Newton iteration for lexicographic Grobner bases in two variables

Eric Schost?, Catherine St-Pierre®

@School of Computer science, University of Waterloo, 200 University Ave W, Waterloo, N2L
3G1, Ontario, Canada

Abstract

We present an m-adic Newton iteration with quadratic convergence for lexicographic Grobner
basis of zero dimensional ideals in two variables. We rely on a structural result about the
syzygies in such a basis due to Conca and Valla, that allowed them to explicitly describe
these Grobner bases by affine parameters; our Newton iteration works directly with these
parameters.

Keywords: Primary components, m-adic algorithm, Grébner bases

1. Introduction

Solving bivariate polynomial equations plays an important role in algorithms for com-
putational topology or computer graphics. As a result, there exists a large body of work
dedicated to this question, using symbolic, numeric or mixed symbolic-numeric techniques.
To wit, the literature included algorithms based on subresultant techniques [23, 13, 18],
subdivision [1], numerical or p-adic Newton iteration [55, 38, 47], root isolation using two
projections [3, 17, 35, 36], as well as refined root separation bounds [12] or the relations
between bivariate Grébner bases and the subresultant algorithm [10].

In many instances, these algorithms find a set-theoretic description of the solutions of a
given system fi,..., f; in K[z, y] (here, K is a field). This can notably be done through the
shape lemma: in generic coordinates, the output is a pair of polynomials u, v in Klz], with u
squarefree, such that V' ((fi,..., fi)) is described by u(z) = 0 and y = v(z) /() (this rational
form for y allows for a sharp control of the bit size of v, if K = Q). One could slightly enrich
this set-theoretic description by lifting the requirement that u be squarefree, and instead
assign to a root & of u, corresponding to a point (£,), the multiplicity of J = (f1,..., fi) at
(&,v) (adapting the definition of v accordingly). This is notably done in Rouillier’s Rational
Univariate Parametrization [54], but this still only gives partial information: for instance, it
is not sufficient to detect local isomorphisms.

In order to describe the solutions of J, but also the local structure of J at these roots (that
is, the localizations of the algebra K[z, y|/J at these points), it is natural to turn to Grébner
bases. This is what we address in this paper, our focus being an m-adic approximation
procedure, in a sense we define below.

Preprint submitted to Journal of Algebra April 22, 2024

Our problem and our main result. Let us assume that our base field K is the field of fractions
of a domain A, and take fi,..., f; in Alx,y].

Consider further the ideal J = (f1,..., f;) in K[z,y]. We are interested in finding a
Grobner basis of J itself, or possibly of some specific primary components of it. We will
thus let I be an ideal in K]z, 3], which we assume to be the intersection of some of the zero-
dimensional primary components of J: typical cases of interest are I = J, if it has dimension
zero, or I being the (x,y)-primary component of J, if the origin is isolated in V' (.J). For
general primary components, we recall that arbitrary isolated components may be translated
to the origin via a change of basis, at the expense possibly of a change of base field [30].

We let G = (go, - - -, gs) be the minimal, reduced Grébner basis of I for the lexicographic
order induced by y > z; this is the object we are interested in.

Example 1.1. Let A = 7Z, and thus K = Q, t = 2 and input polynomials

fi = —12zy° — 202%y* — 14y* — 7239° — 32%y® + 1323y — 172y + 3422
fo = =2yt — 19232 + 182y + 2223y% + 22%y* — 102%y.

We let I be the (x,y)-primary component of (f1, f2); its Grébner basis G is

4417 17,.2
Yyt gy — 5T,
xy® — 1970:703,
2 (1)
3
x4y — 2x°,
xt,

Let now m be a maximal ideal in A, with residual field k = A/m. Starting from the
reduction of G modulo m (assuming it is well-defined), the goal of this paper is to show how
to recover G modulo powers of m. The case A = Z seen above is the fundamental kind of
example; another important situation is the “parametric” case, with A = k[tq,... ;] and m
a maximal ideal of the form (t; — 7,... tm — 7).

Let Ay (An € K) be the localization of A at m. For K > 0, there exists a well defined
reduction operator A, — A/m® which we write ¢ — ¢ rem m¥; we extend it coefficient-wise
to a reduction mapping Ay [z, y] — A/m%[z,y], and further to vectors of polynomials.

Definition 1.2. We say that m is good with respect to fi,..., fr and G if the following
holds:

e all elements in G are in Aylx,yl,

e the ideal generated by the reduction (G rem m) of G modulo m in k[xz, y| is the intersection
of some of the primary components of the ideal (fi; rem m, ..., f; rem m).

In particular, if m is good, we will write G, for the reduction G rem m. These are polyno-
mials in k[z,y], and they still form a minimal, reduced Grébner basis for the lexicographic
order y > x.

Example 1.3. In Ezample 1.1, m = (11) is good with respect to fi,..., fy and Gy, is

yt + 2oy + T2,
zy® + 53,
z2y + 923,

2.

If A = Z, there are finitely many primes p for which this is not the case. In the case
A = k[ty,...,t,], all maximal ideals of the form (t; — 7y,..., ¢, — 7,n) are good, except for
those (71, ..., Tm) lying on a certain hypersurface in k™ (a quantitative analysis of the number
of bad maximal ideals will be the subject of future work).

Our main result is an efficient lifting procedure based on Newton iteration to compute
G rem m”, given fi,..., fi, Gm and K. Lifting methods are widely used in computer algebra,
for instance, to solve linear systems or compute polynomial GCDs, and serve two purposes.
First, while solving the problem (here, computing the Grobner basis of 1) may be nontrivial
from the outset, working directly over K, our result will show that lifting an approximate
solution modulo powers of m is a relatively simple problem. Second, these techniques are
usually used in cases where elements in A, and K, have a natural notion of “size” (such as the
height when A = Z, or degree when A = klti,...,ty]). Then, direct computations in K often
induce a significant “intermediate expression swell”, where polynomials computed throughout
the algorithm may have larger coefficients than the final output; m-adic approximation
schemes avoid this issue.

Previous forms of Newton iteration have been proposed in the context of Grobner basis
computation, but all have limitations (they may work with solutions of multiplicity one only,
or compute a Grobner basis of the radical of the input ideal, or display linear convergence
only); we discuss them below. Our algorithm applies in the bivariate case only, but it
features the quadratic convergence typical of Newton iteration, in the sense that it computes
G rem m?, G rem m*, ... (hence, without loss of generality, we assume that K = 2% is a power
of two). The cost of the algorithm is expressed in terms of two kinds of quantities:

e number of operations in the rings A/m?* (for which we discuss our computational model
in more detail at the end of the introduction)

e the cost of reducing the coefficients of the polynomials f; modulo m2': we will assume
that for ¢ > 0, each such coefficient can be reduced modulo m? in time T (for A = Z,
this time would depend on the bit-size of these coefficients; over A = klt1, ...,], it
would depend on their degree, and the number m of parameters).

Throughout, the O™ notation indicates that we omit polylogarithmic factors, and w is a
feasible exponent for linear algebra.

Theorem 1.4. Let f1,..., f; be of degree at most d in Alz,y|, with A a domain, that generate
an ideal J in Kz, y], with K the fraction field of A. Let I be the intersection of some of the
zero-dimensional primary components of J, with minimal, reduced Grébner basis G, for the
lexicographic order induced by y > x.

Let further E = (y™,z™wy™, ... x™s1y"=1 ™) be the initial terms of G, and let
§ = dimg K[z, y]/I.

Let m C A be a good mazimal ideal for G. For K of the form K = 2%, given G rem m,
one can find G rem m® with the following cost:

o O (s20ngmy + t0(d? + dmg + 56 + 6“7 1)) operations in Ajm?® | fori=1,... k;
o td*Ty: steps for coefficient reduction, fori=1,... k.

From a high level perspective, Newton iteration is based on the solution of linearizations
of a certain set of non-linear equations; in our case, these equations involve O(9) unknowns.
The runtime given above is rather complex, but we can give a rough interpretation of its
components: the first term s?dngm, describes the cost of setting up a “parametric Grébner
basis”, that depends on our ©(§) unknowns. The term t§(d* + dms + sd) gives the runtime
taken by reducing the input equations modulo this parametric Grobner basis. We do all
computations at order one in our unknowns, which amounts to the linearization inherent to
Newton iteration. It remains to find what values of these unknowns cancel the degree-one
component; this results in the term ¢6“, from linear system solving.

Remark 1.5. When I is the (z,y)-primary component of J, runtimes can be sharpened,
qiving

o O (s20ngms + t6%(m, + 6°2)) operations in Ajm? | fori=1,... k;
o tomyTyi steps for coefficient reduction, fori=1,... k.

Since my < 6, these are in particular O™ (s*dngms + t63) C O7((s*> +)82), resp. t6*Thi. For
the latter, we also have the bound td*Ty: stated in the theorem, but here we prefer to express
the cost in terms of the multiplicity & only.

This paper focuses on those cases where the ideal I is not radical (that is, where some
points p € V(I) are singular), with the intent of describing the localizations of Kz, y|/I at
such points. If the sole interest is to find V' (I), then our approach is unnecessarily complex:
the algorithms in [38, 47] use Newton iteration to compute a set-theoretic description of the
solutions in an efficient manner.

Example 1.6. An extreme case hast =2 and f1, fo “generic” in the sense that they define
a radical ideal in K[z, y] with d* solutions in general position. In this case, if we take I = J,
we have s =1, my =0 = d* and ng = 1. Then, the complexity in the first item of the theorem

becomes O™ (d°) operations modulo each m* . This is to be compared with the sub-cubic cost
O™ (d“*3/2) reported in [38] for a similar task.

Clearly, for these generic situations, our algorithm does not compare favourably with
the state of the art. For the situation in Example 1.6, some techniques from [38] could be
put to use in our situation as well, but they would at best give a runtime of O™ (d**(“+3)/2)
operations in A/m?* | still leaving a quadratic overhead. This is due to the different ways

4

these papers apply Newton iteration: in our case, we linearize the problem in dimension d?
(or, in, general, §), and thus work with matrices of such size, whereas [38] work with matrices
of size 2 (albeit with polynomial entries).

The results of Theorem 1.4 are of interest in the presence of intersection with multiplicities,
where approaches such as [38] do not apply. The algorithm in [47] does not solve our problem
in such cases, as it does not compute a Grobner basis of I, but of its radical.

Remark that to derive a complete algorithm from our result, further ingredients are
needed: quantitative bounds on the number of bad ideals m (if A =Z or A = k[t1,..., 1),
for instance), a cost analysis for computing the starting point G, and bounds on a sufficient
precision K that will allow us to recover G from its approximation G rem m®. To avoid this
paper growing to an excessive length, we will address these questions in a separate manuscript.

We now review previous work on bivariate systems and Newton iteration for Grobner
bases. As we will see, there is a marked difference between Newton iteration algorithms for
“simple” solutions (where the Jacobian of the input equations has full rank) in generic position
and those that can handle arbitrary situations.

Newton iteration for non-degenerate solutions. Following an early discussion in [14], p-adic
techniques for Grobner bases were introduced by Trinks in the 1980’s [58]. That article focuses
on zero-dimensional radical ideals with generators in Z[xy, ..., z,], in shape lemma position,
that is, with a Grébner basis of the form =1 — Gy (z,,), ..., 2h—1 — Gp_1(2y), Gn(xy), for the
lexicographic order x; > --- > x,. Under this assumption, given a “lucky” prime p, one can
apply a symbolic form of Newton iteration to lift (G4, ...,G,) rem p to (Gy,...,G,) rem p&,
for an arbitrary K > 0. Similar techniques were used in the geometric resolution algorithm
of [19, 21, 20, 22]; the scope of this symbolic form of Newton iteration was then extended
in [56] to triangular sets, which are here understood as those particular lexicographic Grébner

bases (G, ...,G,) with respective initial terms of the form z{',..., z¢", for some positive
integers e, ..., e,. In [38], these techniques were studied in detail for the case n = 2 that

concerns us in this paper, with a focus on the complexity of the lifting process.

Computationally, these algorithms have the advantage of working with simple data
structures: they mainly perform matrix multiplications in size n with entries that are
polynomials with coefficients in Z/p%Z (or more generally A/m). These methods also share
their numerical counterpart’s quadratic convergence (in one iteration, the precision doubles,
from p® to p*&), but none of them can directly handle solutions with multiplicities.

Lifting algorithms for general inputs. [62] introduced an algorithm that handles arbitrary
inputs: given a Grobner basis G for fi,..., f; reduced modulo a “lucky” prime p, it recovers
the Grobner basis of the same system modulo p, for any K > 0. No assumption is made on
the dimension of V({f1,..., fi)) or the rank of the Jacobian matrix of the equations. The
computations are more complex as the ones above, as they involve lifting not only the Grobner
basis G itself, but also all quotients in the division of fi,..., f;, and of the S-polynomials of
g, by G.

In follow-up work, [51] discussed the choice of lucky primes; for homogeneous inputs,

or graded orderings, [2] gave an efficient criterion to stop lifting and simplified the lifting
algorithm itself, using ideas of Pauer’s (the S-polynomials are not needed anymore).

To our knowledge, the algorithms mentioned here only perform linear lifting, going from
an approximation modulo p® to precision pf*!; whether quadratic convergence is possible is

unclear to us. No cost analysis was made.

Deflation. Ojika, Watanabe and Mitsui introduced the idea of deflation in a numerical
context [50], to restore Newton iteration’s quadratic convergence even for multiple roots. The
core idea is to replace the system we are given by another set of equations, having multiplicity
one at the root we are interested in, possibly introducing new variables. There are now many
references discussing this approach, see for instance [64, 39, 42, 43, 52, 11, 45, 63].

We are in particular going to use an idea from [25]. In that reference, Hauenstein, Mourrain
and Szanto designed a deflation operator for an n-variate system fi,..., f;, that converges
quadratically to an augmented root (£, v), where v is a vector that specifies the local structure
at a point & € V({f1,..., f1)), through the coefficients of multiplication matrices in the local
algebra at £. If £ is known, this gives in particular an operator with quadratic convergence
to compute the structure constants (that is, the entries of the multiplication matrices).

Our contribution. The lifting algorithm we propose is so far specific to lexicographic orders in
two variables, but has the advantage of being simpler than those in [62, 2]. Indeed, compared
to these two references, we do not need to p-adically lift the polynomial quotients in the
division of f1,..., f; by G; instead, we work with a family of free parameters that describe
bivariate Grobner bases with given initial terms in a one-to-one manner (these Grobner bases
form a Grébner cell). In particular, the number of parameters we work with is tight: this
number is precisely the dimension of the Grobner cell, whereas the polynomial quotients
involve a (necessarily) larger number of coefficients, that depends not only on G but also on
the input equations we are given.

However, identifying a suitable family of parameters is not straightforward. The coefficients
that appear in the Grobner basis do not form such a family, as there are nontrivial relations
between them. However, for lexicographic orders in two variables, Conca and Valla explicitly
constructed a one-to-one parametrization of a given Grébner cell by an affine space [9], from
a description of canonical generators of the syzygy module. Our Newton iteration computes
the parameters corresponding to G, and lifts them modulo m¥.

This is done by adapting the approach of [25]: the coefficients of the normal forms of
f1,-.., fr modulo the unknown Grobner basis G are polynomials in the parameters of the
Grébner cell; we prove that they admit as a (not necessarily unique) solution the parameters
corresponding to G, and that their Jacobian matrix has full rank at this solution. We can
then apply Newton iteration to these polynomials. We need in particular a starting point for
the iteration, that is, the reduction modulo m of the Conca-Valla parameters corresponding
to G: we derive it from the knowledge of G, using ad-hoc conversion formulas.

Computationally, the core operation involved in our Newton iteration is simply reduction
modulo a lexicographic Grobner basis: as was mentioned after Theorem 1.4, reducing the
input polynomials modulo a certain parametric Grobner basis gives us the linear equations we

need to solve at each lifting step. While we have algorithms with quasi-linear cost for reduction
modulo a single polynomial (this is fast Euclidean division [61, Chapter 9]), or modulo two
polynomials with respective initial terms 3™ and 2™ (by a direct bivariate extension, see for
instance [44] for the case of an arbitrary number of variables), we are not aware of specific
results for arbitrary lexicographic bases. Another contribution of this paper is a reduction
algorithm, where we use techniques developed by van der Hoeven and Larrieu [59] for certain
weighted orderings, adapted to our purposes.

Leitfaden. In Section 2, we discuss initial segments in N?; they allow us to describe polynomials
reduced modulo a Grobner basis. We give in particular an algorithm for multiplying two
such polynomials, which is used in the lexicographic Grébner basis reduction algorithm.

In Section 3, we review known results on the structure of bivariate lexicographic Grobner
bases: Lazard’s theorem [37], and Conca and Valla’s description of Grobner cells: this
introduces the parameters of our Newton iteration, namely the coefficients of a canonical
family of syzygies between the elements of our Grobner basis.

Section 4 then presents our algorithm for reduction modulo a lexicographic Grébner basis.
In Section 5 and Section 6, we give algorithms to compute the Grobner basis corresponding
to a set of parameters in the Grobner cell, and conversely; they derive directly from the
definition of the Conca-Valla parameters.

Finally, we describe Newton iteration for the Grébner cell parameters in Section 7, proving
Theorem 1.4. This is based on the description of a family of polynomial equations for which
the Conca-Valla parameters form a solution of multiplicity one; the core of this section
explains how to apply Newton iteration to these equations in an efficient manner.

Computational model. In the whole paper, the costs of algorithms are measured using numbers
of operations in the base ring or base field.

We will first and foremost count Z-algebra operations. For an algorithm with inputs and
outputs in a (unital) ring A, these are additions and multiplications involving the inputs,
previously computed quantities, and constants taken from the image of the canonical mapping
Z — A (e.g., integers if A has characteristic zero); they will be simply be called “(+, X)
operations”. If an algorithm performs only this kind of operations, its outputs are in the
subring of A generated by its inputs.

Important examples are addition, multiplication and Euclidean division (by a monic
divisor) in Alz]; they can all be done using a softly linear number of (4, x) operations in A,
over any base ring A. For background, see Chapters 8 and 9 in [61].

