 5.26]. For smaller values of
k, rational reconstruction may find no solution (in which case brec is set to false, so
we reenter the lifting loop at precision 2k), or may already terminate; in this case, its
output Grec may be different from G.

Cost: Rational reconstruction takes O (̃k log(p)) bit operations per coefficient, for a
total of O (̃sδk log(p)).

• Testing for correctness. The final step in the lifting loop is a randomized test,
using Gp′ = G mod p′ as a witness to detect those cases where rational reconstruction
returned an incorrect result. We attempt to reduce Grec modulo our second prime
p′; if this fails (because p′ divides one of the denominators in Grec), we reenter the
lifting loop at precision 2k. Else, call Gred the result. We simply compare Gred and
Gp′ = G mod p′. If they coincide, we return true and Grec, otherwise, we return false

and Grec is undefined.
Cost: Reduction modulo p′ takes O (̃b + log(p′)) bit operations per coefficient, for a
total of O (̃sδ(b+ log(p′)).

5.2.2 Parameters choice

We assume that choosing a random integer in a set {0, . . . , A} (with the uniform distribution)
uses O (̃log(A)) bit operations. Since we do not want to discuss algorithms for prime
generation, we also assume that have an oracle O, which takes as input an integer C, and
returns a prime number in I = [C +1, . . . , 2C], uniformly distributed within the set of primes
in I, using O (̃log(C)) bit operations.

By Propositions 4.1 and 4.3, the change of variables γ needs to avoid a hypersurface

Γ ⊂ Q4
of degree at most d+ δ3 + 3 ≤ A1 = d6 + d+ 3. We choose its entries uniformly at

random in {0, . . . , 2P+2A1 − 1}; the cost of getting γ will be negligible.
Then, by the De Millo-Lipton-Schwartz-Zippel lemma, the probability that γ lies on Γ is

at most 1/2P+2. In what follows, we assume that this is the case. As a result, all polynomials
H have coefficients of height at most h′ = h+ d(P + 5 + log(A1)) ∈ O (̃h+ dP ).
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Let βF and βH be the nonzero integers from Definition 3.2 applied to respectively F and
H, and define

CF = C(t, d,∆3(d), h) ∈ O (̃t2d9h) and CH = C(t, d,∆1(d), h
′) ∈ O (̃t2d4hP ).

Then, Proposition 3.3 gives upper bounds of the form height(βF) ≤ CF and height(βH) ≤ CH.
In particular, the height bound b on the coefficients of G satisfies b ≤ CF , so b is in O (̃t2d9h).

Let µ1 be the coefficient of yd in h1, which has height at most h′. Our first requirement
on p and p′ is that neither of them divides µ = βFβHµ1. This is a nonzero integer, with
height(µ) ≤ A2, where we set A2 = CF + CH + h′ ∈ O (̃t2d9hP ).

Finally, we want to ensure that in the verification step, if Grec and G differ, their reductions
modulo p′, called Gred and Gp′ , differ as well. Below, we let k0 be the first power of two k such
that, at step k, rational reconstruction correctly computes Grec = Gp′ . For this, it suffices
that pk/2 > 2eb, and one verifies this implies that k0 ≤ 8b ∈ O (̃t2d9h). Since all indices k
we go through are powers of two, there are at most log2(8b) indices k that could return an
incorrect output.

Suppose then that at step k < k0, we have found Grec with rational coefficients; they all
have numerators and denominators at most pk/2 ≤ 2eb; on the other hand, the coefficients of
G have numerators and denominators at most eb. If Grec and G differ, there exists a monomial
whose coefficients in Grec and G are different; it suffices to require that p′ does not divide the
numerator of their difference. This number has absolute value at most 4e2b.

Taking all k < k0 into account, our last requirement is that p′ also not divide a certain
nonzero integer µ′ (that depends on p). This integer µ′ has height at most log2(8b)(2b+log(4)),
so that we have height(µ′) ≤ A3, with A3 = log2(8CF)(2CF + log(4)) ∈ O (̃t2d9h).

