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Abstract

A roadmap for an algebraic set V' defined by polynomials with coefficients in the field Q of
rational numbers is an algebraic curve contained in V' whose intersection with all connected
components of V N R" is connected. These objects, introduced by Canny, can be used to
answer connectivity queries over V NR"” provided that they are required to contain the finite
set of query points P C V; in this case,we say that the roadmap is associated to (V,P).

In this paper, we make effective a connectivity result we previously proved, to design a
Monte Carlo algorithm which, on input (i) a finite sequence of polynomials defining V' (and
satisfying some regularity assumptions) and (%) an algebraic representation of finitely many
query points P in V, computes a roadmap for (V,P). This algorithm generalizes the nearly
optimal one introduced by the last two authors by dropping a boundedness assumption on
the real trace of V.

The output size and running times of our algorithm are both polynomial in (nD)"!°89
where D is the maximal degree of the input equations and d is the dimension of V. As far
as we know, the best previously known algorithm dealing with such sets has an output size
and running time respectively polynomial in (nl°8mD)mlegn and (plosn pynles™n,

1 Introduction

Let Q be a real field and let R (resp. C) be a real (resp. algebraic) closure of Q. One can
think about Q, R and C instead, for the sake of understanding. Further, n > 0 is an integer
which stands for the dimension of the ambient space in which we compute roadmaps. In this
document we deal with sets in R™ and C" defined by polynomial equations with coefficients in
Q, that are referred to as respectively algebraic sets and real algebraic sets defined over Q. We

refer to [36, 15] and [8] for precise definition and properties of these sets. Considering sets in
R"™ defined by polynomial equations and inequalities defines the class of semi-algebraic sets; we
refer to [3, 3] for a comprehensive study of these sets and their properties.
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In particular, semi-algebraic and real algebraic sets can be decomposed into finitely many
semi-algebraically connected components by [, Theorem 2.4.4.]. Counting these components
[23, 38| or answering connectivity queries over these sets [35] finds many applications in e.g.
robotics [9, 11, 12].

Following [9, 10|, such computational problems are tackled by computing objects called
roadmaps and introduced by Canny in [9]. It is worth noting that some algorithms for computing
roadmaps, which enjoy a so-called property of divergence, can also be used to compute semi-
algebraic descriptions of the connected components of the set under study (see |3, Chap. 15]).
In this paper, we focus on the case of real algebraic sets and provide such a roadmap algorithm.

Given an algebraic set V' C C" and a finite set of query points P C V, both defined over Q,
a roadmap R associated to (V,P) is an algebraic curve which is contained in V', which contains
‘P, and whose intersection with each semi-algebraically connected component of VN R" is non-
empty and semi-algebraically connected. Once a roadmap is computed, one can obtain a graph
that is semi-algebraically homeomorphic to its real trace (see e.g. [25]), which can then be used
to answer connectivity queries.

Given a polynomial system defining V', the effective construction of roadmaps relies on
connectivity statements which allow one to construct real algebraic subsets of VNR", of smaller
dimension, having a connected intersection with the connected components of VN R". Such
statements in [32, 4, 5] make the assumption that V' has finitely many singular points and
that V' N R" is bounded. In [30], a generalization was obtained by dropping the boundedness
assumption. In this paper, we design a Monte Carlo algorithm for computing roadmaps based
on this latter result, assuming regularity assumptions’ on the system defining V. Under those
assumptions, this improves the state of the art complexity.

1.1 Prior works

Canny provided the first algorithms for computing roadmaps; we call such algorithms roadmap
algorithms. Suppose that V' C C" is defined by s polynomials of degrees at most D. Canny
obtained in [9, 10] a Monte Carlo roadmap algorithm using (sD)O("Q) arithmetic operations in
Q. A deterministic version is also given, with a runtime (sD)O(”4). This striking and impor-
tant result was then reconsidered and improved in [38, 22, 24| (among others) to obtain in [2]
a deterministic algorithm using s DO(M?) field operations; this was the state-of-the-art for
decades.

All these algorithms are based on the same following geometric solving pattern. First a curve,
defined as the critical locus of a projection on a plane, is computed; it meets all semi-algebrai-
cally connected components of the set under study. Next, connectivity failures are repaired by
slicing our set with appropriate hyperplanes, performing recursive calls over these slices. This
geometric pattern also provides us with a connecting procedure when a new query point is
considered: it basically consists in slicing the variety with a hyperplane connecting this point to
the first critical curve we considered, computing a roadmap in the slice, which is then connected
to the whole roadmap with the critical curve. This gives a special recursive structure to such
connecting procedures; combined with the fact that they share the initial roadmap as “skeleton”,
this yields the aforementioned divergence property.

The algorithm designed in [32], which is Monte Carlo, is the first one to be based on a
different geometric solving pattern, thanks to an innovative geometric connectivity theorem
(under assumptions on the input variety, in particular boundedness). This theorem gives much
more freedom in the way we can construct roadmaps; in particular, it allows one to choose

1As a sequel to [30], this paper similarly abuses the terminology by calling an algebraic set with isolated
singularities "smooth". This is also consistent with previous literature dealing with such algebraic sets [32, 33].



critical loci of projections of higher dimension, which makes it possible to slice the input with
sections of smaller dimension. This yields a better balance between the dimensions of these
geometric objects, reducing the depth of the recursion. The algorithm in [32] is a first prototype
of this new family of roadmap algorithms; it is Monte Carlo and runs in time (nD)O(”\/ﬁ); the
algorithm in [5]| has similar runtime, but drops all assumptions from [32] and is deterministic.

In [1], the authors provide a deterministic algorithm which runs in time (nlog"D)O("logz "),
for an output roadmap with degree (nD)O(”lognlog ") By re-introducing some regularity and
boundedness assumption, the first roadmap algorithm running in time (nD)O(” logd) i3 given in
[33], where d is the dimension of the input algebraic set. This last algorithm is Monte Carlo and
explicit constants are provided in the big-O exponent, showing that the algorithm runs in time
sub-quadratic in the degree bound of the output. Precisely, letting

B — 163d (TL log,yn )4dlog2d +0(d) l)inode—&-O(n)7

this algorithm uses E%? arithmetic operations in Q, where F is the complexity of evaluating
the input system of polynomial equations, whereas the output size is at most 2.

It is worth noting that all these algorithms enjoy the aforementioned divergence property even
if the connectivity result they use is not the same. The recursive structure of these algorithms,
which first consider a critical locus of prescribed dimension, and repair connectivity failures with
slices of lower dimension, leads to connecting procedures that have a similar pattern, sharing
the initial roadmap as a skeleton to which all additional query points can be connected.

The result of [33] is appealing and raises the hope to obtain practically faster implementations
for computing roadmaps, as it makes explicit the constants which were hidden by the Landau
notation used in the exponent in prior works, and because it relates in a close manner the number
of arithmetic operations with the worst-case output size.

However, in several applications where roadmaps are used for mechanism design (see e.g.
[11, 12, 13]), there is a need for computing roadmaps in unbounded real algebraic sets, still
satisfying smoothness properties. Also, there is a need to obtain roadmap algorithms that can
be used for higher level algorithms in real algebraic geometry for e.g. computing semi-algebraic
descriptions of connected components of real algebraic sets.

This leaves open the problem of obtaining roadmap algorithms, dropping the boundedness
assumption, while still using at most E%? arithmetic operations in Q.

1.2 Bottlenecks

We discuss the bottlenecks one encounters when tackling this open problem, starting with an
overview. To drop the boundedness assumption, one can use reductions to the bounded case by
e.g. lifting V to C"*! and taking the intersection with a hypersphere of radius infinitesimally
large, or by considering the intersection of V' C C™ with a hyperball of R" of large enough radius
(which would then be pre-computed). Both cases result in an increase of the complexity, beyond
the bounds we target. Moreover, the second approach yields the loss of the aforementioned
divergence property. These strategies are discussed in detail below.

Several natural techniques can be considered to remove the boundedness assumption. A first
one, which is used already in e.g. [5] or [1], is to embed the algebraic set V' defined by the input
system in C™*! and consider the intersection of V with a n-dimensional sphere S ¢ R"*! of
infinitesimally large radius. The next step is then to compute a roadmap for V' NS. This requires
one more variable and the use of an infinitesimal, which makes all arithmetic operations more
expensive. As far as we know, this does not allow one to obtain a roadmap algorithm within
our objective of roughly %3 operations in Q.



A variant of such an approach would be to pre-compute a large enough radius for S, say
p, as for instance in [12|. However, there are n + 1 variables instead of n to handle and the
intersection with S doubles the degree of the algebraic set we work with. More importantly, the
roadmap we get would be valid only in §: it must be recomputed when query points in VN R"
are chosen outside of S. Hence, such an approach breaks the divergence property and could not
be used to compute semi-algebraic descriptions of the real algebraic set V N R".

