
Newton iteration for lexicographic Gröbner bases in two variables

Éric Schosta, Catherine St-Pierrea

aSchool of Computer science, University of Waterloo, 200 University Ave W, Waterloo, N2L
3G1, Ontario, Canada

Abstract

We present an m-adic Newton iteration with quadratic convergence for lexicographic Gröbner
basis of zero dimensional ideals in two variables. We rely on a structural result about the
syzygies in such a basis due to Conca and Valla, that allowed them to explicitly describe
these Gröbner bases by affine parameters; our Newton iteration works directly with these
parameters.

Keywords: Primary components, m-adic algorithm, Gröbner bases

1. Introduction

Solving bivariate polynomial equations plays an important role in algorithms for com-
putational topology or computer graphics. As a result, there exists a large body of work
dedicated to this question, using symbolic, numeric or mixed symbolic-numeric techniques.
To wit, the literature included algorithms based on subresultant techniques [23, 13, 18],
subdivision [1], numerical or p-adic Newton iteration [55, 38, 47], root isolation using two
projections [3, 17, 35, 36], as well as refined root separation bounds [12] or the relations
between bivariate Gröbner bases and the subresultant algorithm [10].

In many instances, these algorithms find a set-theoretic description of the solutions of a
given system f1, . . . , ft in K[x, y] (here, K is a field). This can notably be done through the
shape lemma: in generic coordinates, the output is a pair of polynomials u, v in K[x], with u
squarefree, such that V (⟨f1, . . . , ft⟩) is described by u(x) = 0 and y = v(x)/u′(x) (this rational
form for y allows for a sharp control of the bit size of v, if K = Q). One could slightly enrich
this set-theoretic description by lifting the requirement that u be squarefree, and instead
assign to a root ξ of u, corresponding to a point (ξ, ν), the multiplicity of J = ⟨f1, . . . , ft⟩ at
(ξ, ν) (adapting the definition of v accordingly). This is notably done in Rouillier’s Rational
Univariate Parametrization [54], but this still only gives partial information: for instance, it
is not sufficient to detect local isomorphisms.

In order to describe the solutions of J , but also the local structure of J at these roots (that
is, the localizations of the algebra K[x, y]/J at these points), it is natural to turn to Gröbner
bases. This is what we address in this paper, our focus being an m-adic approximation
procedure, in a sense we define below.

Preprint submitted to Journal of Algebra April 22, 2024

Our problem and our main result. Let us assume that our base field K is the field of fractions
of a domain A, and take f1, . . . , ft in A[x, y].

Consider further the ideal J = ⟨f1, . . . , ft⟩ in K[x, y]. We are interested in finding a
Gröbner basis of J itself, or possibly of some specific primary components of it. We will
thus let I be an ideal in K[x, y], which we assume to be the intersection of some of the zero-
dimensional primary components of J : typical cases of interest are I = J , if it has dimension
zero, or I being the ⟨x, y⟩-primary component of J , if the origin is isolated in V (J). For
general primary components, we recall that arbitrary isolated components may be translated
to the origin via a change of basis, at the expense possibly of a change of base field [30].

We let G = (g0, . . . , gs) be the minimal, reduced Gröbner basis of I for the lexicographic
order induced by y ≻ x; this is the object we are interested in.

Example 1.1. Let A = Z, and thus K = Q, t = 2 and input polynomials

f1 = −12xy5 − 20x2y4 − 14y4 − 7x3y3 − 3x2y2 + 13x3y − 17xy + 34x2

f2 = −x2y4 − 19x3y3 + 18xy3 + 22x3y2 + 2x2y2 − 10x2y.

We let I be the ⟨x, y⟩-primary component of ⟨f1, f2⟩; its Gröbner basis G is

���������

y4 + 17
14
xy − 17

7
x2,

xy3 − 10
9
x3,

x2y − 2x3,

x4.

(1)

Let now m be a maximal ideal in A, with residual field � = A/m. Starting from the
reduction of G modulo m (assuming it is well-defined), the goal of this paper is to show how
to recover G modulo powers of m. The case A = Z seen above is the fundamental kind of
example; another important situation is the “parametric” case, with A = �[t1, . . . , tm] and m
a maximal ideal of the form ⟨t1 − τ1, . . . , tm − τm⟩.

Let Am (Am ⊆ K) be the localization of A at m. For K ≥ 0, there exists a well defined
reduction operator Am → A/mK , which we write c 7→ c rem mK ; we extend it coefficient-wise
to a reduction mapping Am[x, y] → A/mK [x, y], and further to vectors of polynomials.

Definition 1.2. We say that m is good with respect to f1, . . . , ft and G if the following
holds:

• all elements in G are in Am[x, y],

• the ideal generated by the reduction (G rem m) of G modulo m in �[x, y] is the intersection
of some of the primary components of the ideal ⟨f1 rem m, . . . , ft rem m⟩.

In particular, if m is good, we will write Gm for the reduction G rem m. These are polyno-
mials in �[x, y], and they still form a minimal, reduced Gröbner basis for the lexicographic
order y ≻ x.

2

Example 1.3. In Example 1.1, m = ⟨11⟩ is good with respect to f1, . . . , ft and Gm is
���������

y4 + 2xy + 7x2,

xy3 + 5x3,

x2y + 9x3,

x4.

If A = Z, there are finitely many primes p for which this is not the case. In the case
A = �[t1, . . . , tm], all maximal ideals of the form ⟨t1 − τ1, . . . , tm − τm⟩ are good, except for
those (τ1, . . . , τm) lying on a certain hypersurface in �m (a quantitative analysis of the number
of bad maximal ideals will be the subject of future work).

Our main result is an efficient lifting procedure based on Newton iteration to compute
G rem mK , given f1, . . . , ft, Gm and K. Lifting methods are widely used in computer algebra,
for instance, to solve linear systems or compute polynomial GCDs, and serve two purposes.
First, while solving the problem (here, computing the Gröbner basis of I) may be nontrivial
from the outset, working directly over K, our result will show that lifting an approximate
solution modulo powers of m is a relatively simple problem. Second, these techniques are
usually used in cases where elements in A, and K, have a natural notion of “size” (such as the
height when A = Z, or degree when A = �[t1, . . . , tm]). Then, direct computations in K often
induce a significant “intermediate expression swell”, where polynomials computed throughout
the algorithm may have larger coefficients than the final output; m-adic approximation
schemes avoid this issue.

Previous forms of Newton iteration have been proposed in the context of Gröbner basis
computation, but all have limitations (they may work with solutions of multiplicity one only,
or compute a Gröbner basis of the radical of the input ideal, or display linear convergence
only); we discuss them below. Our algorithm applies in the bivariate case only, but it
features the quadratic convergence typical of Newton iteration, in the sense that it computes
G rem m2,G rem m4, . . . (hence, without loss of generality, we assume that K = 2κ is a power
of two). The cost of the algorithm is expressed in terms of two kinds of quantities:

• number of operations in the rings A/m2i (for which we discuss our computational model
in more detail at the end of the introduction)

• the cost of reducing the coefficients of the polynomials fi modulo m2i : we will assume
that for i ≥ 0, each such coefficient can be reduced modulo m2i in time T2i (for A = Z,
this time would depend on the bit-size of these coefficients; over A = �[t1, . . . , tm], it
would depend on their degree, and the number m of parameters).

Throughout, the O˜ notation indicates that we omit polylogarithmic factors, and ω is a
feasible exponent for linear algebra.

Theorem 1.4. Let f1, . . . , ft be of degree at most d in A[x, y], with A a domain, that generate
an ideal J in K[x, y], with K the fraction field of A. Let I be the intersection of some of the
zero-dimensional primary components of J , with minimal, reduced Gröbner basis G, for the
lexicographic order induced by y ≻ x.

3

Let further E = (yn0 , xm1yn1 , . . . , xms−1yns−1 , xms) be the initial terms of G, and let
δ = dimK K[x, y]/I.

Let m ⊆ A be a good maximal ideal for G. For K of the form K = 2k, given G rem m,
one can find G rem mK with the following cost:

• O (̃s2δn0ms + tδ(d2 + dms + sδ + δω−1)) operations in A/m2i, for i = 1, . . . , k;

• td2T2i steps for coefficient reduction, for i = 1, . . . , k.

From a high level perspective, Newton iteration is based on the solution of linearizations
of a certain set of non-linear equations; in our case, these equations involve Θ(δ) unknowns.
The runtime given above is rather complex, but we can give a rough interpretation of its
components: the first term s2δn0ms describes the cost of setting up a “parametric Gröbner
basis”, that depends on our Θ(δ) unknowns. The term tδ(d2 + dms + sδ) gives the runtime
taken by reducing the input equations modulo this parametric Gröbner basis. We do all
computations at order one in our unknowns, which amounts to the linearization inherent to
Newton iteration. It remains to find what values of these unknowns cancel the degree-one
component; this results in the term tδω, from linear system solving.

Remark 1.5. When I is the ⟨x, y⟩-primary component of J , runtimes can be sharpened,
giving

• O (̃s2δn0ms + tδ2(ms + δω−2)) operations in A/m2i, for i = 1, . . . , k;

• tδmsT2i steps for coefficient reduction, for i = 1, . . . , k.

Since ms ≤ δ, these are in particular O (̃s2δn0ms + tδ3) ⊂ O (̃(s2 + t)δ3), resp. tδ2T2i. For
the latter, we also have the bound td2T2i stated in the theorem, but here we prefer to express
the cost in terms of the multiplicity δ only.

This paper focuses on those cases where the ideal I is not radical (that is, where some
points p ∈ V (I) are singular), with the intent of describing the localizations of K[x, y]/I at
such points. If the sole interest is to find V (I), then our approach is unnecessarily complex:
the algorithms in [38, 47] use Newton iteration to compute a set-theoretic description of the
solutions in an efficient manner.

Example 1.6. An extreme case has t = 2 and f1, f2 “generic” in the sense that they define
a radical ideal in K[x, y] with d2 solutions in general position. In this case, if we take I = J ,
we have s = 1, ms = δ = d2 and n0 = 1. Then, the complexity in the first item of the theorem
becomes O (̃d5) operations modulo each m2i. This is to be compared with the sub-cubic cost
O (̃d(ω+3)/2) reported in [38] for a similar task.

Clearly, for these generic situations, our algorithm does not compare favourably with
the state of the art. For the situation in Example 1.6, some techniques from [38] could be
put to use in our situation as well, but they would at best give a runtime of O (̃d2+(ω+3)/2)
operations in A/m2i , still leaving a quadratic overhead. This is due to the different ways

4

these papers apply Newton iteration: in our case, we linearize the problem in dimension d2

(or, in, general, δ), and thus work with matrices of such size, whereas [38] work with matrices
of size 2 (albeit with polynomial entries).

The results of Theorem 1.4 are of interest in the presence of intersection with multiplicities,
where approaches such as [38] do not apply. The algorithm in [47] does not solve our problem
in such cases, as it does not compute a Gröbner basis of I, but of its radical.

Remark that to derive a complete algorithm from our result, further ingredients are
needed: quantitative bounds on the number of bad ideals m (if A = Z or A = �[t1, . . . , tm],
for instance), a cost analysis for computing the starting point Gm and bounds on a sufficient
precision K that will allow us to recover G from its approximation G rem mK . To avoid this
paper growing to an excessive length, we will address these questions in a separate manuscript.

We now review previous work on bivariate systems and Newton iteration for Gröbner
bases. As we will see, there is a marked difference between Newton iteration algorithms for
“simple” solutions (where the Jacobian of the input equations has full rank) in generic position
and those that can handle arbitrary situations.

Newton iteration for non-degenerate solutions. Following an early discussion in [14], p-adic
techniques for Gröbner bases were introduced by Trinks in the 1980’s [58]. That article focuses
on zero-dimensional radical ideals with generators in Z[x1, . . . , xn], in shape lemma position,
that is, with a Gröbner basis of the form x1 −G1(xn), . . . , xn−1 −Gn−1(xn), Gn(xn), for the
lexicographic order x1 ≻ · · · ≻ xn. Under this assumption, given a “lucky” prime p, one can
apply a symbolic form of Newton iteration to lift (G1, . . . , Gn) rem p to (G1, . . . , Gn) rem pK ,
for an arbitrary K ≥ 0. Similar techniques were used in the geometric resolution algorithm
of [19, 21, 20, 22]; the scope of this symbolic form of Newton iteration was then extended
in [56] to triangular sets, which are here understood as those particular lexicographic Gröbner
bases (G1, . . . , Gn) with respective initial terms of the form xe1

1 , . . . , xen
n , for some positive

integers e1, . . . , en. In [38], these techniques were studied in detail for the case n = 2 that
concerns us in this paper, with a focus on the complexity of the lifting process.

Computationally, these algorithms have the advantage of working with simple data
structures: they mainly perform matrix multiplications in size n with entries that are
polynomials with coefficients in Z/pKZ (or more generally A/mK). These methods also share
their numerical counterpart’s quadratic convergence (in one iteration, the precision doubles,
from pK to p2K), but none of them can directly handle solutions with multiplicities.

Lifting algorithms for general inputs. [62] introduced an algorithm that handles arbitrary
inputs: given a Gröbner basis G for f1, . . . , ft reduced modulo a “lucky” prime p, it recovers
the Gröbner basis of the same system modulo pK , for any K ≥ 0. No assumption is made on
the dimension of V (⟨f1, . . . , ft⟩) or the rank of the Jacobian matrix of the equations. The
computations are more complex as the ones above, as they involve lifting not only the Gröbner
basis G itself, but also all quotients in the division of f1, . . . , ft, and of the S-polynomials of
G, by G.

In follow-up work, [51] discussed the choice of lucky primes; for homogeneous inputs,

5

or graded orderings, [2] gave an efficient criterion to stop lifting and simplified the lifting
algorithm itself, using ideas of Pauer’s (the S-polynomials are not needed anymore).

To our knowledge, the algorithms mentioned here only perform linear lifting, going from
an approximation modulo pK to precision pK+1; whether quadratic convergence is possible is
unclear to us. No cost analysis was made.

Deflation. Ojika, Watanabe and Mitsui introduced the idea of deflation in a numerical
context [50], to restore Newton iteration’s quadratic convergence even for multiple roots. The
core idea is to replace the system we are given by another set of equations, having multiplicity
one at the root we are interested in, possibly introducing new variables. There are now many
references discussing this approach, see for instance [64, 39, 42, 43, 52, 11, 45, 63].

We are in particular going to use an idea from [25]. In that reference, Hauenstein, Mourrain
and Szanto designed a deflation operator for an n-variate system f1, . . . , ft, that converges
quadratically to an augmented root (ξ, ν), where ν is a vector that specifies the local structure
at a point ξ ∈ V (⟨f1, . . . , ft⟩), through the coefficients of multiplication matrices in the local
algebra at ξ. If ξ is known, this gives in particular an operator with quadratic convergence
to compute the structure constants (that is, the entries of the multiplication matrices).

Our contribution. The lifting algorithm we propose is so far specific to lexicographic orders in
two variables, but has the advantage of being simpler than those in [62, 2]. Indeed, compared
to these two references, we do not need to p-adically lift the polynomial quotients in the
division of f1, . . . , ft by G; instead, we work with a family of free parameters that describe
bivariate Gröbner bases with given initial terms in a one-to-one manner (these Gröbner bases
form a Gröbner cell). In particular, the number of parameters we work with is tight: this
number is precisely the dimension of the Gröbner cell, whereas the polynomial quotients
involve a (necessarily) larger number of coefficients, that depends not only on G but also on
the input equations we are given.

However, identifying a suitable family of parameters is not straightforward. The coefficients
that appear in the Gröbner basis do not form such a family, as there are nontrivial relations
between them. However, for lexicographic orders in two variables, Conca and Valla explicitly
constructed a one-to-one parametrization of a given Gröbner cell by an affine space [9], from
a description of canonical generators of the syzygy module. Our Newton iteration computes
the parameters corresponding to Gm and lifts them modulo mK .

This is done by adapting the approach of [25]: the coefficients of the normal forms of
f1, . . . , ft modulo the unknown Gröbner basis G are polynomials in the parameters of the
Gröbner cell; we prove that they admit as a (not necessarily unique) solution the parameters
corresponding to G, and that their Jacobian matrix has full rank at this solution. We can
then apply Newton iteration to these polynomials. We need in particular a starting point for
the iteration, that is, the reduction modulo m of the Conca-Valla parameters corresponding
to G: we derive it from the knowledge of Gm, using ad-hoc conversion formulas.

Computationally, the core operation involved in our Newton iteration is simply reduction
modulo a lexicographic Gröbner basis: as was mentioned after Theorem 1.4, reducing the
input polynomials modulo a certain parametric Gröbner basis gives us the linear equations we

6

need to solve at each lifting step. While we have algorithms with quasi-linear cost for reduction
modulo a single polynomial (this is fast Euclidean division [61, Chapter 9]), or modulo two
polynomials with respective initial terms yn and xm (by a direct bivariate extension, see for
instance [44] for the case of an arbitrary number of variables), we are not aware of specific
results for arbitrary lexicographic bases. Another contribution of this paper is a reduction
algorithm, where we use techniques developed by van der Hoeven and Larrieu [59] for certain
weighted orderings, adapted to our purposes.

Leitfaden. In Section 2, we discuss initial segments in N2; they allow us to describe polynomials
reduced modulo a Gröbner basis. We give in particular an algorithm for multiplying two
such polynomials, which is used in the lexicographic Gröbner basis reduction algorithm.

In Section 3, we review known results on the structure of bivariate lexicographic Gröbner
bases: Lazard’s theorem [37], and Conca and Valla’s description of Gröbner cells: this
introduces the parameters of our Newton iteration, namely the coefficients of a canonical
family of syzygies between the elements of our Gröbner basis.

Section 4 then presents our algorithm for reduction modulo a lexicographic Gröbner basis.
In Section 5 and Section 6, we give algorithms to compute the Gröbner basis corresponding
to a set of parameters in the Gröbner cell, and conversely; they derive directly from the
definition of the Conca-Valla parameters.

Finally, we describe Newton iteration for the Gröbner cell parameters in Section 7, proving
Theorem 1.4. This is based on the description of a family of polynomial equations for which
the Conca-Valla parameters form a solution of multiplicity one; the core of this section
explains how to apply Newton iteration to these equations in an efficient manner.

Computational model. In the whole paper, the costs of algorithms are measured using numbers
of operations in the base ring or base field.

We will first and foremost count Z-algebra operations. For an algorithm with inputs and
outputs in a (unital) ring A, these are additions and multiplications involving the inputs,
previously computed quantities, and constants taken from the image of the canonical mapping
Z → A (e.g., integers if A has characteristic zero); they will be simply be called “(+,×)
operations”. If an algorithm performs only this kind of operations, its outputs are in the
subring of A generated by its inputs.

Important examples are addition, multiplication and Euclidean division (by a monic
divisor) in A[x]; they can all be done using a softly linear number of (+,×) operations in A,
over any base ring A. For background, see Chapters 8 and 9 in [61].

Other operations we will occasionally use are invertibility tests and inversions (to solve
linear systems). Finally, if m is an ideal in a ring A, given a in A/m, we assume that we can
find A in A with A rem m = a using one operation in A.

Notation. The following notation is used throughout the paper. In the following items, A is
an arbitrary ring.

• For d ≥ 1, We let A[x]<d be the free A-module of all polynomials in A[x] of degree less
than d.

7

• For f, g in A[x], with f monic, we define f rem g and f div g as respectively the
remainder and quotient in the Euclidean division of f by g.

• For f in A[x, y], deg(f, x) and deg(f, y) respectively denote its partial degrees with
respect to x and y.