To summarize, it once γ avoids Γ, it suffices that p does not divide µ and p′ does not
divide µµ′ to ensure success. We can then finally make our procedure for choosing p and p′

explicit:

• Let B = 2P+3⌈A2⌉. We use the oracle O to obtain a uniformly sampled prime number
in [B + 1, . . . , 2B]. There are at least B/(2 log(B)) primes in this interval, and at
most log(µ)/ log(B) of them can divide µ, so the probability that p does is at most
2 log(µ)/B, which is at most 1/2P+2.

• Let B′ = 2P+3⌈A2+A3⌉. We use the oracle O to pick p′ in the interval [B′+1, . . . , 2B′],
and as a result, the probability that p′ divides µµ′ is at most 1/2P+2.

Altogether, the probability that γ avoids Γ, p does not divide µ and p′ does not divide µµ′

(and thus that the algorithm succeeds) is thus at least 1− 3/2P+2 ≥ 1− 1/2P .

5.2.3 Runtime

To give our final runtime estimate, we first note that both log(p) and log(p′) are in O (̃P +
log(tdh)). Besides, the definition of k0 implies that at all lifting steps, k log(p) is in O (̃b+
log(p)), that is O (̃b+ P + log(tdh)). After some straightforward simplifications, the runtime
becomes the sum of the following terms
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• O (̃td2h)

• O (̃(tωdω+1 + δω)(P + log(h))

• O (̃(tδ(d2 + dmσ + σδ) + δω)(b+ P + log(h))).

In order to get a better grasp on this runtime, let us assume that P is a fixed constant, and
use the upper bound σ ≤ mσ ≤ δ. This yields the overall bound

O (̃td2h+ tωdω+1 + δω + (td2δ + tδ3)b),

where we recall that the input size is O(td2h) bits, and the output size O(sδb) ⊂ O(δ2b) bits.
This concludes the proof of Theorem A.

5.3 Analysis over k(z): proof of Theorem B

Let A = k[z], K = k(z) , and where m and m′ are of the form ⟨z − u⟩ and ⟨z − u′⟩, for some
u, u′ in k. The analysis mimics that over Z, so we will not repeat it in detail; we just point
out the (straightforward) modifications.

• Our inputs are now polynomials in k[z][x, y], with degree at most d in (x, y) and at
most h in z. The output G = (g1, . . . , gs) is a Gröbner basis in k(z)[x, y], and we let b
be its height (which gives an upper bound on the degree in z of its coefficients).

• All costs are counted in terms of operations in k, with operations (+,×) modulo mk and
m′k now taking O (̃k) operations in k. Rational function reconstruction now replaces
rational number reconstruction.

• We assume that choosing a random element with the uniform distribution in a finite
set S ⊆ k takes unit time.

We are given a target probability of success of 1− 1/2P . As before, our change of variables
γ must avoid a hypersurface Γ of degree at most A1 = d6 + d + 3. We choose its entries
in a set of cardinality 2P+2A1, so this happens with probability at most 1/2P+2, by the De
Millo-Lipton-Schwartz-Zippel lemma.

Instead of p, p′ not dividing certain nonzero integers, conditions for success amount to u
and u′ not cancelling certain nonzero polynomials in k[z], whose degrees are still controlled
by Proposition 3.3. As before, set

CF = C(t, d,∆3(d), h) ∈ O (̃t2d9h) and CH = C(t, d,∆1(d), h) ∈ O (̃t2d4hP ),

with the function C of Section 3. Note a minor simplification compared to the case K = Q:
in the former situation, the change of variables applied to the inputs induced a growth in the
height of their coefficients (so we wrote h′ for the height bound after the change); this does
not happen here (so we take h′ = h). Then, the first condition is that u should not cancel a
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nonzero polynomial µ ∈ k[z] of degree at most A2 = CF + CH + h. We choose u in a set of
cardinality 2P+2⌈A2⌉, so that µ(u) = 0 happens with probability at most 1/2P+2.