An approach that would consist in intersecting V' with a ball B in R"” of large enough radius,
and then computing a roadmap for the semi-algebraic set V' N B, would share these shortcom-
ings. More importantly, the current state-of-the-art algorithms for computing roadmaps in
semi-algebraic sets is exponential in n?, while we target complexities which are exponential in
nloged.

Hence, in order to obtain roadmap algorithms for smooth real algebraic sets with arithmetic
complexity cubic in 4, without using a reduction to a bounded input, a number of new ingre-
dients are required. A first one is a connectivity result which leaves as much freedom as the

one in [32], but does not make use of any boundedness assumption. This is done in [30] where
we showed how to drop the boundedness assumption in such connectivity results. A key new
ingredient is that instead of considering critical loci of projections as is done in [32], we consider

critical loci of proper polynomial maps (e.g. with a quadratic instead of linear component).
Slices of V' to repair connectivity failures are chosen accordingly.

This connectivity result by far not sufficient to reach our goal. The purpose of this article
is to show which data structures are needed and how the computations can be organized and
analyzed to reach a runtime similar to the one of [33], without the boundedness assumption.

1.3 Data representations
Before entering into a detailed description of this complexity result, we start by recalling the

data representations we use to encode our input and output.

Straight-line programs Input polynomials will be represented as straight-line programs,
which is a flexible way of representing multivariate polynomials as a division- and loop-free
sequences of operations. Formally, a straight-line program I" of length F, computing polynomi-
als in Q[X], with X = z1,...,x,, is a sequence I' = (v1,...,7vg) such that for all 1 <i < F,
one of the two following holds:

e v; = (op;, ai, b)) with op; € {+,—, x} and —n+1 < a;,b; < i.

To I' we associate polynomials G_y+1,...,Gg such that G; = x4, for —n+1 < i < 0, and for
1> 1:

o if Yi = )\Z then Gl == )\i§
o if v, = (op;, ai, b;) then G; = Gy, op; Gy,.

Then we say that I' computes some polynomials fi, ..., f. € Q[X] if it holds that {f1,..., f.} C
{G7n+1) cee GE}

Example 1. We give an illustrating example presented in [26, Section 1.1]. For m € N* a



straight-line program computing 22" in Q[z1, z2] is given by taking

71 = (Xa_lv_l)
2 = (x,1,1)
Ym = (x,m—1,m—1)

where we associate G1 = 22 to y1, G2 = G2 = 2} to 72 and so on with G, = G?,_| = 22" which
is associated to 7yp,. Such a program has length m, while the dense and sparse representations
of 2™ have respective length 2™ + 1 and 2. But remark that a straight-line program computing
(1 + 22)%" can be obtained by setting ;1 = (+, —1,0), which computes z1 + 22, and adding
Ym+1 = (X, m,m) at the end. The latter modification increments the length by one, while the
sparse representation has now length (gm)

Because of the good behaviour of such a representation with respect to linear changes of

variables, it is used as input in many algorithms for solving polynomial systems [26, 18, 20, 19,

, 28]. It is not restrictive since any polynomial of degree D in n variables can be computed with

a straight-line program of length O(D™) by simply evaluating and summing all its monomials.

By convention, we note I'’ = (0) the straight-line program of length 1 that computes the zero
polynomial.

Zero-dimensional parametrizations A finite set of points defined over Q is represented us-
ing zero-dimensional parametrizations. A zero-dimensional parametrization & with coefficients
in Q consists of:

e polynomials (w, p1,...,pn) in Q[u] where u is a new variable, w is a monic square-free
polynomial and it holds that deg(p;) < deg(w),

e a linear form [ in variables x1, ..., z,,

such that
l(p1,-.-ypn) =u mod w.

Such a data structure encodes the finite set of points, denoted by Z(.2?) defined as follows

2(2) = ()., pul®)) € C" | w(®) = 0}

According to this definition, the roots of w are exactly the values taken by [ on Z(Z?). We define
the degree of such a parametrization & as the degree of the polynomial w, which is exactly the
cardinality of Z(%?). By convention we note &; = (1) the zero-dimensional parametrization
that encodes the empty set.

Such parametrizations will be used to encode input query points and internally in our
roadmap algorithm to manipulate finite sets of points.

One-dimensional parametrizations Algebraic curves defined over Q will be represented
using one-dimensional rational parametrizations. A one-dimensional rational parametrization
Z with coefficients in Q is a couple as follows:

e polynomials (w, p1, ..., py) in Q[u,v] where u and v are new variables, w is a monic square-
free polynomial and with deg(p;) < deg(w),

e linear forms ([, ') in the variables x1,..., z,,



such that
ow

l(p1y--ypn) =ug mod w

and 5
w
C(p1,...,pn) = Ve mod w.

Such a data structure encodes the algebraic curve, denoted by Z(Z), defined as the Zariski
closure of the following constructible set

{( p1(9,1) pn(9,1)
Ow/Ou(¥,n)’ " Ow/ou(d,n)

Ow

ou

>€C”]w(19,77)20, (19,17)7&0}.
We define the degree deg(Z#) of such a parametrization #Z as the degree of Z(#) (that is, the
maximum of the cardinalities of the finite sets obtained by intersecting Z(#) with a hyperplane).
Any algebraic curve C' can be described as C' = Z(Z#), for some one-dimensional rational para-
metrization that satisfies deg(w) = deg(#) (that is, the degree of C'); guaranteeing this is the
reason why we use rational functions with the specific denominator dw/du. This will always be
our choice in the sequel; in this case, storing a one-dimensional parametrization # of degree §
involves O(nd?) coefficients.

Our algorithm computes a roadmap R of an algebraic set V', with R having, by definition,
dimension one. The output is given by means of a one-dimensional parametrization of R.

1.4 Contributions

Recall that an algebraic set V can be uniquely decomposed into finitely many irreducible
components. When all these components have the same dimension d, we say that V is d-
equidimensional. For a set of polynomials f C C[X], with X = z1,...,z,, we denote by
V(f) € C" the vanishing locus of f, and by O(f) its complement.

Given an algebraic set V' C C", we denote by I(V') the ideal of V', that is the ideal of C[X]
of polynomials vanishing on V. For y € C", we denote by Jacy(f) the Jacobian matrix of the
polynomials f evaluated at y. For V' d-equidimensional in C”, those points y € V' at which the
Jacobian matrix of a finite set of generators of I(V') has rank n — d are called reqular points and
the set of those points is denoted by reg(V). The others are called singular points; the set of
singular points of V' (its singular locus) is denoted by sing(V') and is an algebraic subset of V.

We say that (fi,..., fp) C Q[X] is a reduced regular sequence if the following holds for every

ie{l,...,ph
e the algebraic set V(f1,..., f;) C C" is either equidimensional of dimension n —i or empty,
e the ideal (fi,..., f;) is radical.

In the following main result, and in all this work, we design, and also use known algorithms,
whose success relies on the successive choice of several parameters Ai, Ao, ... in affine spaces
Q% ,Q%, ... These algorithms are probabilistic in the sense that, in any such case, there exist
non-zero polynomials Ay, Ag, ..., such that the algorithm is successful if A;(A;) # 0 for all i.
These algorithms are Monte Carlo, as we cannot always guarantee correctness of the output
with reasonable complexity. Nevertheless, in cases when we can detect failure, our procedures
will output fail (though not returning fail does not guarantee correctness).

Our main result is the following one. Below, the soft-O notation O (g) denotes the class
O(g(logeg )®) for some constant a > 0, where log, is the binary logarithm function.



Theorem 1.1. Let f = (f1,...,fp) C Qlz1,...,2n] be a reduced regular sequence, let D > 2
be bounding the degrees of the f;’s and suppose that I' is a straight-line program of length E
evaluating f. Assume that V(f) C C™ has finitely many singular points.

Let & be a zero-dimensional parametrization of degree p with Z(2?) C V(f). There exists a
Monte Carlo algorithm which, on input I' and &2 computes a one-dimensional parametrization

X of a roadmap of (V(f),Z(2?)) of degree

B = M163dn4d10g2d+0(d) D2nlog2d+0(n) _ M(nD)O(nlogd)’

where d = n — p, using E> arithmetic operations in Q.