• For f in A[x, y] and i ≥ 0, the polynomial coefficient of yi in f will refer to the coefficient
fi in the expression f =

Pd
i=0 fiy

i, with f0, . . . , fd in A[x]. In the pseudo-code, we write
PolynomialCoefficient(f, yi) ∈ A[x] for this polynomial coefficient.

• If f ∈ A[x, y] has degree d in y, we say that f is monic in y if the polynomial coefficient
of yd is 1 (this definition and the previous one carry over to coefficients with respect to
x instead, but we will not need this).

• If T is a subset of N2, we write A[x, y]T for the A-module of polynomials supported
on T, that is, all polynomials of the form

P
(u,v)∈T au,vx

uyv, with only finitely many
non-zero coefficients au,v.

We will not need to define Gröbner bases over rings. In particular, for the reduction of
bivariate polynomials, we only work over fields: if G is a Gröbner basis in K[x, y], where K is
a field and K[x, y] is endowed with a monomial order, f rem G denotes the remainder of f
through reduction by G.

2. Initial segments in N2

In this section, we first introduce terminology and basic constructions regarding subsets
of N2 called initial segments. In the second part, we give algorithms to multiply polynomials
supported on such initial segments.

2.1. Basic definitions

Initial segments. We say that a set T ⊂ N2 is an initial segment if for all (m,n) in T, any
pair (m′, n′) with m′ ≤ m and n′ ≤ n is also in T.

Suppose that T is an initial segment in N2, let K be a field and x, y be variables over K.
The elements in K[x, y] supported on N2 − T form a monomial ideal I ⊂ K[x, y]. Conversely,
any initial segment T in N2 can be obtained in this manner from a monomial ideal I, as
the set of exponents of monomials not in I. If T is finite, we write the minimal monomial
generators of I as

E = (yn0 , xm1yn1 , . . . , xms−1yns−1 , xms)

with the mi’s increasing and the ni’s decreasing, and we set m0 = ns = 0. We call n0 the
height of T and ms its width. We say that T is determined by I, or equivalently by E.

For i = 1, . . . , s, we set di = mi −mi−1, so that mi = d1 + · · ·+ di. Then, the cardinal δ
of T can be written as

Ps
i=1 dini−1; δ is also called the degree of E. Similarly, for i = 1, . . . , s,

we write ei = ni−1 − ni. These definitions are illustrated in Figure 1, where the monomials in
E are the initial terms of the Gröbner basis in Eq. (1).

8

x

y

0 1 2 3 4 5
0

1

2

3

4
(m0, n0) = (0, 4)

(m1, n1) = (1, 3)

(m2, n2) = (2, 1)

(m3, n3) = (4, 0)

d1 = 1 d2 = 1 d3 = 2

e 1
=

1
e 2

=
2

e 3
=

1

Figure 1: An initial segment T (green) and the monomials E = (y4, xy3, x2y, x4) (purple), with s = 3 and
δ = 9.

The cost analyses in this paper will be done using in particular the parameters s and δ.
If desired, one can simplify such expressions using the following explicit upper bound for s.

Lemma 2.1. The integer s is in O(
√
δ), and this bound is sharp in some instances.

Proof. Start from the equality δ =
Ps

i=1 dini−1, which implies δ ≥Ps
i=1 ni−1. Since ns = 0

and ni−1 > ni, we get by induction ni ≥ s− i for all i. This implies δ ≥ s(s− 1)/2, so that s
is in O(

√
δ). For the lower bound, for any integer d we can take E = (xiyd−i, i = 0, . . . , d),

for which s = d and δ = d(d+ 1)/2.

Translates of an initial segment. We will occasionally make use of the following construction.
Let T be a finite initial segment in N2, and suppose that T is determined by a monomial
ideal I, with minimal monomial generators E as above. For i = 0, . . . , s we let T←i be the
initial segment determined by the colon ideal I : xmi , with minimal monomial generators

E←i = (yni , xmi+1−miyni+1 , . . . , xms−1−miyns−1 , xms−mi).

The set T←i has height ni and width ms −mi; its cardinal will be written δi, and is equal toPs
j=i+1 djnj−1. We call T←i the ith translate of T.

9

x

y

0 1 2 3 4 5
0

1

2

3

4

Figure 2: The first translate T←1 of T from Figure 1.

The shell of an initial segment. Let T be a finite initial segment in N2. In this paragraph,
we define its shell T′, which is another initial segment that forms an outer approximation of
T with few generators, while at most doubling the cardinality of T. The definition and the
lemma below are from [30, A.2]; this construction will be used in the next subsection, to
devise an algorithm for the multiplication of polynomials supported on T.

As we did before, we let

E = (yn0 , xm1yn1 , . . . , xms−1yns−1 , xms)

be the minimal monomial generating set associated to T. We define T′ by introducing
indices iσ < iσ−1 < · · · < i0, defined as follows. Set i0 = s. We let i1 ≥ 0 be the largest
index less than i0 and such that mi1 < mi0/2, and iterate the process to define a sequence
iσ = 0 < iσ−1 < · · · < i0 = s. We can then consider the monomials

E′ = (yniσ , xmiσ−1yniσ−1 , . . . , xmi0) = (yn0 , xmiσ−1yniσ−1 , . . . , xms),

and let T′ be the initial segment determined by E′.

Lemma 2.2. The initial segment T′ contains T, its cardinal is at most 2δ and σ is in
O(log(δ)).

10

x

y

0 1 2 3 4 5
0

1

2

3

4

Figure 3: The shell of T from Figure 1.

In our pseudo-code, we will write T′ ← Shell(T) to indicate that T′ is the shell of T. The
algorithm Shell does not use any base field or base ring operation, only index manipulations
(in particular, it does not show up in our cost analyses).

2.2. Structured polynomial multiplication

We now prove two propositions regarding polynomial multiplication in A[x, y], for an
arbitrary ring A, which will be the basis of the runtime analysis of several algorithms. We
mention in all propositions below that the algorithms in this section only use additions and
multiplications in A, as we will need this property in the sequel. In what follows, given two
sets S,T in N2, S+ T denotes their Minkowski sum.

The main prerequisite is the following fact: if S ⊂ N2 is a rectangle, given A and B in
A[x, y]S, we can compute AB ∈ A[x, y]S+S using O (̃|S|) operations (+,×) in A: if S contains
the origin, this is done using Kronecker substitution to reduce to multiplication in A[x],
see [61, Corollary 8.28]; in the general case, we reduce to the situation where S contains the
origin by factoring out xuyv from A and B, with (u, v) being the unique minimal element
of S.

This being said, the first result we highlight here gives the cost of computing the product
AB, for A and B supported on the same initial segment T. Note that AB is supported on
T+ T, and that if T has height n and width m, T+ T has cardinal Θ(nm). Indeed, this set
contains the rectangle {0, . . . ,m− 1}×{0, . . . , n− 1} of cardinal nm, and is contained in the
rectangle {0, . . . , 2m−2}×{0, . . . , 2n−2} of cardinal less than 4nm, so that |T+T| ∈ Θ(nm).
This is to be contrasted with the cardinal of T itself, which can range anywhere between
n+m and nm.

Proposition 2.3. Consider a finite initial segment T ⊂ N2, of height n and width m. Given
A and B in A[x, y]T, one can compute AB using O (̃|T+T|) = O (̃nm) operations (+,×) in
A.

Proof. Let S be the rectangle {0, . . . ,m− 1} × {0, . . . , n− 1}, so that S contains T. Then,
A and B are in A[x, y]S, so we can multiply them using O (̃|S + S|) = O (̃nm) operations

11

(+,×) in A with Kronecker substitution, as pointed out above, and this runtime is also
O (̃|T+ T|).

Our second proposition gives an algorithm to compute AB ∈ A[x, y], where A is supported
on a rectangle containing the origin and B on an initial segment.

Proposition 2.4. Consider a rectangle S ⊂ N2 and a finite initial segment T ⊂ N2. Given A
in A[x, y]S and B in A[x, y]T, one can compute AB using O (̃|S+T|) operations (+,×) in A.

Without loss of generality, we assume that S contains the origin (0, 0); if not, as above,
factor out the monomial xuyv from A, with (u, v) the minimal element in S. We can thus
suppose that S is the rectangle {0, . . . , ℓ− 1} × {0, . . . , h− 1}, for some integers ℓ, h ≥ 1, so
in particular |S| = ℓh, and that T is an initial segment of cardinal |T| = δ, with height n and
width m.

If A is a field of characteristic zero, this result follows directly from the sparse evaluation
and interpolation algorithms of [7]. More generally, if A is a field of cardinal at least
max(ℓ+m, h+ n)− 1, this is also the case, using the algorithm in [60]. The algorithm below
achieves the same asymptotic runtime, without assumption on A. The proof is slightly more
involved than that of the previous proposition, and occupies the rest of this section.

An algorithm when T is a rectangle. Suppose first that T = {0, . . . ,m− 1} × {0, . . . , n− 1},
so that δ = nm; then the cardinal of S+ T is (ℓ+m− 1)(h+ n− 1).

Take A in A[x, y]S and B in A[x, y]T. Then, both A and B are in A[x, y]S+T. Since S+ T
is a rectangle, we saw in the preamble of this section that using Kronecker’s substitution, we
can compute their product using O (̃|S+ T|) = O (̃(ℓ+m− 1)(h+ n− 1)) operations (+,×)
in A. In the main algorithm below, this is written KroneckerMultiply(A,B).

A first general algorithm. We now suppose that T is an arbitrary initial segment, and that it
is determined by the monomials

E = (yn0 , xm1yn1 , . . . , xms−1yns−1 , xms),

with the mi’s increasing, the ni’s decreasing, and m0 = ns = 0; note that we also have n0 = n
and ms = m. As before, for i = 1, . . . , s, we set di = mi −mi−1, so that mi = d1 + · · ·+ di.

The input B ∈ A[x, y]T can then be written as B =
P

0≤i<s Bix
mi , with Bi supported

on Ti = {0, . . . , di+1 − 1} × {0, . . . , ni − 1}. To compute AB, with A in A[x, y]S, we thus
compute all ABi and add up the results.

Algorithm 2.1 MultiplyNaive(A, S, B,T)

Input: A in A[x, y]S, B in A[x, y]T
Output: AB in A[x, y]S+T

1: write B = B0 + B1x
m1 + · · ·+Bs−1x

ms−1 with Bi ∈ A[x, y]{0,...,di+1−1}×{0,...,ni−1} for all i
2: for i = 0, . . . , s− 1 do Ci ← KroneckerMultiply(A,Bi)
3: return C0 + C1x

m1 + · · ·+ Cs−1x
ms−1

12

By the result in the previous paragraph, each product ABi can be computed in

O (̃(ℓ+ di+1 − 1)(h+ ni − 1)) = O (̃(ℓ− 1)(h− 1) + (ℓ− 1)ni + di+1(h− 1) + di+1ni)

operations in A, and the cost of adding this product to the final result fits into the same
bound. Using the inequality ni ≤ n0 = n for all i, as well as d1 + · · · + ds = ms = m and
d1n0 + · · ·+ dsns−1 = δ (the cardinal of T), we see that the total cost is

O (̃s(ℓ− 1)(h− 1) + s(ℓ− 1)n+m(h− 1) + δ).

On the other hand, we can determine the cardinal of the sum U = S+ T as follows. The
set U is the disjoint union of the following sets:

• U1 = {0, . . . , ℓ− 2} × {0, . . . , h− 2},

• U2 = (0, h− 1) + {0, . . . , ℓ− 2} × {0, . . . , n− 1}

• U3 = (ℓ− 1, 0) + {0, . . . ,m− 1} × {0, . . . , h− 2}

• U4 = (ℓ− 1, h− 1) + T.

This is established by taking (i, j) in S, (v, w) in T, and discussing according to the signs of
v − (ℓ− 1− i) and w − (h− 1− j). As a result, we obtain

|S+ T| = (ℓ− 1)(h− 1) + (ℓ− 1)n+m(h− 1) + δ.

x

y

0 1
0

1

x

y

0 1 2
0

1

2

x

y

0 1 2 3
0

1

2

3

U4

U3

U2

U1

Figure 4: the sets S, T and U = S+ T, with ℓ = h = 2 and n = m = 3.

The main algorithm.. The runtime reported above does not fit in the target cost O (̃|S+ T|),
as s could be large. To circumvent this issue, we apply the algorithm of the previous
paragraph, but we replace T by its shell T′. We know (Lemma 2.2) that the cardinal of T′ is
at most 2δ, that its width and height are the same as those of T, and that it is generated by
σ ∈ O(log(s)) ⊂ O(log(δ)) terms.

13

Algorithm 2.2 Multiply(A, S, B,T)

Input: A in A[x, y]S, B in A[x, y]T
Output: AB in A[x, y]S+T

1: T′ ← Shell(T)
2: return MultiplyNaive(A, S, B,T′)

The algorithm of the previous paragraph still applies (since T is contained in T′), and its
runtime is then O (̃(ℓ− 1)(h− 1) log(δ) + (ℓ− 1)n log(δ) +m(h− 1)+ δ) operations (+,×) in
A. Since we saw that |S+T| = (ℓ− 1)(h− 1) + (ℓ− 1)n+m(h− 1) + δ, the above expression
is indeed in O (̃|S+ T|). This finishes the proof of Proposition 2.4.

3. Lexicographic Gröbner bases

In this section, we first review Lazard’s structure theorem [37] for lexicographic Gröbner
bases in K[x, y], for a field K, then a parametrization of such bases due to [9]. While the core
of the discussion makes no assumption on the ideals we consider, we also highlight the case
of ideals that are primary at the origin, that is, ⟨x, y⟩-primary.

In all that follows, we use the lexicographic monomial order ≻ on K[x, y] induced by
y ≻ x.

3.1. The structure theorem

Consider a zero dimensional ideal I ⊆ K[x, y], and let G = (g0, . . . , gs) be its reduced
Gröbner basis, listed in decreasing order. Let further

E = (yn0 , xm1yn1 , . . . , xms−1yns−1 , xms)

be the minimal reduced basis of the initial ideal in(I) of I, listed in decreasing order, so the
ni’s are decreasing and the mi’s are increasing; as before, we set m0 = ns = 0.

It follows that gi has initial term xmiyni for all i; in particular g0 is monic in y with initial
term yn0 .

As in Section 2.1, for i = 1, . . . , s, we set di = mi −mi−1, with thus mi = d1 + · · ·+ di,
and ei = ni−1 − ni.

Lazard proved in [37, Theorem 1] the existence of polynomials D1, . . . , Ds in K[x], all
monic in x and of respective degrees d1, . . . , ds, such that for i = 0, . . . , s, gi can be written
as MiGi, with Mi = D1 · · ·Di ∈ K[x] and Gi ∈ K[x, y] monic of degree ni in y (for i = 0, we
set D0 = 1). In particular, for i = s, this gives gs = Ms = D1 · · ·Ds and Gs = 1. In addition,
for i = 0, . . . , s− 1, we have the membership relation

Gi ∈ ⟨Gi+1, Di+2Gi+2, . . . , Di+2 · · ·Ds⟩ =
�

gi+1

Mi+1

,
gi+2

Mi+1

, . . . ,
gs

Mi+1

�
, (2)

where the polynomials Gi+1, Di+2Gi+2, . . . , Di+2 · · ·Ds also form a Gröbner basis of the ideal
they generate (which is the colon ideal (I : Mi+1), but we do not need this fact). Besides, for
all i, Gi(0, y) vanishes only at y = 0, i.e. Gi(0, y) = yni , see [37, Theorem 2].

14

Remark 3.1. If G generates an ⟨x, y⟩-primary ideal, we have gs = xms = xd1+···+ds, with
thus Di = xdi and Mi = xmi for all i.

In terms of data structures, representing G = (g0, . . . , gs) involves O(sδ) field elements,
with δ the degree of I. As a remark, we note that it would be sufficient to store the polynomials
D = (D1, . . . , Ds) and G = (G0, . . . , Gs) instead. If T ⊂ N2 is the initial segment determined
by E, the structure theorem implies that for i = 0, . . . , s, Gi − yni is supported on the ith
translate T←i of T. In particular, δi field elements are needed to store it, with δi = |T←i|,
hence a slightly improved total of O(

Ps
i=0 δi) field elements for D and G.

3.2. Conca and Valla’s parametrization

In this subsection, we suppose that the tuple E = (yn0 , xm1yn1 , . . . , xms−1yns−1 , xms)
is fixed. Following [9], we are interested in describing the set of ideals I in K[x, y] that
have initial ideal generated by E. We call this set the Gröbner cell of E, and we write it
C(E) := {I | in(I) = ⟨E⟩}. We will also mention a subset of it, the set of ideals I in K[x, y]
with initial ideal generated by E and that are ⟨x, y⟩-primary; this is called the punctual
Gröbner cell of E, and is written C0(E).

The idea of describing ideals with a prescribed initial ideal goes back to [6, 5, 31] for
ideals in K[[x, y]] and [8] for K[x1, . . . , xn]; it was developed in many further references, such
as [16, 24, 49, 29, 28, 53, 41, 40]. It is known that these Gröbner cells, also called strata,
have corresponding moduli spaces that are affine schemes (see [40, Section 8]), but to our
knowledge, no general an explicit description has not yet been given. In our case, however,
Conca and Valla obtained in [9] a complete description of Gröbner cells and punctual Gröbner
cells for bivariate ideals under the lexicographic order (following previous work of [16], where
the dimensions of these cells were already made explicit).

Example 3.2. For an example of a punctual Gröbner cell, taking E = (y4, xy3, x2y, x4) as
in Figure 1, using the facts that gi = xmiGi and that Gi(0, y) = yni, we deduce that the
lexicographic Gröbner basis of an ideal in C0(E) necessarily has the following shape, for some
coefficients c1, . . . , c8 in K:

g1 = y4 + c1xy
2 + c2xy + c3x

3 + c4x
2 + c5x

g2 = xy3 + c6x
3 + c7x

2

g3 = x2y + c8x
3

g4 = x4

So far, though, we have not taken into account the membership equality in (2), which imposes
relations on the coefficients ci. The parametrizations of C(E) and C0(E) given below resolve
this issue.

Recall that we write di = mi − mi−1 and ei = ni−1 − ni, for i = 1, . . . , s. Given I in
C(E), Conca and Valla prove in [9, Lemma 3.6] the existence and uniqueness of polynomials
(σj,i)0≤i≤s−1,i≤j≤s in K[x, y] with the following degree constraints:

15

• for all i = 0, . . . , s− 1 and j = i, . . . , s, deg(σj,i, x) < di+1

• for all i = 0, . . . , s− 1, σi,i is in K[x] and deg(σj,i, y) < ej holds for j = i+ 1, . . . , s,

and such that the following properties hold. Define polynomials H = (h0, . . . , hs) in K[x, y]
by

• hs = (xd1 − σ0,0) · · · (xds − σs−1,s−1)

• for i = 0, . . . , s− 1,

xdi+1hi − yei+1hi+1 = σi,ihi + σi+1,ihi+1 + · · ·+ σs,ihs; (3)

then, all polynomials hi’s are in I. Since the relations above imply that for i = 0, . . . , s, hi

has initial term xmiyni , H = (h0, . . . , hs) is a minimal Gröbner basis of I. (Note that Eq. (3)
then gives the normal form of the syzygy between hi and hi+1.)

Conversely, for any choice of the polynomials σj,i satisfying the degree constraints above,
the resulting polynomials H form a minimal Gröbner basis of an ideal I in C(E).