Other operations we will occasionally use are invertibility tests and inversions (to solve
linear systems). Finally, if m is an ideal in a ring A, given a in A/m, we assume that we can
find A in A with A rem m = a using one operation in A.

Notation. The following notation is used throughout the paper. In the following items, A is
an arbitrary ring.

e For d > 1, We let Alz]|4 be the free A-module of all polynomials in A[z] of degree less
than d.

e For f,¢g in Afz], with f monic, we define f rem g and f div g as respectively the
remainder and quotient in the Euclidean division of f by g.

e For f in Afz,y|, deg(f,x) and deg(f,y) respectively denote its partial degrees with
respect to x and y.

e For fin Afx,y] and i > 0, the polynomial coefficient of y* in f will refer to the coefficient
fi in the expression f = Zf:o fiyt, with fo,..., fg in Alz]. In the pseudo-code, we write
POLYNOMIALCOEFFICIENT(f, y*) € A[z] for this polynomial coefficient.

o If f € Alx,y] has degree d in y, we say that f is monic in y if the polynomial coefficient
of y? is 1 (this definition and the previous one carry over to coefficients with respect to
x instead, but we will not need this).

o If T is a subset of N2, we write A[z, y]t for the A-module of polynomials supported
on T, that is, all polynomials of the form Z(u neT Gup®'Y’, with only finitely many
non-zero coefficients a,, ,.

We will not need to define Grobner bases over rings. In particular, for the reduction of
bivariate polynomials, we only work over fields: if G is a Grébner basis in K[z, y], where K is
a field and K|z, y] is endowed with a monomial order, f rem G denotes the remainder of f
through reduction by G.

2. Initial segments in N2

In this section, we first introduce terminology and basic constructions regarding subsets
of N? called initial segments. In the second part, we give algorithms to multiply polynomials
supported on such initial segments.

2.1. Basic definitions

Initial segments. We say that a set T C N? is an initial segment if for all (m,n) in T, any
pair (m/,n') with m’ <m and n’ <nisalsoin T.

Suppose that T is an initial segment in N2, let K be a field and x, y be variables over K.
The elements in K|z, y] supported on N? — T form a monomial ideal I C K[z,y]. Conversely,
any initial segment T in N? can be obtained in this manner from a monomial ideal I, as
the set of exponents of monomials not in I. If T is finite, we write the minimal monomial
generators of I as

E = (yno’ wmlym, L ’mms—lyns—l , xms>

with the m;’s increasing and the n;’s decreasing, and we set myg = ny = 0. We call ng the
height of T and my its width. We say that T is determined by I, or equivalently by E.

Fori=1,...,s, weset di =m; — m;_q, so that m; = d; + - -- + d;. Then, the cardinal §
of T can be written as > ;_, d;n;_1; ¢ is also called the degree of E. Similarly, fori =1,...,s,
we write ¢; = n;_1 —n;. These definitions are illustrated in Figure 1, where the monomials in
E are the initial terms of the Grébner basis in Eq. (1).

n3) = (4,0)

~

Figure 1: An initial segment T (green) and the monomials E = (y*, zy3, 2%y, 2*) (purple), with s = 3 and
§=09.

The cost analyses in this paper will be done using in particular the parameters s and 9.
If desired, one can simplify such expressions using the following explicit upper bound for s.

Lemma 2.1. The integer s is in O(\/S), and this bound is sharp in some instances.

Proof. Start from the equality 6 = >} | d;n;_;, which implies § > > n;_;. Since ny =0
and n;_1 > n;, we get by induction n; > s — i for all . This implies 6 > s(s — 1)/2, so that s
is in O(v/9). For the lower bound, for any integer d we can take E = (ziy*, i =0,...,d),
for which s = d and 6 = d(d + 1)/2. O

Translates of an initial segment. We will occasionally make use of the following construction.
Let T be a finite initial segment in N2, and suppose that T is determined by a monomial
ideal I, with minimal monomial generators E as above. For i =0,...,s we let T._; be the
initial segment determined by the colon ideal I : ™ with minimal monomial generators

Eez‘ — (yni’ xmi+1—miyni+1’ o 7xm571—miynsf1 , xms—mi).

The set T.; has height n; and width m, — m;; its cardinal will be written d;, and is equal to

Z;:Hl dijn;—1. We call T, the ith translate of T.

\
4

A 4

31
26
19

Figure 2: The first translate T._; of T from Figure 1.

The shell of an initial segment. Let T be a finite initial segment in N2. In this paragraph,
we define its shell T', which is another initial segment that forms an outer approximation of
T with few generators, while at most doubling the cardinality of T. The definition and the
lemma below are from [30, A.2]; this construction will be used in the next subsection, to
devise an algorithm for the multiplication of polynomials supported on T.

As we did before, we let

J— no mi, N1 Ms—1,,MNs—1 m
E = (ymo,z™y™, ... Myttt ™)

be the minimal monomial generating set associated to T. We define T’ by introducing
indices i, < 1,1 < --- < 19, defined as follows. Set ig = s. We let 7; > 0 be the largest
index less than iy and such that m;, < m;,/2, and iterate the process to define a sequence
e =0 <iy_1 <---<iyg=s5. We can then consider the monomials

E' = (ynia ; xmig_lymg_17 s ’xmio) - (yTLo? xmia_lynig_la s axms)7
and let T’ be the initial segment determined by E’.

Lemma 2.2. The initial segment T' contains T, its cardinal is at most 20 and o is in

O(log(d)).

10

o w e

>
=

= s

Figure 3: The shell of T from Figure 1.

In our pseudo-code, we will write T’ <— SHELL(T) to indicate that T’ is the shell of T. The
algorithm SHELL does not use any base field or base ring operation, only index manipulations
(in particular, it does not show up in our cost analyses).

2.2. Structured polynomial multiplication

We now prove two propositions regarding polynomial multiplication in Az, y], for an
arbitrary ring A, which will be the basis of the runtime analysis of several algorithms. We
mention in all propositions below that the algorithms in this section only use additions and
multiplications in A, as we will need this property in the sequel. In what follows, given two
sets S, T in N?, S + T denotes their Minkowski sum.

The main prerequisite is the following fact: if S C N? is a rectangle, given A and B in
Alz,y|s, we can compute AB € Alz, y]s;+s using O7(|S|) operations (+, x) in A: if S contains
the origin, this is done using Kronecker substitution to reduce to multiplication in A[z],
see [61, Corollary 8.28]; in the general case, we reduce to the situation where S contains the
origin by factoring out z%y" from A and B, with (u,v) being the unique minimal element
of S.

This being said, the first result we highlight here gives the cost of computing the product
AB, for A and B supported on the same initial segment T. Note that AB is supported on
T 4+ T, and that if T has height n and width m, T 4+ T has cardinal ©(nm). Indeed, this set
contains the rectangle {0,...,m —1} x {0,...,n — 1} of cardinal nm, and is contained in the
rectangle {0, ...,2m—2} x{0,...,2n—2} of cardinal less than 4nm, so that |T+T| € ©(nm).
This is to be contrasted with the cardinal of T itself, which can range anywhere between
n +m and nm.

Proposition 2.3. Consider a finite initial segment T C N2, of height n and width m. Given
A and B in Alz,y|t, one can compute AB using O™(|T + T|) = O™ (nm) operations (+, x) in
A.

Proof. Let S be the rectangle {0,...,m — 1} x {0,...,n — 1}, so that S contains T. Then,
A and B are in Afz, 3]s, so we can multiply them using O7(|S 4+ S|) = O™ (nm) operations

11

(+, x) in A with Kronecker substitution, as pointed out above, and this runtime is also

O (IT+TJ).]

Our second proposition gives an algorithm to compute AB € Alx,y], where A is supported
on a rectangle containing the origin and B on an initial segment.

Proposition 2.4. Consider a rectangle S C N? and a finite initial segment T C N2. Given A
in Alx,yls and B in Alx,y|t, one can compute AB using O™(|S + T|) operations (+, x) in A.

Without loss of generality, we assume that S contains the origin (0,0); if not, as above,
factor out the monomial 2"y" from A, with (u,v) the minimal element in S. We can thus
suppose that S is the rectangle {0,...,¢ — 1} x {0,...,h — 1}, for some integers ¢, h > 1, so
in particular |S| = ¢h, and that T is an initial segment of cardinal |T| = ¢, with height n and
width m.

If A is a field of characteristic zero, this result follows directly from the sparse evaluation
and interpolation algorithms of [7]. More generally, if A is a field of cardinal at least
max(¢ +m, h+n) — 1, this is also the case, using the algorithm in [60]. The algorithm below
achieves the same asymptotic runtime, without assumption on A. The proof is slightly more
involved than that of the previous proposition, and occupies the rest of this section.

An algorithm when T is a rectangle. Suppose first that T ={0,...,m — 1} x {0,...,n — 1},
so that 0 = nm; then the cardinal of S+ T is ((+m — 1)(h +n — 1).

Take A in Afz, y|]s and B in Afz,y]y. Then, both A and B are in Afz,y|sit. Since S+ T
is a rectangle, we saw in the preamble of this section that using Kronecker’s substitution, we
can compute their product using O7(|S+ T|) = O™ ((¢ +m — 1)(h 4+ n — 1)) operations (+, x)
in A. In the main algorithm below, this is written KRONECKERMULTIPLY (A, B).

A first general algorithm. We now suppose that T is an arbitrary initial segment, and that it
is determined by the monomials

_ no mi1, N1 Ms—1,,Ns—1 me
E_(y 7I y ,...71' ° ?/5 Jx 9)7

with the m;’s increasing, the n;’s decreasing, and my = ns = 0; note that we also have ng = n
and mg = m. As before, for i =1,...,s, we set d; = m; — m;_q, so that m; =d; +--- + d;.

The input B € Alz,y]r can then be written as B =), . Byz™, with B; supported
on T, ={0,...,diy1 — 1} x {0,...,n; — 1}. To compute AB, with A in A[z,yls, we thus
compute all AB; and add up the results.

Algorithm 2.1 MuLTIPLYNAIVE(A,S, B, T)

INpUT: Ain Afz,yls, B in Az, y|t
OuTpPUT: AB in Alz, ylssT
1: write B = By + Byx™ + -+ 4+ B,_12™! with B; € A[:C,y]{01'--,di+1—1}><{O,‘.,,ni—1} for all ¢

2: for i =0,...,5s—1 do C; + KRONECKERMULTIPLY (A, B;)
3: return Cy + Ci2™ + -+« + Cy_qx™s?

12

By the result in the previous paragraph, each product AB; can be computed in

operations in A, and the cost of adding this product to the final result fits into the same
bound. Using the inequality n; < ng = n for all i, as well as dy + - -+ 4+ d;, = my = m and
ding + -+ -+ dsns_1 = 9 (the cardinal of T), we see that the total cost is

O (s(f — 1)(h — 1) + (£ — 1)+ m(h — 1) + 5).

On the other hand, we can determine the cardinal of the sum U =S+ T as follows. The
set U is the disjoint union of the following sets:

o U ={0,....0—2} x{0,...,h—2},

o Up=(0,h—1)+{0,....0—2} x {0,...,n— 1}
o Uy=((—1,004+10,....m—1} x {0,...,h — 2}
o Ui=({—1,h—1)+T.

This is established by taking (i,7) in S, (v,w) in T, and discussing according to the signs of
v—(—1—14)and w— (h—1—7). As a result, we obtain

S+T|=(—1)(h—1)+ (- Dn+mh—1)+0.

Yy a U1
yas - U2
2. 21
Yy =] U3
1w 1 N
a U4

Figure 4: the sets S, Tand U=S+ T, with { =h =2 and n =m = 3.

The main algorithm.. The runtime reported above does not fit in the target cost O7(|S + T|),
as s could be large. To circumvent this issue, we apply the algorithm of the previous
paragraph, but we replace T by its shell T". We know (Lemma 2.2) that the cardinal of T is
at most 20, that its width and height are the same as those of T, and that it is generated by
o € O(log(s)) C O(log(d)) terms.

13

Algorithm 2.2 MuLrtipLY (A4, S, B, T)

INPUT: A in Afz,yls, B in Alz, y]t
OutpuT: AB in Alz,ylsiT

1: T’ <~ SHELL(T)

2: return MULTIPLYNAIVE(A, S, B, T')

The algorithm of the previous paragraph still applies (since T is contained in T’), and its
runtime is then O7((¢ —1)(h — 1) log(é) + (£ — 1)nlog(d) + m(h — 1) + &) operations (+, X) in
A. Since we saw that |S+T|=((—1)(h—1)+ (£ —1)n+m(h—1)+ 4, the above expression
is indeed in O7(|S 4 T|). This finishes the proof of Proposition 2.4.

3. Lexicographic Grobner bases

In this section, we first review Lazard’s structure theorem [37] for lexicographic Grobner
bases in K[z, y], for a field K, then a parametrization of such bases due to [9]. While the core
of the discussion makes no assumption on the ideals we consider, we also highlight the case
of ideals that are primary at the origin, that is, (z,y)-primary.

In all that follows, we use the lexicographic monomial order > on K[z,y] induced by
Yy =T

3.1. The structure theorem

Consider a zero dimensional ideal I C Klz,y], and let G = (go,...,9s) be its reduced
Grobner basis, listed in decreasing order. Let further

— no mi, N1 Ms—1,Ns—1 m
E = (ymo,z™y™, ... Myttt ™)

be the minimal reduced basis of the initial ideal in(I) of I, listed in decreasing order, so the
n;’s are decreasing and the m;’s are increasing; as before, we set my = n, = 0.
It follows that g; has initial term x™iy™ for all 7; in particular gq is monic in y with initial

term y"°.

As in Section 2.1, for i = 1,...,s, we set d; = m; — m;_1, with thus m; = d; + --- + d;,
and € = Ni—1 — Ny.

Lazard proved in [37, Theorem 1] the existence of polynomials Dy, ..., Dy in K[z], all
monic in x and of respective degrees d, ..., ds, such that for : =0,...,s, g; can be written

as M;G;, with M; = D, --- D; € K[z] and G; € K[z, y| monic of degree n; in y (for i = 0, we
set Dy = 1). In particular, for ¢ = s, this gives g; = My = Dy --- Dy and G5 = 1. In addition,

for i =0,...,s — 1, we have the membership relation
Ji+1 Gi42 Js
Gie GZ 7Di Gl 7~~7Dz' oDy = , N , 2
(Gt DissGisas ooy Duva DY) = (S B2 0} gy
where the polynomials G;1, D;10Gi1a, ..., Diyo--- Dy also form a Grobner basis of the ideal

they generate (which is the colon ideal (I : M;,1), but we do not need this fact). Besides, for
all i, G;(0,y) vanishes only at y = 0, i.e. G;(0,y) = y™, see [37, Theorem 2].

14

Remark 3.1. If G generates an (x,y)-primary ideal, we have g, = 3™ = gD+ Tds qith
thus D; = 2% and M; = x™ for all i.

In terms of data structures, representing G = (go, . . ., gs) involves O(sd) field elements,
with ¢ the degree of I. As a remark, we note that it would be sufficient to store the polynomials
D = (Dy,...,D,) and G = (Gy,...,G,) instead. If T C N? is the initial segment determined
by E, the structure theorem implies that for : = 0,...,s, G; — y™ is supported on the 7th
translate T, ; of T. In particular, §; field elements are needed to store it, with 6; = [T,
hence a slightly improved total of O(_7_, ;) field elements for D and G.

3.2. Conca and Valla’s parametrization

In this subsection, we suppose that the tuple E = (y"0,a™y™ ... gMs-1y"s—1 g™s)
is fixed. Following [9], we are interested in describing the set of ideals [in K[z, y| that
have initial ideal generated by E. We call this set the Grobner cell of E, and we write it
C(E):={Iin(I) = (E)}. We will also mention a subset of it, the set of ideals I in K[z,]
with initial ideal generated by E and that are (x,y)-primary; this is called the punctual
Grobner cell of E, and is written Cy(E).

The idea of describing ideals with a prescribed initial ideal goes back to [6, 5, 31] for
ideals in K[z, y] and [8] for K[z1, ..., z,]; it was developed in many further references, such
as [16, 24, 49, 29, 28, 53, 41, 40]. It is known that these Grobner cells, also called strata,
have corresponding moduli spaces that are affine schemes (see [40, Section §]), but to our
knowledge, no general an explicit description has not yet been given. In our case, however,
Conca and Valla obtained in [9] a complete description of Grobner cells and punctual Grébner
cells for bivariate ideals under the lexicographic order (following previous work of [16], where
the dimensions of these cells were already made explicit).

Example 3.2. For an ezample of a punctual Grébner cell, taking E = (y*, zy®, 2%y, 2*) as
in Figure 1, using the facts that g; = x™G; and that G;(0,y) = y™, we deduce that the
lezicographic Grébner basis of an ideal in Co(E) necessarily has the following shape, for some
coefficients ¢y, ..., cg in K:

g1 = ?J4 + leByQ + coxy + 313 4 cax® + e
go = xy3 + 06x3 + C7x2
g3 = 2%y + cga’
g4 = !
So far, though, we have not taken into account the membership equality in (2), which imposes

relations on the coefficients ¢;. The parametrizations of C(E) and Co(E) given below resolve
this issue.

Recall that we write d; = m; — m;_1 and ¢; = n;_1 —n;, for i = 1,...,s. Given [in
C(E), Conca and Valla prove in [9, Lemma 3.6] the existence and uniqueness of polynomials
(0}.i)o<i<s—1,i<j<s in K[z, y] with the following degree constraints:

15

o foralli=0,...,s—1and j=1,...,s, deg(0j;,2) < di+1
o foralli=0,...,s—1, 0;; is in K[z] and deg(c;;,y) < e; holds for j =i+1,...,s,

and such that the following properties hold. Define polynomials H = (ho, ..., hs) in K[z, y]
by

o h, = (;Edl — Jo,o) K (afds — 051 8—1)

)

o fori=0,...,5s—1,
alt hy — Y hiy = 05hi + o ihin + -+ Ogih; (3)
then, all polynomials h;’s are in I. Since the relations above imply that for : =0,...,s, h;

has initial term z™y", H = (hq, ..., hs) is a minimal Grébner basis of 1. (Note that Eq. (3)
then gives the normal form of the syzygy between h; and h;,1.)