Hence, we dropped the boundedness assumption on V' (f) N R™ made in [33, Theorem 1.1],
still keeping a complexity similar to the algorithm presented in [33]. Note that the arithmetic
complexity statement above is cubic in the degree bound % on the output; the output size itself
is O (n%z) elements in Q. Hence, as in [33], our runtime is sub-quadratic in the bound on
the output size. Note that a complexity bound with a comprehensive exponent, that is without
using big Oh notation, is given below in Theorem 3.8, of which the above main result is a di-
rect consequence. Note that the (more general) algorithm in [/] runs in (deterministic) time

2
ulogQ” (nlog "D)O(nlog ") which is not polynomial in its output size. Note also that the com-
plexity constant hidden by the Landau notation in [1] is not known. Our output size is smaller,
and for families of smooth real algebraic sets of fized dimension, our algorithm runs in time
(nD)°™.
Our algorithm works as follows:

e it starts by considering the critical locus W associated to some special polynomial map ¢
with image in R?;

e next, it uses a variant of the algorithm in [33], to deal with some slices V(f) Nt (v;) for
some vy, ...,v in R.

We will see that the map ¢ depends on some parameters in C”, for some N > 0, and that there
exists a non-zero polynomial G such that when choosing these parameters in the open set O(G),
one can apply the connectivity result in [30], which does not need any boundedness assumption.
This is where first elements of randomization are needed. A second element comes from our use
of a variant of [33], which is also a Monte Carlo algorithm.

Remark 1.2. As already emphasized, our algorithm is Monte Carlo and its success depends
on the choice of several parameters (the aforementioned map ¢ as well as linear change of
coordinates and linear forms). The set of "bad" choices is enclosed in some proper Zariski
closed subsets (see e.g. Proposition 2.3, as well as |33, Prop. 3.5] and [33, Prop. 3.7]). In
order to estimate the probability of success of such choices, one needs to bound the degrees of
these proper Zariski closed subsets as is done in [16] for algorithms computing sample points per
connected component of a smooth real algebraic set. While [16] provides already several tools
towards obtaining such degree bounds, some dedicated future work is needed.

However, it is worth pointing out that in several situations, these choices are made to ensure
regularity properties (dimension, smoothness, etc.) of some algebraic sets, and the algorithm
will detect and return "fail" when such properties are not satisfied. It may also return "fail"
when the algebraic elimination routines it relies on do so (this is due to probabilistic aspects of
these elimination routines, such as choice of random projections, or of some prime numbers).



2 Preliminaries

2.1 Minors, rank and submatrices

We present here some technical results on the minors and the rank of a certain class of matrices
that will occur in this paper, when dealing with particular cases and incidence varieties in
Section 4.

Lemma 2.1. Let ¢ > 1 and 1 < ¢ < p be integers. Let A, B,C be respectively ¢ X p, ¢ X q and
q X p matrices with coefficients in a commutative ring R such that My and My are the following
(c+q) x (g + p) matrices:
B A
My —
=15
where 1 is the identity matriz of size q. Let m € R and e be in {0, ..., c}; then, for k =1,2 the
following conditions are equivalent:

and My = [0 A} ,

I, C

1. m is the determinant of a (q + e)-submatriz of My, that contains Iy;
2. (=1)%m is an e-minor of A.

In this case, if 1 < i1 < -+ <i.<candl < ji1,...,5 < p are the indices of respectively the
rows and the columns of A selected in item 2, then the corresponding rows and columns in My,
are of respective indices

1<y < <ie<c+1<---<c+q and 1<---<qg<qg+j1 << q+ Je

Proof. The determinant of any submatrix of M; containing I, can be reduced, up to the sign
(—=1)%, to a minor of A by using the cofactor expansion with respect to the last ¢ rows of M;
(resp. the first ¢ columns of Msy). Conversely, any e-minor of A is a (¢ + e¢)-minor of My, by
extending the associated submatrix of A to a submatrix of Mj, containing I,. The correspondence
between indices stated above is then straightforward. O

Lemma 2.2. With the notation of Lemma 2.1, if R is a field, then rank(M}y) = rank(A)+q > ¢
fork=1,2.

Proof. For k = 1, performing row operations allows us to replace B by the zero matrix, after
which the claim becomes evident. For k = 2, use column operations. ]

2.2 Polynomial maps, generalized polar varieties and fibers

Let Z C C"™ be an equidimensional algebraic set and ¢ = (¢1,...,%m) be a finite set of
polynomials of C[X]; we still denote by ¢: Z — C™ the restriction of the polynomial map
induced by ¢ to Z. For y € reg(Z), we say that y € Z is a critical point of ¢ if

dyo(T,Z) # C™,

where dy is the differential of ¢ at y. We will denote by W° (¢, Z) the set of the critical points
of ¢ on Z, and by W (e, Z) its Zariski closure. A critical value is the image of a critical point
by ¢.

Besides, we let K(p,Z) = W°(p, Z)Using(Z) be the set of singular points of ¢ on Z.
When Z is defined by a reduced regular sequence f = (f1,..., f.), K(¢p, Z) is then defined as



the intersection of Z with the set of points of C™ where the Jacobian matrix of (f, ¢) has rank
at most ¢ +m — 1 (see [33, Lemma A.2|).
For 1 <1 < m, we set

p;: C" — C
y = (p1(y), - pi(y)).

Given the maps (¢;)i1<i<m, we denote W°(p,,Z), W(yp,;,Z) and K(p,,Z) by respectively
Wg(i, Z), Wy(i, Z) and Ky (i, Z). For i = 0, we let CY be a singleton of the form C° = {e},
and @,: y € C" — o € C° be the unique possible map. Then for all y € C°, cpal(y) = C"; we
set W2 (0,2) = Wy (0, Z) = 0. The sets W, (i, Z), for 0 < i < m are called the generalized polar
varieties associated to o on Z.

The main result we state in this subsection is the following (the somewhat lengthy proof is
in Section 5). It establishes some genericity properties of generalized polar varieties associated
to a class of polynomial maps. It is a generalization of 31, Theorem 1|, which only deals with
projections.

Proposition 2.3. Let V C C" be a d-equidimensional algebraic set with finitely many singular
points and 6 be in C[X]. Let 2 <t < d+1. For a = (a1,...,0) in C™, we define ¢ =
(p1(X, 1)y ..o, (X, ), where for 2 < j <t

(X 051) = 9 +ZO¢1 kTr and gpj X aJ Za%kxk
k=1

Then, there exists a non-empty Zariski open subset Q(V,0,v) C C™ such that for every o €
Q(V,0,¢) and i € {1,...,t}, the following holds:

1. either Wy (i,V) is empty or (i — 1)-equidimensional;
2. the restriction of @, _; to Wy(i,V') is a Zariski-closed map;
3. for any z € C1, the fiber K, (i, V)N <p;11(z) 18 finite.

The connectivity result [30, Theorem 1.1] makes use of generalized polar varieties satisfying
these properties, but also of fibers of polynomial maps.

Remark 2.4. Let ¢ = (¢1,...,%:) be polynomials in C[X] and an integer 1 < e < . Given
an algebraic set V' C C" and a set Q C C¢, the fiber of V over Q with respect to  is the set
Vig.eg=VnN e 1(Q). We say that V lies over Q with respect to ¢ if ¢,(V) C Q. Finally, for
z € C°, the set V|, ¢ 2y will be denoted by V|, — ..

2.3 Charts and atlases of algebraic sets

We say that an algebraic set is complete intersection if it can be defined by a number of equations
equal to its codimension. Not all algebraic sets are complete intersections; for instance determi-
nantal varieties and, consequently, a whole class of generalized polar varieties, are a prototype of
non complete intersections. This creates complications to control the complexity of algorithms
manipulating generalized polar varieties recursively.

However, we may use local representations which describe Zariski open subsets of an algebraic
set with a number of equations equal to its codimension.

Such local representations are obtained by considering locally closed sets. We say that a
subset V° of C" is locally closed if there exist an open O and a closed Zariski subset Z of
C™ such that V° = Z N O. In that case, the dimension of V° is the dimension of its Zariski



closure V', and V° is said to be equidimensional if V' is. In this situation, we define reg(V°) =
reg(V) NV and sing(V°) = sing(V) N V°, and V*° is said to be non-singular if reg(V°) = V°.
For f = (f1,..., fp) C C[X] with p < n, we define the locally closed set V;g,(f) as the set of all
y where the Jacobian matrix Jac(f) of f has full rank p. We will denote by Vieg(f) the Zariski
closure of Vg, (f).

A chart associated to an algebraic set V' C C™ can be seen as a local representation of V'
by another locally closed subset of V' that is smooth and in complete intersection. We recall
hereafter the definitions introduced in |33, Section 2.5|, which we slightly generalize. Below, for

a polynomial m in C[X], recall that we write O(m) = C" — V(m).