Finally, u′ should not cancel a polynomial µµ′ ∈ k[z], with µ′ nonzero of degree at most
A3 = 2CF log(8CF), so we choose it in a set of cardinality 2P+2⌈A2 + A3⌉. For this to be
possible, k must be large enough (namely, of size at least 2P+2max(A1, ⌈A2 +A3⌉)); as usual,
if this is not the case, one could pass to an extension.

The runtime analysis is similar to the one done over Z, with a total cost

O (̃td2h+ tωdω+1 + δω + (td2δ + tδ3)b)

operations in k, for P a fixed constant. Here, we recall that b is the height of the output G,
that is, the minimum degree of numerators and denominators of the coefficients of G, if we
reduce them all to a minimal common denominator.

5.4 Analysis over a number field

Generalizing the analysis done over Q, we now consider an algebraic field extension K ⊇ Q.
Recall that since Q is perfect, K admits a primitive element α, with minimal polynomial F .
Hence, we will write K = Q(α) ∼= Q[z]/F ; in particular, all elements in K can be written as∑κ−1

i=0 ciα
i for some (c0, . . . , cκ−1) ∈ Qκ, with κ = [K : Q] = deg(F ) (we call this their base-α

representation). We will further suppose, without loss of generality, that α is an algebraic
integer, so that F is monic and irreducible in Z[z]. Finally, we will let η denote the height of
α.

The algorithm in the number field case requires a few modification in our blueprint; we
review the main steps and discuss changes as needed.

• The polynomials F and H. We now assume that our input F has coefficients in
A = Z[α] = Z[z]/F ; this can always be obtained from an arbitrary generating set by
multiplying by the least common multiple of the denominators. We still let d and h
denote the degree and height of F .
As we pointed out before, we cannot deduce from this that representing F uses O(td2κh)
bits, as a direct extension of the integer case, since height does not directly translate
into bit-size information in our context. Instead, Lemma 5.3 below will establish an
upper bound of O(td2κ2(κ2η + h)) bits for the input. It is unknown to us whether this
can be sharpened.

As before, we choose a change of variables γ with entries in {0, . . . , 2P+2A1 − 1}, with
A1 = d6 + d+ 3, and we call H the polynomials in A[x, y] obtained by applying γ to F
(again, the algorithm does not need to compute them). A quick calculation shows that
the entries of H have height at most h′ = h+ κd(P + 5 + log(A1)); the extra factor κ
here is an upper bound on the number of Archimedean absolute values we consider over
K. We will assume below that γ satisfies the assumptions of Propositions 4.1 and 4.3.
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• Primes of good reduction. Consider again the elements βF and βH obtained by
applying Definition 3.2 to respectively F and H. These are elements in A = Z[α], and
a maximal ideal m in A is of “good reduction” if βFβH does not vanish modulo m.

However, we are not going to choose random maximal ideals m,m′ in A = Z[α]; instead,
as we did over Q, it is much more practical to choose random prime numbers p, p′

in a suitable interval. Computations modulo m, m′, or mk, will then be replaced by
computations over Fp[z]/(F mod p), Fp′ [z]/(F mod p′), or Z/pkZ[z]/(F mod pk).

The polynomials F mod p and F mod p′ are not expected to be irreducible anymore, but
for all values of p, p′ except a finite number (the prime factors of the discriminant of F ),
they are squarefree. In what follows, let us assume it is the case. Then, the irreducible
factorization F mod p = ℓ1 · · · ℓu gives an isomorphism Fp[z]/(F mod p) ∼= K1⊕· · ·⊕Ku,
with Ki the finite field Fp[z]/ℓi for all i. Similarly, we have a factorization F mod p′ =
λ1 · · ·λv and the corresponding isomorphism Fp′ [z]/(F mod p′) ∼= H1 ⊕ · · · ⊕Hv, with
Hi = Fp′ [z]/λi for all i.