Conversely, for any choice of the polynomials o;; satisfying the degree constraints above,
the resulting polynomials H form a minimal Groébner basis of an ideal I in C(E).

Let us briefly mention some properties of the polynomials hy, ..., hs. First, we claim that
they have x-degree either exactly my (for hy), or less than my, for ho, ..., hs ;. This is true
for hs by construction. For the other indices, this follows from a decreasing induction, by
rewriting (3) as

(o

1 — gy) hi = Y Ry + 01 ihi + -+ 0 i, (4)
where all terms o, ;h; on the right have x-degree less than d;1; + m.

Next, note that for i = 0,...,s, (z% — 0¢g) -+ (% — 0;_1,.1) divides h;, and thus
all polynomials h;, ..., hy; this follows from (4) by a decreasing induction (for i = 0, the
empty product is set to 1). Since h; has initial term z™iy" = g+ +diyni we deduce that
(xd — 000) - - (zd — 0i-1,-1) is precisely the polynomial coefficient of y™ in h;.

Let then G = (go, ..., gs) be the reduced Grobner basis obtained by inter-reducing H.
Since none of the terms in (x% — oq) - (2% — 0;_1,_1)y™ can be reduced by hg, ..., h;_;
or hiy1,. .., hs, we see that (z% —ggg) -+ (2% — 0;_1;_1) is also the polynomial coefficient of
y™ in g;. Hence, the polynomials D; and M; that appear in Lazard’s structure theorem are
respectively given by D; = 2% — 0,1, 1 and M; = (2% — aq9) -+ (2% — 04_1,-1).

Remark 3.3. We can recover Lazard’s result, that M; divides g; for all i, from this dis-

cussion: the reduction of h; by H can only involve hiyq, ..., hs (since the y-degree of the
other polynomials hy, ..., h;_1 is too large). We saw that M; divides h;, but then also all of
hivi,...,hs; as a result, it divides the remainder g;.

16

Altogether, the total number N of coefficients that appear in the polynomials (¢;;)o<i<s—1,i<j<s
for the Grobner cell C(E), is given by

s—1 s
N = Z (Z diy1€5 + di-i—l)

i=0 \j=it1
s—1 s—1
= E dip1m; + E dit1
1=0 i=0
::5'+’Tnsu

with 0 the degree of E. These coefficients will be written Ay,..., Ay and called Grobner
parameters; this gives us a bijection @ between KV and C(E).

The elements in the punctual Grobner cell Cy(FE) are obtained by setting some of the
Grobner parameters to zero, corresponding to the following extra conditions:

e the polynomials oq,...,0s_1,_1 vanish (recall that for the punctual Grébner cell, we
have D; = 2% and M, = 2™ for all i, see Remark 3.1)

® 0,41, is divisible by z, for i =0,...,5s — 1.
The number of remaining coefficients in 04, ...,055_1 is
s—1 s
Ny = E g di—i—lej — €41

i=0 \j=i+1
s—1 s—1

= E diy1n; — E €it+1
=0 i=0

::5'— no,

establishing a bijection between Ko and Cy(E). In the (x,y)-primary case, the degree § of
E is by definition the common multiplicity of all ideals in Cy(E) at the origin.

Example 3.4. Let us describe the punctual Gréobner cell of E in our running example
(Example 1.1). It has dimension No =9 — 4 =5, so that we can use parameters Ay, ..., As,
with polynomials (o;;) of the form

000 =010=0, 020=MNy+A2, 030=2~A3, 011=n21=0, o031=2A1, 022=0, 0392=A\s2.
Then, the ideals in Co(E) are exactly those ideals with Grébner bases as follows:

ho = y* 4+ Xszy® + May® + (A s + M) 2%y + Aozy + Asz® + Ao Asz?
hy = zy® + Aszy? + \g2®
ho = 2%y + As2®

h33: %4.

17

As expected, these are not reduced Grébner bases. After reduction, we obtain the following
polynomials G:

Jo = y4 +)\1333/2 +)\Q.Ty + (—)\1)\§ +)\3 — 2)\4)\5)1’3 + /\2)\51‘2
g1 =z’ + M2’

g2 = %y + A5z’

gs = 513'4.

4. Reduction modulo a lexicographic Groébner basis

As before, suppose that G = (go, ..., gs) is a lexicographic Grébner basis in K|z, y|, with
initial segment T C N2. Given f in K[z, y], we are interested in computing the remainder
r = frem G € K[z, y|t; this will be used on multiple occasions in this paper, and is also an
interesting question in itself.

Polynomial reduction has been discussed in the literature, for an arbitrary order in [26],
more specifically in the bivariate setting for certain weighted orderings in [59], and for the
degree lexicographic ordering in [27]. The latter two articles used a dichotomic scheme, from
which we will draw our inspiration.

We start by developing the necessary background as a problem in plane geometry, closely
following [59]. We continue with algorithms to convert polynomials into a so-called mized-radiz
representation, and back; the reduction algorithm itself is then given in the last subsection.

4.1. A paving problem

For G as above and f in K]z, y], the remainder r = f rem G is uniquely defined, but the
quotients); in the relation f = Qygo + - -+ + Qsgs + r are not. The reduction algorithm
will obtain r by computing the ();’s one after the other. Hence, to completely specify the
algorithm, we need to make these quotients unambiguous: whenever a monomial z*“y" can be
reduced by more than one of the Grobner basis elements, we must prescribe which of the
g;’s is used. The cost of the resulting algorithm will depend in an essential manner on these
decisions.

In [59], van der Hoeven and Larrieu introduced a dichotomic scheme, in the context of
reduction modulo certain “nice” Grobner bases (called vanilla Grébner bases), for weighted
degree orderings. In this subsection, we adapt their construction to our situation; prior to
that, let us briefly point out what vanilla Grobner bases are: for a weighted ordering, the
Grobner basis G of an ideal I of degree 9 is vanilla if the standard monomials modulo G are
precisely the § smallest monomials. This definition makes it possible for van der Hoeven
and Larrieu to give a compact representation of such Grébner bases, by means of certain
“retraction coefficients” that specify relations between the elements of G; it would be of interest
to understand to what extent these can be used in the description of Grobner cells in the
weighted ordering context.

Back to our situation, suppose as before that the initial terms of G are the monomials

— no mi, ni Ms—1,MNs—1 ms.
E_(y ,I’ y 7"'73:) yé 7$ S)?

18

we still write d; = m; — m;_; and ¢; = n;_1 —n;, for e =1,...,s. The set of monomials to
which we will apply the main reduction algorithm is {z%y", 0 <u < mg, 0 < v < ng}, so it
has cardinal nogms (the general case will be reduced to this situation). In particular, neither
go nor gy can reduce any of these monomials.

We can then translate our question into a paving problem in the plane. We want to cover
S={0,...,ms—1} x{0,...,n9 — 1} — T by rectangles, under the following constraints:

e we use s — 1 pairwise disjoint rectangles, Ry,...,R,_1, so that R; will index the set of
monomials that are reduced using g;

e for all 7, R; has the form {m;,...,m;1s, — 1} x {n;,...,n;_p, — 1}, for some positive
integers ¢;, h; such that i + ¢; < sand ¢ —h; > 0

e the union of all R;’s covers S.

The sequence ((¢1,h1), ..., (¢s_1,hs_1)) is sufficient to specify such a paving. Our goal is then
to minimize the quantity

s—1 s—1

c:=mng Z(mi% —m;) + ms Z(ni—hi —n;),

i=1 i=1

where (m; ¢, —m;) and (n;_p, —n;) are respectively the width and height of R;. This quantity
will turn out to determine the cost of the reduction algorithm; the target is to keep ¢ in
O~ (ngms), since we mentioned that ngms in an upper bound on the number of monomials in
the polynomials we want to reduce.

The following figure shows two possible pavings, for the case d = 4 of the family already
seen in the proof of Lemma 2.1, with E = (y?, 2y, ..., 2%). For this family, ng = m, = d
and ngm, = d?; the strategies shown in the example below have either Zf;ll (Mjre, —my) Or
S (i, —n) in O(d?), so ¢ is in O(d?) = O((ngm,)"?) in cither case.

AR I B S B S B A A
Figure 5: two possible pavings with d = 4.

For this family, a better solution is given below.

19

Figure 6: an improved paving.

This design was introduced in [59], for “vanilla” families E similar to the one in the
example, where the d; (which are the widths of the steps in the Grobner staircase, see
Figure 1) are almost constant, and all e; (which are the heights of these steps) are equal to
1. The construction we give below for arbitrary inputs is derived from it directly, replacing
vertices with coordinates such as (7, j) by vertices with coordinates of the form (n;,m;). In
what follows, valy(7) denotes the 2-adic valuation of a positive integer i.

Definition 4.1. Fori=1,...,s — 1, define:
° hz — 2va12(i)
° gl = min(hi, S — Z)
As a result, the rectangle R; is given by

Ri: {mia"wmi-i-fi _1} X {ni,...,’ni_hi —1}

= {mi, ooy Mmin(it+hs,s) — 1} X {ni, cey Nyp, — 1}.

The following three propositions give the main properties of these rectangles. First, we prove
that they cover all points not in T.

Proposition 4.2. For any s and any choices of my, ..., ms and ng, ...,ns_1, the rectangles
Ri,...,Rs_1 are pairwise disjoint, cover S ={0,...,ms—1} x{0,...,n0—1} =T, and satisfy
1+ 4 <sandi—h; >0 for all i.

Proof. The last claim is a direct consequence of the definitions. We prove the rest of the
proposition by reduction to the case where all d;’s and e;’s are equal to one. The proof is
technical but raises no special difficulty.

For any positive integer s, we define the monomials &, = (2'y*~%, 0 <i < s), the initial
segment .7; determined by &; and ., ={0,...,s — 1} x {0,...,s — 1} — 7;; note that .7} is
the set of all pairs of non-negative integers (a,b) with b < s — a. Finally, fori =1,...,s — 1
we define the rectangle %; s = {i,...,min(i + hy,s) =1} x {s —i,...,s —i+h; — 1} C .

20

We start from mq,..., ms and ng,...,ns_; as in the proposition’s statement, with cor-
responding sets T and S in N2. Take a point (u,v) in S. Because u < m,, there exists a
unique pair (o, u’) such that u =m, + v/, with 0 < a <s—1and 0 <u' < dyqq. Similarly,
because v < nyg, there exists a unique pair (f,v’) such that v = ng + ¢/, with 1 < < s and
0 < v < eg. We claim that (a, s — () is in the set . defined in the previous paragraph,
and that for i = 1,...,s — 1, (u,v) is in the rectangle R; if and only if («, s — () is in the
rectangle %, ;.

e For the first claim, we already pointed out the inequalities 0 < a < s — 1 and
1 < g < s, which gives 0 < s — f < s — 1, so that (a,s —) is in the square
{0,...,5s =1} x{0,...,s —1}. On the other hand, we have v > n,, (otherwise («,)
would be in T), and so § < o and s — § > s — a. This proves that the point («, s — f3)
is not in .7}, so altogether, it lies in ..

e For the second claim, note that since u = m, + o/, with 0 < ' < dyy1, m; <
U < Muin(i+hs,s) 1S equivalent to i < a < min(i + h;, s). Similarly, the inequalities
n; < v < n;_p, are equivalent to s —i < s — 5 < s — ¢+ h;. This proves the claim.

To conclude, it is now sufficient to prove that for all s, the following property, written P(s),
holds: the rectangles % s, ..., %s_1 s are pairwise disjoint and cover .%;. First, we prove it
for s a power of two, of the form s = 2* by induction on k > 1. For k =1 (so s = 2), there
is nothing to prove, as % = {1} x {1} = % ».

Supposing that P(s) is true for s = 2, we now prove it for s’ = 2s. For .# a subset of
N%, we write . N {z < t} for the set of all (z,y) in . with x < t. The sets . N {z > ¢},
S N{x <ty <t} ete, are defined similarly.

First, we note that for any power of two o0 =2 and i =1,...,0 — 1, we have i + h; < o,
so the rectangle %;, is simply %, = {i,...,i + hy =1} x{oc —4,...,0 —i + h; — 1}.
As a result, the rectangles % ¢, ..., %s—1,¢ are translates of Zy,...,%s—15 by (0,s), so
by the induction assumption, they are pairwise disjoint, cover %y N {x < s — 1}, and
do not meet .y N {z > s} (on Figure 6, we have s = 2, s = 4, and there is only one
such rectangle, written R;). Since h; = h;ys for i = 1,... s — 1, we also deduce that the
rectangles Hsi14, ..., Has—1,¢ are translates of Zs,...,%s—15 by (5,0). Thus, they are
pairwise disjoint, cover .Zy N{z > s,y < s — 1}, and do not meet .L» N {z > s,y > s} (on
Figure 6, this is R3). Finally, Z; ¢ is the rectangle {s,2s — 1} x {s,2s — 1} (on Figure 6, this
is Ry). Altogether, P(s") holds and the induction is complete.

The last step is to prove that P(s) holds for all s, knowing that it holds for all powers
of two. Let s be arbitrary and let s’ be the first power of two greater than or equal to
s, so that we know that P(s’) holds. Let s” = §'/2. Since &' < 2s, 8" < s. For i < §",
Ris =RHis — (8 —s,0), whereas for 8" < i1 < s—1, X s =% N{x <s—1} — (s —s,0).
Knowing P(s’), this implies that all these sets are pairwise disjoint. In addition, they cover
Sy N{r <s—1} — (s — 5,0), which is none other that .#;. Thus, P(s) is proved. O

Second, we prove a monotonicity property: going from left to right along any given
horizontal line, the indices of the R;’s that we meet increase. To state the exact property we
need, we will also write Ry = T.

21

Proposition 4.3. Given u, v’ in {0,...,ms— 1} and v in {0,...,ng — 1}, with u < o/, if
(u,v) is in R; and (u',v) is in Ry, for some indices i,7" in {0,..., s}, then i <7'.

Proof. 1f i = 0, there is nothing to prove, since i’ > 0. If i’ = 0, this means that («/,v) is in
T, but then so is (u,v), and thus i = 0 as well. Altogether, we can now assume that both i
and ¢ are positive, that is, neither (u,v) nor (uv/,v) is in Ry = T.

The proof proceeds as in the previous proposition, so we will freely reuse some objects
introduced there, such as the rectangles %, ;. As in the previous proof, to (u,v) and (u',v),
we associate o,/ in {0,...,s — 1} and S in {1,..., s} such that (a,s — /) is in % s and
(o/,s —) is in Zi 5. Assuming that u < ', we get that o < o/, so that we have reduced our
question to its analogue for the rectangles %, ..., %s_1,. Explicitly, we prove that indices
increase as we travel left-to-right along horizontal lines through % s U -+ U %Zs_1 5.

The strategy is again a proof by induction, starting with the case of s a power of two. There
is nothing to prove for s = 2; going from a power of two s to s’ = 2s, the conclusion follows
from the observations made in the proof of the previous proposition, that %, 4, ..., Zs_1,¢
and Zsi1,,. .., F2s—1,¢ are translates of Zs,...,Hs_1,5 by respectively (0,s) and (s,0),
and that %, ¢ is the rectangle {s,2s — 1} x {s,2s — 1}. Thus, if indices increase as we
travel left-to-right along horizontal lines through %), U - U %Z,_1, it remains true for
3?L§LJ"'LJQQHJ£“

Finally, we prove the claim for an arbitrary s using the fact that it holds for the next

power of two s’. As in the previous proposition, we observe that %, s, ..., %s_1, are obtained
from %1 ¢, ..., %s—1,¢ by translation by (s — s’,0), and a right truncation; this is enough to
conclude. O

Finally, the key property of this construction is that the corresponding value of ¢ =
no S0 (Mg, — M) +mg S0 (i, — i) is softly linear in ngmy. This is close to optimal,
since the inequalities Zf;ll (Mmiye, —m;) > mg — 1 and Zf;ll(ni_hi —n;) > ng — 1 imply that
¢ is in Q(noms).

‘s 1 -1
Proposition 4.4. For Ry,...,Ry_1 as above, ¢ =ng Y i, (Miye, —m;) +mg Y sy (Nip, — 1)

is in O™ (ngms).

Proof. We prove that with the choices in Definition 4.1, 325"/ (my s, — m;) is in O (my); we

omit the remaining part of the argument that proves that "7 (n; 5, — n;) is in O™(ng) in a
similar manner.

First, we reduce to the case where s is a power of 2. For i > s, set ¢; = 0 and m; = my;
the sum 35" (Mg, — m;) is then equal to 325" (miys, — my), where s’ = 2 is the first
power of two greater than or equal to s. Besides, this convention implies m; s, = m; s, for
all 1.

For a given « in {0, ...,k — 1}, the indices i € {1,...,s" — 1} of 2-adic valuation are the

integers 2¢(1+2j), for j = 1,...,26"""1 — 1, s0 we can rewrite the sum 3% " (misy, —m;) as
k—1 2k—r-1_1 k—1 2k—r-1_1
(m2~(1+2j)+2~ - m2~(1+2j)) = Z (dQN(1+2j)+1 + -+ dzm(1+2j)+2f€)7
k=0 7=0 k=0 7=0

where we set d; = 0 for ¢ > s. In particular, for a fixed x, the last index occurring at the
summation step j is less than the first index occurring at j + 1, so the inner sum is bounded
above by Zflzl d; = ms. It follows that Zf;ll(mi%i —m;) < Zﬁ;(l] ms € O(mglog(s)). Since
s < my, our claim is proved. O

4.2. Mixed radix representation

In this subsection, we discuss an alternative basis for our polynomials. Our motivation is
the following: if G = (go, . . ., ¢gs) is the minimal, reduced lexicographic Grébner basis that we
want to use in our reduction algorithm, we saw that for ¢ = 0,...,s, g; can be written as
M;G;, with M; of degree m; in K[z] and G; € K[z, y| monic in y, of degree n; in y. Recall also
that for i =1,...,s we write D; = M;/M,_1, which is a polynomial of degree d; = m; —m;_,
in K[z].