Definition 2.5 (Charts of algebraic sets). Let 1 < e < v < n + 1 be integers and ¢ =
(p1,--.,0) C C[X]. Let @ C C*¢ be a finite set and V, S C C" be algebraic sets lying over
Q with respect to @. We say that a pair of the form x = (m,h) with m and h = (hy ..., h) in
C[X] is a chart of (V,Q, S, ) if the following holds:

C1) O(m)NV — S is non-empty;

Co) O(m)NV =S =0(m) NV (h)pcq— 5;

(C1)
(C2)
(C3) e+c<n;
(C4) for ally € O(m) NV — 8, Jacy([h, @,]) has full rank c + e.

When ¢ = (x1,...,2.) defines the canonical projection, one will simply refer to x as a chart of
(V,Q,S), and if e =0 as a chart of (V,S) (no matter what ¢ is).

The first condition C; ensures that y is not trivial, and the following ones ensure that x is
a smooth representation of V' — S in complete intersection (for V' equidimensional, S contains
the singular points of V). This is a generalization of [33, Definition 2.2] in the sense that, if
¢ = (x1,...,2y), one recovers the same definition.

Lemma 2.6. Let 1 <t <n+1 beintegers and ¢ = (p1,...,¢:) C C[X]. Let V,S C C" be two
algebraic sets with V' d-equidimensional and let x = (m, h), with h = (hy,...,h¢), be a chart of
(V,S). Then, for1 <i<tvandy e O(m)NV =5,y lies in W, (i, V) if and only if Jacy([h, ¢,])

does not have full rank ¢ + 1.

Proof. Let y € O(m) NV — 5. By [33, Lemma A.8], y € reg(V), so that y lies in W, (i,V)
if and only if it lies in W (4, V). Besides, by [33, Lemma A.7|, T,V coincide with ker Jacy (k).
Hence, by definition y lies in W, (i, V) if and only if dy¢,(ker Jacy(h)) # C'. But the latter, is
equivalent to saying that the matrix Jacy([h, ¢,;]) does not have full rank ¢ + 1. O

A straightforward rewriting of Lemma 2.6 is the following which provides a local description
of a polar variety by means of a critical locus on a variety defined by a complete intersection.

Lemma 2.7. Reusing the notation of Lemma 2.6, it holds that the sets Wy (i, V') and Wg,(i, Vieg(h))
coincide in O(m) — S.

Together with the notion of charts, we define atlases as a collection of charts that cover the
whole algebraic set we consider.

Definition 2.8 (Atlases of algebraic sets). Let 1 < e < v < n+ 1 be integers and ¢ =
(@1,.-.,¢) C C[X]. Let Q@ C C° be a finite set and V, S C C™ be algebraic sets lying over Q
with respect to p. Let x = (xj)1<j<s With x; = (mj, h;) for all j. We say that x is an atlas of
(V,Q, S, ) if the following holds:
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(A1) s>1;
(A2) for each 1 < j <s, x; is a chart of (V,Q, S, ¥);

(A3) V =5 CUi<jcs O(my).

When ¢ = (x1,...,x) is defines the canonical projection, one simply refers to x as an atlas of

(V,Q,S), and if e =0 as an atlas of (V,5).

Here the definition is the same as [33, Definition 2.3]. Note that, according to [33, Lemma
A 13|, there exists an atlas of (V,sing(V)) for any equidimensional algebraic set V.

2.4 Charts and atlases for generalized polar varieties

We deal now with the geometry of generalized polar varieties (under genericity assumptions)
and show how to define charts and atlases for them. In this whole subsection, we let ¢ =
(p1,---,nt1) C CIX]; for 1 < i < n, we denote by ¢, the sequence (¢1,...,¢;) and, by a
slight abuse of notation, the polynomial map it defines.

Definition 2.9. Let h = (hy,...,h.) C C[X] with 1 < ¢ <n and leti € {1,...,n—c+ 1}.
Let m"” be a (c+ i — 1)-minor of Jac([h,;]) containing the rows of Jac(p;). We denote by
Ho(h,i,m") the sequence of (¢ + i)-minors of Jac([h, p,;]) obtained by successively adding the
missing row and a missing column of Jac([h, ;]) to m”. This sequence has lengthn —c—i+ 1.

Then, given a chart xy = (m, h) of some algebraic set V', we can define a candidate for being
a chart of generalized polar varieties associated to ¢; and V(h) N O(m).

Definition 2.10. Let V, S C C" be two algebraic sets, x = (m,h) be a chart of (V,S), with h of
length ¢ and i € {1,...,n—c+1}. For every c-minor m’ of Jac(h) and every (¢ +i— 1)-minor
m” of Jac(h, ;) containing the rows of Jac(y;), we define Wepart (X, ™', m”, ;) as the couple:

Wchart(X, m/7 mlla ‘Pz) = ( mm/m//’ (ha Hgo(ha /iv m//)) )

Then, the definition of the associated atlas comes naturally. Let V,.S C C" be two algebraic
sets with V' d-equidimensional, x = (xj)i<j<s be an atlas of (V,S) (with x; = (m;, h;)) and
i€ {l,...,d+ 1}. Since V is d-equidimensional, by [33, Lemma A.12|, all the sequences of
polynomials h; have same cardinality ¢ = n — d.

Definition 2.11. We define Wagas(X, V. S, @, ) as the sequence of all charts Wepar (x5, m',m”, ;)
foreveryj € {1,...,s}, every c-minorm’ of Jac(h;) and every (c+i—1)-minorm” of Jac(h;, ¢;)
containing the rows of Jac(ep;), for which O(m;m/m") N Wy, (i, V) — S is not empty.

These constructions generalize the ones introduced in [33, Section 3.1] in the following sense:
for ¢ = (z1,...,2n11), except for some trivial cases, the objects we just defined match the ones
in [33, Definition 3.1 to 3.3], possibly up to signs (which have no consequence). The next lemma
makes this more precise; in this lemma, we write @ = (21,...,2p41) and 7, = (21,...,2;).

Lemma 2.12. Let V, S be algebraic sets and h = (hy,...,h.) CC[X]. Let 1 <i<n—c+1
and m” be a (c+i—1)-minor of Jac(h,7;), containing the rows of Jac(w;). Then either m” =0
or

1.y = (=) Dm” is a (¢ — 1)-minor of Jac(h,i);
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2. Hn(h,i,m") = (=1)H, where H is the (n — ¢ — i + 1)-sequence of c-minors of Jac(h, 1)
obtained by successively adding the missing row and the missing columns of Jac(h,i) to
/,L/,;

3. if x = (h,m) is a chart of (V,S), then for every c-minor m’ of Jac(h),

c—1)

Wchart(X7 m/7 m//) = Wchart (X, m/; (_1)1( ,Uzll>

which is (mm'm”, (h,(—1)“H)) with H as above.

Assume, in addition, that V is d-equidimensional, with d = n—c. Let x = (x;)1<j<s be an atlas
of (V,S), with xj = (hj,m;), and let ¢ be the common cardinality of the h;’s. Then

4. Watlas(X, V., S, 7, 4) is the sequence of all Wepare (X5, M, (—1)i(c_1)u”), forj e {1,...,s}
and form/, 1" respectively a c-minor of Jac(h;) and a (¢—1)-minor of Jac(h;, i) for which
O(m;m/ ") N W(m,;,V) — S is not empty.

Proof. According to Lemma 2.1, up to the sign (—1)“=1)| the (¢ — 1)-minors of Jac(h, i) are
exactly the (i + ¢ — 1)-minors of Jac(h, ;) containing the identity matrix I; = Jac(mr;), since

Jacxl I (hv ﬂ-i) = Jacth’xi (h) JaCx¢+1,...,xn (h)

B Iz 0
Since m” contains the rows of Jac(m;) = [I; 0], either it actually contains I; or it is zero, as a
zero row appears. We assume the first case; then, by the discussion above, p” = (—1)i(c_1)m”
is the determinant of a (¢ — 1)-submatrix M of Jac(h,i) = Jacy,, . ..z, (h).

The row and columns of Jac(h,i) that are not in M have respective indices 1 < k < ¢ and
1<t <...</lp_jicy1 <n. Since m” contains I;, the rows and columns of Jac(h, ;) that
are not in m/” have respective indices 1 < k' <candi+1< ¢ < ... <4, _ ;. <n. Then,
according to Lemma 2.1, forall 1 <j<n—c—i+1,

k=K and Kj:f;-—i.