Let us briefly mention some properties of the polynomials h0, . . . , hs. First, we claim that
they have x-degree either exactly ms (for hs), or less than ms, for h0, . . . , hs−1. This is true
for hs by construction. For the other indices, this follows from a decreasing induction, by
rewriting (3) as

(xdi+1 − σi,i)hi = yei+1hi+1 + σi+1,ihi+1 + · · ·+ σs,ihs, (4)

where all terms σj,ihj on the right have x-degree less than di+1 +ms.
Next, note that for i = 0, . . . , s, (xd1 − σ0,0) · · · (xdi − σi−1,i−1) divides hi, and thus

all polynomials hi, . . . , hs; this follows from (4) by a decreasing induction (for i = 0, the
empty product is set to 1). Since hi has initial term xmiyni = xd1+···+diyni , we deduce that
(xd1 − σ0,0) · · · (xdi − σi−1,i−1) is precisely the polynomial coefficient of yni in hi.

Let then G = (g0, . . . , gs) be the reduced Gröbner basis obtained by inter-reducing H.
Since none of the terms in (xd1 − σ0,0) · · · (xdi − σi−1,i−1)y

ni can be reduced by h0, . . . , hi−1

or hi+1, . . . , hs, we see that (xd1 − σ0,0) · · · (xdi − σi−1,i−1) is also the polynomial coefficient of
yni in gi. Hence, the polynomials Di and Mi that appear in Lazard’s structure theorem are
respectively given by Di = xdi − σi−1,i−1 and Mi = (xd1 − σ0,0) · · · (xdi − σi−1,i−1).

Remark 3.3. We can recover Lazard’s result, that Mi divides gi for all i, from this dis-
cussion: the reduction of hi by H can only involve hi+1, . . . , hs (since the y-degree of the
other polynomials h0, . . . , hi−1 is too large). We saw that Mi divides hi, but then also all of
hi+1, . . . , hs; as a result, it divides the remainder gi.

16

Altogether, the total numberN of coefficients that appear in the polynomials (σj,i)0≤i≤s−1,i≤j≤s,
for the Gröbner cell C(E), is given by

N =
s−1X

i=0

sX

j=i+1

di+1ej + di+1

!

=
s−1X

i=0

di+1ni +
s−1X

i=0

di+1

= δ +ms,

with δ the degree of E. These coefficients will be written λ1, . . . ,λN and called Gröbner
parameters; this gives us a bijection ΦE between KN and C(E).

The elements in the punctual Gröbner cell C0(E) are obtained by setting some of the
Gröbner parameters to zero, corresponding to the following extra conditions:

• the polynomials σ0,0, . . . , σs−1,s−1 vanish (recall that for the punctual Gröbner cell, we
have Di = xdi and Mi = xmi for all i, see Remark 3.1)

• σi+1,i is divisible by x, for i = 0, . . . , s− 1.

The number of remaining coefficients in σ1,0, . . . , σs,s−1 is

N0 =
s−1X

i=0

sX

j=i+1

di+1ej − ei+1

!

=
s−1X

i=0

di+1ni −
s−1X

i=0

ei+1

= δ − n0,

establishing a bijection between KN0 and C0(E). In the ⟨x, y⟩-primary case, the degree δ of
E is by definition the common multiplicity of all ideals in C0(E) at the origin.

Example 3.4. Let us describe the punctual Gröbner cell of E in our running example
(Example 1.1). It has dimension N0 = 9− 4 = 5, so that we can use parameters λ1, . . . ,λ5,
with polynomials (σj,i) of the form

σ0,0 = σ1,0 = 0, σ2,0 = λ1y+λ2, σ3,0 = λ3, σ1,1 = n2,1 = 0, σ3,1 = λ4, σ2,2 = 0, σ3,2 = λ5x.

Then, the ideals in C0(E) are exactly those ideals with Gröbner bases as follows:

h0 = y4 + λ5xy
3 + λ1xy

2 + (λ1λ5 + λ4)x
2y + λ2xy + λ3x

3 + λ2λ5x
2

h1 = xy3 + λ5x
2y2 + λ4x

3

h2 = x2y + λ5x
3

h3 = x4.

17

As expected, these are not reduced Gröbner bases. After reduction, we obtain the following
polynomials G:

g0 = y4 + λ1xy
2 + λ2xy + (−λ1λ

2
5 + λ3 − 2λ4λ5)x

3 + λ2λ5x
2

g1 = xy3 + λ4x
3

g2 = x2y + λ5x
3

g3 = x4.

(5)

4. Reduction modulo a lexicographic Gröbner basis

As before, suppose that G = (g0, . . . , gs) is a lexicographic Gröbner basis in K[x, y], with
initial segment T ⊂ N2. Given f in K[x, y], we are interested in computing the remainder
r = f rem G ∈ K[x, y]T; this will be used on multiple occasions in this paper, and is also an
interesting question in itself.

Polynomial reduction has been discussed in the literature, for an arbitrary order in [26],
more specifically in the bivariate setting for certain weighted orderings in [59], and for the
degree lexicographic ordering in [27]. The latter two articles used a dichotomic scheme, from
which we will draw our inspiration.

We start by developing the necessary background as a problem in plane geometry, closely
following [59]. We continue with algorithms to convert polynomials into a so-called mixed-radix
representation, and back; the reduction algorithm itself is then given in the last subsection.

4.1. A paving problem

For G as above and f in K[x, y], the remainder r = f rem G is uniquely defined, but the
quotients Qi in the relation f = Q0g0 + · · · + Qsgs + r are not. The reduction algorithm
will obtain r by computing the Qi’s one after the other. Hence, to completely specify the
algorithm, we need to make these quotients unambiguous: whenever a monomial xuyv can be
reduced by more than one of the Gröbner basis elements, we must prescribe which of the
gi’s is used. The cost of the resulting algorithm will depend in an essential manner on these
decisions.

In [59], van der Hoeven and Larrieu introduced a dichotomic scheme, in the context of
reduction modulo certain “nice” Gröbner bases (called vanilla Gröbner bases), for weighted
degree orderings. In this subsection, we adapt their construction to our situation; prior to
that, let us briefly point out what vanilla Gröbner bases are: for a weighted ordering, the
Gröbner basis G of an ideal I of degree δ is vanilla if the standard monomials modulo G are
precisely the δ smallest monomials. This definition makes it possible for van der Hoeven
and Larrieu to give a compact representation of such Gröbner bases, by means of certain
“retraction coefficients” that specify relations between the elements of G; it would be of interest
to understand to what extent these can be used in the description of Gröbner cells in the
weighted ordering context.

Back to our situation, suppose as before that the initial terms of G are the monomials

E = (yn0 , xm1yn1 , . . . , xms−1yns−1 , xms);

18

we still write di = mi −mi−1 and ei = ni−1 − ni, for i = 1, . . . , s. The set of monomials to
which we will apply the main reduction algorithm is {xuyv, 0 ≤ u < ms, 0 ≤ v < n0}, so it
has cardinal n0ms (the general case will be reduced to this situation). In particular, neither
g0 nor gs can reduce any of these monomials.

We can then translate our question into a paving problem in the plane. We want to cover
S = {0, . . . ,ms − 1} × {0, . . . , n0 − 1}− T by rectangles, under the following constraints:

• we use s− 1 pairwise disjoint rectangles, R1, . . . ,Rs−1, so that Ri will index the set of
monomials that are reduced using gi

• for all i, Ri has the form {mi, . . . ,mi+ℓi − 1} × {ni, . . . , ni−hi
− 1}, for some positive

integers ℓi, hi such that i+ ℓi ≤ s and i− hi ≥ 0

• the union of all Ri’s covers S.

The sequence ((ℓ1, h1), . . . , (ℓs−1, hs−1)) is sufficient to specify such a paving. Our goal is then
to minimize the quantity

c := n0

s−1X

i=1

(mi+ℓi −mi) +ms

s−1X

i=1

(ni−hi
− ni),

where (mi+ℓi −mi) and (ni−hi
−ni) are respectively the width and height of Ri. This quantity

will turn out to determine the cost of the reduction algorithm; the target is to keep c in
O (̃n0ms), since we mentioned that n0ms in an upper bound on the number of monomials in
the polynomials we want to reduce.

The following figure shows two possible pavings, for the case d = 4 of the family already
seen in the proof of Lemma 2.1, with E = (yd, xyd−1, . . . , xd). For this family, n0 = ms = d
and n0ms = d2; the strategies shown in the example below have either

Ps−1
i=1 (mi+ℓi −mi) orPs−1

i=1 (ni−hi
− ni) in Θ(d2), so c is in Θ(d3) = Θ((n0ms)

1.5) in either case.

x

y

0 1 2 3 4
0

1

2

3

4

R1

R2

R3

x

y

0 1 2 3 4
0

1

2

3

4
R1 R2 R3

Figure 5: two possible pavings with d = 4.

For this family, a better solution is given below.

19

x

y

0 1 2 3 4
0

1

2

3

4
R1 R2

R3

Figure 6: an improved paving.

This design was introduced in [59], for “vanilla” families E similar to the one in the
example, where the di (which are the widths of the steps in the Gröbner staircase, see
Figure 1) are almost constant, and all ei (which are the heights of these steps) are equal to
1. The construction we give below for arbitrary inputs is derived from it directly, replacing
vertices with coordinates such as (i, j) by vertices with coordinates of the form (ni,mj). In
what follows, val2(i) denotes the 2-adic valuation of a positive integer i.

Definition 4.1. For i = 1, . . . , s− 1, define:

• hi = 2val2(i)

• ℓi = min(hi, s− i)

As a result, the rectangle Ri is given by

Ri = {mi, . . . ,mi+ℓi − 1} × {ni, . . . , ni−hi
− 1}

= {mi, . . . ,mmin(i+hi,s) − 1} × {ni, . . . , ni−hi
− 1}.

The following three propositions give the main properties of these rectangles. First, we prove
that they cover all points not in T.

Proposition 4.2. For any s and any choices of m1, . . . ,ms and n0, . . . , ns−1, the rectangles
R1, . . . ,Rs−1 are pairwise disjoint, cover S = {0, . . . ,ms−1}×{0, . . . , n0−1}−T, and satisfy
i+ ℓi ≤ s and i− hi ≥ 0 for all i.

Proof. The last claim is a direct consequence of the definitions. We prove the rest of the
proposition by reduction to the case where all di’s and ei’s are equal to one. The proof is
technical but raises no special difficulty.

For any positive integer s, we define the monomials Es = (xiys−i, 0 ≤ i ≤ s), the initial
segment Ts determined by Es and Ss = {0, . . . , s− 1} × {0, . . . , s− 1}− Ts; note that Ts is
the set of all pairs of non-negative integers (a, b) with b < s− a. Finally, for i = 1, . . . , s− 1
we define the rectangle Ri,s = {i, . . . ,min(i+ hi, s)− 1} × {s− i, . . . , s− i+ hi − 1} ⊂ Ss.

20

We start from m1, . . . ,ms and n0, . . . , ns−1 as in the proposition’s statement, with cor-
responding sets T and S in N2. Take a point (u, v) in S. Because u < ms, there exists a
unique pair (α, u′) such that u = mα + u′, with 0 ≤ α ≤ s− 1 and 0 ≤ u′ < dα+1. Similarly,
because v < n0, there exists a unique pair (β, v′) such that v = nβ + v′, with 1 ≤ β ≤ s and
0 ≤ v′ < eβ. We claim that (α, s − β) is in the set Ss defined in the previous paragraph,
and that for i = 1, . . . , s − 1, (u, v) is in the rectangle Ri if and only if (α, s − β) is in the
rectangle Ri,s.

• For the first claim, we already pointed out the inequalities 0 ≤ α ≤ s − 1 and
1 ≤ β ≤ s, which gives 0 ≤ s − β ≤ s − 1, so that (α, s − β) is in the square
{0, . . . , s− 1} × {0, . . . , s− 1}. On the other hand, we have v ≥ nα (otherwise (α, β)
would be in T), and so β ≤ α and s− β ≥ s− α. This proves that the point (α, s− β)
is not in Ts, so altogether, it lies in Ss.

• For the second claim, note that since u = mα + u′, with 0 ≤ u′ < dα+1, mi ≤
u < mmin(i+hi,s) is equivalent to i ≤ α < min(i + hi, s). Similarly, the inequalities
ni ≤ v < ni−hi

are equivalent to s− i ≤ s− β < s− i+ hi. This proves the claim.

To conclude, it is now sufficient to prove that for all s, the following property, written P (s),
holds: the rectangles R1,s, . . . ,Rs−1,s are pairwise disjoint and cover Ss. First, we prove it
for s a power of two, of the form s = 2k, by induction on k ≥ 1. For k = 1 (so s = 2), there
is nothing to prove, as S2 = {1} × {1} = R1,2.

Supposing that P (s) is true for s = 2k, we now prove it for s′ = 2s. For S a subset of
N2, we write S ∩ {x ≤ t} for the set of all (x, y) in S with x ≤ t. The sets S ∩ {x ≥ t},
S ∩ {x ≤ t, y ≤ t′}, etc, are defined similarly.

First, we note that for any power of two σ = 2t and i = 1, . . . , σ − 1, we have i+ hi ≤ σ,
so the rectangle Ri,σ is simply Ri,σ = {i, . . . , i + hi − 1} × {σ − i, . . . , σ − i + hi − 1}.
As a result, the rectangles R1,s′ , . . . ,Rs−1,s′ are translates of R1,s, . . . ,Rs−1,s by (0, s), so
by the induction assumption, they are pairwise disjoint, cover Ss′ ∩ {x ≤ s − 1}, and
do not meet Ss′ ∩ {x ≥ s} (on Figure 6, we have s = 2, s′ = 4, and there is only one
such rectangle, written R1). Since hi = hi+s for i = 1, . . . , s − 1, we also deduce that the
rectangles Rs+1,s′ , . . . ,R2s−1,s′ are translates of R1,s, . . . ,Rs−1,s by (s, 0). Thus, they are
pairwise disjoint, cover Ss′ ∩ {x ≥ s, y ≤ s− 1}, and do not meet Ss′ ∩ {x ≥ s, y ≥ s} (on
Figure 6, this is R3). Finally, Rs,s′ is the rectangle {s, 2s− 1}× {s, 2s− 1} (on Figure 6, this
is R2). Altogether, P (s′) holds and the induction is complete.

The last step is to prove that P (s) holds for all s, knowing that it holds for all powers
of two. Let s be arbitrary and let s′ be the first power of two greater than or equal to
s, so that we know that P (s′) holds. Let s′′ = s′/2. Since s′ < 2s, s′′ ≤ s. For i < s′′,
Ri,s = Ri,s′ − (s′ − s, 0), whereas for s′′ ≤ i ≤ s− 1, Ri,s = Ri,s′ ∩ {x ≤ s− 1}− (s′ − s, 0).
Knowing P (s′), this implies that all these sets are pairwise disjoint. In addition, they cover
Ss′ ∩ {x ≤ s− 1}− (s′ − s, 0), which is none other that Ss. Thus, P (s) is proved.

Second, we prove a monotonicity property: going from left to right along any given
horizontal line, the indices of the Ri’s that we meet increase. To state the exact property we
need, we will also write R0 = T.

21

Proposition 4.3. Given u, u′ in {0, . . . ,ms − 1} and v in {0, . . . , n0 − 1}, with u ≤ u′, if
(u, v) is in Ri and (u′, v) is in Ri′, for some indices i, i′ in {0, . . . , s}, then i ≤ i′.

Proof. If i = 0, there is nothing to prove, since i′ ≥ 0. If i′ = 0, this means that (u′, v) is in
T, but then so is (u, v), and thus i = 0 as well. Altogether, we can now assume that both i
and i′ are positive, that is, neither (u, v) nor (u′, v) is in R0 = T.

The proof proceeds as in the previous proposition, so we will freely reuse some objects
introduced there, such as the rectangles Ri,s. As in the previous proof, to (u, v) and (u′, v),
we associate α,α′ in {0, . . . , s − 1} and β in {1, . . . , s} such that (α, s − β) is in Ri,s and
(α′, s− β) is in Ri′,s. Assuming that u ≤ u′, we get that α ≤ α′, so that we have reduced our
question to its analogue for the rectangles R1,s, . . . ,Rs−1,s. Explicitly, we prove that indices
increase as we travel left-to-right along horizontal lines through R1,s ∪ · · · ∪ Rs−1,s.

The strategy is again a proof by induction, starting with the case of s a power of two. There
is nothing to prove for s = 2; going from a power of two s to s′ = 2s, the conclusion follows
from the observations made in the proof of the previous proposition, that R1,s′ , . . . ,Rs−1,s′

and Rs+1,s′ , . . . ,R2s−1,s′ are translates of R1,s, . . . ,Rs−1,s by respectively (0, s) and (s, 0),
and that Rs,s′ is the rectangle {s, 2s − 1} × {s, 2s − 1}. Thus, if indices increase as we
travel left-to-right along horizontal lines through R1,s ∪ · · · ∪ Rs−1,s, it remains true for
R1,s′ ∪ · · · ∪ Rs′−1,s′ .

Finally, we prove the claim for an arbitrary s using the fact that it holds for the next
power of two s′. As in the previous proposition, we observe that R1,s, . . . ,Rs−1,s are obtained
from R1,s′ , . . . ,Rs−1,s′ by translation by (s− s′, 0), and a right truncation; this is enough to
conclude.

Finally, the key property of this construction is that the corresponding value of c =
n0

Ps−1
i=1 (mi+ℓi −mi) +ms

Ps−1
i=1 (ni−hi

− ni) is softly linear in n0ms. This is close to optimal,
since the inequalities

Ps−1
i=1 (mi+ℓi −mi) ≥ ms − 1 and

Ps−1
i=1 (ni−hi

− ni) ≥ n0 − 1 imply that
c is in Ω(n0ms).

Proposition 4.4. For R1, . . . ,Rs−1 as above, c = n0

Ps−1
i=1 (mi+ℓi −mi)+ms

Ps−1
i=1 (ni−hi

−ni)
is in O (̃n0ms).

Proof. We prove that with the choices in Definition 4.1,
Ps−1

i=1 (mi+ℓi −mi) is in O (̃ms); we
omit the remaining part of the argument that proves that

Ps−1
i=1 (ni−hi

− ni) is in O (̃n0) in a
similar manner.

First, we reduce to the case where s is a power of 2. For i ≥ s, set ℓi = 0 and mi = ms;
the sum

Ps−1
i=1 (mi+ℓi − mi) is then equal to

Ps′−1
i=1 (mi+ℓi − mi), where s′ = 2k is the first

power of two greater than or equal to s. Besides, this convention implies mi+ℓi = mi+hi
for

all i.
For a given κ in {0, . . . , k− 1}, the indices i ∈ {1, . . . , s′− 1} of 2-adic valuation κ are the

integers 2κ(1+ 2j), for j = 1, . . . , 2k−κ−1− 1, so we can rewrite the sum
Ps′−1

i=1 (mi+ℓi −mi) as

k−1X

κ=0

2k−κ−1−1X

j=0

(m2κ(1+2j)+2κ −m2κ(1+2j)) =
k−1X

κ=0

2k−κ−1−1X

j=0

(d2κ(1+2j)+1 + · · ·+ d2κ(1+2j)+2κ),

22

where we set di = 0 for i > s. In particular, for a fixed κ, the last index occurring at the
summation step j is less than the first index occurring at j + 1, so the inner sum is bounded
above by

Ps′

i=1 di = ms. It follows that
Ps−1

i=1 (mi+ℓi −mi) ≤
Pk−1

κ=0 ms ∈ O(ms log(s)). Since
s ≤ ms, our claim is proved.