The main reduction algorithm will perform many univariate reductions modulo the
polynomials M, ..., M. When working with (x,y)-primary ideals, all M;’s are powers of
x, so these operations are free of arithmetic cost. In general, though, this is not the case
anymore, if the inputs are represented on the monomial basis. In this paragraph, we introduce
a mixed radix representation where reductions by the M;’s are free, and we discuss conversion
algorithms.

Given polynomial K = (K7,...,K;) in K[z], with respective degrees k,...,k;, and
writing h = ky + - - - 4+ k;, we consider the K-linear mapping

(I)K : K[x]<k1 X+ X K['T]<kt — K[l‘]<h
(Fi,....F) = i+ K\ Fp + K{KoFs + - + Ky - Ky Fy

The domain and codomain both have dimension h; from this, we easily deduce that g is a
K-vector space isomorphism. For Fin K[z]s, we call (F,. .., Fy) = & (F) its mizved radiz
representation with respect to the basis K.

We will rely on the following fact: given (Fy,...,F;) = ®¢ (F), for i in {1,...,t}, the
mixed radix representation of F' div K --- K;, with respect to the basis (K;y1,..., K;), is
(Fivq, ..., Fy), so we have access to it free of cost. Similarly, the mixed radix representation
of F'rem K --- K;, with respect to the basis (K, ..., K;), is (F1,..., F;). In particular, if F’
is given in its mixed radix representation, quotient and remainder by the product K --- K;
are free; we still denote these operations by div and rem.

Conversely, for F' of degree less than k; 11 + --- + k¢, given on the mixed radix basis
associated to (Kjy1,...,K;) as a vector (Fiyq,...,F;), the mixed radix representation of
K-+ K;F, for the basis (Ki,...,K;),is (0,...,0, Fi41,..., F}), so it can be computed for
free.

For completeness, we give algorithms with softly linear runtime to apply @k and its
inverse. These are elementary variants of the algorithms for Chinese remaindering in [61,
Chapter 10.3], or generalized Taylor expansion [61, Chapter 9.2]. We start with the conversion
from the mixed radix to monomial representation.

23

Algorithm 4.1 FROMMIXEDRADIX((FY,. .., Fy), (K, ..., K}))

INpUT: (Fi,...,F) in K[z], x - X Klz]op,, K = (Ky,...,K;) of respective degrees
kv, ... ki
OurpuT: P (Fy,...,F) € Klx|ap, with h =k + -+ + ky
if t =1 then return I
t'«+ [t/2]
L < FROMMIXEDRADIX((F1, ..., Fy), (Ki,..., Ky))
R + FROMMIXEDRADIX((Fyi1, ..., Fy), (Kyiq, ..., K}))
if R =0 then
return L
else
return L+ K;--- Ky R

Correctness is clear: if we write F' = ®g(Fy, ..., F}), then the previous discussion shows
that L = F rem K;--- Ky and R = F div K --- Ky, so that the output is indeed F. If we
enter Line 8, computing P takes O7(k; + - - - 4 ky) operations (+, x) in K [61, Lemma 10.4];
however, in this case R is nonzero, so I has degree at least ky +-- -+ ky, and O™ (ky +- - -+ ky)
is O (deg(F)). It follows that, excluding the recursive calls, the cost of a single call to
Algorithm FROMMIXEDRADIX is O7(deg(F')) if deg(F') > ki + - - - + kv, and zero otherwise.

There are O(log(deg(F))) levels of the recursion tree that will incur a nonzero cost, and
the degrees of the polynomials computed at any of these levels add up to at most deg(F).
Hence, the overall cost is O7(deg(F')) operations (+, x) in K.

For the inverse operation, the algorithm is recursive as well. Using the test at Line 3, we
avoid doing any computation if I’ has degree less than ki + - - - + ky. The discussion is as
above, yielding a runtime of O (deg(F’)) operations (4, x) in K.

Algorithm 4.2 TOMIXEDRADIX(F, (K7, ..., K}))

INnpUT: Fin K[z]op, K = (Ky,. .., K;) of respective degrees ki, ..., ky, with h = ki +-- -+ k;
OUTPUT: (Fy,..., F) = 0 (F)
if ¢ =1 then return (F)
< [t)2]
if deg(F') < ky +---+ ky then

return TOMIXEDRADIX(F, (K7, ..., Ky)) cat (0,...,0) >t—t zeros
else

P+ K, - Ky

Q,R <+ F div P,F rem P

return TOMIXEDRADIX(R, (K, ..., Ky)) cat TOMIXEDRADIX(Q, (K¢ i1, .., Kt))

In the next paragraphs, we apply these algorithms to polynomials in K|z, y] (we use the
same names for the algorithms). In this case, we simply proceed coefficient-wise with respect
to y, the mixed-radix representation of F' € K[z, y| being now a two-dimensional array. If the

24

sum of the degrees of K7, ..., K, is h, and for F' in K[z, y| supported on an initial segment U,
with also deg(F,x) < h, the runtime of both algorithms is O(|U]).

4.3. The main algorithm

We can now use the results from the previous subsections to give an algorithm for the
reduction of a polynomial f € K[z, y] modulo a minimal reduced lexicographic Grébner basis
G =1(go,--.,9s). For the time being, we only consider the “balanced” case, where f is already
reduced modulo gg and g,. Let us write, as usual, the initial terms of G as

E = (yno7 wmlynl, L ’wms—lyns—1’ xms)
with the m,;’s increasing and the n;’s decreasing, and let S be the rectangle {0,...,mg; —
1} x {0,...,n9 — 1}. Then, we assume that f is in K[z,y|s. More general inputs can be

handled by performing a reduction by (go, gs) first; this is discussed in the last paragraph of
this section.

In what follows, we let T be the initial segment determined by G, and § = dimg (K|z, y]/G)
be the degree of G.

Overview of the algorithm. Given f in Kz, y] with deg(f,z) < ms and deg(f,y) < ng, our
main algorithm REDUCTION computes 7 = f rem G by calling s — 1 times a procedure called
PARTIALREDUCTION, which is described further. The main algorithm returns the remainder
r, together with quotients Q1,...,Qs_1, such that f = Q191 + - - - + Q.95 + r. While we do
not need the quotients in this paper, we return them as a byproduct that could possibly be
of use in other contexts (the algorithm does not compute the last quotient @5, but one can
easily deduce it from the other @);’s and the remainder). Since we assume deg(f,y) < ng, 9o
does not appear in the reduction equality.

The mixed radix basis is used throughout the algorithm to handle intermediate data;
input and output are on the usual monomial basis.

Algorithm 4.3 REDUCTION(f,G)

INnpuT: fin K[z,9], G = (g0, .- -, gs) as above
ASSUMPTIONS: deg(f,z) < my, deg(f,y) < ng
OuTruT: f rem G and quotients Q1,...,Qs_1
1: Mo+ 1, Gy <+ go
2: fori=1,...,sdo
3 M; <~ POLYNOMIALCOEFFICIENT(g;, y™) € K]z]
5: D; < M; div M;_1
6
7
8
9

. O « ToMIXEDRADIX(f, (Dy, ..., D,)) > (O is on the mized radiz basis
cfori=1,...,s—1do

9 Q; + PARTIALREDUCTION(f(i_I), i) > all f@ are on the mized radiz basis
. return FROMMIXEDRADIX(f®™Y, Dy, ..., D), Q1, ..., Qs 1

25

To simplify notation, the polynomials g, ..., gs, Go,...,Gs, My,..., My and Dy, ..., Dy,
the latter of which are computed at the beginning of the main algorithm, are assumed to be
known in our calls to Algorithm PARTIALREDUCTION, rather than passed as arguments.

The main result in this section is the following proposition. The runtime given here is
softly linear in ngm, and sd: the former represents the size of the input polynomial f, and
the latter is the upper bound on the number of coefficients needed to represent G discussed
in Section 3.1. Whether a better algorithm is possible (which would not need all coefficients
of G, but only, for instance, its Grobner parameters) is not clear to us.

Proposition 4.5. Given f and G, with deg(f,z) < ms and deg(f,y) < ng, Algorithm
REDUCTION returns f rem G using O™ (ngms + $0) operations (+, x) in K.

Before proving the proposition, we mention an important particular case, where a simplified
runtime is available. Suppose that e; = 1 for all 7, that is, that all steps in the staircase have
height 1. In this case, ng = s, and since we have m, < §, we obtain ngm, < sé. In other
words, the runtime of the algorithm is simply O7(s¢).

A single reduction step. We start with a description of the key subroutine, Algorithm
PARTIALREDUCTION. We are given f € Kz,y|s, and an index 7 in {1,...,s — 1}; the
essential operation is a Euclidean division by g; with respect to the variable y.

We cannot directly divide by g;, since this polynomial is not monic in y. However, we
know that it factors as g; = M;G,;, with M; in K[z] and G; monic in y, so our first step is to
take the quotient of f by M; (or more exactly, of a suitable truncation of f with respect to
y, as will we know that the higher-degree coefficients will not have to be modified); this is
an operation involving division with respect to x only. Then, we do a Euclidean division by
G, with respect to the variable y, keeping coefficients reduced modulo D; 1 -+ D;1p, in K[z].
We can then use the quotient () obtained this way to reduce the input polynomial f itself by
gi, obtaining a polynomial r.

This gives only a sketch of the algorithm. Its details are complicated by the use of the
mixed radix basis, which is however needed for us to control the cost of the operations with
respect to .

We prove below that the output r has the same remainder as f modulo G, but also modulo
M; (both properties will be useful); we also return the quotient), which is supported on
a translate of R;. In the analysis of the main algorithm, we will study the support of the
polynomials obtained by repeated applications of Algorithm PARTIALREDUCTION, and show
that zeros must progressively appear on Ry, Ro, ...

Lemma 4.6. Calling PARTIALREDUCTION(f, i) takes
O™ (no(Mive; — mi) + ms(ni—p, —n;) +90)

operations (+, x) in K, with h; = 220 and ¢; = min(h;, s —i). The output r,Q satisfies the
following properties:

1. deg(r,z) < mg and deg(r,y) < ng

26

Algorithm 4.4 PARTIALREDUCTION(f, %)

INnpuT: fin K[z,y], i in {1,...,s — 1}
ASSUMPTIONS: deg(f,z) < my, deg(f,y) < mng, ¢in {1,...,s—1}. f is given on the mixed

radix basis associated to D1, ..., D,
OuTpUT: r and @ in K[z,y|. r is given on the mixed radix basis associated with Dy, ..., D;
1: hy < 2220 ¢« min(hy, s — 1)
2:)+ f div M; > division in the mized radixz basis
> I is given on the mixzed radiz basis associated to Djyq,...,Ds
3 Fy <= Fyrem Dy Dy, > division in the mized radiz basis
> Iy is given on the mized radiz basis associated to Diy1,...,Diiy,
4: F3 < F5 rem y"ih
5. Fy < FROMMIXEDRADIX(Fj, (Djiy1, ..., Dite,)) > Fy is on the monomial basis
6: q < F4 div Gz in A[y] > G; such that g; = MiGZ‘, A= K[.%’]/<DH_1 s Di+2i>
7. let @ be the canonical lift of ¢ to K]z, 9] > deg(Q, z) < myrp, —m;
8: V < MurLtipLy(Q, {0, ...,mirs, —m; — 1} x {0,...,ni_p, —n; — 1}, G4, T)
>V = QG; on the monomial basis
9: Vi <V rem (Djyq--- D) > Vi = QG; rem (D;yq--- Ds) on the monomial basis
10: V4 < ToOMIXEDRADIX(VY, (Diy1, ..., Dy))
> Vo = QG; rem (D;y1---Ds), given on the mized radixz basis associated to Diiq, ..., Dy
11: V3 < M; V5 > multiplication in the mized radiz basis
> V3 = Qg; rem My, given on the mized radix basis associated to D1, ..., Ds
122 r+ f—V3 > subtraction in the mized radiz basts
>r=(f—Qg) rem M, given on the mized radiz basis associated to Dy,...,Ds
13: return r, Q)

27

rrem G=frem@G

r rem M; = f rem M;

r div y"ih = f div y"ih

((r div M;) div y™) rem (D;qq1 -+ D,y ™) =0
- deg(Q,) < mypy, —my and deg(Q,y) < ni_p, —

A ANl

Proof. We first verify that all steps are well-defined, and discuss degree properties of the
polynomials in the algorithm.

As per our discussion in the preamble, the division and remainder at Lines 2 and 3
output a bivariate polynomial F, on the mixed radix basis associated to D;y1, ..., Diyy,. The
polynomial Fj is written on the same basis; F) represents the same polynomial, this time on
the monomial basis.

That polynomial has y-degree less than n;_j,; since G; has y-degree n;, ¢, and thus @,
have y-degree less than n;_,, — n;. Since @) also has x-degree less than m; ., — m;, it is
supported on the rectangle {0, ... ,m;, —m; — 1} x {0,...,n;_p, — n; — 1} (which is the
translate of R; to the origin). This proves the last claim in the lemma.

On the other hand, G; is supported on T (this is true because i > 1; for ¢ = 0, the initial
term of G, which is y"°, is not in T), so altogether, the call to MULTIPLY at Line 8 is justified.
The variables V; and V5 then represent the same polynomial, namely QG; rem (D; 1 --- D),
on two different bases (resp. monomial and mixed radix). It follows that V3 represents the
polynomial

MZ(QGZ rem (Di+1 te Ds)) = MZQGZ rem (MiDi+1 s Ds)
= Qg; rem Mj.

As we noted in the previous subsection, since V5 is written on the mixed basis associated
to (Diy1, ..., Ds), V3 is written on the mixed basis associated to (Dy,..., D). Since this is
also the case for f, the subtraction at Line 12 is done coefficient-wise, and results in the
polynomial (f — Qg;) rem M;, written on the same mixed basis.

This being said, we establish properties 1-5. First item: We have deg(f,y) < ng. On
the other hand, the degree bound on () implies that ()g; has y-degree less than n,_;,. Since
n;_p;, < no, the product QJg; has y-degree less than nj as well, and it is then also the case for
r. The bound deg(r, z) < mg holds by construction.

Second item: we can write r = f — Qg; + hM; = f — Qg; + hgs, for some h in K[z, y|, so
that » — f is in the ideal (G).

Third item: consider again the expression r = f — Qg; + hMy, and notice that M; divides
both g; and M;.

Fourth item: because deg(f,z) < ms, the quotient A in the relation r = f — Qg; + hMj
is —Qg; div M,. Since (Qg; has y-degree less than n;_,, it is thus also the case for h. This
shows that r div y™~h = f div ™", as claimed.

Fifth item: since r = f — Qg; + hM, = [— QM;G; + hM,, we have r div M; = F; —
QG+ hD;;y - - Dy. By definition, we have Fy = Fo + LD,y -+ D1y, and Fy = F5 + Ky"i-h
for some K, L in K[z,y|. F} is the same polynomial as Fj, written on a different basis, and

28

satisfies Fy = QG+ P+ L'D;.1 -+ D;yy,, for some P and L’ in Kz, y], with P of y-degree less
than n;. Altogether, we obtain r div M; = P+(L+L")D;y1 -+ Diys,+hDitq -+ Dg+ Ky"ihi.
As a result,

(r div M;) div y™ = (L + L") div y™)Djy1 -+ Diye, + (h div y™)D;yq -+ - Dy + Ky™i=mi™™,

Because i + ¢; < s, this expression taken modulo (Djyq - Dy, y™ ™) vanishes, as
claimed.

It remains to estimate the cost of the algorithm. The divisions with remainders at Lines 2
and 3 are free of cost (because we work in the suitable mixed radix bases); the same holds
for Line 4, since it only involves a power of y.

Since D;11 -+ D;yg, has degree m; ¢, —m;, the conversion at Line 5 uses O™ (n;_p, (Mo, —
m;)) operations (+, x) in K, which is O™ (ng(mje, — mi)).

Prior to the division at Line 6, G; has to be reduced modulo D, --- D;,y,; proceeding
coefficient-wise in y, this takes O(|T|) = O7(d) operations (4, x) in K. Then, the division in
Aly] takes O™ (n;_p,) operations (4, x) in A, which is O (n;_p,(m;1e, —m;)) operations (+, x)
in K. For this expression, it will be enough to use the same upper bound O™ (ng(m;ys, — m;))
as above.

Next, we consider the cost of computing the product V' in Kz, y]. The input @ has
x-degree less than m;,, — m; and y-degree less than n;_,, — n;, whereas G; is supported on
the initial segment T of height ng, width m,, and cardinal §. Hence, using Proposition 2.4
(and the remarks that follow the proposition on the size of the support of QG;), we see that
QG; can be computed in O ((mjre, — m;)(Ni—p, — ni) + no(Mire, — M) + mg(ni_p, —n;) +9)
operations (+, x) in K. This is also O™ (ng(miye, — m;) + ms(n,_n, —n;) +9).

The Euclidean division at Line 9 is done on the monomial basis, proceeding coefficient-wise
in y. Computing D;y; --- Dy takes O7(myg) operations (4, x) in K. Then, the reduction
is done in quasi-linear time in the size of the support of V, that is, O (ng(mire, — m;) +
ms(ni—n, —n;) +9) again. Recall that for polynomials supported on an initial segment U,
the conversion to the mixed radix basis takes quasi-linear time in the size of U. Here, the
support U is contained in the support of V = QG;, so the conversion at Line 10 takes time
O~ (no(miye, — m;) + mg(ni—p, — n;) + 0) once more.

The multiplication by M; in the mixed radix basis is free, as we simply prepend a vector
of zeros to each entry of V5 to obtain V3. Finally, the polynomial subtraction at the last
step involves one subtraction in K for each nonzero coefficient of V3, so O™ (ng(mjrs, — m;) +
ms(ni_p, —n;) + 6) altogether. O

Correctness of the main algorithm. The properties stated above allow us to prove that
Algorithm REDUCTION correctly computes the remainder of f by G.