Hence, by Lemma 2.1, the (¢ + i)-minors obtained by adding the missing row and the missing
columns of Jac(h, ;) to the submatrix used to define m” are exactly the c-minors of Jac(h, 1)
obtained by adding the missing row and the missing columns of Jac(h,i) to x”, up to a factor
(—1)%. This gives the second statement. The third statement is then nothing but the definition
of Wenart (Xa m, m//)'

Finally, consider an atlas x of (V,S). By Lemma 2.1, for j € {1,...,s}, all (¢ — 1)-minors
w” of Jac(hj,i) are, up to sign, (¢ + 4 — 1)-minors of Jac(hj, ;) built with the rows of Jac(r,).
Conversely, let j € {1,...,s}, m' be a c-minor of Jac(h;) and let m” be a (¢ + i — 1)-minor
of Jac(h;, ;) containing the rows of Jac(mr;). Then either m” = 0, so that O(m") and then
O(m;m'm")NW (m,, V) —S is empty, or pi" = (—=1)"¢"Dm/ is a (c—1)-minor of Jac(h;,i). Hence,
according to the third item, for j € {1,...,s} and any c-minor m’ of Jac(h;), the sequences of

o all Wepart (), m', m”) for every (¢ + i — 1)-minor m” of Jac(h, ;) containing the rows of
Jac(mr;), for which O(m;m'm”) N W (x,, V) — S is not empty, and

o all Wepars (x5, m’, (—1)" ¢~/ for every (c—1)-minor i/ of Jac(hj, i) for which O (mjm’m”)N
W (m,;, V) — S is not empty,

are equal to Watas(x, V, S, 7, 7). O
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We can now state the main result of this subsection, which we prove in Section 6. This is, a
generalization of [33, Proposition 3.4] which only deals with the case of projections.

Proposition 2.13. Let V., S C C™ be two algebraic sets with V d-equidimensional and S finite,
and let x be an atlas of (V,S). For2 <t <d+1, let @ = (61,...,60;) and € = (&1,...,&), and
for1<j<vw letaj=(e1,...,05,) € C" and

0i(X, ;) = 0;(X +Zajkxk+@(aj)ec”
k=1

where 0; € C[X] and §;: C" — C is a polynomial map, with coefficients in C.

There exists a non-empty Zariski open subset Qw(x,V, S, 0,&,t) C C™ such that for every
a € Qw(x,V,S,0,&,¢), writing ¢ = (1(X, a),...,p(X, ), the following holds. For i in
{1,... ¢}, either W, (3,V) is empty or

1. Wy (i, V) is an equidimensional algebraic set of dimension i —1;

2. 4f2 < i < (d+3)/2, then Wanas(Xx, V. S, ,14) is an atlas of (W (3,V), S)
and sing(W,(i,V)) C S.

We end this subsection with a statement we use further for the proof of our main algorithm;
it addresses the special case ¢ = 2.

Proposition 2.14. Let V C C" be a d-equidimensional algebraic set with d > 1 and sing(V)
finite. Let § € C[X], and fori € {1,2}, let a; = (o1, .., i) in C" and

p1(X, a1) = 0(X +ZO¢1 krE and (X, o) Zaz KTk
k=1

Then, there exists a non-empty Zariski open subset Q(V,0) C C2" such that for every a =
(a1, ) € Qk(V, ), and ¢ = (p1(X, 1), p2(X, a2)), the following holds. FEither W,(2,V) is

empty or
1. Wy (2,V) is 1-equidimensional;
2. the sets W (1, Wy (2,V)), Weu(1, Wy (2,V)) and Ky(1, Wy (2,V)) are finite.

Proof. Let x be an atlas of (V,sing(V)), as obtained by applying |33, Lemma A.13|. Let Qg (V,0)
be the intersection of the non-empty Zariski open subsets (V, 6, 2) and Qw(x, V, sing(V), (6,0), (0), 2)
of C2" obtained by applying Propositions 2.3 and 2.13 respectively (recall that we assume
d > 1). From now on, choose a = (a1, a2) € Qk(V,0) and let ¢ = (p1(X, 1), p2(X, a2)).
In the following, we denote W,(2,V) by Ws. Suppose Ws is non-empty, otherwise the result
trivially holds.

Since av € Qw(x, V,sing(V), (0,0),(0),2) and 2 < (d + 3)/2 for d > 1, then, by Propo-
sition 2.13, Wy is equidimensional of dimension 1 and sing(W5) C sing(V) is finite. Hence,
Kw = Wy, (1, W3) is well defined and the following inclusion holds

Kw C U Wo ﬁgol_l(z)
ZECPl(Kw)

By an algebraic version of Sard’s lemma from |33, Proposition B.2]|, we deduce that ¢, (W, (1, W>))
is finite. Besides, since a € (V,0,2) then, by Proposition 2.3, cpfl(z) N Ws is finite for any
z e C.

Hence, as a set contained in a finite union of finite sets, Ky is finite, and so are Wg(1, W2)

and K4p(1, WQ) = Kw U sing(WQ).
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2.5 Charts and atlases for fibers of polynomial maps

We now study the regularity and dimensions of fibers of some generic polynomial maps over
algebraic sets. The construction we introduce below is quite similar to the one in [33], but a bit
more general.

Definition 2.15. Let V, S C C" be two algebraic sets with V' d-equidimensional, and let x =
(Xj)i<j<s be an atlas of (V,5). Let 1 < e <t < n+1 be integers and ¢ = (p1,...,¢:) C
C[X]. For Q C C¢ we define Faas(X, V, Q, S, ) as the sequence of all x; = (mj, h;) such that
O(m;) N Fg — Sq is not empty, where

Fo = V|<Pe€Q and Sq = (S U W‘P(e’v))\goeeQ'

The above definition is a direct generalization of [33, Definition 3.6|, where ¢ = (z1, ..., ).
The main result of this subsection is the following proposition, which we prove in Section 7.

Proposition 2.16. Let V,S C C" be two algebraic sets with V' d-equidimensional and S finite.
Let x be an atlas of (V,S). Let 2<t<d+1 and p = (¢1,...,¢:) C C[X]. For2<j<d, let
a; = (aji,...,05,) € C" and

p1(X,a1) = 0(X +Za1 rrr and  @i(X, ay) Zaﬂ LTk
k=1

where § € C[X].
There exists a non-empty Zariski open subset Qe(x,V,S,0,t) C C™ such that for every
a=(ay,...,a) € Q(x,V,5,0,t) and writing

p=(p1(X,),....p(X, %)),

the following holds. Let0 < e < d, Q € C° a finite subset and Fg and Sg be as in Definition 2.15.
Then either Fg is empty or

1. Sg is finite;
2. Vg is an equidimensional algebraic set of dimension d — e;

3. Falas(X, V, Q, S, ) is an atlas of (Fg, Sg) and sing(Fg) C Sg.

3 The algorithm

3.1 Overall description

Recall that X denotes a sequence of n indeterminates x1,...,z,. In this document, we also
consider a family A = (a; j)1<i,j<n Of n? new indeterminates, which stand for generic parameters.
For 1 <i,j <n, we note a; = (a1, ..,an), so that A<; represents the subfamily (a1,...,a;).
An element a € C™ will often be represented as a vector of length i of the form (v, ..., o),
with all o = (aj71, RN Oéjm) e C™.

Then, as suggested by Propositions 2.3, 2.13, 2.14 and 2.16, we will consider polynomials of
the form:

$i(X, ;) = 0;(X) + > aijz; + &i(a;) € RIX, A (1)
j=1
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where 1 < i < n, §; € R[X] and & € R[A]. We will choose §; so that the polynomial map ¢;
inherits some useful properties. For instance, taking 6; = 2% + -+ + :U,%, for any a; in R", the
polynomial map associated to ¢;(X, e;) is proper and bounded from below on R".

Hereafter, we describe, on an example, the core idea of the the strategy that guided the
design of our algorithm and the choice of data structures.

Example 2. Consider the algebraic set V = V(f) C C* defined as the vanishing locus of the

polynomial
4

F= (af =) =1 € Qlar, w2, 23, 24).
i=1
We want to compute a roadmap of (V,0) (or simply V). Following the strategy we designed
in our previous work (see [30, Section 5|), V must satisfy some regularity properties, that is

(Hy) V is d-equidimensional, d > 2, and sing(V') is finite.

The first part of the assumption can be satisfied by computing an equidimensional decomposition
of V', which can be done within the complexity bounds considered in this work (see e.g. [29] for
the best-known complexity bound for a probabilistic algorithm). However, it is worth noting
that this increases the degrees of the generators.

The condition d > 2 is not restrictive, as the case d = 1 is trivial for roadmap computations.
The smoothness assumption is more restrictive. Indeed, it can be satisfied using deformation
techniques, such as done in [4, 5], but these steps would not fit, as such, in our complexity
bounds.

Let us check that, in our example, V satisfies H;. We will describe further a subroutine
SingularPoints, to compute sing(V) as long as this holds.

Checking (Hq). Asan hypersurface, V' is irreducible, and then equidimensional, of dimension 3. The partial
derivatives of f, 3 8f = 3m22 — 1, for 1 < i <4, do not simultaneously vanish on V. Hence,
sing(V) = 0, and V satisfies assumption (Hy).