4.2. Mixed radix representation

In this subsection, we discuss an alternative basis for our polynomials. Our motivation is
the following: if G = (g0, . . . , gs) is the minimal, reduced lexicographic Gröbner basis that we
want to use in our reduction algorithm, we saw that for i = 0, . . . , s, gi can be written as
MiGi, with Mi of degree mi in K[x] and Gi ∈ K[x, y] monic in y, of degree ni in y. Recall also
that for i = 1, . . . , s we write Di = Mi/Mi−1, which is a polynomial of degree di = mi −mi−1

in K[x].
The main reduction algorithm will perform many univariate reductions modulo the

polynomials M1, . . . ,Ms. When working with ⟨x, y⟩-primary ideals, all Mi’s are powers of
x, so these operations are free of arithmetic cost. In general, though, this is not the case
anymore, if the inputs are represented on the monomial basis. In this paragraph, we introduce
a mixed radix representation where reductions by the Mi’s are free, and we discuss conversion
algorithms.

Given polynomial K = (K1, . . . , Kt) in K[x], with respective degrees k1, . . . , kt, and
writing h = k1 + · · ·+ kt, we consider the K-linear mapping

ΦK : K[x]<k1 × · · · ×K[x]<kt → K[x]<h

(F1, . . . , Ft) 7→ F1 +K1F2 +K1K2F3 + · · ·+K1 · · ·Kt−1Ft.

The domain and codomain both have dimension h; from this, we easily deduce that ΦK is a
K-vector space isomorphism. For F in K[x]<h, we call (F1, . . . , Ft) = Φ−1

K (F) its mixed radix
representation with respect to the basis K.

We will rely on the following fact: given (F1, . . . , Ft) = Φ−1
K (F), for i in {1, . . . , t}, the

mixed radix representation of F div K1 · · ·Ki, with respect to the basis (Ki+1, . . . , Kt), is
(Fi+1, . . . , Ft), so we have access to it free of cost. Similarly, the mixed radix representation
of F rem K1 · · ·Ki, with respect to the basis (K1, . . . , Ki), is (F1, . . . , Fi). In particular, if F
is given in its mixed radix representation, quotient and remainder by the product K1 · · ·Ki

are free; we still denote these operations by div and rem.
Conversely, for F of degree less than ki+1 + · · · + kt, given on the mixed radix basis

associated to (Ki+1, . . . , Kt) as a vector (Fi+1, . . . , Ft), the mixed radix representation of
K1 · · ·KiF , for the basis (K1, . . . , Kt), is (0, . . . , 0, Fi+1, . . . , Ft), so it can be computed for
free.

For completeness, we give algorithms with softly linear runtime to apply ΦK and its
inverse. These are elementary variants of the algorithms for Chinese remaindering in [61,
Chapter 10.3], or generalized Taylor expansion [61, Chapter 9.2]. We start with the conversion
from the mixed radix to monomial representation.

23

Algorithm 4.1 FromMixedRadix((F1, . . . , Ft), (K1, . . . , Kt))

Input: (F1, . . . , Ft) in K[x]<k1 × · · · × K[x]<kt , K = (K1, . . . , Kt) of respective degrees
k1, . . . , kt

Output: ΦK(F1, . . . , Ft) ∈ K[x]<h, with h = k1 + · · ·+ kt
1: if t = 1 then return F1

2: t′ ← ⌈t/2⌉
3: L ← FromMixedRadix((F1, . . . , Ft′), (K1, . . . , Kt′))
4: R ← FromMixedRadix((Ft′+1, . . . , Ft), (Kt′+1, . . . , Kt))
5: if R = 0 then
6: return L
7: else
8: return L+K1 · · ·Kt′R

Correctness is clear: if we write F = ΦK(F1, . . . , Ft), then the previous discussion shows
that L = F rem K1 · · ·Kt′ and R = F div K1 · · ·Kt′ , so that the output is indeed F . If we
enter Line 8, computing P takes O (̃k1 + · · ·+ kt′) operations (+,×) in K [61, Lemma 10.4];
however, in this case R is nonzero, so F has degree at least k1+ · · ·+kt′ , and O (̃k1+ · · ·+kt′)
is O (̃deg(F)). It follows that, excluding the recursive calls, the cost of a single call to
Algorithm FromMixedRadix is O (̃deg(F)) if deg(F) ≥ k1 + · · ·+ kt′ , and zero otherwise.

There are O(log(deg(F))) levels of the recursion tree that will incur a nonzero cost, and
the degrees of the polynomials computed at any of these levels add up to at most deg(F).
Hence, the overall cost is O (̃deg(F)) operations (+,×) in K.

For the inverse operation, the algorithm is recursive as well. Using the test at Line 3, we
avoid doing any computation if F has degree less than k1 + · · ·+ kt′ . The discussion is as
above, yielding a runtime of O (̃deg(F)) operations (+,×) in K.

Algorithm 4.2 ToMixedRadix(F, (K1, . . . , Kt))

Input: F in K[x]<h, K = (K1, . . . , Kt) of respective degrees k1, . . . , kt, with h = k1+ · · ·+kt
Output: (F1, . . . , Ft) = Φ−1

K (F)
1: if t = 1 then return (F)
2: t′ ← ⌈t/2⌉
3: if deg(F) < k1 + · · ·+ kt′ then
4: return ToMixedRadix(F, (K1, . . . , Kt′)) cat (0, . . . , 0) ▷ t− t′ zeros
5: else
6: P ← K1 · · ·Kt′

7: Q,R ← F div P, F rem P
8: return ToMixedRadix(R, (K1, . . . , Kt′)) cat ToMixedRadix(Q, (Kt′+1, . . . , Kt))

In the next paragraphs, we apply these algorithms to polynomials in K[x, y] (we use the
same names for the algorithms). In this case, we simply proceed coefficient-wise with respect
to y, the mixed-radix representation of F ∈ K[x, y] being now a two-dimensional array. If the

24

sum of the degrees of K1, . . . , Kt is h, and for F in K[x, y] supported on an initial segment U,
with also deg(F, x) < h, the runtime of both algorithms is O (̃|U|).

4.3. The main algorithm

We can now use the results from the previous subsections to give an algorithm for the
reduction of a polynomial f ∈ K[x, y] modulo a minimal reduced lexicographic Gröbner basis
G = (g0, . . . , gs). For the time being, we only consider the “balanced” case, where f is already
reduced modulo g0 and gs. Let us write, as usual, the initial terms of G as

E = (yn0 , xm1yn1 , . . . , xms−1yns−1 , xms)

with the mi’s increasing and the ni’s decreasing, and let S be the rectangle {0, . . . ,ms −
1} × {0, . . . , n0 − 1}. Then, we assume that f is in K[x, y]S. More general inputs can be
handled by performing a reduction by (g0, gs) first; this is discussed in the last paragraph of
this section.

In what follows, we let T be the initial segment determined by G, and δ = dimK(K[x, y]/G)
be the degree of G.

Overview of the algorithm. Given f in K[x, y] with deg(f, x) < ms and deg(f, y) < n0, our
main algorithm Reduction computes r = f rem G by calling s− 1 times a procedure called
PartialReduction, which is described further. The main algorithm returns the remainder
r, together with quotients Q1, . . . , Qs−1, such that f = Q1g1 + · · ·+Qsgs + r. While we do
not need the quotients in this paper, we return them as a byproduct that could possibly be
of use in other contexts (the algorithm does not compute the last quotient Qs, but one can
easily deduce it from the other Qi’s and the remainder). Since we assume deg(f, y) < n0, g0
does not appear in the reduction equality.

The mixed radix basis is used throughout the algorithm to handle intermediate data;
input and output are on the usual monomial basis.

Algorithm 4.3 Reduction(f,G)
Input: f in K[x, y], G = (g0, . . . , gs) as above
Assumptions: deg(f, x) < ms, deg(f, y) < n0

Output: f rem G and quotients Q1, . . . , Qs−1

1: M0 ← 1, G0 ← g0
2: for i = 1, . . . , s do
3: Mi ← PolynomialCoefficient(gi, y

ni) ∈ K[x]
4: Gi ← gi div Mi

5: Di ← Mi div Mi−1

6: f (0) ← ToMixedRadix(f, (D1, . . . , Ds)) ▷ f (0) is on the mixed radix basis

7: for i = 1, . . . , s− 1 do
8: f (i), Qi ← PartialReduction(f (i−1), i) ▷ all f (i) are on the mixed radix basis

9: return FromMixedRadix(f (s−1), D1, . . . , Ds), Q1, . . . , Qs−1

25

To simplify notation, the polynomials g0, . . . , gs, G0, . . . , Gs, M0, . . . ,Ms and D1, . . . , Ds,
the latter of which are computed at the beginning of the main algorithm, are assumed to be
known in our calls to Algorithm PartialReduction, rather than passed as arguments.

The main result in this section is the following proposition. The runtime given here is
softly linear in n0ms and sδ: the former represents the size of the input polynomial f , and
the latter is the upper bound on the number of coefficients needed to represent G discussed
in Section 3.1. Whether a better algorithm is possible (which would not need all coefficients
of G, but only, for instance, its Gröbner parameters) is not clear to us.

Proposition 4.5. Given f and G, with deg(f, x) < ms and deg(f, y) < n0, Algorithm
Reduction returns f rem G using O (̃n0ms + sδ) operations (+,×) in K.

Before proving the proposition, we mention an important particular case, where a simplified
runtime is available. Suppose that ei = 1 for all i, that is, that all steps in the staircase have
height 1. In this case, n0 = s, and since we have ms ≤ δ, we obtain n0ms ≤ sδ. In other
words, the runtime of the algorithm is simply O (̃sδ).

A single reduction step. We start with a description of the key subroutine, Algorithm
PartialReduction. We are given f ∈ K[x, y]S, and an index i in {1, . . . , s − 1}; the
essential operation is a Euclidean division by gi with respect to the variable y.

We cannot directly divide by gi, since this polynomial is not monic in y. However, we
know that it factors as gi = MiGi, with Mi in K[x] and Gi monic in y, so our first step is to
take the quotient of f by Mi (or more exactly, of a suitable truncation of f with respect to
y, as will we know that the higher-degree coefficients will not have to be modified); this is
an operation involving division with respect to x only. Then, we do a Euclidean division by
Gi with respect to the variable y, keeping coefficients reduced modulo Di+1 · · ·Di+ℓi in K[x].
We can then use the quotient Q obtained this way to reduce the input polynomial f itself by
gi, obtaining a polynomial r.

This gives only a sketch of the algorithm. Its details are complicated by the use of the
mixed radix basis, which is however needed for us to control the cost of the operations with
respect to x.

We prove below that the output r has the same remainder as f modulo G, but also modulo
Mi (both properties will be useful); we also return the quotient Q, which is supported on
a translate of Ri. In the analysis of the main algorithm, we will study the support of the
polynomials obtained by repeated applications of Algorithm PartialReduction, and show
that zeros must progressively appear on R1,R2, . . .

Lemma 4.6. Calling PartialReduction(f, i) takes

O (̃n0(mi+ℓi −mi) +ms(ni−hi
− ni) + δ)

operations (+,×) in K, with hi = 2val2(i) and ℓi = min(hi, s− i). The output r,Q satisfies the
following properties:

1. deg(r, x) < ms and deg(r, y) < n0

26

Algorithm 4.4 PartialReduction(f, i)

Input: f in K[x, y], i in {1, . . . , s− 1}
Assumptions: deg(f, x) < ms, deg(f, y) < n0, i in {1, . . . , s− 1}. f is given on the mixed

radix basis associated to D1, . . . , Ds

Output: r and Q in K[x, y]. r is given on the mixed radix basis associated with D1, . . . , Ds

1: hi ← 2val2(i), ℓi ← min(hi, s− i)
2: F1 ← f div Mi ▷ division in the mixed radix basis

▷ F1 is given on the mixed radix basis associated to Di+1, . . . , Ds

3: F2 ← F1 rem Di+1 · · ·Di+ℓi ▷ division in the mixed radix basis

▷ F2 is given on the mixed radix basis associated to Di+1, . . . , Di+ℓi

4: F3 ← F2 rem yni−hi

5: F4 ← FromMixedRadix(F3, (Di+1, . . . , Di+ℓi)) ▷ F4 is on the monomial basis

6: q ← F4 div Gi in A[y] ▷ Gi such that gi = MiGi, A = K[x]/⟨Di+1 · · ·Di+ℓi⟩
7: let Q be the canonical lift of q to K[x, y] ▷ deg(Q, x) < mi+ℓi −mi

8: V ← Multiply(Q, {0, . . . ,mi+ℓi −mi − 1} × {0, . . . , ni−hi
− ni − 1}, Gi,T)

▷ V = QGi on the monomial basis

9: V1 ← V rem (Di+1 · · ·Ds) ▷ V1 = QGi rem (Di+1 · · ·Ds) on the monomial basis

10: V2 ← ToMixedRadix(V1, (Di+1, . . . , Ds))
▷ V2 = QGi rem (Di+1 · · ·Ds), given on the mixed radix basis associated to Di+1, . . . , Ds

11: V3 ← MiV2 ▷ multiplication in the mixed radix basis

▷ V3 = Qgi rem Ms, given on the mixed radix basis associated to D1, . . . , Ds

12: r ← f − V3 ▷ subtraction in the mixed radix basis

▷ r = (f −Qgi) rem Ms, given on the mixed radix basis associated to D1, . . . , Ds

13: return r,Q

27

2. r rem G = f rem G
3. r rem Mi = f rem Mi

4. r div yni−hi = f div yni−hi

5. ((r div Mi) div yni) rem (Di+1 · · ·Di+ℓi , y
ni−hi

−ni) = 0

6. deg(Q, x) < mi+ℓi −mi and deg(Q, y) < ni−hi
− ni

Proof. We first verify that all steps are well-defined, and discuss degree properties of the
polynomials in the algorithm.

As per our discussion in the preamble, the division and remainder at Lines 2 and 3
output a bivariate polynomial F2 on the mixed radix basis associated to Di+1, . . . , Di+ℓi . The
polynomial F3 is written on the same basis; F4 represents the same polynomial, this time on
the monomial basis.

That polynomial has y-degree less than ni−hi
; since Gi has y-degree ni, q, and thus Q,

have y-degree less than ni−hi
− ni. Since Q also has x-degree less than mi+ℓi − mi, it is

supported on the rectangle {0, . . . ,mi+ℓi −mi − 1} × {0, . . . , ni−hi
− ni − 1} (which is the

translate of Ri to the origin). This proves the last claim in the lemma.
On the other hand, Gi is supported on T (this is true because i ≥ 1; for i = 0, the initial

term of G0, which is yn0 , is not in T), so altogether, the call to Multiply at Line 8 is justified.
The variables V1 and V2 then represent the same polynomial, namely QGi rem (Di+1 · · ·Ds),
on two different bases (resp. monomial and mixed radix). It follows that V3 represents the
polynomial

Mi(QGi rem (Di+1 · · ·Ds)) = MiQGi rem (MiDi+1 · · ·Ds)

= Qgi rem Ms.

As we noted in the previous subsection, since V2 is written on the mixed basis associated
to (Di+1, . . . , Ds), V3 is written on the mixed basis associated to (D1, . . . , Ds). Since this is
also the case for f , the subtraction at Line 12 is done coefficient-wise, and results in the
polynomial (f −Qgi) rem Ms, written on the same mixed basis.

This being said, we establish properties 1-5. First item: We have deg(f, y) < n0. On
the other hand, the degree bound on Q implies that Qgi has y-degree less than ni−hi

. Since
ni−hi

≤ n0, the product Qgi has y-degree less than n0 as well, and it is then also the case for
r. The bound deg(r, x) < ms holds by construction.

Second item: we can write r = f −Qgi + hMs = f −Qgi + hgs, for some h in K[x, y], so
that r − f is in the ideal ⟨G⟩.

Third item: consider again the expression r = f −Qgi + hMs, and notice that Mi divides
both gi and Ms.

Fourth item: because deg(f, x) < ms, the quotient h in the relation r = f −Qgi + hMs

is −Qgi div Ms. Since Qgi has y-degree less than ni−hi
, it is thus also the case for h. This

shows that r div yni−hi = f div yni−hi , as claimed.
Fifth item: since r = f − Qgi + hMs = f − QMiGi + hMs, we have r div Mi = F1 −

QGi + hDi+1 · · ·Ds. By definition, we have F1 = F2 +LDi+1 · · ·Di+ℓi and F2 = F3 +Kyni−hi

for some K,L in K[x, y]. F4 is the same polynomial as F3, written on a different basis, and

28

satisfies F4 = QGi+P +L′Di+1 · · ·Di+ℓi , for some P and L′ in K[x, y], with P of y-degree less
than ni. Altogether, we obtain r div Mi = P +(L+L′)Di+1 · · ·Di+ℓi+hDi+1 · · ·Ds+Kyni−hi .
As a result,

(r div Mi) div yni = ((L+ L′) div yni)Di+1 · · ·Di+ℓi + (h div yni)Di+1 · · ·Ds +Kyni−hi
−ni .

Because i + ℓi ≤ s, this expression taken modulo (Di+1 · · ·Di+ℓi , y
ni−hi

−ni) vanishes, as
claimed.

It remains to estimate the cost of the algorithm. The divisions with remainders at Lines 2
and 3 are free of cost (because we work in the suitable mixed radix bases); the same holds
for Line 4, since it only involves a power of y.

Since Di+1 · · ·Di+ℓi has degree mi+ℓi −mi, the conversion at Line 5 uses O (̃ni−hi
(mi+ℓi −

mi)) operations (+,×) in K, which is O (̃n0(mi+ℓi −mi)).
Prior to the division at Line 6, Gi has to be reduced modulo Di+1 · · ·Di+ℓi ; proceeding

coefficient-wise in y, this takes O (̃|T|) = O (̃δ) operations (+,×) in K. Then, the division in
A[y] takes O (̃ni−hi

) operations (+,×) in A, which is O (̃ni−hi
(mi+ℓi −mi)) operations (+,×)

in K. For this expression, it will be enough to use the same upper bound O (̃n0(mi+ℓi −mi))
as above.

Next, we consider the cost of computing the product V in K[x, y]. The input Q has
x-degree less than mi+ℓi −mi and y-degree less than ni−hi

− ni, whereas Gi is supported on
the initial segment T of height n0, width ms, and cardinal δ. Hence, using Proposition 2.4
(and the remarks that follow the proposition on the size of the support of QGi), we see that
QGi can be computed in O (̃(mi+ℓi −mi)(ni−hi

− ni) + n0(mi+ℓi −mi) +ms(ni−hi
− ni) + δ)

operations (+,×) in K. This is also O (̃n0(mi+ℓi −mi) +ms(ni−hi
− ni) + δ).

The Euclidean division at Line 9 is done on the monomial basis, proceeding coefficient-wise
in y. Computing Di+1 · · ·Ds takes O (̃ms) operations (+,×) in K. Then, the reduction
is done in quasi-linear time in the size of the support of V , that is, O (̃n0(mi+ℓi − mi) +
ms(ni−hi

− ni) + δ) again. Recall that for polynomials supported on an initial segment U,
the conversion to the mixed radix basis takes quasi-linear time in the size of U. Here, the
support U is contained in the support of V = QGi, so the conversion at Line 10 takes time
O (̃n0(mi+ℓi −mi) +ms(ni−hi

− ni) + δ) once more.
The multiplication by Mi in the mixed radix basis is free, as we simply prepend a vector

of zeros to each entry of V2 to obtain V3. Finally, the polynomial subtraction at the last
step involves one subtraction in K for each nonzero coefficient of V3, so O (̃n0(mi+ℓi −mi) +
ms(ni−hi

− ni) + δ) altogether.