We define indices (b; ;)o<i<s0<j<no i {1, ..., s} as follows (they will be needed to state the
recurrence property that proves correctness). For i = 0,...,s — 1, let T; C N? be the union
of the initial segment T and the rectangles Ry, ..., R;; in particular, To = T and T,_; is the
rectangle {0,...,mgs — 1} x {0,...,ng — 1}. Then, fori =0,...,s —land j=0,...,n9 — 1,
we let b;; € {1,...,s} be the smallest index k such that (my, j) is not in T,. In particular,

29

bs_1,; = s for all j < ng. On the other hand, for i = 0, we see that any pair (u,j) with
u < my,, is in T, so 2"y’ is reduced modulo G.

Let f© ... =1 be the polynomials computed throughout the algorithm (the first
item of Lemma 4.6 proves that these polynomials are well-defined, and all supported on
the rectangle {0,...,ms — 1} x {0,...,n9 — 1}). We prove the following claim, written
A(7) in the sequel, by induction on ¢ = 0,...,s — 1: for n; < j < ng, the polynomial
POLYNOMIALCOEFFICIENT((), 47) rem M,, ; € K[z] has degree less than my, . For i =0,
there is nothing to prove (since no index j needs to be considered). Suppose that A(i — 1)
holds, for some i in {1,...,s — 1}; we prove A(1).

For j > n;_,, Item 4 of Lemma 4.6 shows that POLYNOMIALCOEFFICIENT(f®) 17) =
PoLYNOMIALCOEFFICIENT (£~ 7). In that case, though, we also have b; ; = b;_; ;: indeed,
these two quantities are the smallest indices k such that (my, j) is not in T, resp. T;_1, and
the definition of R; shows that in the area of points with ordinate at least equal to n;_p,, T;
and T;_; coincide. Thus, in this case, our induction property holds.

Now, suppose that j is in {n;,...,n;_p, — 1}; in this case, by Items 3 and 5 of the same
lemma, POLYNOMIALCOEFFICIENT(), 47) rem M;,,, is equal to POLYNOMIALCOEFFICIENT
(fG=Y . y7) rem M;. On the other hand, we claim that we also have b;_; ; =4 and b; ; = i + {;;
for this discussion, it will be convenient to reuse the notation Ry = T from Proposition 4.3.

e First claim. By definition, b;_y ; is the smallest index k such that (my, j) is not in
Ti—l == Ro U R1 U---u Ri—l- We know that (mz,j) is in RZ', and thus in RO U---u Rz
Now, (m;_1,7) is also in one of Ry, Ry, ..., Rs_1 (Proposition 4.2) but since m;_1 < m;,
(m;_1,J) is more precisely in T, = Ry U --- UR;. On the other hand, it is not in R;
(because m;_; < m;, and using Proposition 4.3), so it isin T,_; = RyU---UR;_1. In
other words, we have i — 1 < b;_y ;. However, (m;,j) being in R;, it does not lie in
T,.1 = RyU---UR;_; (since the Ry’s are pairwise disjoint). Altogether, this shows
bi—l,j =1.

e Second claim. Again, we first spell out the definition: b; ; is the smallest index k such
that (mg, j) isnotin T; = RyURyU- - -UR;. For k = i+¢;, we know that by construction,
(miye,, j) lies on the right of R; = {my,...,me, — 1} X {n;, ..., n;_p, — 1} (recall that
j is in the range {n;,...,n;—p, — 1}, and thus is not in T;, by Proposition 4.3. On the
other hand, for k = i+¢; — 1, we start by observing that (m;s,, —1, j) is by construction
in R;, and thus in T,. Since ¢ + ¢; — 1 < i + ¢;, we know that m;;s,_1 < m;,, so that
Mitre,—1 < mire, — 1. It follows again from Proposition 4.3 that (m;y, — 1,7) is also in
T,. Altogether, this shows b; ; =i + ;.

As a result, the left-hand side above is the term POLYNOMIALCOEFFICIENT(("), y7) rem M, ,
that appears in our claim. Thus, to conclude the induction proof, it is enough to show that
PoLYNOMIALCOEFFICIENT(f~1) ¢7) rem M; has degree less than my, ;. We do this using
a further case discussion:

e if j > n; 41, we can use the induction assumption. It implies that the remainder
POLYNOMIALCOEFFICIENT(f~1 y7) rem M, , . has degree less than my, . Since we
saw that have b;_; ; = i, we are done.

30

o if j < m;_1, we have by ; = 1, so that my, , =m; = deg(M;), and our claim holds as well.

Having established our induction claim, we can take ¢ = s —1. Then, A(s— 1) shows that for j
in ng_1,...,n9— 1, POLYNOMIALCOEFFICIENT(f*~), 47) rem M, has degree less than my, .
By construction, 1V is reduced modulo Mj, so that POLYNOMIALCOEFFICIENT(f5~1) ¢7)
itself has degree less than my, . Now, for j in 0,...,n,; — 1, we have by; = s, so
POLYNOMIALCOEFFICIENT(f*~1),47) has degree less than my, ; as well in this case. Al-
together, as we pointed out when we introduced my, ;, this proves that f (=1 ig reduced
modulo G.

The second item of Lemma 4.6 finally shows that f rem G = f&~Y rem G, so f&1 is
indeed the normal form of f modulo G. This finishes the correctness proof.

Cost analysis. For the cost analysis, we start with the computation of polynomials M;, G; and
D;, at the beginning of the main algorithm. Since divisions by a monic univariate polynomial
take softly linear time, each pass in the loop at Line 2 of REDUCTION takes O7(§) operations,
for a total of O7(s0).

The conversions to and from the mixed radix basis take quasi-linear time in the size of
the support of f, that is, O (ngms) operations. Then, it suffices to add the costs of the calls
to PARTIALREDUCTION. By Lemma 4.6, deducing f® from f0= takes O (ng(miye, — m;) +
ms(ni—n, —n;)+0) operations in K, with § = |T|, so it suffices to sum this quantity for i = 1 to

s—1. The first two terms add up to a total of O™ (ng 32521 (Myre, —) +me S0t (i, — 1))

Proposition 4.4 shows that this sum is in O7(ngm;), so taking into account the term O7(d) in
each summand, the total is O™ (nom; + s6), as claimed.

Generalization to arbitrary inputs and discussion. If the input f does not satisfy the conditions
deg(f,x) < mg and deg(f,y) < ng, we fall back to this case by reduction modulo the pair of
polynomials (go, gs), which have respective initial terms 3™ and 2™:. The following algorithm
achieves this; we discuss possible improvements below.

Algorithm 4.5 REDUCTIONGENERALINPUT(f,G)

InputT: fin K[z,y], G = (90,---,9s)
OutpuT: f rem G

1: fi1 < f rem g

2: fo < f1 rem go in Afy] > A =K[z]/{gs)
3: let f3 be the canonical lift of f5 to K|z, y] > deg(f3,z) < ms
4: return REDUCTION(f3,G)

Proposition 4.7. Given f and G, with deg(f,x) < d and deg(f,y) < e, Algorithm REDUC-
TIONGENERALINPUT returns f rem G using O™ (ed + emg + ngms + s6) operations (+, x)
in K. If G generates an (x,y)-primary ideal, the runtime becomes O~ (dmy) operations (+, X)
in K.

31

Proof. Reducing f modulo g5 takes O7(ed) operations (and is actually free if d < my). Then,
Euclidean division by gy in Aly] uses O (e) steps in A, which is O™ (ems) steps in K. Finally,
Proposition 4.5 gives a cost of O™ (ngms + sd) for the last step.

If G generates an (z,y)-primary ideal, all terms of y-degree at least § vanish through
the reduction (so we can replace e by d), as do all terms of z-degree at least m, (so we can
replace d by my). O

In the runtime for the general case, ed is the size of the support of input f, and sd
our bound on the size of G, so they are essentially unavoidable (unless of course one could
avoid using G itself but only its Grobner parameters). The runtime also features the extra
terms em, and ngmy, but getting rid of them and improving the runtime to O™ (ed + s9)
unconditionally seems to be very challenging.

Indeed, consider the modular composition problem: given F,G, H in K|z], with F' monic
of degree n and G, H of degrees less than n, this amounts to computing G(H) rem F. A
direct approach takes quadratic time, and Brent-Kung’s baby-steps / giant-steps algorithm
uses O(n'%) operations (and relies on fast matrix arithmetic). Bringing this down to a
quasi-linear runtime has been an open question since 1978: it is so far known to be feasible
only over finite K [34], with the best algorithm for an arbitrary K to date featuring a Las
Vegas cost of O(n'*3) [48].

It turns out that modular composition is a particular case of the reduction problem we
are considering here. With F, G, H as above, if we consider G = (y — H(x), F'(z)) and the
polynomial f = G(y), then the remainder f rem G is precisely G(H) rem F. Here, we have
no=1,s=1ms=n,0=n,d=1and e =deg(G,y) + 1, so that in general e = n; on such
input, the runtime of our algorithm is O™(n?). Improving our result to O™ (ed + s§) would give
a softly linear modular composition algorithm, thus solving a long-standing open question.

On the other hand, the case where f has large degree in both z and y, 7.e. when m; <d
and ny < e, is particularly favourable, since then the runtime does become O7(ed + s6).
Another favourable situation is when all ¢;’s are equal to 1, since we said before that we have
noms < s0 in this case, with thus a runtime of O™(ed + em; + sd) — this is for instance the
case if we apply a generic change of coordinates, as the initial ideal is then Borel-fized (see
the discussions in [15, Chapter 15.9] for the case of homogeneous polynomials, and in [57] for
our situation).

Finally, we point out an application of Proposition 4.7 to modular multiplication: given
A, B in K[z, y|]t, where T is the initial segment determined by G, compute f = AB rem G €
K[z, y]r. In this case, we have d < 2mg and e < 2ny, so the runtime is O™ (ngms + sd); when
all e;’s are equal to 1, this becomes O7(sd). We are not aware of previous results for this
question.

5. From Grobner parameters to Grobner basis

In this section, we fix a given Grobner cell (or equivalently, the monomials E). We
show how to make explicit the mapping ®g : K¥ — C(E), which takes as input Grobner
parameters and outputs the corresponding reduced Grobner basis (see Section 3.2).

32

First, we fix a way to index the N coefficients of the polynomials (¢;;)o<i<s—1,i<j<s that
appear in the syzygy (3); this will be done in the mutually inverse routines given below. Here,
for simplicity, we assume that given the monomials E, we can directly access the integers s,
(di)lgigs and (ei)lgz‘gs-

Algorithm 5.1 SIGMAFROMPARAMETERS(E, (A, ..., Ax))

INPUT: monomials E, (Ay,...,A\y) in K¥
OUuTPUT: polynomials (0;;)o<i<s—1,i<j<s i K[z, y]
1 k+1
2: fort=0,...,s—1do
3: 04 < ZO§£<di+1)\].H_gl"e
k< k+di
for j=1+1,...,sdo
Oj4 < 0
for m=0,...,e;_1 do
Oji$ 0j;+ 20§g<di+l Nt ezt y™
9: k+ k+ di+1

10: return (05)o<i<s—1,i<j<s

Algorithm 5.2 PARAMETERSFROMSIGMA(FE, (0;,); ;)

INPUT: monomials E, polynomials (o;;);; in K[z, y]
OuTPUT: (A,...,Ay) in KY
1 k+1
2: fort=0,...,s—1do
3: for (=0,...,d;y; — 1 do A4y < COEFFICIENT (0, ;, z°)
4 k< k+d;i
5 for j=1+1,...,sdo
6: for m=0,...,e;_1 do
7 for { =0,...,d;y; — 1 do A\gyy < COEFFICIENT (0, 2°y™)
8 k <+ k+ di—i—l
9: return (Ay,..., \y)

To deal with the particular case of punctual Grobner parameters, a few obvious mod-
ifications are needed, such as setting ogg,...,05_1s-1 to zero and ensuring that x divides
01,05 --,055-1 in SIGMAFROMPARAMETERS. We call SIGMAFROMPUNCTUALPARAMETERS
and PUNCTUALPARAMETERSFROMSIGMA the resulting procedures.

We can now give an algorithm called REDUCEDBASISFROMPARAMETERS, which describes
the mapping ®g : K¥ — C(E). This procedure is rather straightforward; the algorithm for
the inverse operation, called PARAMETERSFROMREDUCEDBASIS, is slightly more involved,
and is described in the next section. We still use the notation of Section 3.2, writing in

33

particular M; € K]z] for the polynomial coefficient of y™ in both g; and h;, for all i, and m;
for its degree.

We compute the h;’s, and then the g;’s, in descending order. To obtain the former, we
simply use Eq. (3). For any ¢ = s—1,...,0, assuming we know h; and ¢;41, . .., gs, let us show
how to obtain g; by reducing h; (for i = s, we have g, = hy), using procedure REDUCTION
from the previous section.

Using Euclidean division with respect to x, the polynomial h; can be written as h; =
A;M;q + By, with A; and B; in K[z, y] and deg(B;, x) < m;41.

Recall now that all polynomials g;.1,...,gs are multiples of M;,,, and that the family
Gi = (gix1/Miy1,...,9s/Miy1) is a zero-dimensional Grobner basis (as pointed out after
Eq. (2)). Set h; = (A; rem G;)M;,1 + B;; we claim that h; = g;. First, we determine its
initial term: all monomials in A; rem G;, and thus in (A; rem G;)M;,,, have y-degree less
than n;,,, whereas B; contains the initial term 2™ y™ of h;. Thus the initial term of h; is

still 2™y . Next, we verify that h; is reduced modulo g1, ..., Gi—1, Gis1,-- -, Js-
e None of g1, ..., g;—1 can reduce any term in h;, since this polynomial has y-degree n,.
e Since A; rem G; is reduced modulo G;, (A; rem G;) M, is reduced modulo g;11, ..., gs.
e Since B; has x-degree less than m;, 1, it is also reduced modulo g;1, ..., gs.

The last observation is that the difference h; — h; is in the ideal {g;1,...,gs). Altogether,
this establishes h; = g;.

Example 5.1. We revisit the polynomials of Fxample 3./, with

ho = y4 + /\5xy3 +)\11"3/2 + ()\1)\5 +)\4)x2y +)\Ql'y +)\31’3 +)\2)\51’2

hl = Iy?) +)\5$2y2 +)\4.T3

hg = $2y +)\5.ZC3

h3 = IL‘4,
doing computations over the field Q(\y, ..., As). We have go = hy and g3 = hs; let us then
take i = 1 and compute g,. Starting from hy = xy® + Asax?y? + Ma® and My, = 22, we write
hl = Ale + Bl with

A =X sy + Mz and By = xy’.

We reduce A; modulo (go/ Mz, g3/ Ms) = (y + Asx, z%), and obtain the remainder \yx. Finally,
this gives
g1 = MxMs + By = zy® + Agz®,

as already seen in Example 3.4.

We can now give our algorithm to compute gy, ..., gs. For the reduction of the bivariate
polynomial A; modulo G;, we use our procedure REDUCTION. Note that the degree assump-
tions for that procedure are satisfied: the polynomial A; has z-degree less than mg — m;

34

and y-degree less than n,,;, which are precisely the maximal z-degrees and y-degrees of the
elements in G;.

As before, we assume that given E, we can directly access the integers s, (d;)1<;<s and
(€i)1<i<s and use them freely in the pseudo-code.

Algorithm 5.3 REDUCEDBASISFROMPARAMETERS(E, (A1, ..., An))

INPUT: monomials E, (Ay,...,Ay) in K¥
OuTpPUT: the minimal reduced Grébner basis of Pg(A, ..., Ay)
(0)i; < SIGMAFROMPARAMETERS(E, (A1,...,An))
My +1
for i = 1, ..o, S do Mz — (ZL‘di — Ui—l,i—l)Mi—l
hs < Mg; gs < M,
fori=0,...,s—1do
T; <~ KRONECKERMULTIPLY (y“*!, h;11) + - - - + KRONECKERMULTIPLY (0 4, hs)
hi T div (ZL’di*l — Ui,i)
Gi < (gix1 div Mgy, ..., gs div M)
Ai; Bz — hl div Mi+17 h,l rem Mi—i—l
A; + REDUCTION(A;, G;)
gi < AiM;1 + B

. return (go, ..., gs)

_ =
_= O

—
N

Proposition 5.2. Given monomials E and (A, ..., \y) in K, REDUCEDBASISFROMPARAM-
ETERS(E, (A1, ..., A\n)) returns the reduced Grébner basis of ®g(\y, ..., Ax) using O™ (s*ngm)
operations (4, x) in K.

Proof. Correctness follows from the previous discussion. Regarding the runtime, the first step
does no arithmetic operation, and computing each polynomial M; takes O(J) operations, for
a total of O7(sd).

For a given index 4, computing 7; involves at most s polynomial multiplications, each of
which uses O™ (ngms) operations (4, X) in K; we can deduce h; in the same asymptotic time.
The Euclidean divisions needed to compute G; cost O (sd) operations (since all polynomials
in G are supported on an initial segment of size §), and the one for A; and B; costs O (ngmy),
for the same reason. Proposition 4.5 shows that we compute A4; in O™ (ngm, + sd) operations
(4, x). Finally, the product and sum giving g; take O (ngms) operations (+, x) as well.

Altogether, the cost at step i is O (sngms + sd), which is O (sngms), and the overall
runtime estimate follows. O]

Unfortunately, this bound is not linear in the output size: each polynomial in the output
has O(ngms) coefficients, so O(sngyms) coefficients are sufficient to represent the output, to
be compared with our O™ (s?ngm,) runtime.

On another hand, it will be useful to note that the algorithm does not perform divisions,
so if the input parameters lie in a ring A C K, the output polynomials G all have coefficients
in A.

35

The whole procedure can be adapted to deal with punctual Grobner cells in a straight-
forward manner, by using SIGMAFROMPUNCTUALPARAMETERS at Line 1. The resulting
function is called REDUCEDBASISFROMPUNCTUALPARAMETERS, and features a similar
runtime.