Following a particular case of [30, Section 5|, we want to choose a sequence of polynomial
@ =(@1,...,9,) in Q[X] such that the following holds:

Hy) the restriction of ¢o; to VNR™ is proper and bounded below;

(H2)
(Hg) Wo =W,(2,V) is 1 equidimensional, and smooth outside sing(V);
(Hy) for any z € C, V|, —. is (d — 1)-equidimensional;
(Hs) Ko(1, W) is finite.

In addition, let K = K,(1, W) Using(V) and F =V N, (¢, (K)). We require that
(Hg) Pw = F N Wy is finite.

Then, under the above assumptions if Rp is a roadmap of (F, Py ), then Wy URp is a roadmap
of V. This statement is a consequence of both [32, Proposition 2| and [30, Theorem 1.1|, and
will be properly stated and proved in Proposition 3.9. This splits the problem of computing a
roadmap of V into the computation of representations of Wy, F' and Py, and a roadmap of
(F,Pw). Since FFNR" is bounded, by assumption (H,), the latter computation can be done
using the algorithm of [33].

We describe this process more precisely with our example. Each step consisting in checking
the assumptions, and computing the associated objects.
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Checking (Hy/3).

Checking (Hy).

Checking (H3).

Checking (Hg).

Set first ¢ = (Z?Zl x?, T9, T3, x4). The restriction of ¢, to V N R4 is proper and non-
negative. We could then compute a representation of Wy = W, (2, V), before computing
one for its singular locus sing(Ws). However, the latter singular set is not empty, while
sing(V') is. This contradicts the assumptions needed in [30, Theorem 1.1] and the strategy
for computing a roadmap of V' designed in [30, Section 5| might fail.

Following Propositions 2.3, 2.13, 2.14 and 2.16 from the preliminaries, we propose the fol-
lowing. To prevent these regularity failures, and to satisfy all assumptions of [30, Theorem
1.1], while keeping the properties of ¢, we add to ¢, a linear form; here we take z1 — x4,
but in general it should be taken with random coefficients.

Hence, consider now the sequence ¢ of polynomials maps

4
§ 2
Y = ( Z; + — X4, T2, T3, $4> ’

i=1

whose restriction to R* is still proper and bounded below, by construction. If the linear
form we added has been sufficiently randomly chosen, Proposition 2.13 claims that Wy
satisfies assumption (Hj).

Using Grobner basis computations on a determinantal ideal defining W5, we compute
a representation of W, and next sing(W3), that turns out to be empty, as requested.
More generally, computing the two previous sets efficiently is the purpose of the algorithm
SolvePolar, presented further in Lemma 3.4.

By Proposition 2.16, this assumption holds if we have added to ¢ a linear form that
is generic enough. Using the Jacobian criterion, we can check that in our case, for any
2 € C, the fiber F, = V N *(2) is an equidimensional algebraic set of dimension 2 (if it
is not empty). Moreover the singular locus of F, is contained in the finite set W,(1,V).
Computing the latter set is tackled by the subroutine Crit, presented in Lemma 3.3.

We also need to check the finiteness and compute the set K,(1,Ws). If ¢ is generic
enough, the finiteness is ensured by Proposition 2.14; computing this set is the purpose
of the algorithm CritPolar, presented in Lemma 3.6. In our case, there are finitely many
(more precisely 129) such points, and 23 of them are real.

We need to compute the set K = K, (1, W) Using(V'). As the two members of the unions
have been computed by the algorithms CritPolar and SingularPoints, respectively, one can
compute this union using the procedure Union from [33, Lemma J.3| (also presented in the
next subsection).

Then, for ¢ generic enough, Proposition 2.3 ensures that the last assumption holds. The
computation of Py boils down to computing finitely many fibers on the restriction of ¢,
to Ws. This is the purpose of the algorithm FiberPolar, presented in Lemma 3.6.

At this point, we have computed representations of Ws and Py, and ensured that all as-
sumptions of [30, Theorem 1.1] are satisfied. Hence, one only need to compute a roadmap of
(F,Pw). This is the purpose of algorithm RoadmapBounded, presented in Proposition 3.7.

3.2

Subroutines

Our main algorithm (Algorithm 1) makes use of several subroutines which allow us to manipulate
zero-dimensional and one-dimensional parametrizations, polar varieties and fibers of polynomial
maps in order to make |30, Theorem 1.1] effective.
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As a reminder, in this document, we manipulate subroutines that involve selecting suitable
parameters in Q?, for various 4 > 1. These algorithms are probabilistic, which means that for
any choice of (say) ¢ parameters we have to do, there exists a non-zero polynomial A, such that
for A € QF, success is achieved if A(X) # 0. It is also important to note that these algorithms are
considered Monte Carlo, as their output’s correctness cannot be guaranteed within a reasonable
complexity. In certain cases, where we can identify errors, we require our procedures to output
fail. However, not returning fail does not guarantee correctness.

Let 1 <c¢<mn,and f = (f1,...,f.) be a sequence of polynomials in R[X]. We say that f
satisfies assumption (A) if

(A) f is a reduced regular sequence, with d =n — ¢ > 2, and sing(V'(f)) is finite.

In particular, the zero-set of f in C™ is then either empty or d-equidimensional.

3.2.a Basic subroutines

The first two subroutines we use are described in |[33] and are used to compute sing(V(f)) (on
input a straight-line program evaluating f) and to compute a rational parametrization encoding
the union of zero-dimensional sets or the union of algebraic curves. They are both Monte Carlo
algorithms, in the sense described above, and can output fail in case errors have been detected
during the execution. However, in case of success, the following holds.

e SingularPoints, described in [33, Section J.5.4], takes as input a straight-line program I' that
evaluates polynomials f € C[X] satisfying assumption (A) and outputs a zero-dimensional
parametrization of sing(V'(f)).

e Union, described in [33, Lemma J.3| (resp. [33, Lemma J.8|), takes as input two zero-
dimensional (resp. one-dimensional) parametrizations &7 and &, and outputs a zero-
dimensional (resp. one-dimensional) parametrization encoding Z(421) U Z(%,).

We now describe basic subroutines performing elementary operations on straight-line pro-
gram and zero-dimensional parametrizations. The first one allows us to generate a generic
polynomial with a prescribed structure.

Lemma 3.1. Let 1 < i < n and @ = (aq,...,0;) € C™. Then there exists an algorithm
PhiGen which takes as input v and returns in time O(n) a straight-line program T'? of length
O(n) computing in Q[X]:

n n
p1 = sz +oapxr and ;= Zo‘j,kxk for2 <j <i.
k=1 k=1
Proof. Given the constants «, it suffices to generate a straight-line program that computes the
linear forms Y j_; o xxk, for j = 1,...,4, and adds the quadratic form Y }_; 22 to the first
one. This takes linear time, and the result straight-line program has linear length. O

Next, we present a procedure computing the image of a zero-dimensional parametrization by
a polynomial map, given as a straight-line program, generalizing the subroutine Projection from
[33, Lemma J.5]. The proof of the next lemma is given in Subsection 4.1.

Lemma 3.2. Let & be a zero-dimensional parametrization of degree r such that Z(Z?) C C"
and let T'? be a straight-line program of length E' computing polynomials ¢ = (p1,...,¢;). There
exists a Monte Carlo algorithm Image which, on input T'?, &2 and j € {1,...,i}, outputs either
fail or a zero-dimensional parametrization 2, of degree at most k, using

O™ ((n*k + E")k)
operations in Q. In case of success, Z(2) = p;,(Z(Z)).
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3.2.b Subroutines for polar varieties

The next subroutines are used to compute generalized polar varieties and quantities related to
them. The proof of all statements below can be found in Subsection 4.4. In this subsection, we
fix 1 < ¢ <n—2 and we refer to the following objects:

e sequences of polynomials g = (g1,...,9.) and ¢ = (¢1,p2) all of them in Q[z1, ..., x,],
of degrees bounded by D, such that g satisfies assumption (A); we note d =n — ¢;

e straight-line programs I' and I'?, of respective lengths F and E’, computing respectively
g and ¢;

e zero-dimensional parametrizations . and 2", of respective degrees o and k", describing
finite sets S C C™ and Q" C C, such that sing(V(g)) C S (the ” superscripts we use here
match those used in the algorithm);

e an atlas x of (V(g), ), given by |33, Lemma A.13], as S is finite and contains sing(V'(g)).

We start with the subroutine Crit, which is used for computing critical and singular points
of some polynomial map, again under some regularity assumption. These critical points are
nothing but zero-dimensional polar varieties.