Correctness of the main algorithm. The properties stated above allow us to prove that
Algorithm Reduction correctly computes the remainder of f by G.

We define indices (bi,j)0≤i<s,0≤j<n0 in {1, . . . , s} as follows (they will be needed to state the
recurrence property that proves correctness). For i = 0, . . . , s− 1, let Ti ⊂ N2 be the union
of the initial segment T and the rectangles R1, . . . ,Ri; in particular, T0 = T and Ts−1 is the
rectangle {0, . . . ,ms − 1} × {0, . . . , n0 − 1}. Then, for i = 0, . . . , s− 1 and j = 0, . . . , n0 − 1,
we let bi,j ∈ {1, . . . , s} be the smallest index k such that (mk, j) is not in Ti. In particular,

29

bs−1,j = s for all j < n0. On the other hand, for i = 0, we see that any pair (u, j) with
u < mb0,j is in T, so xuyj is reduced modulo G.

Let f (0), . . . , f (s−1) be the polynomials computed throughout the algorithm (the first
item of Lemma 4.6 proves that these polynomials are well-defined, and all supported on
the rectangle {0, . . . ,ms − 1} × {0, . . . , n0 − 1}). We prove the following claim, written
A(i) in the sequel, by induction on i = 0, . . . , s − 1: for ni ≤ j < n0, the polynomial
PolynomialCoefficient(f (i), yj) rem Mbi,j ∈ K[x] has degree less than mb0,j . For i = 0,
there is nothing to prove (since no index j needs to be considered). Suppose that A(i− 1)
holds, for some i in {1, . . . , s− 1}; we prove A(i).

For j ≥ ni−hi
, Item 4 of Lemma 4.6 shows that PolynomialCoefficient(f (i), yj) =

PolynomialCoefficient(f (i−1), yj). In that case, though, we also have bi,j = bi−1,j : indeed,
these two quantities are the smallest indices k such that (mk, j) is not in Ti, resp. Ti−1, and
the definition of Ri shows that in the area of points with ordinate at least equal to ni−hi

, Ti

and Ti−1 coincide. Thus, in this case, our induction property holds.
Now, suppose that j is in {ni, . . . , ni−hi

− 1}; in this case, by Items 3 and 5 of the same
lemma, PolynomialCoefficient(f (i), yj) rem Mi+ℓi is equal toPolynomialCoefficient
(f (i−1), yj) rem Mi. On the other hand, we claim that we also have bi−1,j = i and bi,j = i+ ℓi;
for this discussion, it will be convenient to reuse the notation R0 = T from Proposition 4.3.

• First claim. By definition, bi−1,j is the smallest index k such that (mk, j) is not in
Ti−1 = R0 ∪ R1 ∪ · · · ∪ Ri−1. We know that (mi, j) is in Ri, and thus in R0 ∪ · · · ∪ Ri.
Now, (mi−1, j) is also in one of R0,R1, . . . ,Rs−1 (Proposition 4.2) but since mi−1 < mi,
(mi−1, j) is more precisely in Ti = R0 ∪ · · · ∪ Ri. On the other hand, it is not in Ri

(because mi−1 < mi, and using Proposition 4.3), so it is in Ti−1 = R0 ∪ · · · ∪ Ri−1. In
other words, we have i − 1 < bi−1,j. However, (mi, j) being in Ri, it does not lie in
Ti−1 = R0 ∪ · · · ∪ Ri−1 (since the Rk’s are pairwise disjoint). Altogether, this shows
bi−1,j = i.

• Second claim. Again, we first spell out the definition: bi,j is the smallest index k such
that (mk, j) is not in Ti = R0∪R1∪ · · ·∪Ri. For k = i+ℓi, we know that by construction,
(mi+ℓi , j) lies on the right of Ri = {mi, . . . ,mi+ℓi − 1} × {ni, . . . , ni−hi

− 1} (recall that
j is in the range {ni, . . . , ni−hi

− 1}, and thus is not in Ti, by Proposition 4.3. On the
other hand, for k = i+ℓi−1, we start by observing that (mi+ℓi −1, j) is by construction
in Ri, and thus in Ti. Since i+ ℓi − 1 < i+ ℓi, we know that mi+ℓi−1 < mi+ℓi , so that
mi+ℓi−1 ≤ mi+ℓi − 1. It follows again from Proposition 4.3 that (mi+ℓi − 1, j) is also in
Ti. Altogether, this shows bi,j = i+ ℓi.

As a result, the left-hand side above is the term PolynomialCoefficient(f (i), yj) rem Mbi,j

that appears in our claim. Thus, to conclude the induction proof, it is enough to show that
PolynomialCoefficient(f (i−1), yj) rem Mi has degree less than mb0,j . We do this using
a further case discussion:

• if j ≥ ni−1, we can use the induction assumption. It implies that the remainder
PolynomialCoefficient(f (i−1), yj) rem Mbi−1,j

has degree less than mb0,j . Since we
saw that have bi−1,j = i, we are done.

30

• if j < ni−1, we have b0,j = i, so that mb0,j = mi = deg(Mi), and our claim holds as well.

Having established our induction claim, we can take i = s−1. Then, A(s−1) shows that for j
in ns−1, . . . , n0− 1, PolynomialCoefficient(f (s−1), yj) rem Ms has degree less than mb0,j .

By construction, f (s−1) is reduced modulo Ms, so that PolynomialCoefficient(f (s−1), yj)
itself has degree less than mb0,j . Now, for j in 0, . . . , ns−1 − 1, we have b0,j = s, so

PolynomialCoefficient(f (s−1), yj) has degree less than mb0,j as well in this case. Al-

together, as we pointed out when we introduced mb0,j , this proves that f (s−1) is reduced
modulo G.

The second item of Lemma 4.6 finally shows that f rem G = f (s−1) rem G, so f (s−1) is
indeed the normal form of f modulo G. This finishes the correctness proof.

Cost analysis. For the cost analysis, we start with the computation of polynomials Mi, Gi and
Di, at the beginning of the main algorithm. Since divisions by a monic univariate polynomial
take softly linear time, each pass in the loop at Line 2 of Reduction takes O (̃δ) operations,
for a total of O (̃sδ).

The conversions to and from the mixed radix basis take quasi-linear time in the size of
the support of f , that is, O (̃n0ms) operations. Then, it suffices to add the costs of the calls
to PartialReduction. By Lemma 4.6, deducing f (i) from f (i−1) takes O (̃n0(mi+ℓi −mi) +
ms(ni−hi

−ni)+δ) operations in K, with δ = |T|, so it suffices to sum this quantity for i = 1 to
s−1. The first two terms add up to a total of O (̃n0

Ps−1
i=1 (mi+ℓi−mi)+ms

Ps−1
i=1 (ni−hi

−ni)).
Proposition 4.4 shows that this sum is in O (̃n0ms), so taking into account the term O (̃δ) in
each summand, the total is O (̃n0ms + sδ), as claimed.

Generalization to arbitrary inputs and discussion. If the input f does not satisfy the conditions
deg(f, x) < ms and deg(f, y) < n0, we fall back to this case by reduction modulo the pair of
polynomials (g0, gs), which have respective initial terms yn0 and xms . The following algorithm
achieves this; we discuss possible improvements below.

Algorithm 4.5 ReductionGeneralInput(f,G)
Input: f in K[x, y], G = (g0, . . . , gs)
Output: f rem G
1: f1 ← f rem gs
2: f2 ← f1 rem g0 in A[y] ▷ A = K[x]/⟨gs⟩
3: let f3 be the canonical lift of f2 to K[x, y] ▷ deg(f3, x) < ms

4: return Reduction(f3,G)

Proposition 4.7. Given f and G, with deg(f, x) < d and deg(f, y) < e, Algorithm Reduc-
tionGeneralInput returns f rem G using O (̃ed + ems + n0ms + sδ) operations (+,×)
in K. If G generates an ⟨x, y⟩-primary ideal, the runtime becomes O (̃δms) operations (+,×)
in K.

31

Proof. Reducing f modulo gs takes O (̃ed) operations (and is actually free if d < ms). Then,
Euclidean division by g0 in A[y] uses O (̃e) steps in A, which is O (̃ems) steps in K. Finally,
Proposition 4.5 gives a cost of O (̃n0ms + sδ) for the last step.

If G generates an ⟨x, y⟩-primary ideal, all terms of y-degree at least δ vanish through
the reduction (so we can replace e by δ), as do all terms of x-degree at least ms (so we can
replace d by ms).

In the runtime for the general case, ed is the size of the support of input f , and sδ
our bound on the size of G, so they are essentially unavoidable (unless of course one could
avoid using G itself but only its Gröbner parameters). The runtime also features the extra
terms ems and n0ms, but getting rid of them and improving the runtime to O (̃ed + sδ)
unconditionally seems to be very challenging.

Indeed, consider the modular composition problem: given F,G,H in K[x], with F monic
of degree n and G,H of degrees less than n, this amounts to computing G(H) rem F . A
direct approach takes quadratic time, and Brent-Kung’s baby-steps / giant-steps algorithm
uses O(n1.69) operations (and relies on fast matrix arithmetic). Bringing this down to a
quasi-linear runtime has been an open question since 1978: it is so far known to be feasible
only over finite K [34], with the best algorithm for an arbitrary K to date featuring a Las
Vegas cost of O(n1.43) [48].

It turns out that modular composition is a particular case of the reduction problem we
are considering here. With F,G,H as above, if we consider G = (y −H(x), F (x)) and the
polynomial f = G(y), then the remainder f rem G is precisely G(H) rem F . Here, we have
n0 = 1, s = 1, ms = n, δ = n, d = 1 and e = deg(G, y) + 1, so that in general e = n; on such
input, the runtime of our algorithm is O (̃n2). Improving our result to O (̃ed+ sδ) would give
a softly linear modular composition algorithm, thus solving a long-standing open question.

On the other hand, the case where f has large degree in both x and y, i.e. when ms ≤ d
and n0 ≤ e, is particularly favourable, since then the runtime does become O (̃ed + sδ).
Another favourable situation is when all ei’s are equal to 1, since we said before that we have
n0ms ≤ sδ in this case, with thus a runtime of O (̃ed+ ems + sδ) – this is for instance the
case if we apply a generic change of coordinates, as the initial ideal is then Borel-fixed (see
the discussions in [15, Chapter 15.9] for the case of homogeneous polynomials, and in [57] for
our situation).

Finally, we point out an application of Proposition 4.7 to modular multiplication: given
A,B in K[x, y]T, where T is the initial segment determined by G, compute f = AB rem G ∈
K[x, y]T. In this case, we have d < 2ms and e < 2n0, so the runtime is O (̃n0ms + sδ); when
all ei’s are equal to 1, this becomes O (̃sδ). We are not aware of previous results for this
question.

5. From Gröbner parameters to Gröbner basis

In this section, we fix a given Gröbner cell (or equivalently, the monomials E). We
show how to make explicit the mapping ΦE : KN → C(E), which takes as input Gröbner
parameters and outputs the corresponding reduced Gröbner basis (see Section 3.2).

32

First, we fix a way to index the N coefficients of the polynomials (σj,i)0≤i≤s−1,i≤j≤s that
appear in the syzygy (3); this will be done in the mutually inverse routines given below. Here,
for simplicity, we assume that given the monomials E, we can directly access the integers s,
(di)1≤i≤s and (ei)1≤i≤s.

Algorithm 5.1 SigmaFromParameters(E, (λ1, . . . ,λN))

Input: monomials E, (λ1, . . . ,λN) in KN

Output: polynomials (σj,i)0≤i≤s−1,i≤j≤s in K[x, y]
1: k ← 1
2: for i = 0, . . . , s− 1 do
3: σi,i ←

P
0≤ℓ<di+1

λk+ℓx
ℓ

4: k ← k + di+1

5: for j = i+ 1, . . . , s do
6: σj,i ← 0
7: for m = 0, . . . , ej−1 do
8: σj,i ← σj,i +

P
0≤ℓ<di+1

λk+ℓx
ℓym

9: k ← k + di+1

10: return (σj,i)0≤i≤s−1,i≤j≤s

Algorithm 5.2 ParametersFromSigma(E, (σj,i)i,j)

Input: monomials E, polynomials (σj,i)i,j in K[x, y]
Output: (λ1, . . . ,λN) in KN

1: k ← 1
2: for i = 0, . . . , s− 1 do
3: for ℓ = 0, . . . , di+1 − 1 do λk+ℓ ← Coefficient(σi,i, x

ℓ)
4: k ← k + di+1

5: for j = i+ 1, . . . , s do
6: for m = 0, . . . , ej−1 do
7: for ℓ = 0, . . . , di+1 − 1 do λk+ℓ ← Coefficient(σj,i, x

ℓym)
8: k ← k + di+1

9: return (λ1, . . . ,λN)

To deal with the particular case of punctual Gröbner parameters, a few obvious mod-
ifications are needed, such as setting σ0,0, . . . , σs−1,s−1 to zero and ensuring that x divides
σ1,0, . . . , σs,s−1 in SigmaFromParameters. We call SigmaFromPunctualParameters
and PunctualParametersFromSigma the resulting procedures.

We can now give an algorithm called ReducedBasisFromParameters, which describes
the mapping ΦE : KN → C(E). This procedure is rather straightforward; the algorithm for
the inverse operation, called ParametersFromReducedBasis, is slightly more involved,
and is described in the next section. We still use the notation of Section 3.2, writing in

33

particular Mi ∈ K[x] for the polynomial coefficient of yni in both gi and hi, for all i, and mi

for its degree.
We compute the hi’s, and then the gi’s, in descending order. To obtain the former, we

simply use Eq. (3). For any i = s−1, . . . , 0, assuming we know hi and gi+1, . . . , gs, let us show
how to obtain gi by reducing hi (for i = s, we have gs = hs), using procedure Reduction
from the previous section.

Using Euclidean division with respect to x, the polynomial hi can be written as hi =
AiMi+1 + Bi, with Ai and Bi in K[x, y] and deg(Bi, x) < mi+1.

Recall now that all polynomials gi+1, . . . , gs are multiples of Mi+1, and that the family
Gi = (gi+1/Mi+1, . . . , gs/Mi+1) is a zero-dimensional Gröbner basis (as pointed out after
Eq. (2)). Set h̄i = (Ai rem Gi)Mi+1 + Bi; we claim that h̄i = gi. First, we determine its
initial term: all monomials in Ai rem Gi, and thus in (Ai rem Gi)Mi+1, have y-degree less
than ni+1, whereas Bi contains the initial term xmiyni of hi. Thus the initial term of h̄i is
still xmiyni . Next, we verify that h̄i is reduced modulo g1, . . . , gi−1, gi+1, . . . , gs.

• None of g1, . . . , gi−1 can reduce any term in h̄i, since this polynomial has y-degree ni.

• Since Ai rem Gi is reduced modulo Gi, (Ai rem Gi)Mi+1 is reduced modulo gi+1, . . . , gs.

• Since Bi has x-degree less than mi+1, it is also reduced modulo gi+1, . . . , gs.

The last observation is that the difference h̄i − hi is in the ideal ⟨gi+1, . . . , gs⟩. Altogether,
this establishes h̄i = gi.

Example 5.1. We revisit the polynomials of Example 3.4, with

h0 = y4 + λ5xy
3 + λ1xy

2 + (λ1λ5 + λ4)x
2y + λ2xy + λ3x

3 + λ2λ5x
2

h1 = xy3 + λ5x
2y2 + λ4x

3

h2 = x2y + λ5x
3

h3 = x4,

doing computations over the field Q(λ1, . . . ,λ5). We have g2 = h2 and g3 = h3; let us then
take i = 1 and compute g1. Starting from h1 = xy3 + λ5x

2y2 + λ4x
3 and M2 = x2, we write

h1 = A1M2 + B1 with
A1 = λ5y

2 + λ4x and B1 = xy3.

We reduce A1 modulo (g2/M2, g3/M2) = (y+ λ5x, x
2), and obtain the remainder λ4x. Finally,

this gives
g1 = λ4xM2 + B1 = xy3 + λ4x

3,

as already seen in Example 3.4.

We can now give our algorithm to compute g0, . . . , gs. For the reduction of the bivariate
polynomial Ai modulo Gi, we use our procedure Reduction. Note that the degree assump-
tions for that procedure are satisfied: the polynomial Ai has x-degree less than ms −mi+1

34

and y-degree less than ni+1, which are precisely the maximal x-degrees and y-degrees of the
elements in Gi.

As before, we assume that given E, we can directly access the integers s, (di)1≤i≤s and
(ei)1≤i≤s and use them freely in the pseudo-code.

Algorithm 5.3 ReducedBasisFromParameters(E, (λ1, . . . ,λN))

Input: monomials E, (λ1, . . . ,λN) in KN

Output: the minimal reduced Gröbner basis of ΦE(λ1, . . . ,λN)
1: (σj,i)i,j ← SigmaFromParameters(E, (λ1, . . . ,λN))
2: M0 ← 1
3: for i = 1, . . . , s do Mi ← (xdi − σi−1,i−1)Mi−1

4: hs ← Ms; gs ← Ms

5: for i = 0, . . . , s− 1 do
6: Ti ← KroneckerMultiply(yei+1 , hi+1) + · · ·+KroneckerMultiply(σs,i, hs)
7: hi ← Ti div (xdi+1 − σi,i)
8: Gi ← (gi+1 div Mi+1, . . . , gs div Mi+1)
9: Ai, Bi ← hi div Mi+1, hi rem Mi+1

10: Āi ← Reduction(Ai,Gi)
11: gi ← ĀiMi+1 + Bi

12: return (g0, . . . , gs)

Proposition 5.2. Given monomials E and (λ1, . . . ,λN) in K, ReducedBasisFromParam-
eters(E, (λ1, . . . ,λN)) returns the reduced Gröbner basis of ΦE(λ1, . . . ,λN) using O (̃s2n0ms)
operations (+,×) in K.

Proof. Correctness follows from the previous discussion. Regarding the runtime, the first step
does no arithmetic operation, and computing each polynomial Mi takes O (̃δ) operations, for
a total of O (̃sδ).

For a given index i, computing Ti involves at most s polynomial multiplications, each of
which uses O (̃n0ms) operations (+,×) in K; we can deduce hi in the same asymptotic time.
The Euclidean divisions needed to compute Gi cost O (̃sδ) operations (since all polynomials
in G are supported on an initial segment of size δ), and the one for Ai and Bi costs O (̃n0ms),
for the same reason. Proposition 4.5 shows that we compute Āi in O (̃n0ms + sδ) operations
(+,×). Finally, the product and sum giving gi take O (̃n0ms) operations (+,×) as well.

Altogether, the cost at step i is O (̃sn0ms + sδ), which is O (̃sn0ms), and the overall
runtime estimate follows.

Unfortunately, this bound is not linear in the output size: each polynomial in the output
has O(n0ms) coefficients, so O(sn0ms) coefficients are sufficient to represent the output, to
be compared with our O (̃s2n0ms) runtime.

On another hand, it will be useful to note that the algorithm does not perform divisions,
so if the input parameters lie in a ring A ⊂ K, the output polynomials G all have coefficients
in A.

35

The whole procedure can be adapted to deal with punctual Gröbner cells in a straight-
forward manner, by using SigmaFromPunctualParameters at Line 1. The resulting
function is called ReducedBasisFromPunctualParameters, and features a similar
runtime.

6. Computing the Gröbner parameters

We can now give our algorithms to compute the Gröbner parameters of a zero-dimensional
ideal I.