6. Computing the Grobner parameters

We can now give our algorithms to compute the Grobner parameters of a zero-dimensional
ideal 1.

We do this in two different contexts. The first situation is the recovery of these parameters
starting from the reduced Grobner basis of I (i.e., computing the map ®5' defined in the
previous sections). This operation, based on a sequence of Euclidean divisions, is aimed to
be used on a Grobner basis in a given base field, for example over A/m one may use it to
find initial parameters prior to lifting.

The second variant we present is the core ingredient of our main algorithm. We describe
a system of polynomials which admits the Grobner parameters of any zero-dimensional ideal
I contained in (f1,..., f;), for some bivariate polynomials f;, as a solution with multiplicity
one. In a nutshell, we obtain these equations by defining a parametric Grébner basis (whose
coefficients are polynomials in the Grobner parameters, similar to those given in Example 3.4
in the punctual case), and reducing the polynomials f; modulo this basis. The coefficients of
the remainders are also polynomials in the Grobner parameters: these are our equations.

In this, we follow previous work of Hauenstein, Mourrain, Szanto [25] that was in the
context of border bases representations (for which there is no notion of monomial order, and
reductions are done using repeated applications of multiplication matrices; the entries of
these matrices are then suitably parameterized, rather than the coefficients of a Grobner
basis).

The equations we derive are in general too complex to be dealt with directly. In the next
section, we will use them to describe our main algorithm, a version of Newton iteration to
compute the Grobner parameters of a zero-dimensional ideal [.

6.1. Starting from a reduced basis

In this subsection, we assume that we are given the reduced Grébner basis G = (go, - . - , gs)
of a zero-dimensional ideal I, and we show how to compute its Grobner parameters. We also
indicate how the procedure simplifies slightly when I is (x, y)-primary.

Our notation is as before: the initial terms of the polynomials (go,...,gs) are written
E = (y"o,xmy™, ... ™y 2™ the degree of (G) is § and N = § + my is the number
of Grobner parameters. In what follows, we compute the polynomials (o;;);; appearing in
the syzygies (3), whose coefficients are the Grobner parameters of 1. Recall that we write
Di=a%—0; 1,4 fori=1,...;s, and M; = (2% —0¢p) -+ (2% — 0;_1,-1) for i =0,...,s,
with the empty product being equal to 1.

36

Deriving the algorithm. Knowing the reduced Groébner basis G = (go, - - -, gs), some of the
polynomials (o) are easy to compute: for i =1,...,s, we saw in the previous section that
the polynomial coefficient of y™ in g; is none other than M;. Knowing M, ..., M, gives us
Dy, ..., Ds, and thus ogp,...,05-1 -1, by successive divisions.

Let now hy, ..., hgs be the non-reduced Grobner basis already used previously, that satisfies
Eq. (3), and recall that for i =0, ..., s, M; divides h;. We define H; = h;/M;, and consider
again Eq. (4), which is a rewriting of (3):

Diy1hi —y“*hiy = E iy,
Jj=i+1

in which both left- and right-hand sides can be divided by M;,;. Carrying out the division,
we obtain

Hi —y“ "' Hipy = Z 0;iDiyo - D;Hj. (6)
Jj=t+1
Fix ¢ in {0,...,s — 1}, and assume that we have computed H;,1, ..., Hs; we show how to
compute 0;y1,,...,0s,, and then H;.
By construction, the polynomials (go, . .., gi, hit1, - - ., hs) also form a minimal Grébner

basis of I. The polynomial h; — g; is in I, so it reduces to zero through division by these
polynomials. Since g; and h; both have M; as polynomial coefficient of ™, h; — g; has degree
less than n; in y. This implies that the only polynomials in the list that can reduce it are
hiyi,...,hs. We reduce h; — g; by h;iq, then h; s, etc, in this order; for j =i,... s, write
R; ; for the remainder obtained after reduction by h;i1,...,h;, so that R;; = h; — g;.

Lemma 6.1. For j =1,...,s, R;; has y-degree less than n;.

Proof. We pointed out that this is true for j = 7, so we suppose that the claim holds for some
index 7 < s and prove it for index j 4+ 1. To obtain R; 11, we reduce R;; by h;41, which has
initial term x™i+1y™i+1 so that we can write R; j11 = A1 + By, with deg(Bji1,y) < njt1,
deg(Aj+1,7) < mj41 and all terms in A;; having y-degree at least njy;. To conclude, we
prove that A;1; = 0.

Since we use the lexicographic order y > x, reduction of a term by h;,; does not increase
its y-degree; since R, ; had y-degree less than n; by assumption, it is also the case for A,.;.
In particular, A;4; is reduced modulo H, where H = (hy, ..., hs). Since R; ; reduces to zero
modulo H, it follows that A;;; + (Bj41 rem H) = 0. Now, for the same reason as above,
(Bj41 rem H) has y-degree less than n; 1, so that the supports of A;; and (Bj41 rem H)
do not overlap. This implies that A;;; = (Bj;1 rem H) = 0, as claimed.]

This lemma shows that the reduction of h; — ¢g; induces an equality of the form

for some polynomials ¢;,; in K[z, y] satisfying deg(g;;,y) < nj—1 —n; = e; for all j. Equiva-
lently, we may rewrite this as

hi = g + Z Qj,iMjHja

j=it+1
whence, after dividing by M;,
Hz’ = Gz + Z qj,iDz-H e DjHj. (7)
j=it1
Combining (6) and (7), we get
G, —y“Hiy = Z Q;:H;, with Q;; = (0 — ¢;iDi+1)Dito- -+ Dj. (8)

j=it1

Notice in particular that for all j, we have deg(Q;;,v) < e; and thus deg(Q;;H;,y) < nj_;.

In this paragraph, for F in K[z,y], we write F for its residue class in B[y], with B =
K[z]/(Djy1 -+ Ds). Take jini+1,...,s — 1 and suppose that we know Qi 1,...,Q;j 1.
Split the sum in (8) as A = Q,,H; + R with

7—1 S
A=Gi—y""Hin— Y QuiHy and R=) QuiHx.

k=i+1 k=j+1

Over Bly], R has degree (in y) less than nj; since H; is monic of degree n;, the relation
A = Qj;H;+ R describes the Euclidean division of A, which is known, by H;, which is known
as well. If we let Q7 ; be the canonical lift of Q; ; to K[z, y], we obtain

Q;Z = Qj,z' rem Diyq--- D,
= (0ji — @jiDiy1)Digo - - Dy rem Dipq -+ Dy,

It follows that Q7 ; is divisible by D; 5 --- D;, and that
Qi div (Diyz2 -+ - Dj) = (03 — ¢jiDi1) rem Dis1 Dy -+ - D 9)

Since deg(o;;,z) < d;+1, reducing this modulo D;; finally gives us o,,. Noticing also that
the remainder R gives us the next value of A, we obtain Algorithm PARAMETERSFROMRE-
DUCEDBASIS.

In the following proposition, in preparation for the discussion in the next subsection, we

point out in particular that the algorithm does not perform any division.

Proposition 6.2. Given a minimal reduced Grébner basis G = (go,-..,9s) in Kz, yl,
PARAMETERSFROMREDUCEDBASIS(G) returns the Grobner parameters of G using O™ (s*ngmy)
operations (4, x) in K.

38

Algorithm 6.1 PARAMETERSFROMREDUCEDBASIS(G)

INPUT: G = (go,.-.,9s) in K[z, y]®
ASSUMPTIONS: G is a minimal reduced Grébner basis, with initial terms (y"°, ..., ™) listed
in decreasing order
OuTPUT: (Ay,...,Ay) in KY
1: for i =0,...,s do 2™iy™ < INITIALTERM(g;)
2: M()(—]_,Go(—go
3: forv=1,...,sdo

4 M; <~ POLYNOMIALCOEFFICIENT(g;, y™) > M; monic in K|z]
5: G; < g; div M;

6: D; «— M, div M;_4 > D; monic in K[z]
7 ni—1-1 < % — D, > d; = m; —m;—1
8 Hy+ 1

9: fori=s—1,...,0do

10: H; < y“+1H;y D €j41 = N — Njy1
11: A+ Gy —yei+ Hiy > computation done in Bly|, with B = Klz]|/(Djt1 - D)
12: for j=7+1,...,sdo

13: Qji + Adiv Hj, A+ Arem H, > Fuclidean division done in Bly]
14: % < canonical lift of Qj.i to K[z, y]

15: Oji 4 (Q;‘l div Do -+ Dj) rem D,y > by reducing Eq. (9) modulo D11
16: H; < H; + KRONECKERMULTIPLY (0} ;, D;1o- -+ D;H;) > by Eq. (6)
17: return PARAMETERSFROMSIGMA ((y™, ..., ™), (0)o<i<s—1,i<j<s)

As before, the modifications needed to deal with the punctual Grobner cell are elementary;
it suffices to invoke PUNCTUALPARAMETERSFROMSIGMA at the last step. The resulting
procedure will be written PUNCTUALPARAMETERSFROMREDUCEDBASIS. Before proving
the proposition, we give an example of computation of punctual Grobner coefficients.

Example 6.3. Given G as in the introduction from Example 1.1,

417 17, 2

YTy — 5t
3103

xy? — a?,

r2y — 223,

4

T,

Algorithm PUNCTUALPARAMETERSFROMREDUCEDBASIS computes

17 40

000 — 01,0 = 0, 020 — ﬂ’ 03,0 — 57
10

01,1 =021 = 0, 031 = _E’

0292 = 0, 032 = —2x

39

and thus

)\1 = 0, >\2 = 1—1,)\3 = 4%:,)\4 = —%,)\5 = -2 (10)
Proof. We already established the correctness of the algorithm. By inspection, we see that
all steps involve only additions and multiplications in K, using only integer constants, since
all that is done are multiplications or Euclidean divisions by monic polynomials, either in
K[z] or in Bly], with B of the form Kz]/(D;y1 - -- D) (this in turn reduces to additions and
multiplications in K).

It remains to establish the runtime of the algorithm. Each pass in the loop at Line 3 uses
O7(0) operations (+, x), for a total of O7(sd). To continue the analysis, we first note that for
all 7, the polynomial H; computed by the algorithm has z-degree less than d; 1+ - -+d,, which
is less than m,, and y-degree n;. The same bounds holds for deg(Q7;,) (by construction);
the y-degree of this polynomial is less than e;, as mentioned for ();; during the derivation of
the algorithm.

Since G; satisfies the same degree bound deg(G;, x) < d;jy1 + - -+ + ds as H;, the reduction
of G; — y“+*H;;1 modulo D, --- Dy at is free. At each pass through Line 13, the Euclidean
division takes O (n;_1) C O (ng) operations (+, x) in B, which is O™ (ngm,) operations (4, X)
in K. The degree bounds given above show that the cost of computing o;,; and updating H;
admits the same upper bound O™ (ngms). Since we enter the inner FOR loop at Line 12 O(s?)
times, this gives a total cost O7(s*ngm). O

Let us now see how to formalize the observation that the coefficients computed by
Algorithm PARAMETERSFROMREDUCEDBASIS are polynomial expressions of the coefficients
of G.

Assume that the terms E are fixed, let puq, ..., pus be the monomials not in (E), ordered
in an arbitrary fashion, and let I'gy,...,Ts5 be (s + 1)0 new variables over Z. We set
AE = Z[P0717 . ,Fsﬁ]-

Because the algorithm only performs additions and multiplications, and uses constants from
the image of Z in K, we deduce that there exist P g, ..., Py g in Ag =Z[l'y4,...,'s 5] such
that given jjjjjii HEAD any reduced minimal Grobner basis G = (go, . . ., gs) With =======

any minimal, reduced Grébner basis G = (go, - - -, gs) With 0600 82d34faae719e68ect5331f957167¢910d916bl

initial terms E and with coefficients in K (or any extension of it, as we choose below), the
Grobner parameters of G are obtained by evaluating P g, ..., Py g at the coefficients of G.

The correctness of the algorithm can then be restated as follows. Let Ay,..., Ay
be another set of new variables over K, that stand for “generic” Grobner parameters,
and define L. = K(Ay,...,Ay). Let further gor,...,gs. be the polynomials obtained
as output of REDUCEDBASISFROMPARAMETERS(E, (Ay,...,Ay)). Since that algorithm
as well performs only additions and subtractions (Proposition 5.2), these polynomials
have coefficients in K[A;,...,Ay] € L. For ¢ = 0,...,s and j = 1,...,d, let then
R;; € K[Ay,...,An] be the coefficient of the monomial y; in g;1.. We deduce from our
discussion that P, g(Ro1, ..., Rss) = A; holds for all i. We will use this observation in the
next subsection.

40

6.2. Polynomial equations for the Grobner parameters

Let now fi,..., f; be polynomials in K[z, y]; in this subsection, those are our inputs, and
we denote by J the ideal they generate in K[z, y]. Let further I be an ideal in K]z, y] such
that the following properties hold:

A;. I has dimension zero;
A,. there exists an ideal I” C K[z, y| such that [+ I’ = (1) and I1' = J.

Equivalently, I is the intersection (or product) of some zero-dimensional primary components
of J. This is for instance the case if the origin (0,0) is isolated in V(J) and I is the
(x,y)-primary component of J, or if I = J and V(J) is finite.

Let G = (go, ..., 9s) C K[z, y| be the reduced lexicographic Grébner basis of . We denote
by E the initial terms of the polynomials in G, written as before as

I no mi,,n1 Ms—1,,MNs—1 m
E = (ymo,g™y™, . Myt g,

In what follows, we assume that E is known, but not G; we show how to recover the Grobner
parameters of I (and thus G itself).

We let 0 be the degree of I, and py, ..., us be the monomials not in (E), ordered in
an arbitrary way. Let further N = § + mg be the number of parameters for the Grobner
cell C(E), and let (Ay,...,Ay) = ¢5'(I) € KN be the Grébner parameters associated to 1.
In this subsection, we define a system of td equations &7 1,...,8;s in K[Ay, ..., Ay], where
Ay, ..., Ay are new variables, and we prove that (A1,...,Ay) is a solution of multiplicity 1
to these equations.

As in the previous subsection, let L = K(Ay,...,Ay) and let gor, ..., gs1. be the paramet-
ric Grobner basis of C(FE) given by REDUCEDBASISFROMPARAMETERS(E, (Aq,...,AN)).
Recall that all polynomials gopr, ..., gs1 have coefficients in K[A4, ..., Ay]; this implies in
particular that for A in K[z,y], the remainder A rem (goL, ..., gsw), which is well-defined in
Lz, y] = K(Aq, ..., An)[z,y], is in K[Aq, ..., Ay][z,y]. For j =1,...,0, we then denote by
N; the following K-linear map:

N; Kz, y] = K[Aq, ..., AN]
A — coeff(A rem (gor, ..., gsL)s 1),

with g1, ..., pus the monomials not in (E), as defined above. For i = 1,... ¢, we then let
(g(;ﬁ,la ey (gai,(s = M(fl)a s 7~/\/’5(f7,)a

thus defining ¢ polynomials & 1, ..., &5 in K[A4,...,Ay]. The following key property for
these equations was inspired by [25, Theorem 4.8], which was stated in the context of border
bases. The conclusion in the theorem in that reference is that the ideal generated by the
equations used therein is maximal, which means that it admits a unique solution, and this
solution has multiplicity 1. In our case, we recover the multiplicity 1 property, which is what
we will need for Newton iteration.

41

Proposition 6.4. (\y,...,\y) is a solution of & 1,...,&s of multiplicity 1.

Proof. Let Z be the ideal generated by all polynomials N;(g;), fori =1,..., 6 andj =0,...,s,
and let Ry1, ..., Rss € K[Ay, ..., Ay] be the coefficients of (gor, ..., gs1L), as in the previous
subsection. Then, for i = 1,...,0 and j = 0,...,s, the polynomial N;(g;) is equal to
R;i(A1,...,An) — R;;. In particular, (Ay,..., Ay) is in the zero-set of Z.

Recall further from the previous subsection the existence of polynomials P, g, ..., Py E,
with P, g(Ro1, ..., Rss) = Ay, for all k. The fact that R;;(A1,...,Ay) — R;; is in Z for all
1, 7 implies that

Pep(Roa(Ay -y AN, ooy Rss(Ay ooy AN)) — Pee(Roa, - -5 Rss)

is in Z as well, for all k =1,..., N. The left-hand side is A, and the right-hand side Ay, so
that Z contains all polynomials A; — Aq,..., Ay — Ay. Taken together, the two paragraphs
so far establish that Z = (Ay — A\, ..., Ay — An).

Let now J be the ideal generated in K[Ay,...,Ay] by the polynomials &,..., & ;.
Remark first that for any a,b > 0and i =1,... ¢,

s
(%Y f;) rem (gow, - -, gsL) = Z-’vj(fz')(xaybﬂj rem (go.L; - - -, gsL.))-

Jj=1

It follows that for any A in J = (fi,..., fi), and for j = 1,...,d, Nj(A) is in J. For the
same reason, for A in I = (go,...,9s), and for j =1,...,d, N;(A) is in Z. We will also need
the fact that for A in 1%, and for all j, NV;(A) is in Z?; this is established similarly.

Recall now our second assumption on [”: there exists an ideal I’ C K[z, y] such that
I+1I'=(1)and II' = J. Since J is contained in I, the statements in the previous paragraph
imply that J is contained in Z = (A; — Ay, ..., Ay — An), so that (A1,...,A\y) is in the
zero-set of J. This proves the first claim of the proposition.

Let further K, K’ be in resp. [and I’ such that K + K’ = 1. Fori = 0,...,s, ¢;
is in I, so that ¢;K' = ¢g; — ¢;K is in II' = J. By the remark above, for j = 1,...,0,
Aji = N;(g;) — Nj(g:K) is then in J, whereas N;(g;K) is in Z?2.