Lemma 3.3. Assume that K,(1,V(g)) is finite. There exists a Monte Carlo algorithm Crit
which takes as input T', T'? and ., and outputs either fail or a zero-dimensional parametrization
S, with coefficients in Q, of degree at most

<”;F 1>Dc+2(D _1)iie

such that, in case of success, Z(Sr) = Ky(1,V(g)) U S. It uses
o~ (E//(n i 2)4d+8D2n+3(D _ 1)2d + naQ)

operations in Q, where E" = FE + E'.

We now tackle higher dimensional cases, with the subroutine SolvePolar which, under some
assumptions, computes one-dimensional parametrization encoding one-dimensional generalized
polar varieties.

Lemma 3.4. Let W = W,(2,V(g)) and assume that one of the following holds
o W is empty, or

o W is I-equidimensional, with sing(W) C S, and Watas(x, V(9), S, ¢,2) is an atlas of
(W, S).

Then, there exists a Monte Carlo probabilistic algorithm SolvePolar which takes as input T, T'¥
and % and which outputs either fail or a one-dimensional parametrization #a, with coefficients
i Q, of degree at most

§=(n+c+4)DV (D —-1)%c+2),

such that, in case of success, Z(Wa) = W. It uses at most
O~ ((n+ )3 (E" + (n+¢)*)D&® + (n+ ¢)do? )

operations in Q, where B = E + E'.
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The subroutine CritPolar is devoted to compute critical points of the restriction of some
polynomial map to a generalized polar variety of dimension at most one. It generalizes the
subroutine W; from [33, Proposition 6.4].

Lemma 3.5. Let W = W,(2,V (g)) and assume that either W is empty, or

o W is I-equidimensional, with sing(W) C S, and Wauas(x, V(9), S, ¥,2) is an atlas of
(W, S),

o and W, (1, W) is finite.

There exists a Monte Carlo algorithm CritPolar which takes as input I, T'? and ¥ and which
outputs either fail or a zero-dimensional parametrization 2, with coefficients in Q, such that

Z(H) =Wy(1,W)US using at most
O™ ((n+¢)"*E"D?* + (n +c)o?)

operations in Q, where E" = E+ E', and § = (n + ¢+ 4)Dt2(D — 1)%(c + 2)?. Moreover %
has degree at most §(n+c+4)D +o.

Finally, we consider the subroutine FiberPolar which, given polynomials defining a generalized
polar variety of dimension at most one, the polynomial map ¢ and a description of Q”, computes
the fibers of the polynomial map ¢ over Q” on the polar variety.

Lemma 3.6. Let W = W,(2,V (g)) and assume that either W is empty, or

o W is I-equidimensional, with sing(W) C S, and Wauas(x, V(9), S, ¢,2) is an atlas of
(W, 8);

e W L Q") is finite.

There exists a Monte Carlo algorithm FiberPolar which takes as input I', T?, . and 2" and
which outputs either fail or a zero-dimensional parametrization 2, with coefficients in Q, such
that Z(2) = (W N Q")) U S, using at most

O~ ((n+ c)t (E"+ (n+ C)Q)DK//252 + (n+c)o? )

operations in Q, where E" = E+ E', and § = (n + ¢+ 4)D (D — 1)4(c + 2)?. Moreover, 2
has degree at most k"0 + o.

3.2.c Subroutines for computing roadmaps in the bounded case

As seen above, in Example 2, we are ultimately led to compute a roadmap for a bounded real
algebraic set (this set is given as fibers over finitely many algebraic points of the restriction of a
polynomial map to our input). To do so, we call the algorithm RoadmapReclLagrange from [33],
which internally uses similar techniques but with projections (where ¢ = 7). The description
and the complexity analysis of this procedure are given in Subsection 4.5. The subtlety comes
from the fact that, in [33], the correction and complexity estimate of RoadmapRecLagrange are
given for an input consisting of polynomials f defining an algebraic set V' = V(f); here, we
need an algorithm that works for an input given as fibers of a polynomial map. More precisely,
we prove the following result in Subsection 4.5.

Proposition 3.7. Let I' and T'? be straight-line programs, of respective length E and E’,
computing respectively sequences of polynomials g = (g1,...,9p) and ¢ = (p1,...,¢pn) n
Q[z1,...,xy], of degrees bounded by D. Assume that g satisfies (A). Let 2 and g be zero-
dimensional parametrizations of respective degrees k and o that encode finite sets @ C C¢ (for
some 0 <e <n)and Sg C C", respectively. Let V =V (g) and Fg = V|, _cq, and assume that
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o [y is equidimensional of dimension d — e, where d =mn — p;
o Falas(X, V, Q, @) is an atlas of (Fg, Sq), and sing(Fg) C Sg;
e the real algebraic set Fg NR™ is bounded.

Consider additionally a zero-dimensional parametrization P of degree i encoding a finite subset
P of Fg, which contains Sg. Assume that o < ((n+ e)D)"*e.

There exists a probabilistic algorithm RoadmapBounded which takes as input ((I',T'%, 2,.7), P)
and which, in case of success, outputs a roadmap of (Fg,P), of degree

O~ ((M i K)163dF (nplogynr )2(2dp+1210g2dF )(10g2dr +5) 1) (2np+1) (logydp +3))

where np =n+e and dp = d — e, and using

O~ (/41/,3 169dp E//(nF 10g2nF )6(2dp+12 lodeF )(lodeF +6)D(6np+3)(10g2dp +4))
arithmetic operations in Q, where ¢/ = u+r and B = E+ E' +e.

3.3 Description of the main algorithm

Now, we describe the main algorithm to compute roadmaps of smooth unbounded real algebraic
sets. In addition to the subroutines mentioned above, we define Random as a procedure that
takes as input a set X and returns a random element in X. Together with PhiGen, it allows
us to generate “generic enough” polynomial maps so that the results of the previous section do
apply (Propositions 2.3, 2.13, 2.14 and 2.16).

Algorithm 1 Roadmap algorithm for smooth unbounded real algebraic sets.

Input: > a straight-line program I' that evaluates polynomials f = (f1,...,f.) € Q[X],
satisfying assumption (A); we note V = V(f);
> a zero-dimensional parametrization &y encoding a finite set Py C V.

Output: a one-dimensional parametrization & encoding a roadmap of (V,Pp).

1. . <« SingularPoints(T"); JZ(S) = sing(V);

2: P <« Union(Zy, S); [P :=2(P) =Py Using(V)

3: a < Random(Q?");

4: T'Y < PhiGen(a); J/ T computes ¢ = (|| X]|[* + (a1, X) , (a2, X))
5. W5 < SolvePolar(I',T'%,.%); [ Wao = Z(#s) = Wy(2,V);

6: A& <« CritPolar(T',T'¥, &), K =Z(H) =We(1,Ws) UPyUsing(V);

7. 2 < Image(I'?,1,.%7); JQ:=2(2) = ¢ (K);

8: P + FiberPolar(I', %, 2, 2); ) Z(Pr) = [Wa UPy Using(V)] N1 (Q);

9: S« Crit(T',I'%,.¥) JZ(FF) = Kp(1,V);
10: Zp < RoadmapBounded ((I',I'?, 2, .%F), )

J Z(%F) is a roadmap of (V N (Q),Z(Pr));

11: return Union(#a, Zr) J Wa U Z(%r) is a roadmap of (V, Po).
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3.4 Correctness and complexity estimate

This subsection is devoted to the proof of the following theorem, which directly implies Theo-
rem 1.1.

Theorem 3.8. Let I be a straight-line program of length E evaluating polynomials f = (f1,..., fc)
of degrees bounded by D > 2, satisfying (A). Let Py be a zero-dimensional parametrization of
degree 1 encoding a finite subset of V(f) C C™. Then there exists a non-empty Zariski open
Q C C?" such that the following holds.

Let o € Q™ the vector randomly chosen in the execution of Algorithm 1, then if o € 2, and
if the calls to the subroutines

SingularPoints, Union, SolvePolar, CritPolar, Image, FiberPolar, Crit and RoadmapBounded

are successful then, on inputs I' and Py, Algorithm 1 either returns a one-dimensional parame-
trization of degree

o~ (M163d(n logyn )2(2d—2+12 log,d ) (logd +6) (2n+3)(log,d +4)>

usIng
o~ <N3 16%E(n log,n )6(2d72+12 logd ) (logod +7) [)3(2n+3) (logyd +5)>

arithmetic operations in Q, with d = n — c.
In case of success, its output describes a roadmap of (V(f),Z(P)).

The correctness of Algorithm 1 relies mainly on the conjunction of [30, Theorem 1.1] and
[32, Proposition 2|, that form the following statement, with slightly stronger assumptions, which
hold in our context.