We do this in two different contexts. The first situation is the recovery of these parameters
starting from the reduced Gröbner basis of I (i.e., computing the map Φ−1

E defined in the
previous sections). This operation, based on a sequence of Euclidean divisions, is aimed to
be used on a Gröbner basis in a given base field, for example over A/m one may use it to
find initial parameters prior to lifting.

The second variant we present is the core ingredient of our main algorithm. We describe
a system of polynomials which admits the Gröbner parameters of any zero-dimensional ideal
I contained in ⟨f1, . . . , ft⟩, for some bivariate polynomials fi, as a solution with multiplicity
one. In a nutshell, we obtain these equations by defining a parametric Gröbner basis (whose
coefficients are polynomials in the Gröbner parameters, similar to those given in Example 3.4
in the punctual case), and reducing the polynomials fi modulo this basis. The coefficients of
the remainders are also polynomials in the Gröbner parameters: these are our equations.

In this, we follow previous work of Hauenstein, Mourrain, Szanto [25] that was in the
context of border bases representations (for which there is no notion of monomial order, and
reductions are done using repeated applications of multiplication matrices; the entries of
these matrices are then suitably parameterized, rather than the coefficients of a Gröbner
basis).

The equations we derive are in general too complex to be dealt with directly. In the next
section, we will use them to describe our main algorithm, a version of Newton iteration to
compute the Gröbner parameters of a zero-dimensional ideal I.

6.1. Starting from a reduced basis

In this subsection, we assume that we are given the reduced Gröbner basis G = (g0, . . . , gs)
of a zero-dimensional ideal I, and we show how to compute its Gröbner parameters. We also
indicate how the procedure simplifies slightly when I is ⟨x, y⟩-primary.

Our notation is as before: the initial terms of the polynomials (g0, . . . , gs) are written
E = (yn0 , xm1yn1 , . . . , xms−1yns−1 , xms), the degree of ⟨G⟩ is δ and N = δ +ms is the number
of Gröbner parameters. In what follows, we compute the polynomials (σj,i)i,j appearing in
the syzygies (3), whose coefficients are the Gröbner parameters of I. Recall that we write
Di = xdi − σi−1,i−1 for i = 1, . . . , s, and Mi = (xd1 − σ0,0) · · · (xdi − σi−1,i−1) for i = 0, . . . , s,
with the empty product being equal to 1.

36

Deriving the algorithm. Knowing the reduced Gröbner basis G = (g0, . . . , gs), some of the
polynomials (σj,i) are easy to compute: for i = 1, . . . , s, we saw in the previous section that
the polynomial coefficient of yni in gi is none other than Mi. Knowing M1, . . . ,Ms gives us
D1, . . . , Ds, and thus σ0,0, . . . , σs−1,s−1, by successive divisions.

Let now h0, . . . , hs be the non-reduced Gröbner basis already used previously, that satisfies
Eq. (3), and recall that for i = 0, . . . , s, Mi divides hi. We define Hi = hi/Mi, and consider
again Eq. (4), which is a rewriting of (3):

Di+1hi − yei+1hi+1 =
sX

j=i+1

σj,ihj,

in which both left- and right-hand sides can be divided by Mi+1. Carrying out the division,
we obtain

Hi − yei+1Hi+1 =
sX

j=i+1

σj,iDi+2 · · ·DjHj. (6)

Fix i in {0, . . . , s − 1}, and assume that we have computed Hi+1, . . . , Hs; we show how to
compute σi+1,i, . . . , σs,i, and then Hi.

By construction, the polynomials (g0, . . . , gi, hi+1, . . . , hs) also form a minimal Gröbner
basis of I. The polynomial hi − gi is in I, so it reduces to zero through division by these
polynomials. Since gi and hi both have Mi as polynomial coefficient of yni , hi − gi has degree
less than ni in y. This implies that the only polynomials in the list that can reduce it are
hi+1, . . . , hs. We reduce hi − gi by hi+1, then hi+2, etc, in this order; for j = i, . . . , s, write
Ri,j for the remainder obtained after reduction by hi+1, . . . , hj, so that Ri,i = hi − gi.

Lemma 6.1. For j = i, . . . , s, Ri,j has y-degree less than nj.

Proof. We pointed out that this is true for j = i, so we suppose that the claim holds for some
index j < s and prove it for index j + 1. To obtain Ri,j+1, we reduce Ri,j by hj+1, which has
initial term xmj+1ynj+1 , so that we can write Ri,j+1 = Aj+1 +Bj+1, with deg(Bj+1, y) < nj+1,
deg(Aj+1, x) < mj+1 and all terms in Aj+1 having y-degree at least nj+1. To conclude, we
prove that Aj+1 = 0.

Since we use the lexicographic order y ≻ x, reduction of a term by hj+1 does not increase
its y-degree; since Ri,j had y-degree less than nj by assumption, it is also the case for Aj+1.
In particular, Aj+1 is reduced modulo H, where H = (h0, . . . , hs). Since Ri,j reduces to zero
modulo H, it follows that Aj+1 + (Bj+1 rem H) = 0. Now, for the same reason as above,
(Bj+1 rem H) has y-degree less than nj+1, so that the supports of Aj+1 and (Bj+1 rem H)
do not overlap. This implies that Aj+1 = (Bj+1 rem H) = 0, as claimed.

This lemma shows that the reduction of hi − gi induces an equality of the form

hi − gi =
sX

j=i+1

qj,ihj,

37

for some polynomials qj,i in K[x, y] satisfying deg(qj,i, y) < nj−1 − nj = ej for all j. Equiva-
lently, we may rewrite this as

hi = gi +
sX

j=i+1

qj,iMjHj,

whence, after dividing by Mi,

Hi = Gi +
sX

j=i+1

qj,iDi+1 · · ·DjHj. (7)

Combining (6) and (7), we get

Gi − yei+1Hi+1 =
sX

j=i+1

Qj,iHj, with Qj,i = (σj,i − qj,iDi+1)Di+2 · · ·Dj. (8)

Notice in particular that for all j, we have deg(Qj,i, y) < ej and thus deg(Qj,iHj, y) < nj−1.
In this paragraph, for F in K[x, y], we write F̄ for its residue class in B[y], with B =

K[x]/⟨Di+1 · · ·Ds⟩. Take j in i + 1, . . . , s − 1 and suppose that we know Q̄i+1,i, . . . , Q̄j−1,i.
Split the sum in (8) as A = Qj,iHj +R with

A = Gi − yei+1Hi+1 −
j−1X

k=i+1

Qk,iHk and R =
sX

k=j+1

Qk,iHk.

Over B[y], R̄ has degree (in y) less than nj; since H̄j is monic of degree nj, the relation
Ā = Q̄j,iH̄j + R̄ describes the Euclidean division of Ā, which is known, by H̄j , which is known
as well. If we let Q∗

i,j be the canonical lift of Q̄i,j to K[x, y], we obtain

Q∗
j,i = Qj,i rem Di+1 · · ·Ds

= (σj,i − qj,iDi+1)Di+2 · · ·Dj rem Di+1 · · ·Ds.

It follows that Q∗
i,j is divisible by Di+2 · · ·Dj, and that

Q∗
i,j div (Di+2 · · ·Dj) = (σj,i − qj,iDi+1) rem Di+1Dj+1 · · ·Ds. (9)

Since deg(σj,i, x) < di+1, reducing this modulo Di+1 finally gives us σj,i. Noticing also that
the remainder R̄ gives us the next value of Ā, we obtain Algorithm ParametersFromRe-
ducedBasis.

In the following proposition, in preparation for the discussion in the next subsection, we
point out in particular that the algorithm does not perform any division.

Proposition 6.2. Given a minimal reduced Gröbner basis G = (g0, . . . , gs) in K[x, y],
ParametersFromReducedBasis(G) returns the Gröbner parameters of G using O (̃s2n0ms)
operations (+,×) in K.

38

Algorithm 6.1 ParametersFromReducedBasis(G)
Input: G = (g0, . . . , gs) in K[x, y]s

Assumptions: G is a minimal reduced Gröbner basis, with initial terms (yn0 , . . . , xms) listed
in decreasing order

Output: (λ1, . . . ,λN) in KN

1: for i = 0, . . . , s do xmiyni ← InitialTerm(gi)
2: M0 ← 1, G0 ← g0
3: for i = 1, . . . , s do
4: Mi ← PolynomialCoefficient(gi, y

ni) ▷ Mi monic in K[x]

5: Gi ← gi div Mi

6: Di ← Mi div Mi−1 ▷ Di monic in K[x]

7: ni−1,i−1 ← xdi −Di ▷ di = mi −mi−1

8: Hs ← 1
9: for i = s− 1, . . . , 0 do
10: Hi ← yei+1Hi+1 ▷ ei+1 = ni − ni+1

11: Ā ← Ḡi − yei+1H̄i+1 ▷ computation done in B[y], with B = K[x]/⟨Di+1 · · ·Ds⟩
12: for j = i+ 1, . . . , s do
13: Q̄j,i ← Ā div H̄j, Ā ← Ā rem H̄j ▷ Euclidean division done in B[y]
14: Q∗

j,i ← canonical lift of Q̄j,i to K[x, y]
15: σj,i ← (Q∗

j,i div Di+2 · · ·Dj) rem Di+1 ▷ by reducing Eq. (9) modulo Di+1

16: Hi ← Hi +KroneckerMultiply(σj,i, Di+2 · · ·DjHj) ▷ by Eq. (6)

17: return ParametersFromSigma((yn0 , . . . , xms), (σj,i)0≤i≤s−1,i≤j≤s)

As before, the modifications needed to deal with the punctual Gröbner cell are elementary;
it suffices to invoke PunctualParametersFromSigma at the last step. The resulting
procedure will be written PunctualParametersFromReducedBasis. Before proving
the proposition, we give an example of computation of punctual Gröbner coefficients.

Example 6.3. Given G as in the introduction from Example 1.1,

y4 + 17
14
xy − 17

7
x2,

xy3 − 10
9
x3,

x2y − 2x3,

x4,

Algorithm PunctualParametersFromReducedBasis computes

σ0,0 = σ1,0 = 0, σ2,0 =
17

14
, σ3,0 =

40

9
,

σ1,1 = σ2,1 = 0, σ3,1 = −10

9
,

σ2,2 = 0, σ3,2 = −2x

39

and thus

λ1 = 0, λ2 =
17

14
, λ3 =

40

9
, λ4 = −10

9
, λ5 = −2. (10)

Proof. We already established the correctness of the algorithm. By inspection, we see that
all steps involve only additions and multiplications in K, using only integer constants, since
all that is done are multiplications or Euclidean divisions by monic polynomials, either in
K[x] or in B[y], with B of the form K[x]/⟨Di+1 · · ·Ds⟩ (this in turn reduces to additions and
multiplications in K).

It remains to establish the runtime of the algorithm. Each pass in the loop at Line 3 uses
O (̃δ) operations (+,×), for a total of O (̃sδ). To continue the analysis, we first note that for
all i, the polynomial Hi computed by the algorithm has x-degree less than di+1+· · ·+ds, which
is less than ms, and y-degree ni. The same bounds holds for deg(Q∗

j,i, x) (by construction);
the y-degree of this polynomial is less than ej , as mentioned for Qj,i during the derivation of
the algorithm.

Since Gi satisfies the same degree bound deg(Gi, x) < di+1 + · · ·+ ds as Hi, the reduction
of Gi − yei+1Hi+1 modulo Di+1 · · ·Ds at is free. At each pass through Line 13, the Euclidean
division takes O (̃nj−1) ⊂ O (̃n0) operations (+,×) in B, which is O (̃n0ms) operations (+,×)
in K. The degree bounds given above show that the cost of computing σj,i and updating Hi

admits the same upper bound O (̃n0ms). Since we enter the inner For loop at Line 12 O(s2)
times, this gives a total cost O (̃s2n0ms).

Let us now see how to formalize the observation that the coefficients computed by
Algorithm ParametersFromReducedBasis are polynomial expressions of the coefficients
of G.

Assume that the terms E are fixed, let µ1, . . . , µδ be the monomials not in ⟨E⟩, ordered
in an arbitrary fashion, and let Γ0,1, . . . ,Γs,δ be (s + 1)δ new variables over Z. We set
AE = Z[Γ0,1, . . . ,Γs,δ].

Because the algorithm only performs additions and multiplications, and uses constants from
the image of Z in K, we deduce that there exist P1,E, . . . , PN,E in AE = Z[Γ0,1, . . . ,Γs,δ] such
that given ¡¡¡¡¡¡¡ HEAD any reduced minimal Gröbner basis G = (g0, . . . , gs) with =======
any minimal, reduced Gröbner basis G = (g0, . . . , gs) with ¿¿¿¿¿¿¿ 82d34faae719e68ecf5331f957167c910d916bbb
initial terms E and with coefficients in K (or any extension of it, as we choose below), the
Gröbner parameters of G are obtained by evaluating P1,E, . . . , PN,E at the coefficients of G.

The correctness of the algorithm can then be restated as follows. Let Λ1, . . . ,ΛN

be another set of new variables over K, that stand for “generic” Gröbner parameters,
and define L = K(Λ1, . . . ,ΛN). Let further g0,L, . . . , gs,L be the polynomials obtained
as output of ReducedBasisFromParameters(E, (Λ1, . . . ,ΛN)). Since that algorithm
as well performs only additions and subtractions (Proposition 5.2), these polynomials
have coefficients in K[Λ1, . . . ,ΛN] ⊂ L. For i = 0, . . . , s and j = 1, . . . , δ, let then
Ri,j ∈ K[Λ1, . . . ,ΛN] be the coefficient of the monomial µj in gi,L. We deduce from our
discussion that Pi,E(R0,1, . . . , Rs,δ) = Λi holds for all i. We will use this observation in the
next subsection.

40

6.2. Polynomial equations for the Gröbner parameters

Let now f1, . . . , ft be polynomials in K[x, y]; in this subsection, those are our inputs, and
we denote by J the ideal they generate in K[x, y]. Let further I be an ideal in K[x, y] such
that the following properties hold:

A1. I has dimension zero;

A2. there exists an ideal I ′ ⊂ K[x, y] such that I + I ′ = ⟨1⟩ and II ′ = J .

Equivalently, I is the intersection (or product) of some zero-dimensional primary components
of J . This is for instance the case if the origin (0, 0) is isolated in V (J) and I is the
⟨x, y⟩-primary component of J , or if I = J and V (J) is finite.

Let G = (g0, . . . , gs) ⊂ K[x, y] be the reduced lexicographic Gröbner basis of I. We denote
by E the initial terms of the polynomials in G, written as before as

E = (yn0 , xm1yn1 , . . . , xms−1yns−1 , xms).

In what follows, we assume that E is known, but not G; we show how to recover the Gröbner
parameters of I (and thus G itself).

We let δ be the degree of I, and µ1, . . . , µδ be the monomials not in ⟨E⟩, ordered in
an arbitrary way. Let further N = δ +ms be the number of parameters for the Gröbner
cell C(E), and let (λ1, . . . ,λN) = ϕ−1

E (I) ∈ KN be the Gröbner parameters associated to I.
In this subsection, we define a system of tδ equations E1,1, . . . ,Et,δ in K[Λ1, . . . ,ΛN], where
Λ1, . . . ,ΛN are new variables, and we prove that (λ1, . . . ,λN) is a solution of multiplicity 1
to these equations.

As in the previous subsection, let L = K(Λ1, . . . ,ΛN) and let g0,L, . . . , gs,L be the paramet-
ric Gröbner basis of C(E) given by ReducedBasisFromParameters(E, (Λ1, . . . ,ΛN)).
Recall that all polynomials g0,L, . . . , gs,L have coefficients in K[Λ1, . . . ,ΛN]; this implies in
particular that for A in K[x, y], the remainder A rem ⟨g0,L, . . . , gs,L⟩, which is well-defined in
L[x, y] = K(Λ1, . . . ,ΛN)[x, y], is in K[Λ1, . . . ,ΛN][x, y]. For j = 1, . . . , δ, we then denote by
Ni the following K-linear map:

Nj : K[x, y] → K[Λ1, . . . ,ΛN]

A 7→ coeff(A rem ⟨g0,L, . . . , gs,L⟩, µj),

with µ1, . . . , µδ the monomials not in ⟨E⟩, as defined above. For i = 1, . . . , t, we then let

Ei,1, . . . ,Ei,δ = N1(fi), . . . ,Nδ(fi),

thus defining tδ polynomials E1,1, . . . ,Et,δ in K[Λ1, . . . ,ΛN]. The following key property for
these equations was inspired by [25, Theorem 4.8], which was stated in the context of border
bases. The conclusion in the theorem in that reference is that the ideal generated by the
equations used therein is maximal, which means that it admits a unique solution, and this
solution has multiplicity 1. In our case, we recover the multiplicity 1 property, which is what
we will need for Newton iteration.

41

Proposition 6.4. (λ1, . . . ,λN) is a solution of E1,1, . . . ,Et,δ of multiplicity 1.

Proof. Let I be the ideal generated by all polynomials Ni(gj), for i = 1, . . . , δ and j = 0, . . . , s,
and let R0,1, . . . , Rs,δ ∈ K[Λ1, . . . ,ΛN] be the coefficients of (g0,L, . . . , gs,L), as in the previous
subsection. Then, for i = 1, . . . , δ and j = 0, . . . , s, the polynomial Ni(gj) is equal to
Rj,i(λ1, . . . ,λN)−Rj,i. In particular, (λ1, . . . ,λN) is in the zero-set of I.

Recall further from the previous subsection the existence of polynomials P1,E, . . . , PN,E,
with Pk,E(R0,1, . . . , Rs,δ) = Λk for all k. The fact that Rj,i(λ1, . . . ,λN)− Rj,i is in I for all
i, j implies that

Pk,E(R0,1(λ1, . . . ,λN), . . . , Rs,δ(λ1, . . . ,λN))− Pk,E(R0,1, . . . , Rs,δ)

is in I as well, for all k = 1, . . . , N . The left-hand side is λk, and the right-hand side Λk, so
that I contains all polynomials Λ1 − λ1, . . . ,ΛN − λN . Taken together, the two paragraphs
so far establish that I = ⟨Λ1 − λ1, . . . ,ΛN − λN⟩.

Let now J be the ideal generated in K[Λ1, . . . ,ΛN] by the polynomials E1,1, . . . ,Et,δ.
Remark first that for any a, b ≥ 0 and i = 1, . . . , t,

(xaybfi) rem ⟨g0,L, . . . , gs,L⟩ =
δX

j=1

Nj(fi)(x
aybµj rem ⟨g0,L, . . . , gs,L⟩).

It follows that for any A in J = ⟨f1, . . . , ft⟩, and for j = 1, . . . , δ, Nj(A) is in J . For the
same reason, for A in I = ⟨g0, . . . , gs⟩, and for j = 1, . . . , δ, Nj(A) is in I. We will also need
the fact that for A in I2, and for all j, Nj(A) is in I2; this is established similarly.

Recall now our second assumption on I ′: there exists an ideal I ′ ⊂ K[x, y] such that
I + I ′ = ⟨1⟩ and II ′ = J . Since J is contained in I, the statements in the previous paragraph
imply that J is contained in I = ⟨Λ1 − λ1, . . . ,ΛN − λN⟩, so that (λ1, . . . ,λN) is in the
zero-set of J . This proves the first claim of the proposition.

Let further K,K ′ be in resp. I and I ′ such that K + K ′ = 1. For i = 0, . . . , s, gi
is in I, so that giK

′ = gi − giK is in II ′ = J . By the remark above, for j = 1, . . . , δ,
Aj,i := Nj(gi)−Nj(giK) is then in J , whereas Nj(giK) is in I2.