Consider the Jacobian matrix J of all polynomials A;; at (A1,..., Ax). Because all terms
N;(g:K) are in Z? = (A; — Ay, ..., Ay — Ay)?, their Jacobian matrix vanishes at (A1, ..., Ay),
so that J is simply the Jacobian matrix of the polynomials N;(g;) at (A1,..., An). Because
these polynomials generate the ideal Z = (A; — Ay,..., Ay — Ay), this matrix has trivial
kernel. Thus, J has multiplicity 1 at (Ay,..., Ax).]

In the particular case where I = J, we have a slightly stronger result.

Corollary 6.5. Suppose that I = (f1,..., ft). Then, (&11,...,6s) = (A=A, ..., AN —AN)
m K[Al, ce ,AN].

Proof. Using the notation in the proof of the proposition, we see that if I = J, then Z = 7,
and we proved that Z = (A} — A, ..., Ay — An). O

42

In our other particular case, where I is the (x,y)-primary component of J, we can obtain
a similar stronger statement. Recall that the punctual Grébner cell Cy(F) has dimension
N’ = § — ng, and that the parameters for Co(E) are obtained by setting N — N’ parameters
to zero in the parameters Ay, ..., Ay of C(E).

Let 7i,...,7n_n be the indices of these parameters set to zero, and let Ay, ,...,A,,, be
the remaining N’ parameters. Fori =1,...,tand j =1,...,6, let .%;; be the polynomial
in K[Ay,,...,A;,,] obtained by setting A;,..., A, to zero in & ;. Then, we have the
following.

Corollary 6.6. Suppose that I is (x,y)-primary. Then, (F11,...,Frs) = (Aoy=Aoys .., A
Aoys) KAy, Ay]

y Lo

Proof. We proved in Proposition 6.4 that A,,, ..., \s,, is a solution of .7 1, ..., .%; 5. Besides,
since the Jacobian matrix of &)1, ..., & has trivial kernel at (Ay,..., Ay) (with thus A\, =

= Ary v = 0), it is also the case for that of #1,,...,. %5 at (Asy,..., A5y,). The
only missing property is thus that (\,,...,As,,) is the only common solution to these
equations. Let (A, ...,)\(*,N,) € K"’ be such a solution, let G* be the corresponding reduced
Grobner basis, and let I* be the ideal it generates (in particular, V/(I*) = {(0,0)}). Since by
assumption G* reduces f1,..., f; to zero, we have J C I*.

By assumption on I, there exists an ideal I’ C K[z, y] such that I +I' = (1) and II' = J.
Let K, K’ be in resp. I and I’ such that K + K’ = 1; in particular, K’ does not vanish at
(0,0). Since V(I*) = {(0,0)}, it follows that K’ is a unit modulo I*.

Recall that we write G = (go, ..., gs) for the reduced lexicographic Grébner basis of 1.
Then, for i = 0,...,s, the polynomial ¢; K’ is in II’, so in J, and thus in [*. Since K’ is a
unit modulo I*, this means that ¢; is in I*. Altogether, this proves that I is contained in I*.
Since these ideals have the same initial ideals for the lexicographic order, they are then equal.
This in turn proves that (A, ..., Ao,) = Ak, ..., A%). O

Y aN/ 017" O N/

Example.. In our running example, we consider only the punctual Grobner cell, and we take
f1 and fy as in the introduction. To write the equations for the punctual Grobner parameters,
we consider gor, ..., gsL and set to zero the parameters written A ,..., A, above; the
resulting polynomials were given in (5), written in variables A, ..., A5 (recall that N' =5
here). After reducing f; and fy by these polynomials, and taking coefficients (we discard

those that are identically zero), we obtain
14Ay, 14Ay — 17, —14A A2 + 14A5 — 28A4A5, 14ApA5 + 34, —18A4 + 10A5. (11)
As claimed, these polynomials generate the maximal ideal
Ay, Ay —17/14; A3 —40/9, Ay +10/9, As+2.

Because the input fi, fo and G have rather small degrees, the equations in (11) can be
solved by hand. There is of course no reason for this to be the case in general, although on
several other examples, we observed the presence of some linear equations (understanding
the structure of this system of equations is an interesting, but nontrivial, question).

43

onN!

7. Newton iteration

We can finally describe our main algorithm, which computes Grobner parameters using
Newton iteration. For this, we will suppose that K is the field of fractions of a domain A,
and we consider a maximal ideal m in A, with residual field k = A /m.

Consider the following objects: polynomials (fi,..., f;) in A[z,y| and a minimal, reduced
Grobner basis G in K[z, y], with initial terms E. We make the following assumptions:

A’. the ideal generated by G in K[z, y] is the intersection of some of the primary components

of (fi,---, fi),

Al. all polynomials in G are in Ay[x,y], where A, is the localization of A at the maximal
ideal m,

A%. the ideal generated by G, = G rem m in k|, 3] is the intersection of some of the primary
components of the ideal (f; rem m,..., f; rem m).

The last two items express that m is good for G, in the sense of Definition 1.2. Important
cases where the first and third assumptions are satisfied are as in the previous subsection, viz.

when G, and G generate the ideals (f; rem m, ..., f; rem m), resp. (f1,..., f;) themselves,
or when they describe the (z, y)-primary components of these ideals.

Given m, (f1,..., f;) and Gy, we show here how to compute G rem m”, for an arbitrary
K>1.

Algorithm LIFTONESTEP describes the core lifting procedure; it takes as input the
Grobner parameters of G, known modulo m”, for some x > 0, and returns these parameters
modulo m?® (note that since G has coefficients in A, by A}, its Grobner parameters are in
A, as well, so reducing them modulo powers of m makes sense).

The algorithm simply applies Newton’s iteration to the equations &; ; introduced in the
previous subsection: at each iteration, given the Grobner parameters of G modulo m”, we
solve the linearization of these equations in order to lift the Grobner parameters modulo m?~.
Note however that we never explicitly write down the equations &; ;, as they may involve a
large number of terms: instead, we reduce the input equations fi,..., f; modulo a Grébner
basis G* with parametric coefficients, and extract coefficients in the remainder. We only
compute the first order Taylor expansions of these coefficients, as this is enough to conduct
the iteration; this explains why below, we work modulo the ideal (Ay,..., Ayx)?.

Since we want to give a cost estimate that counts operations in Ay,, we here assume
that we already know the reductions of the input equations fi, ..., f; modulo m?*; they are
written f],..., f/ € Aglx,y]. Some steps in the algorithm require a few further comments,
namely the calls to REDUCEDBASISFROMPARAMETERS at Line 5, REDUCTION at Line 8
and LINEARSOLVE at Line 11.

e At Line 5, we are working with Grobner parameters written (¢y,...,¢y), that are in
B = Ay [Ar,...,An]/(A1,...,AN)? (in the algorithm, elements of B are written as
bo+> i, bil\i, for some b;’s in A,). Recall that Algorithm REDUCEDBASISFROMPARA-
METERS only does additions and multiplications, and uses constants from 7Z, so we can

44

run this algorithm with inputs in B; however the proof of correctness (Proposition 7.1)
use the original properties (Proposition 5.2) which were only established for inputs in a
field; the proof of the following proposition addresses this.

The same remark applies at Line 8, for Algorithm REDUCTIONGENERALINPUT.

e The last subroutine solves a linear system over A,,: the inputs are elements of B, which
we recall take the form by + ., b;A;, for some b;’s in Ay,. Procedure LINEARSOLVE
then sees these elements are linear equations in the A;’s. We will prove the existence
and uniqueness of the solution, by showing that the corresponding matrix admits a
maximal minor that does not vanish modulo m.

Algorithm 7.1 LiIrTONESTEP((f1,..., f{), E, (a1, ..., an))

INPUT: (f],...,f!) in Ag.[z,y], monomials E, (ay,...,ay) in AY
OUTPUT: (f,...,a%) in AL

1 (ah,. .., aly) < lift of (aq,...,an) to AN

2: fi1,. .., s < monomials not in (E)

3: fori=1,...,N do

4: &%Oz;—i-Al > all ¢; inB:Agn[Al,...,AN]/<A1,...,AN>2

5: G* <~ REDUCEDBASISFROMPARAMETERS(E, (¢1,...,0N)) > computations done over B

6: X []

7. for:=1,...,tdo

8: r; < REDUCTIONGENERALINPUT(f/, G*) > computations done over B

9: for j=1,...,0 do r;; < coeff(r;, i;) >oallr; inB
10: R — K cat [riq,... T > % is an array with entries in B
11: (€1,...,€x) < LINEARSOLVE(Z) > all € in Ay,
12: fori=1,...,Ndo o] < o] + ¢ > all o in Agy
13: return (of, ..., %)

Proposition 7.1. Suppose that A}, A, Ay hold, and let (A, ..., Ax) € AN be the Griobner
parameters of G. Given (f1,..., f;) rem m*® and (A\; rem m”, ... Ay rem m*), Algorithm
LIFTONESTEP correctly returns (A\; rem m?* ... Ay rem m?").

Proof. Let A = (A1, ..., Ax) € AY be the Grobner parameters associated to G. By assumption,
the vector a« = (au, ..., ay) satisfies @ = A rem m”, and the same holds for o/. We prove
that the output o’ = (af, ..., %) is equal to A rem m?~.

This is simply the classical proof of the validity of Newton’s iteration. Let d be the degree
of)G(, and let & = (&11,...,8s) be the equations introduced in the previous subsection
for the polynomials fi,..., f; and the Grobner cell C(E), over the field K. Since all f;’s
have coefficients in A, and since the reduction process introduces no new denominator, the
polynomials & are in A[Aq, ..., Ay]. Using Proposition 6.4, assumption A} shows that \ is a

45

solution to these equations (and that their Jacobian matrix at A has trivial kernel, but we
will not need this fact directly).

Let further &, = (mi1,-.-,8mts) be these same equations, but this time for the
polynomials f; rem m, ..., f; rem m and G,. These are polynomials in k[A,..., Ax], with
én = & rem m. Using Proposition 6.4, assumption A} shows that A rem m is a solution to
these equations (which we already could deduce from the previous paragraph) and that their
Jacobian matrix at A rem m has trivial kernel. We will use this below.

We claim that for all 4, j, the coefficient r; ; computed at Line 9 is equal to &; ;(¢1, ..., ¢n),
computed in B = Ay [A,...,An]/{A1,...,Ax)% The only point we have to be careful
with is that the output of Algorithm REDUCEDBASISFROMPARAMETERS is specified as
being a Grobner basis only if the inputs are in a field. To deal with this, let ¢}, ..., ¢y
be arbitrary lifts of ¢;,..., ¢y to the domain A[A,...,Ay], and let G’ be the output of
REDUCEDBASISFROMPARAMETERS(E, (¢},...,¢)). These polynomials form a Grobner
basis in K(Aq, ..., Ay)[z,y], which happens to have all its coefficients in A[Aq, ..., Ax], and
G* computed at Line 5 is the reduction of G’ modulo m** + (A, ..., Ayx)%

Similarly, at Line 8, Algorithm REDUCTIONGENERALINPUT can take as input polynomials
with coefficients in B, but its output was only specified for polynomials with coefficients in
a field. This is handled as before, and gives us that for all i, r; is the reduction modulo
m?* + (Ay,...,An)? of the polynomial f; rem G’. Now, the coefficients of f; rem G’ are the
polynomials &; ; evaluated at (¢4, ...,¢y), so altogether, for all 4, j, r;,; = & ;(¢1,...,{N), as
an element of B. Taking all 7, j at once, we obtain the following equalities over B:

R =E+A,... dy+Ay)
= &(a) +jac(&,) [Ay -+ AN]T,

where jac(&',) is the Jacobian matrix of & evaluated at /. First, we show that the system

of linear equations % has a unique solution € = (e1, ..., ex) in AY . Indeed, given two solution
vectors € and € in AY | we obtain the relation
jac(&, 0/ — €, - ex— eI =[0 -+ O

over Ay,. We pointed out above that jac(& rem m, A rem m) has trivial kernel, so it admits
a non-zero N-minor in k = A/m = Ay, /m. Now, by assumption, o/ rem m = \ rem m, so
that jac(&, o) itself admits an N-minor invertible modulo m, and thus in A,,. This in turn
implies that € = €/, as vectors over A’/m?*. Our first claim is proved.

Second, we show that € = (A — ') rem m?* is a solution to these linear equations. Indeed,
modulo m**, we have the Taylor expansion & (o’ +¢€) = &(a) +jac(&,a)]e; -+ ex]T: higher-
order terms vanish, since all entries of € are by assumption in m*. Now, o/ + € = X\ rem m?",
so &(a’ + €) = 0 rem m* and our claim follows.

The two previous paragraphs prove that at the end of the while loop, the value o satisfies
" =o' + (A — ') rem m*® = X rem m?*, so the proof is complete. O

Proposition 7.2. Let E = (y™,z™y™, ... a™s1y"s=1 ™) be the initial terms of G, and
suppose that all f;’s have degree at most d.

46

Under assumptions Ay, Ay, A}, Algorithm LIFTONESTEP uses O™ (s*dngm; + td(d* +
dmg + s0 + 6“71)) operations in As,.

Proof. By convention (see the introduction), lifting each «; to o/ takes one operation in Ay,
for a total of O(N) = O(9) operations.

By Proposition 5.2, computing G* takes O (s*ngm,) operations (+, x) in B, with each
such operation taking O(J) operations in Ag,.

At Line 8, by Proposition 4.7, Algorithm REDUCTIONGENERALINPUT uses O™ (d? + dm, +
noms + sd) operations (4, x) in B. Here, we know that ng is at most d, so the runtime for all
fi’s becomes O™ (t(d* + dmy + s0)) operations in B, which is O7(¢t6(d? + dm, + sd)) operations
in AQ&-

Finally, we have to solve the linear system defined by #Z = 0 over A,,. This is a system in
té equations and N unknowns, and we know that it admits a unique solution in AL since the
corresponding matrix has trivial kernel modulo m. Even though AY is not a field, we may
still apply fast algorithms, such as the one in [32] (as extended in [33]), replacing zero-tests
by invertibility tests; this takes O™ (t6) operations in Ay,. O

As usual, if G (and thus G,) is (x, y)-primary, we may use a variant of this lifting procedure,
called LIFTONESTEPPUNCTUALPARAMETERS, which uses REDUCEDBASISFROMPUNCTU-
ALPARAMETERS as the first key subroutine. It allows us to work with N’ rather than N
unknown Grobner parameters; the proof now relies on Corollary 6.6, and the runtime becomes
O™ (s*dngmg + t6%(my + 0“72)) operations in Ay, (see Proposition 4.7).

At this stage, we are almost done with the proof of Theorem 1.4: for K = 2%, the algorithm
simply computes G rem m¥ through repeated calls to Algorithm LIFTONESTEP. However,
this procedure works with Grobner parameters as input and output. Hence, prior to entering
Algorithm LIFTONESTEP for the first time, we compute the Grobner parameters of G rem m,
and after the last call to Algorithm LIFTONESTEP, we compute G rem m® using Algorithm
REDUCEDBASISFROMPARAMETERS. This extra work does not affect the asymptotic runtime,
so that we do O™ (s?0ngms + t6(d* + dmg + s0)) operations in A/m? fori=1,... k.

The only operations not accounted for so far are the coefficient-wise reductions of the
polynomials fi, ..., f; modulo m2_, e ,ka. These cannot be expressed in terms of operations
in the residue class rings A/m?%; instead, as per the convention in the introduction, we
assume that each coefficient reduction modulo m?" takes time Ty, for a total of td?Ty: for
each i = 1,..., k. This concludes the proof of our main theorem. When we work with the
punctual Grobner cell, we saw in Proposition 4.7 that only dmy coefficients of each input
polynomial are needed, whence tdmT,: steps for coefficient reduction, for all indices 1.

Remark 7.3. If one wishes to work only with Grébner bases as input and output, it is
straightforward to design algorithms called LIFTONESTEPGROEBNERBASIS (and LIFTON-
ESTEPPUNCTUALGROEBNERBASIS), that take fi,..., f| and G mod m* as input and re-
turn G mod m?*. It suffices to call Algorithm PARAMETERSFROMREDUCEDBASIS when
entering the procedure, then Algorithm LIFTONESTEP, and finally Algorithm REDUCED-
BASISFROMPARAMETERS before eziting (or their punctual variants). This does not affect
asymptotic runtimes, but is not useful in the context of our main theorem.

47

Remark 7.4. When m is principal, we can slightly improve the lifting procedure by using
either divide-and-conquer techniques (folklore) or relaxed algorithms [4, Section 4] to solve
the linear system that gives €1, ...,en. The downside is that the runtime is not written in
terms of operations in Ao, anymore. Instead, we give runtimes for the common cases A = 7
and m = (p), and A = k[t] and m = (t — 7):

e In the former case, solving the system uses O™ (t6“ log(p)) bit operations, for a one-time
computation (matriz inversion) done modulo p, and O™ (§°klog(p)) for subsequently
solving the system modulo p**.

o In the latter case, the one time computation takes O (td“) operations in k, after which
linear system solving takes O™(6%k) operations in k.

To wit, each operation in Ao, as reported in Proposition 7.2, takes O~ (klog(p)) bit operations
in the former case, and O™ (klog(p)) operations in the latter. The net effect is that in both
cases, the cost of solving the linear system can be neglected (up to the one-time computation
we perform at the beginning).

Example 7.5. We show one step of the algorithm for our running example (Example 1.1),
focusing on the punctual Grobner parameters. Qur input is the polynomials f1, fo as
in the introduction, together with the Grobner basis of the (x,y)-primary component of
(f1 rem p, fo rem py, with p = 11; namely:

y* + 2xy + T2,
xy® + 5a?,
Ty + 923,

x4

We deduce the punctual Grobner parameters modulo 11, a = (0,2,2,5,9) € Z/11Z° (recall that
N’ =5 here). Following the algorithm, we set ({y,...,05) = (A1,24+ Ao, 2+ A3, 5+ Ay, 9+ A5)
and we compute the corresponding punctual Grobner basis, with coefficients truncated modulo
112 and (Ay, ..., AN)?. We obtain the polynomials written G* in the pseudo-code:

y' + Azy? + (Ag + 2)zy + (40A; + Az + 103A4 + 111A5 + 33)2® + (9A; + 2A5 + 18)2?,
zy® + (Mg + 5)a?,

2%y + (A5 + 9)a3,

xt.