For i = 1, . . . , u, let Li be an arbitrary lift of ℓi to Z[z], and let mi be the ideal ⟨p, Li⟩
in A. Since the residue class ring A/mi is the field Ki, mi is a maximal ideal. We can
then give a simple condition on p to guarantee that an element such as βFβH does not
vanish modulo any of the mi’s.

Lemma 5.1. For g in A, g is nonzero modulo all mi’s if and only if p does not divide
the norm NK/Q(g).

Proof. Below, we identify g and its base-α representative in Z[z]. Then, by the
Chinese Remainder Theorem, g is nonzero modulo all mi if and only g is a unit in
Fp[z]/(F mod p). This is the case if and only if the resultant of g mod p and F mod p
is nonzero, that is (since F is monic) if and only if p does not divide the resultant of F
and g, which equals the norm NK/Q(g).

A similar discussion holds for reduction modulo p′, considering the maximal ideals
m′

j = ⟨p′,Λj⟩, for arbitrary lifts Λ1, . . . ,Λv of λ1, . . . , λv. Thus, a second condition
on p and p′ is that neither of them divides the norm of µ = βFβHµ1, where as in
Subsection 5.2.2, µ1 is the coefficient of yd in the first polynomial in H (making sure it
does not vanish modulo the mi’s, Step 6 does not raise an error).

• Representing the output. Definition 3.2 states that the coefficients of the output G
can be written as fractions of elements of A = Z[α], with βF as denominator. However,
what we will compute is their base-α representations, as polynomials in α with rational
coefficients (see the example in Section 1.2). The following lemma shows that for p
chosen as above, none of the denominators in these rational coefficients vanishes modulo
p. This allows us to reduce them all modulo p (or powers of p), so that Gp = G mod p
makes sense as a family of polynomials in x, y with coefficients in the product of fields
Fp[z]/(F mod p), and similarly for Gpk , k ≥ 0.
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Lemma 5.2. Let g be in Z[α]/βF , and let g =
∑

i<κ giα
i be its canonical form as an

element of K = Q(α), with all gi’s in Q. Then, all denominators in the gi’s divide the
norm NK/Q(βF).

Proof. It is enough to prove the claim for g = 1/βF , in which case it follows from the
fact that when we invert βF , the only denominator that can arise is the resultant of F
and βF (see as a polynomial in Z[z]), that is, the norm of βF .

Since we assumed that p also does not divide the norm of βH, we can derive the same
conclusion, that the Gröbner basis B of H can be reduced coefficientwise modulo p, or
more generally modulo pk. A similar discussion holds for reduction modulo p′.

• Bit-size of the output. A related question is the bit-size of the coefficients of the
output G, when we write them in base-α representation. Setting CF = C(t, d,∆3(d), h),
we know from Proposition 3.3 that the coefficients of G can be written as ratios of
elements of Z[α] having height at most CF . Obtaining an upper bound on their base-α
representation is not as straightforward as over Q, since we have to take into account
the height η of α as well.

Lemma 5.3. Let e and f be two elements in Z[α] of height at most H, with f nonzero.
Then, e/f ∈ Q(α) can be written as e/f =

∑
i<κ ciα

i, with all ci’s in Q of height at
most 3κ3η + 2κH.

Proof. The coefficients ci are the solutions of the linear system

T [c0 · · · cκ−1]
⊤ = [TrK/Q(e/f) · · ·TrK/Q(α

κ−1e/f)]⊤,

where TrK/Q : K→ Q is the trace and T is the κ× κ matrix with entries TrK/Q(α
i+j),

0 ≤ i, j < κ.