Consider the Jacobian matrix J of all polynomials Aj,i at (λ1, . . . ,λN). Because all terms
Nj(giK) are in I2 = ⟨Λ1−λ1, . . . ,ΛN −λN⟩2, their Jacobian matrix vanishes at (λ1, . . . ,λN),
so that J is simply the Jacobian matrix of the polynomials Nj(gi) at (λ1, . . . ,λN). Because
these polynomials generate the ideal I = ⟨Λ1 − λ1, . . . ,ΛN − λN⟩, this matrix has trivial
kernel. Thus, J has multiplicity 1 at (λ1, . . . ,λN).

In the particular case where I = J , we have a slightly stronger result.

Corollary 6.5. Suppose that I = ⟨f1, . . . , ft⟩. Then, ⟨E1,1, . . . ,Et,δ⟩ = ⟨Λ1−λ1, . . . ,ΛN −λN⟩
in K[Λ1, . . . ,ΛN].

Proof. Using the notation in the proof of the proposition, we see that if I = J , then I = J ,
and we proved that I = ⟨Λ1 − λ1, . . . ,ΛN − λN⟩.

42

In our other particular case, where I is the ⟨x, y⟩-primary component of J , we can obtain
a similar stronger statement. Recall that the punctual Gröbner cell C0(E) has dimension
N ′ = δ − n0, and that the parameters for C0(E) are obtained by setting N −N ′ parameters
to zero in the parameters Λ1, . . . ,ΛN of C(E).

Let τ1, . . . , τN−N ′ be the indices of these parameters set to zero, and let Λσ1 , . . . ,ΛσN′ be
the remaining N ′ parameters. For i = 1, . . . , t and j = 1, . . . , δ, let Fi,j be the polynomial
in K[Λσ1 , . . . ,ΛσN′] obtained by setting Λτ1 , . . . ,ΛτN−N′ to zero in Ei,j. Then, we have the
following.

Corollary 6.6. Suppose that I is ⟨x, y⟩-primary. Then, ⟨F1,1, . . . ,Ft,δ⟩ = ⟨Λσ1−λσ1 , . . . ,ΛσN′−
λσN′ ⟩ in K[Λσ1 , . . . ,ΛσN′].

Proof. We proved in Proposition 6.4 that λσ1 , . . . ,λσN′ is a solution of F1,1, . . . ,Ft,δ. Besides,
since the Jacobian matrix of E1,1, . . . ,Et,δ has trivial kernel at (λ1, . . . ,λN) (with thus λτ1 =
· · · = λτN−N′ = 0), it is also the case for that of F1,1, . . . ,Ft,δ at (λσ1 , . . . ,λσN′). The
only missing property is thus that (λσ1 , . . . ,λσN′) is the only common solution to these

equations. Let (λ⋆
σ1
, . . . ,λ⋆

σN′) ∈ KN ′
be such a solution, let G⋆ be the corresponding reduced

Gröbner basis, and let I⋆ be the ideal it generates (in particular, V (I⋆) = {(0, 0)}). Since by
assumption G⋆ reduces f1, . . . , ft to zero, we have J ⊂ I⋆.

By assumption on I, there exists an ideal I ′ ⊂ K[x, y] such that I + I ′ = ⟨1⟩ and II ′ = J .
Let K,K ′ be in resp. I and I ′ such that K +K ′ = 1; in particular, K ′ does not vanish at
(0, 0). Since V (I⋆) = {(0, 0)}, it follows that K ′ is a unit modulo I⋆.

Recall that we write G = (g0, . . . , gs) for the reduced lexicographic Gröbner basis of I.
Then, for i = 0, . . . , s, the polynomial giK

′ is in II ′, so in J , and thus in I⋆. Since K ′ is a
unit modulo I⋆, this means that gi is in I⋆. Altogether, this proves that I is contained in I⋆.
Since these ideals have the same initial ideals for the lexicographic order, they are then equal.
This in turn proves that (λσ1 , . . . ,λσN′) = (λ⋆

σ1
, . . . ,λ⋆

σN′).

Example.. In our running example, we consider only the punctual Gröbner cell, and we take
f1 and f2 as in the introduction. To write the equations for the punctual Gröbner parameters,
we consider g0,L, . . . , g3,L and set to zero the parameters written Λτ1 , . . . ,ΛτN−N′ above; the
resulting polynomials were given in (5), written in variables λ1, . . . ,λ5 (recall that N ′ = 5
here). After reducing f1 and f2 by these polynomials, and taking coefficients (we discard
those that are identically zero), we obtain

14Λ1, 14Λ2 − 17, −14Λ1Λ
2
5 + 14Λ3 − 28Λ4Λ5, 14Λ2Λ5 + 34, −18Λ4 + 10Λ5. (11)

As claimed, these polynomials generate the maximal ideal

Λ1, Λ2 − 17/14, Λ3 − 40/9, Λ4 + 10/9, Λ5 + 2.

Because the input f1, f2 and G have rather small degrees, the equations in (11) can be
solved by hand. There is of course no reason for this to be the case in general, although on
several other examples, we observed the presence of some linear equations (understanding
the structure of this system of equations is an interesting, but nontrivial, question).

43

7. Newton iteration

We can finally describe our main algorithm, which computes Gröbner parameters using
Newton iteration. For this, we will suppose that K is the field of fractions of a domain A,
and we consider a maximal ideal m in A, with residual field � = A/m.

Consider the following objects: polynomials (f1, . . . , ft) in A[x, y] and a minimal, reduced
Gröbner basis G in K[x, y], with initial terms E. We make the following assumptions:

A′
1. the ideal generated by G in K[x, y] is the intersection of some of the primary components

of ⟨f1, . . . , ft⟩,

A′
2. all polynomials in G are in Am[x, y], where Am is the localization of A at the maximal

ideal m,

A′
3. the ideal generated by Gm = G rem m in �[x, y] is the intersection of some of the primary

components of the ideal ⟨f1 rem m, . . . , ft rem m⟩.

The last two items express that m is good for G, in the sense of Definition 1.2. Important
cases where the first and third assumptions are satisfied are as in the previous subsection, viz.
when Gm and G generate the ideals ⟨f1 rem m, . . . , ft rem m⟩, resp. ⟨f1, . . . , ft⟩ themselves,
or when they describe the ⟨x, y⟩-primary components of these ideals.

Given m, (f1, . . . , ft) and Gm, we show here how to compute G rem mK , for an arbitrary
K ≥ 1.

Algorithm LiftOneStep describes the core lifting procedure; it takes as input the
Gröbner parameters of G, known modulo mκ, for some κ ≥ 0, and returns these parameters
modulo m2κ (note that since G has coefficients in Am by A′

2, its Gröbner parameters are in
Am as well, so reducing them modulo powers of m makes sense).

The algorithm simply applies Newton’s iteration to the equations Ei,j introduced in the
previous subsection: at each iteration, given the Gröbner parameters of G modulo mκ, we
solve the linearization of these equations in order to lift the Gröbner parameters modulo m2κ.
Note however that we never explicitly write down the equations Ei,j, as they may involve a
large number of terms: instead, we reduce the input equations f1, . . . , ft modulo a Gröbner
basis G∗ with parametric coefficients, and extract coefficients in the remainder. We only
compute the first order Taylor expansions of these coefficients, as this is enough to conduct
the iteration; this explains why below, we work modulo the ideal ⟨Λ1, . . . ,ΛN⟩2.

Since we want to give a cost estimate that counts operations in A2κ, we here assume
that we already know the reductions of the input equations f1, . . . , ft modulo m2κ; they are
written f ′

1, . . . , f
′
t ∈ A2κ[x, y]. Some steps in the algorithm require a few further comments,

namely the calls to ReducedBasisFromParameters at Line 5, Reduction at Line 8
and LinearSolve at Line 11.

• At Line 5, we are working with Gröbner parameters written (ℓ1, . . . , ℓN), that are in
B = A2κ[Λ1, . . . ,ΛN]/⟨Λ1, . . . ,ΛN⟩2 (in the algorithm, elements of B are written as
b0+

Pn
i=1 biΛi, for some bi’s in A2κ). Recall that Algorithm ReducedBasisFromPara-

meters only does additions and multiplications, and uses constants from Z, so we can

44

run this algorithm with inputs in B; however the proof of correctness (Proposition 7.1)
use the original properties (Proposition 5.2) which were only established for inputs in a
field; the proof of the following proposition addresses this.

The same remark applies at Line 8, for Algorithm ReductionGeneralInput.

• The last subroutine solves a linear system over A2κ: the inputs are elements of B, which
we recall take the form b0 +

Pn
i=1 biΛi, for some bi’s in A2κ. Procedure LinearSolve

then sees these elements are linear equations in the Λi’s. We will prove the existence
and uniqueness of the solution, by showing that the corresponding matrix admits a
maximal minor that does not vanish modulo m.

Algorithm 7.1 LiftOneStep((f ′
1, . . . , f

′
t),E, (α1, . . . ,αN))

Input: (f ′
1, . . . , f

′
t) in A2κ[x, y], monomials E, (α1, . . . ,αN) in AN

κ

Output: (α′′
1, . . . ,α

′′
N) in AN

2κ

1: (α′
1, . . . ,α

′
N) ← lift of (α1, . . . ,αN) to AN

2κ

2: µ1, . . . , µδ ← monomials not in ⟨E⟩
3: for i = 1, . . . , N do
4: ℓi ← α′

i + Λi ▷ all ℓi in B = A2κ[Λ1, . . . ,ΛN]/⟨Λ1, . . . ,ΛN ⟩2

5: G∗ ← ReducedBasisFromParameters(E, (ℓ1, . . . , ℓN)) ▷ computations done over B
6: R ← []
7: for i = 1, . . . , t do
8: ri ← ReductionGeneralInput(f ′

i ,G∗) ▷ computations done over B
9: for j = 1, . . . , δ do ri,j ← coeff(ri, µj) ▷ all ri,j in B
10: R ← R cat [ri,1, . . . , ri,δ] ▷ R is an array with entries in B
11: (ϵ1, . . . , ϵN) ← LinearSolve(R) ▷ all ϵi in A2κ

12: for i = 1, . . . , N do α′′
i ← α′

i + ϵi ▷ all α′′
i in A2κ

13: return (α′′
1, . . . ,α

′′
N)

Proposition 7.1. Suppose that A′
1, A

′
2, A

′
3 hold, and let (λ1, . . . ,λN) ∈ AN

m be the Gröbner
parameters of G. Given (f1, . . . , ft) rem m2κ and (λ1 rem mκ, . . . ,λN rem mκ), Algorithm
LiftOneStep correctly returns (λ1 rem m2κ, . . . ,λN rem m2κ).

Proof. Let λ = (λ1, . . . ,λN) ∈ AN
m be the Gröbner parameters associated to G. By assumption,

the vector α = (α1, . . . ,αN) satisfies α = λ rem mκ, and the same holds for α′. We prove
that the output α′′ = (α′′

1, . . . ,α
′′
N) is equal to λ rem m2κ.

This is simply the classical proof of the validity of Newton’s iteration. Let δ be the degree
of ⟩G⟨, and let E = (E1,1, . . . ,Et,δ) be the equations introduced in the previous subsection
for the polynomials f1, . . . , ft and the Gröbner cell C(E), over the field K. Since all fi’s
have coefficients in A, and since the reduction process introduces no new denominator, the
polynomials E are in A[Λ1, . . . ,ΛN]. Using Proposition 6.4, assumption A′

1 shows that λ is a

45

solution to these equations (and that their Jacobian matrix at λ has trivial kernel, but we
will not need this fact directly).

Let further Em = (Em,1,1, . . . ,Em,t,δ) be these same equations, but this time for the
polynomials f1 rem m, . . . , ft rem m and Gm. These are polynomials in �[Λ1, . . . ,ΛN], with
Em = E rem m. Using Proposition 6.4, assumption A′

3 shows that λ rem m is a solution to
these equations (which we already could deduce from the previous paragraph) and that their
Jacobian matrix at λ rem m has trivial kernel. We will use this below.

We claim that for all i, j, the coefficient ri,j computed at Line 9 is equal to Ei,j(ℓ1, . . . , ℓN),
computed in B = A2κ[Λ1, . . . ,ΛN]/⟨Λ1, . . . ,ΛN⟩2. The only point we have to be careful
with is that the output of Algorithm ReducedBasisFromParameters is specified as
being a Gröbner basis only if the inputs are in a field. To deal with this, let ℓ′1, . . . , ℓ

′
N

be arbitrary lifts of ℓ1, . . . , ℓN to the domain A[Λ1, . . . ,ΛN], and let G ′ be the output of
ReducedBasisFromParameters(E, (ℓ′1, . . . , ℓ

′
N)). These polynomials form a Gröbner

basis in K(Λ1, . . . ,ΛN)[x, y], which happens to have all its coefficients in A[Λ1, . . . ,ΛN], and
G∗ computed at Line 5 is the reduction of G ′ modulo m2κ + ⟨Λ1, . . . ,ΛN⟩2.

Similarly, at Line 8, Algorithm ReductionGeneralInput can take as input polynomials
with coefficients in B, but its output was only specified for polynomials with coefficients in
a field. This is handled as before, and gives us that for all i, ri is the reduction modulo
m2κ + ⟨Λ1, . . . ,ΛN⟩2 of the polynomial fi rem G ′. Now, the coefficients of fi rem G ′ are the
polynomials Ei,j evaluated at (ℓ′1, . . . , ℓ

′
N), so altogether, for all i, j, ri,j = Ei,j(ℓ1, . . . , ℓN), as

an element of B. Taking all i, j at once, we obtain the following equalities over B:

R = E (α′
1 + Λ1, . . . ,α

′
N + ΛN)

= E (α′) + jac(E ,α′)[Λ1 · · · ΛN]
T ,

where jac(E ,α′) is the Jacobian matrix of E evaluated at α′. First, we show that the system
of linear equations R has a unique solution ϵ = (ϵ1, . . . , ϵN) in AN

2κ. Indeed, given two solution
vectors ϵ and ϵ′ in AN

2κ, we obtain the relation

jac(E ,α′)[ϵ1 − ϵ′1 · · · ϵN − ϵ′N]
T = [0 · · · 0]T

over A2κ. We pointed out above that jac(E rem m,λ rem m) has trivial kernel, so it admits
a non-zero N -minor in � = A/m = A2κ/m. Now, by assumption, α′ rem m = λ rem m, so
that jac(E ,α′) itself admits an N -minor invertible modulo m, and thus in A2κ. This in turn
implies that ϵ = ϵ′, as vectors over A′/m2κ. Our first claim is proved.

Second, we show that ϵ = (λ−α′) rem m2κ is a solution to these linear equations. Indeed,
modulo m2κ, we have the Taylor expansion E (α′+ ϵ) = E (α′)+ jac(E ,α′)[ϵ1 · · · ϵN]T : higher-
order terms vanish, since all entries of ϵ are by assumption in mκ. Now, α′ + ϵ = λ rem m2κ,
so E (α′ + ϵ) = 0 rem m2κ, and our claim follows.

The two previous paragraphs prove that at the end of the while loop, the value α′′ satisfies
α′′ = α′ + (λ− α′) rem m2κ = λ rem m2κ, so the proof is complete.

Proposition 7.2. Let E = (yn0 , xm1yn1 , . . . , xms−1yns−1 , xms) be the initial terms of G, and
suppose that all fi’s have degree at most d.

46

Under assumptions A′
1, A

′
2, A

′
3, Algorithm LiftOneStep uses O (̃s2δn0ms + tδ(d2 +

dms + sδ + δω−1)) operations in A2κ.

Proof. By convention (see the introduction), lifting each αi to α′
i takes one operation in A2κ,

for a total of O(N) = O(δ) operations.
By Proposition 5.2, computing G∗ takes O (̃s2n0ms) operations (+,×) in B, with each

such operation taking O(δ) operations in A2κ.
At Line 8, by Proposition 4.7, Algorithm ReductionGeneralInput uses O (̃d2+ dms+

n0ms + sδ) operations (+,×) in B. Here, we know that n0 is at most d, so the runtime for all
fi’s becomes O (̃t(d2 + dms + sδ)) operations in B, which is O (̃tδ(d2 + dms + sδ)) operations
in A2κ.

Finally, we have to solve the linear system defined by R = 0 over A2κ. This is a system in
tδ equations and N unknowns, and we know that it admits a unique solution in AN

2κ, since the
corresponding matrix has trivial kernel modulo m. Even though AN

2κ is not a field, we may
still apply fast algorithms, such as the one in [32] (as extended in [33]), replacing zero-tests
by invertibility tests; this takes O (̃tδω) operations in A2κ.

As usual, if G (and thus Gm) is ⟨x, y⟩-primary, we may use a variant of this lifting procedure,
called LiftOneStepPunctualParameters, which uses ReducedBasisFromPunctu-
alParameters as the first key subroutine. It allows us to work with N ′ rather than N
unknown Gröbner parameters; the proof now relies on Corollary 6.6, and the runtime becomes
O (̃s2δn0ms + tδ2(ms + δω−2)) operations in A2κ (see Proposition 4.7).

At this stage, we are almost done with the proof of Theorem 1.4: for K = 2k, the algorithm
simply computes G rem mK through repeated calls to Algorithm LiftOneStep. However,
this procedure works with Gröbner parameters as input and output. Hence, prior to entering
Algorithm LiftOneStep for the first time, we compute the Gröbner parameters of G rem m,
and after the last call to Algorithm LiftOneStep, we compute G rem mK using Algorithm
ReducedBasisFromParameters. This extra work does not affect the asymptotic runtime,
so that we do O (̃s2δn0ms + tδ(d2 + dms + sδ)) operations in A/m2i , for i = 1, . . . , k.

The only operations not accounted for so far are the coefficient-wise reductions of the
polynomials f1, . . . , ft modulo m2, . . . ,m2k . These cannot be expressed in terms of operations
in the residue class rings A/m2i ; instead, as per the convention in the introduction, we
assume that each coefficient reduction modulo m2i takes time T2i , for a total of td2T2i for
each i = 1, . . . , k. This concludes the proof of our main theorem. When we work with the
punctual Gröbner cell, we saw in Proposition 4.7 that only δms coefficients of each input
polynomial are needed, whence tδmsT2i steps for coefficient reduction, for all indices i.

Remark 7.3. If one wishes to work only with Gröbner bases as input and output, it is
straightforward to design algorithms called LiftOneStepGroebnerBasis (and LiftOn-
eStepPunctualGroebnerBasis), that take f ′

1, . . . , f
′
t and G mod mκ as input and re-

turn G mod m2κ. It suffices to call Algorithm ParametersFromReducedBasis when
entering the procedure, then Algorithm LiftOneStep, and finally Algorithm Reduced-
BasisFromParameters before exiting (or their punctual variants). This does not affect
asymptotic runtimes, but is not useful in the context of our main theorem.

47

Remark 7.4. When m is principal, we can slightly improve the lifting procedure by using
either divide-and-conquer techniques (folklore) or relaxed algorithms [4, Section 4] to solve
the linear system that gives ϵ1, . . . , ϵN . The downside is that the runtime is not written in
terms of operations in A2κ anymore. Instead, we give runtimes for the common cases A = Z
and m = ⟨p⟩, and A = �[t] and m = ⟨t− τ⟩:

• In the former case, solving the system uses O (̃tδω log(p)) bit operations, for a one-time
computation (matrix inversion) done modulo p, and O (̃δ2κ log(p)) for subsequently
solving the system modulo p2κ.