Reducing fi and fo modulo G* (with calculations done modulo 11 and (A4, ..., Ax)?), and
keeping coefficients, we obtain the linear equations % (we only show the non-zero ones)

14N = 14A5+11 = 7T6A1 +14A3+111A4+102A5+99 = 5As+28A5+44 = 103A4,+10A5 = 0.
They admit the following unique solution modulo 112:

€1 = 0, €o = 77, €3 = 110, €4 = 88, €5 = 110,

48

as expected, all €; vanish modulo 11. From this, « s updated to take the value o + € =
0,79, 112,93, 119] modulo 11%2. One can verify that this coincides modulo 112 with the values
given n 10.

8. Conclusion

A natural question is whether our approach can be used for ideals in more than two
variables. As of now, several ingredients are missing: the known structure results are not
as complete as Lazard’s [46], and there is no known explicit description of Grobner cells.
Algorithmically, the key operation (reduction modulo an n-variate lexicographic Grobner
basis) seems to be a challenging problem in itself.

As already mentioned in the introduction, using our results in order to recover G itself,
rather than G rem m, including in particular the quantification of bad maximal ideals m, is
the subject of future work. Beyond this, the main algorithmic improvement we would like
to achieve is reducing the overall cost so that it matches that of [38], in cases where both
approaches are applicable. This would require several improvements in our algorithm, such as
for instance improving the dense linear algebra we use to perform each step in Newton iteration.

Acknowledgments We thank our reviewer for their diligent reading and the helpful sug-
gestions that improved the readability and general quality of this manuscript. Schost is
supported by an NSERC Discovery Grant. St-Pierre thanks NSERC, the Alexander Graham
Bell Canada Graduate Scholarship, and FQRNT for their funding.

References

[1] L. Alberti, B. Mourrain, and J. Wintz. Topology and arrangement computation of semi-
algebraic planar curves. Computer Aided Geometric Design, 25(8):631-651, 2008. doi:
10.1016/j.cagd.2008.06.009. URL https://doi.org/10.1016/j.cagd.2008.06.009.

[2] E. A. Arnold. Modular algorithms for computing Grobner bases. J. Symb. Comp., 35(4):
403-419, 2003. doi: 10.1016/S0747-7171(02)00140-2. URL https://doi.org/10.1016/
S0747-7171(02)00140-2.

[3] E. Berberich, P. Emeliyanenko, and M. Sagraloff. An elimination method for solving
bivariate polynomial systems: Eliminating the usual drawbacks. In ALENEX, pages
35-47. STAM, 2011. doi: 10.1137/1.9781611972917.4. URL https://doi.org/10.1137/
1.9781611972917 . 4.

[4] J. Berthomieu and R. Lebreton. Relaxed p-adic Hensel lifting for algebraic systems.
In ISSAC’12, pages 59-66. ACM, 2012. doi: 10.1145/2442829.2442842. URL https:
//dl.acm.org/doi/pdf/10.1145/2442829 .2442842.

[5] J. Briancon. Description de Hilb™ C{z,y}. Inventiones Mathematicae, 41:45-90, 1977.

49

[6]

[15]

[16]

[17]

J. Briancon and A. Galligo. Déformations distinguées d’un point de C* ou R?. In
Singularités a Cargése, number 7-8 in Astérisque, pages 129-138. Société mathématique
de France, 1973.

J. Canny, E. Kaltofen, and Y. Lakshman. Solving systems of non-linear polynomial
equations faster. In ISSAC"89, pages 121-128. ACM, 1989. doi: 10.1145/74540.74556.
URL https://dl.acm.org/doi/pdf/10.1145/74540.74556.

G. Carra Ferro. Grobner bases and Hilbert schemes. i. Journal of Symbolic Computation,
6(2):219-230, 1988. ISSN 0747-7171. doi: 10.1016/S0747-7171(88)80044-0. URL
https://doi.org/10.1016/50747-7171(88)80044-0.

A. Conca and G. Valla. Canonical Hilbert-Burch matrices for ideals of k[z,y|. Michigan
Mathematical Journal, 57:157 — 172, 2008. doi: 10.1307/mmj/1220879402. URL https:
//doi.org/10.1307/mmj/1220879402.

X. Dahan. Lexicographic Grobner bases of bivariate polynomials modulo a univariate
one. Journal of Symbolic Computation, 110:24-65, 2022. ISSN 0747-7171. doi: 10.1016/
j.jsc.2021.10.001. URL https://doi.org/10.1016/j.jsc.2021.10.001.

B. Dayton, T.-Y. Li, and Z. Zeng. Multiple zeros of nonlinear systems. Mathematics of
Computation, 80(276):2143-2168, 2011.

D. N. Diatta, S. Diatta, F. Rouillier, M.-F. Roy, and M. Sagraloff. Bounds for polynomials
on algebraic numbers and application to curve topology, 2021.

D. I. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the asymptotic and practical
complexity of solving bivariate systems over the reals. J. Symb. Comput., 44(7):818-835,
2009. doi: 10.1016/j.jsc.2008.04.009. URL https://doi.org/10.1016/j.jsc.2008.04.
009.

G. L. Ebert. Some comments on the modular approach to Gréobner bases. ACM SIGSAM
Bull., 17(2):28-32, 1983. doi: 10.1145/1089330.1089336. URL https://dl.acm.org/
doi/abs/10.1145/1089330.1089336.

David Eisenbud. Commutative algebra: with a view toward algebraic geometry, volume
150 of GTM. Springer, 2013.

G. Ellingsrud and S. Strgmme. On the homology of the Hilbert scheme of points in the
plane. Inventiones Mathematicae, 87:343-352, 1987. doi: 10.1007/BF01389419. URL
https://doi.org/10.1007/BF01389419.

P. Emeliyanenko and M. Sagraloff. On the complexity of solving a bivariate polynomial
system. In ISSAC’12, pages 154-161. ACM, 2012. doi: 10.1145/2442829.2442854. URL
https://doi.org/10.1145/2442829.2442854.

20

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[. Z. Emiris and E. P. Tsigaridas. Real solving of bivariate polynomial systems. In
CASC, pages 150-161. Springer, 2005. doi: 10.1007/11555964_13. URL https://doi.
org/10.1007/11555964_13.

M. Giusti, J. Heintz, J.-E. Morais, and L.-M. Pardo. When polynomial equation systems
can be solved fast? In AAFECC-11, volume 948 of LNCS, pages 205-231. Springer, 1995.

M. Giusti, K. Hagele, J. Heintz, J.-E. Morais, J.-L.. Montana, and L.-M. Pardo. Lower
bounds for diophantine approximation. J. of Pure and Applied Algebra, 117/118:277—
317, 1997. doi: 10.1016/S0022-4049(97)00015-7. URL https://doi.org/10.1016/
S0022-4049(97)00015-7.

M. Giusti, J. Heintz, J.-E. Morais, J. Morgenstern, and L.-M. Pardo. Straight-line
programs in geometric elimination theory. Journal of Pure and Applied Algebra, 124:
101-146, 1998. doi: 10.1016/50022-4049(96)00099-0. URL https://doi.org/10.1016/
S0022-4049(96)00099-0.

M. Giusti, G. Lecerf, and B. Salvy. A Grobner-free alternative for polynomial system
solving. Journal of Complexity, 17(1):154-211, 2001. doi: 10.1006/jcom.2000.0571. URL
https://doi.org/10.1006/jcom.2000.0571.

L. Gonzalez-Vega and M. El Kahoui. An improved upper complexity bound for the
topology computation of a real algebraic plane curve. Journal of Complexity, 12(4):527 —
544, 1996. doi: 10.1006/jcom.1996.0032. URL https://doi.org/10.1006/jcom.1996.
0032.

Mark Haiman. t,¢-Catalan numbers and the Hilbert scheme. Discrete Math., 193
(1-3):201-224, 1998. ISSN 0012-365X,1872-681X. doi: 10.1016/S0012-365X(98)00141-1.
URL https://doi.org/10.1016/S0012-365X(98)00141-1. Selected papers in honor
of Adriano Garsia (Taormina, 1994).

J. Hauenstein, B. Mourrain, and A. Szanto. On deflation and multiplicity structure.
Journal of Symbolic Computation, 83:228-253, 2017. doi: 10.1016/j.jsc.2016.11.013.
URL https://doi.org/10.1016/j.jsc.2016.11.013. Special issue on the conference
ISSAC 2015: Symbolic computation and computer algebra.

J. van der Hoeven. On the complexity of polynomial reduction. In I. Kotsireas and
E. Martinez-Moro, editors, Applications of Computer Algebra 2015, volume 198 of
Springer Proceedings in Mathematics and Statistics, pages 447-458. Springer, 2015.

J. van der Hoeven and R. Larrieu. Fast Grobner basis computation and polynomial
reduction for generic bivariate ideals. AAFECC, 30(6):509-539, 2019. doi: 10.1007/
s00200-019-00389-9. URL https://doi.org/10.1007/s00200-019-00389-9.

Mark Huibregtse. On Ellingsrud and Strgmme’s cell decomposition of Hilbzzc . Invent.

Math., 160(1):165-172, 2005. doi: 10.1007/s00222-004-0409-9. URL https://doi.org/
10.1007/s00222-004-0409-9.

o1

[29]

[30]

[31]

[32]

[37]

[38]

Mark E. Huibregtse. A description of certain affine open subschemes that form an open
covering of Hilbzﬁ. Pacific J. Math., 204(1):97-143, 2002. doi: 10.2140/pjm.2002.204.97.
URL http://dx.doi.org/10.2140/pjm.2002.204.97.

S. G. Hyun, S. Melczer, E. Schost, and C. St-Pierre. Change of basis for m-primary
ideals in one and two variables. In ISSAC"19, pages 227-234. ACM Press, 2019. doi: 10.
1145/33262293326268.IJRlJhttpSZ//dl.acm.org/doi/lO.1145/3326229.3326268

A. Tarrobino. Punctual Hilbert Schemes. Number 188 in Memoirs of the American
Mathematical Society. American Mathematical Society, 1977.

O. H Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix decomposition
algorithm and applications. J. Algorithms, 3(1):45-56, 1982. doi: 10.1016/0196-6774(82)
90007-4. URL https://doi.org/10.1016/0196-6774(82)90007-4.

C.-P. Jeannerod. LSP matrix decomposition revisited. 2006.

K. Kedlaya and C. Umans. Fast polynomial factorization and modular composition.
SIAM Journal on Computing, 40(6):1767-1802, 2011. doi: 10.1137/08073408X. URL
https://doi.org/10.1137/08073408X.

A. Kobel and M. Sagraloff. Improved complexity bounds for computing with planar
algebraic curves. CoRR, abs/1401.5690, 2014.

A. Kobel and M. Sagraloff. On the complexity of computing with planar algebraic
curves. Journal of Complexity, 31(2):206-236, 2015. ISSN 0885-064X. doi: https:
//doi.org/10.1016/j.jco.2014.08.002.

D. Lazard. Ideal bases and primary decomposition: case of two variables. J. Symbolic
Comput., 1(3):261-270, 1985. doi: 10.1016/S0747-7171(85)80035-3. URL https://doi.
org/10.1016/30747-7171(85)80035-3.

R. Lebreton, E. Mehrabi, and E. Schost. On the complexity of solving bivariate systems:
the case of non-singular solutions. In ISSAC’13, pages 251-258. ACM, 2013. doi:
10.1145/2465506.2465950. URL https://doi.org/10.1145/2465506.2465950.

G. Lecerf. Quadratic Newton iteration for systems with multiplicity. Foundations of
Computational Mathematics, 2(3):247-293, 2002. doi: 10.1007/s102080010026. URL
https://doi.org/10.1007/s102080010026.

Mathias Lederer. Grobner strata in the Hilbert scheme of points. J. Commut. Algebra,
3(3):349-404, 2011. ISSN 1939-0807,1939-2346. doi: 10.1216/JCA-2011-3-3-349. URL
https://doi.org/10.1216/JCA-2011-3-3-349.

P. Lella and M. Roggero. Rational components of Hilbert schemes. Rend. Semin. Mat.
Univ. Padova, 126:11-45, 2011. doi: 10.4171/RSMUP/126-2. URL https://doi.org/
10.4171/RSMUP/126-2.

52

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[53]

A. Leykin, J. Verschelde, and A. Zhao. Newton’s method with deflation for isolated
singularities of polynomial systems. Theoretical Computer Science, 359(1):111-122, 2006.
doi: https://doi.org/10.1016/j.tcs.2006.02.018.

A. Leykin, J. Verschelde, and A. Zhao. Higher-order deflation for polynomial systems
with isolated singular solutions. In Algorithms in algebraic geometry, pages 79-97.
Springer, 2008.

X. Li, M. Moreno Maza, and E. Schost. Fast arithmetic for triangular sets: from theory
to practice. J. Symb. Comp., 44(7):891-907, 2009. doi: 10.1016/j.jsc.2008.04.019. URL
https://doi.org/10.1016/j.jsc.2008.04.019.

A. Mantzaflaris and B. Mourrain. Deflation and certified isolation of singular zeros
of polynomial systems. In ISSAC’11, page 249-256. ACM Press, 2011. doi: 10.1145/
1993886.1993925. URL https://dl.acm.org/doi/abs/10.1145/1993886.1993925.

M. G. Marinari and T. Mora. Cerlienco-Mureddu correspondence and Lazard structural
theorem. Investigacion Operacional, 27(1):75-98, 2013.

E. Mehrabi and E. Schost. A softly optimal Monte Carlo algorithm for solving bivariate
polynomial systems over the integers. Journal of Complexity, 34:78-128, 2016. ISSN
0885-064X. doi: 10.1016/j.jco.2015.11.009. URL https://doi.org/10.1016/j. jco.
2015.11.009.

V. Neiger, B. Salvy, E. Schost, and G. Villard. Faster modular composition, 2021. URL
https://arxiv.org/abs/2110.08354.

R Notari and M. L. Spreafico. A stratification of Hilbert schemes by initial ideals and
applications. Manuscripta Mathematica, 101:429-448, 2000. doi: 0.1007/s002290050225.
URL https://doi.org/10.1007/s002290050225.

T. Ojika, S. Watanabe, and T. Mitsui. Deflation algorithm for the multiple roots of
a system of nonlinear equations. Journal of Mathematical Analysis and Applications,
96(2):463-479, 1983. ISSN 0022-247X. doi: 10.1016/0022-247X(83)90055-0. URL
https://doi.org/10.1016/0022-247X(83)90055-0.

F. Pauer. On lucky ideals for Grobner basis computations. J. Symb. Comp., 14(5):
471-482, 1992. doi: 10.1016/0747-7171(92)90018-Y. URL https://doi.org/10.1016/
0747-7171(92)90018-Y.

S. Pope and A. Szanto. Nearest multivariate system with given root multiplicities.
Journal of Symbolic Computation, 44(6):606-625, 2009. ISSN 0747-7171. doi: 10.1016/j.
js¢.2008.03.005. URL https://doi.org/10.1016/j.jsc.2008.03.005.

L. Robbiano. On border basis and Grobner basis schemes. Collectanea Mathematica, 60:
11-25, 2009. doi: 10.1007/BF03191213. URL https://doi.org/10.1007/BF03191213.

93

[54]

[55]

[56]

[61]

[62]

[63]

[64]

F. Rouillier. Solving zero-dimensional systems through the Rational Univariate Represen-
tation. Applicable Algebra in Engineering, Communication and Computing, 9(5):433-461,
1999. doi: 10.1007/s002000050114. URL https://doi.org/10.1007/s002000050114.

F. Rouillier. On solving systems of bivariate polynomials. In ICMS, volume 6327
of Lecture Notes in Computer Science, pages 100-104. Springer, 2010. doi: 10.1007/
978-3-642-15582-6_21. URL https://doi.org/10.1007/978-3-642-15582-6_21.

E. Schost. Computing parametric geometric resolutions. Applicable Algebra in
Engineering, Communication and Computing, 13(5):349-393, 2003. doi: 10.1007/
s00200-002-0109-x. URL https://doi.org/10.1007/s00200-002-0109-x.

E. Schost and C. St-Pierre. p-adic algorithm for bivariate Grobner bases. In ISSAC
23, page 508-516. ACM Press, 2023. doi: 10.1145/3597066.3597086. URL https:
//doi.org/10.1145/3597066.3597086.

W. Trinks. On improving approximate results of Buchberger’s algorithm by Newton’s
method. SIGSAM Bull., 18(3):7-11, 1984. doi: 10.1145/1089389.1089392. URL https:
//doi.org/10.1145/1089389.1089392.

J. van der Hoeven and R. Larrieu. Fast reduction of bivariate polynomials with respect
to sufficiently regular Grobner bases. In ISSAC 18, page 199-206. ACM Press, 2018.
doi: 10.1145/3208976.3209003. URL https://doi.org/10.1145/3208976.3209003.

J. van der Hoeven and E. Schost. Multi-point evaluation in higher dimensions. Applicable
Algebra in Engineering, Communication and Computing, 24(1):37-52, 2013. doi: 10.
1007/00200-012-0179-3. URL https://doi.org/10.1007/s00200-012-0179-3.

J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University
Press, third edition, 2013.

F. Winkler. A p-adic approach to the computation of Grobner bases. J. Symb. Comput.,
6(2/3):287-304, 1988. doi: 10.1016/S0747-7171(88)80049-X. URL https://doi.org/
10.1145/1089389.1089392.

X. Wu and L. Zhi. Determining singular solutions of polynomial systems via sym-
bolic-numeric reduction to geometric involutive forms. Journal of Symbolic Computation,
47(3):227-238, 2012. ISSN 0747-7171. doi: https://doi.org/10.1016/j.jsc.2011.10.001.

N. Yamamoto. Regularization of solutions of nonlinear equations with singular Jacobian
matrices. J. Infor. Processing, 7:16-21, 1984.

o4