The height of an algebraic number and of all conjugates are the same [63, Lemma 3.10],
and the trace of an element in Q(α) is the sum of its conjugates. Using [63, Property 3.3],
we deduce that if u ∈ Q(α) has height at most h, its trace has height at most κ(h+log(2)).
This property also shows that for i ≥ 0, αie/f has height at most iη + 2H, so its
trace has height at most κ(iη + 2H + log(2)). On the other hand, all these traces
are rational numbers that admit NK/Q(f) as denominator (Lemma 5.2, with f instead
of βF), so the whole right-hand side vector can be written as a vector with common
denominator NK/Q(f), with all numerators and denominator being integers of height at
most κ(κη + 2H + log(2)).

The matrix T is invertible, its determinant being the discriminant of F . It has integer
entries of height at most κ(κη + 2), so its determinant, and any of its minors, are
integers of height at most κ2(κη + 2) + κ log(κ). It follows that the coefficients ci have
numerators and denominators of height at most

κ2(κη + 2) + κ log(κ) + κ(κη + 2H + 2) + log(κ).

One verifies that for κ ≥ 2, this is at most 3κ3η + 2κH.
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It follows that all coefficients in G, written in base-α representation, have numerators
and denominators of height at most C ′ = 3κ3η + 2κCF .

• Computing Bp, B′
p and Gp′. We can now explain how to perform Steps 7 to 9 in our

new context. The direct approach assumes that we factor F mod p into ℓ1 · · · ℓu, and
F mod p′ into λ1 · · ·λv.

Then, for i ≤ u and j ≤ v, we can compute the polynomials H mod mi and H mod m′
j ,

with mi = ⟨p, Li⟩ and similarly mj = ⟨p,Λj⟩. These polynomials have coefficients in
the fields Ki, resp. Lj. We can then compute their Gröbner bases using procedure
HermiteGroebnerBasis. Since we assume that βF does not vanish modulo mi or
mj, this gives us B mod mi and B mod m′

j. Using the algorithm of [51] modulo each
m′

j, we also obtain G mod m′
j, for all j.

Still working modulo p, we can then do Chinese Remaindering modulo ℓ1, . . . , ℓu,
to finally obtain polynomials with coefficients in Fp[z]/(F mod p); this gives us Bp.
Performing the same operation modulo p′ gives us B′

p and Gp′ .

• Dynamic evaluation. It is possible to avoid factoring F mod p and F mod p′, using
dynamic evaluation techniques: we work modulo either of these polynomials and run
HermiteGroebnerBasis as if they were irreducible. If they are not, the algorithm
may attempt to invert a zero-divisor; this allows us to discover a factor of, say, F mod p,
and partially split it. This can then be repeated until no such factorization arises.

A naive approach induces a quadratic runtime overhead with respect to the degree κ
of F , but the main result in [37] shows that a logarithmic overhead is possible. Up to
a logarithmic factor, this means that the runtime of this step is what it would be if
F mod p, or F mod p′, were irreducible.

• Computing Bpk , Gpk and Grec. This part of the algorithm does not differ significantly
from its counterpart over Z; the only difference is that we are computing with coefficients
in Z/pkZ[z]/(F mod pk) rather than Z/pkZ. Rational reconstruction of elements in
Z/pkZ[z]/(F mod pk) is attempted coefficientwise, resulting in elements of Q[z]/F in
case of success.

• Testing for correctness. Again, the final step in the lifting loop is a randomized test,
testing whether Gp′ = G mod p′ agrees with the reduction of Grec modulo our second
prime p′.

We can now complete the analysis of the algorithm. We introduced before the parameter
b as the height of the polynomials in G, that is, a measure of the height of their coefficients
as elements of K. As we pointed out before, this does not give an accurate measure of the
bit-size of their representation as polynomials in α, so we will instead let b′ be the maximal
height of all rationals that appear in the base-α representation of the coefficients of G. We
saw above that b′ ≤ C ′ = 3κ3η + 2κCF . Then, to guarantee success, sufficient conditions are
as follows:
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• γ should avoid a hypersurface of degree at most A1 = d6+ d+3; if we choose its entries
in {0, . . . , 2P+2A1 − 1}, this happens with probability at least 1− 1/2P+2.