• In the latter case, the one time computation takes O (̃tδω) operations in �, after which
linear system solving takes O (̃δ2κ) operations in �.

To wit, each operation in A2κ, as reported in Proposition 7.2, takes O (̃κ log(p)) bit operations
in the former case, and O (̃κ log(p)) operations in the latter. The net effect is that in both
cases, the cost of solving the linear system can be neglected (up to the one-time computation
we perform at the beginning).

Example 7.5. We show one step of the algorithm for our running example (Example 1.1),
focusing on the punctual Gröbner parameters. Our input is the polynomials f1, f2 as
in the introduction, together with the Gröbner basis of the ⟨x, y⟩-primary component of
⟨f1 rem p, f2 rem p⟩, with p = 11; namely:

���������

y4 + 2xy + 7x2,

xy3 + 5x3,

x2y + 9x3,

x4.

We deduce the punctual Gröbner parameters modulo 11, α = (0, 2, 2, 5, 9) ∈ Z/11Z5 (recall that
N ′ = 5 here). Following the algorithm, we set (ℓ1, . . . , ℓ5) = (Λ1, 2+Λ2, 2+Λ3, 5+Λ4, 9+Λ5)
and we compute the corresponding punctual Gröbner basis, with coefficients truncated modulo
112 and ⟨Λ1, . . . ,ΛN⟩2. We obtain the polynomials written G∗ in the pseudo-code:
���������

y4 + Λ1xy
2 + (Λ2 + 2)xy + (40Λ1 + Λ3 + 103Λ4 + 111Λ5 + 33)x3 + (9Λ2 + 2Λ5 + 18)x2,

xy3 + (Λ4 + 5)x3,

x2y + (Λ5 + 9)x3,

x4.

Reducing f1 and f2 modulo G∗ (with calculations done modulo 112 and ⟨Λ1, . . . ,ΛN⟩2), and
keeping coefficients, we obtain the linear equations R (we only show the non-zero ones)

14Λ1 = 14Λ2+11 = 76Λ1+14Λ3+111Λ4+102Λ5+99 = 5Λ2+28Λ5+44 = 103Λ4+10Λ5 = 0.

They admit the following unique solution modulo 112:

ϵ1 = 0, ϵ2 = 77, ϵ3 = 110, ϵ4 = 88, ϵ5 = 110;

48

as expected, all ϵi vanish modulo 11. From this, α is updated to take the value α + ϵ =
[0, 79, 112, 93, 119] modulo 112. One can verify that this coincides modulo 112 with the values
given in 10.

8. Conclusion

A natural question is whether our approach can be used for ideals in more than two
variables. As of now, several ingredients are missing: the known structure results are not
as complete as Lazard’s [46], and there is no known explicit description of Gröbner cells.
Algorithmically, the key operation (reduction modulo an n-variate lexicographic Gröbner
basis) seems to be a challenging problem in itself.

As already mentioned in the introduction, using our results in order to recover G itself,
rather than G rem mK , including in particular the quantification of bad maximal ideals m, is
the subject of future work. Beyond this, the main algorithmic improvement we would like
to achieve is reducing the overall cost so that it matches that of [38], in cases where both
approaches are applicable. This would require several improvements in our algorithm, such as
for instance improving the dense linear algebra we use to perform each step in Newton iteration.

Acknowledgments We thank our reviewer for their diligent reading and the helpful sug-
gestions that improved the readability and general quality of this manuscript. Schost is
supported by an NSERC Discovery Grant. St-Pierre thanks NSERC, the Alexander Graham
Bell Canada Graduate Scholarship, and FQRNT for their funding.

References

[1] L. Alberti, B. Mourrain, and J. Wintz. Topology and arrangement computation of semi-
algebraic planar curves. Computer Aided Geometric Design, 25(8):631–651, 2008. doi:
10.1016/j.cagd.2008.06.009. URL https://doi.org/10.1016/j.cagd.2008.06.009.

[2] E. A. Arnold. Modular algorithms for computing Gröbner bases. J. Symb. Comp., 35(4):
403–419, 2003. doi: 10.1016/S0747-7171(02)00140-2. URL https://doi.org/10.1016/

S0747-7171(02)00140-2.

[3] E. Berberich, P. Emeliyanenko, and M. Sagraloff. An elimination method for solving
bivariate polynomial systems: Eliminating the usual drawbacks. In ALENEX, pages
35–47. SIAM, 2011. doi: 10.1137/1.9781611972917.4. URL https://doi.org/10.1137/

1.9781611972917.4.

[4] J. Berthomieu and R. Lebreton. Relaxed p-adic Hensel lifting for algebraic systems.
In ISSAC’12, pages 59–66. ACM, 2012. doi: 10.1145/2442829.2442842. URL https:

//dl.acm.org/doi/pdf/10.1145/2442829.2442842.

[5] J. Briançon. Description de Hilbn C{x, y}. Inventiones Mathematicae, 41:45–90, 1977.

49

[6] J. Briançon and A. Galligo. Déformations distinguées d’un point de C2 ou R2. In
Singularités à Cargèse, number 7-8 in Astérisque, pages 129–138. Société mathématique
de France, 1973.

[7] J. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polynomial
equations faster. In ISSAC’89, pages 121–128. ACM, 1989. doi: 10.1145/74540.74556.
URL https://dl.acm.org/doi/pdf/10.1145/74540.74556.

[8] G. Carrà Ferro. Gröbner bases and Hilbert schemes. i. Journal of Symbolic Computation,
6(2):219–230, 1988. ISSN 0747-7171. doi: 10.1016/S0747-7171(88)80044-0. URL
https://doi.org/10.1016/S0747-7171(88)80044-0.

[9] A. Conca and G. Valla. Canonical Hilbert-Burch matrices for ideals of k[x, y]. Michigan
Mathematical Journal, 57:157 – 172, 2008. doi: 10.1307/mmj/1220879402. URL https:

//doi.org/10.1307/mmj/1220879402.

[10] X. Dahan. Lexicographic Gröbner bases of bivariate polynomials modulo a univariate
one. Journal of Symbolic Computation, 110:24–65, 2022. ISSN 0747-7171. doi: 10.1016/
j.jsc.2021.10.001. URL https://doi.org/10.1016/j.jsc.2021.10.001.

[11] B. Dayton, T.-Y. Li, and Z. Zeng. Multiple zeros of nonlinear systems. Mathematics of
Computation, 80(276):2143–2168, 2011.

[12] D. N. Diatta, S. Diatta, F. Rouillier, M.-F. Roy, and M. Sagraloff. Bounds for polynomials
on algebraic numbers and application to curve topology, 2021.

[13] D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the asymptotic and practical
complexity of solving bivariate systems over the reals. J. Symb. Comput., 44(7):818–835,
2009. doi: 10.1016/j.jsc.2008.04.009. URL https://doi.org/10.1016/j.jsc.2008.04.

009.

[14] G. L. Ebert. Some comments on the modular approach to Gröbner bases. ACM SIGSAM
Bull., 17(2):28–32, 1983. doi: 10.1145/1089330.1089336. URL https://dl.acm.org/

doi/abs/10.1145/1089330.1089336.

[15] David Eisenbud. Commutative algebra: with a view toward algebraic geometry, volume
150 of GTM. Springer, 2013.

[16] G. Ellingsrud and S. Strømme. On the homology of the Hilbert scheme of points in the
plane. Inventiones Mathematicae, 87:343–352, 1987. doi: 10.1007/BF01389419. URL
https://doi.org/10.1007/BF01389419.

[17] P. Emeliyanenko and M. Sagraloff. On the complexity of solving a bivariate polynomial
system. In ISSAC’12, pages 154–161. ACM, 2012. doi: 10.1145/2442829.2442854. URL
https://doi.org/10.1145/2442829.2442854.

50

[18] I. Z. Emiris and E. P. Tsigaridas. Real solving of bivariate polynomial systems. In
CASC, pages 150–161. Springer, 2005. doi: 10.1007/11555964 13. URL https://doi.

org/10.1007/11555964_13.

[19] M. Giusti, J. Heintz, J.-E. Morais, and L.-M. Pardo. When polynomial equation systems
can be solved fast? In AAECC-11, volume 948 of LNCS, pages 205–231. Springer, 1995.

[20] M. Giusti, K. Hägele, J. Heintz, J.-E. Morais, J.-L. Montaña, and L.-M. Pardo. Lower
bounds for diophantine approximation. J. of Pure and Applied Algebra, 117/118:277–
317, 1997. doi: 10.1016/S0022-4049(97)00015-7. URL https://doi.org/10.1016/

S0022-4049(97)00015-7.

[21] M. Giusti, J. Heintz, J.-E. Morais, J. Morgenstern, and L.-M. Pardo. Straight-line
programs in geometric elimination theory. Journal of Pure and Applied Algebra, 124:
101–146, 1998. doi: 10.1016/S0022-4049(96)00099-0. URL https://doi.org/10.1016/

S0022-4049(96)00099-0.

[22] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner-free alternative for polynomial system
solving. Journal of Complexity, 17(1):154–211, 2001. doi: 10.1006/jcom.2000.0571. URL
https://doi.org/10.1006/jcom.2000.0571.

[23] L. González-Vega and M. El Kahoui. An improved upper complexity bound for the
topology computation of a real algebraic plane curve. Journal of Complexity, 12(4):527 –
544, 1996. doi: 10.1006/jcom.1996.0032. URL https://doi.org/10.1006/jcom.1996.

0032.

[24] Mark Haiman. t, q-Catalan numbers and the Hilbert scheme. Discrete Math., 193
(1-3):201–224, 1998. ISSN 0012-365X,1872-681X. doi: 10.1016/S0012-365X(98)00141-1.
URL https://doi.org/10.1016/S0012-365X(98)00141-1. Selected papers in honor
of Adriano Garsia (Taormina, 1994).

[25] J. Hauenstein, B. Mourrain, and A. Szanto. On deflation and multiplicity structure.
Journal of Symbolic Computation, 83:228–253, 2017. doi: 10.1016/j.jsc.2016.11.013.
URL https://doi.org/10.1016/j.jsc.2016.11.013. Special issue on the conference
ISSAC 2015: Symbolic computation and computer algebra.

[26] J. van der Hoeven. On the complexity of polynomial reduction. In I. Kotsireas and
E. Martinez-Moro, editors, Applications of Computer Algebra 2015, volume 198 of
Springer Proceedings in Mathematics and Statistics, pages 447–458. Springer, 2015.

[27] J. van der Hoeven and R. Larrieu. Fast Gröbner basis computation and polynomial
reduction for generic bivariate ideals. AAECC, 30(6):509–539, 2019. doi: 10.1007/
s00200-019-00389-9. URL https://doi.org/10.1007/s00200-019-00389-9.

[28] Mark Huibregtse. On Ellingsrud and Strømme’s cell decomposition of Hilbn
A2

C
. Invent.

Math., 160(1):165–172, 2005. doi: 10.1007/s00222-004-0409-9. URL https://doi.org/

10.1007/s00222-004-0409-9.

51

[29] Mark E. Huibregtse. A description of certain affine open subschemes that form an open
covering of Hilbn

A2
k
. Pacific J. Math., 204(1):97–143, 2002. doi: 10.2140/pjm.2002.204.97.

URL http://dx.doi.org/10.2140/pjm.2002.204.97.

[30] S. G. Hyun, S. Melczer, É. Schost, and C. St-Pierre. Change of basis for m-primary
ideals in one and two variables. In ISSAC’19, pages 227–234. ACM Press, 2019. doi: 10.
1145/3326229.3326268. URL https://dl.acm.org/doi/10.1145/3326229.3326268.

[31] A. Iarrobino. Punctual Hilbert Schemes. Number 188 in Memoirs of the American
Mathematical Society. American Mathematical Society, 1977.

[32] O. H Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix decomposition
algorithm and applications. J. Algorithms, 3(1):45–56, 1982. doi: 10.1016/0196-6774(82)
90007-4. URL https://doi.org/10.1016/0196-6774(82)90007-4.

[33] C.-P. Jeannerod. LSP matrix decomposition revisited. 2006.

[34] K. Kedlaya and C. Umans. Fast polynomial factorization and modular composition.
SIAM Journal on Computing, 40(6):1767–1802, 2011. doi: 10.1137/08073408X. URL
https://doi.org/10.1137/08073408X.

[35] A. Kobel and M. Sagraloff. Improved complexity bounds for computing with planar
algebraic curves. CoRR, abs/1401.5690, 2014.

[36] A. Kobel and M. Sagraloff. On the complexity of computing with planar algebraic
curves. Journal of Complexity, 31(2):206–236, 2015. ISSN 0885-064X. doi: https:
//doi.org/10.1016/j.jco.2014.08.002.

[37] D. Lazard. Ideal bases and primary decomposition: case of two variables. J. Symbolic
Comput., 1(3):261–270, 1985. doi: 10.1016/S0747-7171(85)80035-3. URL https://doi.

org/10.1016/S0747-7171(85)80035-3.

[38] R. Lebreton, E. Mehrabi, and É. Schost. On the complexity of solving bivariate systems:
the case of non-singular solutions. In ISSAC’13, pages 251–258. ACM, 2013. doi:
10.1145/2465506.2465950. URL https://doi.org/10.1145/2465506.2465950.

[39] G. Lecerf. Quadratic Newton iteration for systems with multiplicity. Foundations of
Computational Mathematics, 2(3):247–293, 2002. doi: 10.1007/s102080010026. URL
https://doi.org/10.1007/s102080010026.

[40] Mathias Lederer. Gröbner strata in the Hilbert scheme of points. J. Commut. Algebra,
3(3):349–404, 2011. ISSN 1939-0807,1939-2346. doi: 10.1216/JCA-2011-3-3-349. URL
https://doi.org/10.1216/JCA-2011-3-3-349.

[41] P. Lella and M. Roggero. Rational components of Hilbert schemes. Rend. Semin. Mat.
Univ. Padova, 126:11–45, 2011. doi: 10.4171/RSMUP/126-2. URL https://doi.org/

10.4171/RSMUP/126-2.

52

[42] A. Leykin, J. Verschelde, and A. Zhao. Newton’s method with deflation for isolated
singularities of polynomial systems. Theoretical Computer Science, 359(1):111–122, 2006.
doi: https://doi.org/10.1016/j.tcs.2006.02.018.

[43] A. Leykin, J. Verschelde, and A. Zhao. Higher-order deflation for polynomial systems
with isolated singular solutions. In Algorithms in algebraic geometry, pages 79–97.
Springer, 2008.

[44] X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets: from theory
to practice. J. Symb. Comp., 44(7):891–907, 2009. doi: 10.1016/j.jsc.2008.04.019. URL
https://doi.org/10.1016/j.jsc.2008.04.019.

[45] A. Mantzaflaris and B. Mourrain. Deflation and certified isolation of singular zeros
of polynomial systems. In ISSAC’11, page 249–256. ACM Press, 2011. doi: 10.1145/
1993886.1993925. URL https://dl.acm.org/doi/abs/10.1145/1993886.1993925.

[46] M. G. Marinari and T. Mora. Cerlienco-Mureddu correspondence and Lazard structural
theorem. Investigación Operacional, 27(1):75–98, 2013.

[47] E. Mehrabi and É. Schost. A softly optimal Monte Carlo algorithm for solving bivariate
polynomial systems over the integers. Journal of Complexity, 34:78–128, 2016. ISSN
0885-064X. doi: 10.1016/j.jco.2015.11.009. URL https://doi.org/10.1016/j.jco.

2015.11.009.

[48] V. Neiger, B. Salvy, É. Schost, and G. Villard. Faster modular composition, 2021. URL
https://arxiv.org/abs/2110.08354.

[49] R Notari and M. L. Spreafico. A stratification of Hilbert schemes by initial ideals and
applications. Manuscripta Mathematica, 101:429–448, 2000. doi: 0.1007/s002290050225.
URL https://doi.org/10.1007/s002290050225.

[50] T. Ojika, S. Watanabe, and T. Mitsui. Deflation algorithm for the multiple roots of
a system of nonlinear equations. Journal of Mathematical Analysis and Applications,
96(2):463–479, 1983. ISSN 0022-247X. doi: 10.1016/0022-247X(83)90055-0. URL
https://doi.org/10.1016/0022-247X(83)90055-0.

[51] F. Pauer. On lucky ideals for Gröbner basis computations. J. Symb. Comp., 14(5):
471–482, 1992. doi: 10.1016/0747-7171(92)90018-Y. URL https://doi.org/10.1016/

0747-7171(92)90018-Y.

[52] S. Pope and A. Szanto. Nearest multivariate system with given root multiplicities.
Journal of Symbolic Computation, 44(6):606–625, 2009. ISSN 0747-7171. doi: 10.1016/j.
jsc.2008.03.005. URL https://doi.org/10.1016/j.jsc.2008.03.005.

[53] L. Robbiano. On border basis and Gröbner basis schemes. Collectanea Mathematica, 60:
11–25, 2009. doi: 10.1007/BF03191213. URL https://doi.org/10.1007/BF03191213.

53

[54] F. Rouillier. Solving zero-dimensional systems through the Rational Univariate Represen-
tation. Applicable Algebra in Engineering, Communication and Computing, 9(5):433–461,
1999. doi: 10.1007/s002000050114. URL https://doi.org/10.1007/s002000050114.

[55] F. Rouillier. On solving systems of bivariate polynomials. In ICMS, volume 6327
of Lecture Notes in Computer Science, pages 100–104. Springer, 2010. doi: 10.1007/
978-3-642-15582-6 21. URL https://doi.org/10.1007/978-3-642-15582-6_21.

[56] É. Schost. Computing parametric geometric resolutions. Applicable Algebra in
Engineering, Communication and Computing, 13(5):349–393, 2003. doi: 10.1007/
s00200-002-0109-x. URL https://doi.org/10.1007/s00200-002-0109-x.

[57] É. Schost and C. St-Pierre. p-adic algorithm for bivariate Gröbner bases. In ISSAC
’23, page 508–516. ACM Press, 2023. doi: 10.1145/3597066.3597086. URL https:

//doi.org/10.1145/3597066.3597086.

[58] W. Trinks. On improving approximate results of Buchberger’s algorithm by Newton’s
method. SIGSAM Bull., 18(3):7–11, 1984. doi: 10.1145/1089389.1089392. URL https:

//doi.org/10.1145/1089389.1089392.

[59] J. van der Hoeven and R. Larrieu. Fast reduction of bivariate polynomials with respect
to sufficiently regular Gröbner bases. In ISSAC ’18, page 199–206. ACM Press, 2018.
doi: 10.1145/3208976.3209003. URL https://doi.org/10.1145/3208976.3209003.

[60] J. van der Hoeven and É. Schost. Multi-point evaluation in higher dimensions. Applicable
Algebra in Engineering, Communication and Computing, 24(1):37–52, 2013. doi: 10.
1007/s00200-012-0179-3. URL https://doi.org/10.1007/s00200-012-0179-3.

[61] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, third edition, 2013.

[62] F. Winkler. A p-adic approach to the computation of Gröbner bases. J. Symb. Comput.,
6(2/3):287–304, 1988. doi: 10.1016/S0747-7171(88)80049-X. URL https://doi.org/

10.1145/1089389.1089392.

[63] X. Wu and L. Zhi. Determining singular solutions of polynomial systems via sym-
bolic–numeric reduction to geometric involutive forms. Journal of Symbolic Computation,
47(3):227–238, 2012. ISSN 0747-7171. doi: https://doi.org/10.1016/j.jsc.2011.10.001.

[64] N. Yamamoto. Regularization of solutions of nonlinear equations with singular Jacobian
matrices. J. Infor. Processing, 7:16–21, 1984.

54