• p and p′ should divide neither the discriminant of F , nor the norm of µ = βFβHµ1. The
former is an integer of height at most κ log(κ) + 2κη [8, Proposition 1.6.9]. Since we
have respective upper bounds CF , CH and h′ on the heights of βF , βH and µ1, with
h′ = h + κd(P + 5 + log(A1)), µ has height at most CF + CH + h′ + 2 log(2) by [63,
Property 3.3], and the height bound for its norm is κh(µ) by [8, Proposition 1.6.6].
Altogether, this means that p and p′ should avoid dividing a certain nonzero integer of
height at most A2 = κ(log(κ) + 2η + CF + CH + h′ + 2 log(2)). This allows us to run
the lifting algorithm.

• To guarantee that we do not exit the lifting loop too early, p′ should not divide another
nonzero integer µ′. This part of the analysis is entirely similar to that done over Q,
and we do not repeat it, other than to point out that now, µ′ has height at most
A3 = log2(8C

′)(2C ′ + log(4)), with C ′ defined above.

In fine, we choose p in [B + 1, . . . , 2B], with B = 2P+3⌈A2⌉, and p′ in the interval [B′ +
1, . . . , 2B′], with B′ = 2P+3⌈A2 + A3⌉, and the probability of success is at least 1− 1/2P .

Fixing P , for simplicity, we see that log(p) and log(p)′ are O (̃log(κηtdh)). Then, the
runtime becomes the sum of the following terms

• O (̃td2κ2(κ2η + h)), for reducing the inputs modulo p and p′

• O (̃κ(tωdω+1 + δω) log(ηh)) for computations modulo p

• O (̃κ(tδ(d2 + dmσ + σδ) + δω)(b′ + log(ηh))) for the lifting,

where b′ is the bit-size of the coefficients in the output, δ is the degree of G, σ the number of
polynomials in G and mσ the maximal x-degree of the polynomials in it. Summing all terms,
some logarithmic terms can be absorbed by the O ;̃ with the upper bound σ ≤ mσ ≤ δ, this
gives the overall runtime

O˜
(
κ
(
td2κ(κ2η + h)) + tωdω+1 + δω + (td2δ + tδ3)b′

))
,

where the first term is simply our upper bound on the bit-size of the input, and the output
size is O(δ2b′) bits.

In other words, up to the slight degradation in our bound on the size of the input, the
main difference with the analysis over Q is the extra factor O (̃κ), which was of course
unavoidable.

5.5 Primary components: proof of Theorem C

We finally describe how to modify the algorithm if we are only interested in the Gröbner basis
G0 = (g00, . . . , g

0
r) of the ⟨x, y⟩-primary component J of I = ⟨F⟩, with F = (f1, . . . , ft); this
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proves Theorem C. Without loss of generality, we assume that (0, 0) is in V (F), otherwise
there is nothing to do.

For concreteness, we work over K = Q, knowing that the algorithm and its analysis can
be directly adapted to the other fields that were discussed previously. In what follows, we
let η be the degree of the ideal J , and c be the height of G0. Hence, the input has total size
O(td2h) bits, and the output O(rηc).

As above, we use a change of coordinates γ, and we call B0 = (B0
0 , . . . , B

0
ρ) the Gröbner

basis of the ⟨x, y⟩-primary component of the ideal generated byH = (h1, . . . , ht), with hi = fγ
i

for all i.

• We require that H satisfies the conclusions of Proposition 4.1 and Proposition 4.2, where
the latter states that the projection of V (H) ⊂ C2 on the x-axis is one-to-one. We also
require that the conclusion of Proposition 4.3 holds for the ⟨x, y⟩-primary component
of the ideal ⟨H⟩. Since the latter has degree η ≤ d2, this means that γ must avoid a
hypersurface of degree at most d+ d4 + η3 + 3 ≤ A′

1 = d6 + d4 + d+ 3.

Given a target success probability 1 − 1/2P , we will as before choose the entries
of γ in {0, . . . , 2P+2A′

1 − 1}; this in turn shows that H has height at most h′ =
h+ d(P + 5 + log(A1)).

• The primes p and p′ should divide the denominator of no coefficient in the Gröbner
bases G0 and B0; besides, these polynomials reduced modulo p (resp. p′) should still
define the ⟨x, y⟩-primary components of the ideals generated by F mod p and H mod p
(resp. modulo p′).

We use the fact that the ⟨x, y⟩-primary component of ⟨F⟩ is the ideal generated by F ′ =
(f1, . . . , ft, x

d2 , yd
2
); similarly for H, giving us polynomials H′ = (h1, . . . , ht, x

d2 , yd
2
). It

is then sufficient that neither p nor p′ divides the integers βF ′βH′ from Definition 3.2.
Their heights are in O (̃t2d6h) and O (̃t2d6h′), where h′ is the height bound on H.

• Next, we want that the conclusion of Proposition 4.1 remains true for H mod p and
H mod p′, and that the one of Proposition 4.3 (Borel-fixedness) remains true for their
primary components at the origin. The first condition simply means that the first
polynomial in H remains monic in y through reduction, so it suffices to require that its
leading coefficient µ1 does not vanish modulo pp′, as we did for the previous algorithm.
The third condition still holds modulo p and p′ because of the conditions on p, p′ in the
previous paragraph.

• We want to use GroebnerBasisAtZero instead of HermiteGroebnerBasis,
modulo p and p′; this requires that (0, 0) be the only point lying above x = 0 in both
V (H mod p) and V (H mod p′).

Our assumption that the projection on the x-axis is one-to-one in V (H) shows that
the polynomials h1(0, y), . . . , ht(0, y) only have zero as a common root in C. After
factoring out all possible powers of y in these polynomials, we thus obtain polynomials
h̄1, . . . , h̄t in Z[y] that have no common root. They all have degree at most d and height
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at most h′. The proof of [29, Theorem 6.46] shows that there exists integers a3, . . . , at
in {0, . . . , d} such that gcd(h̄1, h̄2 + a3h̄3 + · · ·+ ath̄t) = 1. If p, resp. p′, does not divide
the resultant µ2 of these two polynomials, h1(0, y) mod p, . . . , ht(0, y) mod p have only
0 as common solution, which is what we want. This resultant is a nonzero integer of
height at most d log(2d) + 2d(h′ + log(dt)).

Then, since H mod p and H mod p′ both contain a monic polynomial in y, we can use
degree D = d for the matrix construction in GroebnerBasisAtZero, so the runtime
is O (̃tdωmρ(log(p) + log(p′))) bit operations, where mρ ≤ η is the x-degree of B0

ρ .

• The lifting itself is done using the algorithm LiftOneStepPunctualGroebner-
Basis from [56, Remark 7.3]. This time, the cost is a one-time O (̃tηω log(p)) and
O (̃tη2mρk log(p)) ⊂ O (̃tη3k log(p)) bit operations to lift to precision pk, since we
assume the initial ideal of B0, and thus of B0 mod p, is Borel-fixed.

The rest of the analysis is conducted as before. Given a fixed integer P , we deduce that
we can compute the Gröbner basis G0, with probability of success at least 1− 1/2P , using
O (̃td2h+ tdωη + ηω + tη3c) bit operations, with c the height of the output.
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[49] R. Lebreton, E. Mehrabi, and É. Schost. On the complexity of solving bivariate systems:
the case of non-singular solutions. In ISSAC’13, pages 251–258. ACM, 2013.
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