Proposition 3.9. Let V C C™ be a Q-algebraic set of dimension d > 2, and let Py be a finite
subset of V. Let ¢ = (¢1,¢2) C RIX] and W = W, (2,V). Suppose that the following holds:
(H1) V' is equidimensional and sing(V') is finite;
(Hz) the restriction of g1 to VNR™ is a proper map bounded from below;

(H3) W is either empty or 1-equidimensional and smooth outside sing(V');

(Ha) for any y € C?, the set V Ny (y) is either empty or (d — 1)-equidimensional;
(Hs) K,(1,W) is finite.

Let further K = K, (1, W) U Py Using(V) and F =V Ny (e (K)).
Assume in addition that

(He) Pw = FNW is finite.
If Rp is a roadmap of (F,PoUPw), then W U Rp is a roadmap of (V,Py).

Proof. Remark first that the so-called assumptions A, P and B from the connectivity result
from [30, Theorem 1.1] are direct consequences of assumptions Hy to Hy. Besides, W, (1,V) C
K,(1,W) and sing(W) C sing(V), by [33, Lemma A.5] together with assumption Hz. Hence,
one can write

K =W,(1,V)uU S Using(V).
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where § = W, (1,W) UPy. By Hs, S is a finite subset of V', that intersects every semi-algeb-
raically connected component of Wi, (1,1W) N R™ by definition. Hence, S satisfies assumption
C of [30, Theorem 1.1]. By application of this latter result, W U F has then a non-empty and
semi-algebraically connected intersection with every semi-algebraically connected component of
V N R"™ and it contains Py by construction.

Moreover, by Hg, F' N W is finite, so that by [32, Proposition 2|, the following holds. If
Rw and Rp are roadmaps of respectively (W, Py U Py ) and (F, Py U Py ), then Ryy URF is a
roadmap of (V,Pp). But remark that W is a roadmap of (W, Py/) since W has dimension one.
Besides, [32, Proposition 2| can be slightly generalized as only one of Ry or Rp must contain
Po. Hence, taking Ry = W allows us to conclude. O

Proof of Theorem 3.8. Let I and & be the inputs of Algorithm 1 and assume that I" evaluates
polynomials f = (f1,..., f.) satisfying assumption (A). Let V =V (f) and Py = Z(P).

Recall that we assume all calls to the subroutines SingularPoints, Union, SolvePolar, CritPolar,
Image, FiberPolar, Crit and RoadmapBounded do succeed.

Steps 1-2 By |33, Proposition J.35|, the procedure SingularPoints outputs a zero-dimensional
parametrization . describing sing(V') using O™ (ED*"*1) operations in Q. By [33, Proposition
I.1] (or [34, Proposition 3|) .# has degree at most

oy = (Z: 11>DC(D — 1)t = (” P 1>DC(D — 1) e O(n'D")

Then, according to [33, Lemma J.3] and our assumptions, the procedure Union outputs a zero-
dimensional parametrization &2 of degree at most

Sp=p+oy = O(u+niD"), using O (n(u®+n?D?")) operations in Q

which describes P := Py U sing (V).

Besides, since V' is equidimensional, there exists, by [33, Lemma A.13|, an atlas x of
(V,sing(V)). According to Definition 2.8, x is an atlas of (V,P) as well.

Steps 3-4 By definition of the procedure Random, « is an arbitrary element of Q%", and
according to Lemma 3.1, T'? is a straight-line program of length E' = 6n —2 = O(n), which
evaluates ¢ = (0(X)+ (a1, X), (a2, X)), where § = 23+ --+22. In particular, E” := E+E' =
O(E + n). Note also that since D > 2, it bounds the degrees of the polynomials in .

Let Q be the intersection of the following four non-empty Zariski open subsets of C?™:
2 (V,0,2), Qw(x,V,sing(V), (0,0),(0),2), Qx(V,0) and Qe(x, V,sing(V),0,2),

defined respectively by Propositions 2.3, 2.13, 2.14 and 2.16 applied to V', ¢ and possibly x.
The set Q is a non-empty Zariski open subset of C?" as well, and for now on, we suppose that
a €.

Step 5 Let W = W,(2,V). Since a € Qw(x, V,sing(V), (6,0),(0),2), by Proposition 2.13,
either W is empty or it is equidimensional of dimension 1, with sing(W') C sing(V'). Moreover,
in the latter case, since (d + 3)/2 > 2 by assumption, Was(x, V,sing(V), ¢, 2) is an atlas of
(W, sing(V)).
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Hence, by Lemma 3.4 and our assumptions, SolvePolar returns a one-dimensional parametri-
zation #5, of degree at most

5= (n+c+4)DVD-1)%c+2)? = OnITID"H?),
such that Z(#42) = W, using at most
O~ ((n+)*(E+ (n+¢)*)D& + (n + ¢)do%) = O~ (n3d+4(E + n3)D3”+7)
operations in Q.

Steps 6-7 Since we assume a € Qg (V, 0), Proposition 2.14 states that either W is empty or it
is equidimensional of dimension 1, and W (1, W) is finite. Moreover, since ac € Qw (x, V, sing(V'), (0,0), (0), 2),
we deduce by Proposition 2.13 that Wygas(x, V,P,p,2) is an atlas of (W, P), as W is 1-
equidimensional or empty and Py is finite.

Let K = W,(1, W)U P. By Lemma 3.5, CritPolar returns either fail or a zero-dimensional
parametrization JZ, of degree at most

by =b(n+ct)D+35y = O (2D 4 p),
using at most
O~ ((n+ c)'2(E 4 n)D36% 4+ (n+ 0)520]) = 0~ (n2d+14(E +n)D? T 4 n,u2)

operations in Q. Moreover, by assumption, . describes K. Finally, let QQ = ¢, (K) then, by
Lemma 3.2 and our assumptions, on input I'?, ¥ and j = 1, procedure Image outputs a zero-
dimensional parametrization 2, of degree less than § -, such that, in case of success, Z(2) = Q.
Moreover, since by Lemma 3.1, I'? has length in O(n), then the execution of Image uses at most

o~ ((TLQ(S% + n)é;g) - 0 <n2d+6D2n+6)
operations in Q.

Step 8 Since a € Q(V,0,2), by Proposition 2.3, W N <pf1(z) is finite for any z € C. In
particular, Wﬂcpl_l(Q) is finite, since Q = Z(2) is. Besides, as seen above, Waas(x, V., P, ¢, 2)
is an atlas of (W, P) since a lies in Qw(x, V,sing(V), (6,0), (0), 2).

Let Pr = [W N H(Q)] UP. By Lemma 3.6 and our assumptions, FiberPolar outputs a
zero-dimensional parametrization &p, of degree bounded by

e =040+ 65 = OM*HPD¥ 2 4 ),
using at most O~ ((n + ¢)*(E + (n + ¢)*)Dd§%,6? + (n + ¢)6%,) operations in Q which is in
O~ <n4d+10(E 4 p2)Dint1o 4 n,u2>

and such that & describes Pr. Besides, remark that by definition ¢(P) C ¢(Q) so that
Pr=[WUP|Ne Q).
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Step 9 Since a € Qw(x, V,sing(V),(6,0),(0),2), by Proposition 2.13, W, (1,V) is finite.
Besides, under assumption (A), V is equidimensional with finitely many singular points. Let
Sr = K,(1,V). By Lemma 3.3 and our assumptions, Crit outputs a zero-dimensional parame-
trization .7, which describes Sg, of degree bounded by

1
Oy = <”; >DC+2(D ~1)? = O(n'D™+?)

using at most
o~ ((n + 2)448(E 4 n) D3 (D — 1) + naé) =0 (n4d+8(E + n)D4n+3>
operations in Q.

Step 10 Since f satisfies assumption (A), the ideal (f) generated by the polynomials in f is
radical. Besides, the restriction of ¢, to V(f)NR" is naturally proper and bounded from below
by >°&, @?/4. Hence, as Q = Z(2) is finite, @ N R is bounded and so is

VAR"Ne(@NR?) =V e '(Q) NRY,

as ¢ C Q[X], since a € Q*" by above.
Let Fp =V N cpfl(Q). Since a € Qp(x, V,sing(V),0,2), by Proposition 2.16 Fy is either
empty or equidimensional of dimension d — 1, with sing(Fgy) C Sg, where

Sq = sing(V) U [Wy(1,V) N (Q)] = Kp(1,V),

since ¢ (Ky(1,V)) C ¢,(Q).
Moreover, in the latter case, the sequence Fygas(X, V, @, sing(V'), ¢) is an atlas of (Fg, Sg). The
zero-dimensional parametrizations &Zr and .#r describe respectively finite sets Pr and Sg such
that

SQ:SFCPFCFQ,

and .F has degree 0.#, < (nD)"*2. Finally, recall that 2 and 2 both have degree bounded
by O~ (,u+n2d+3D2”+5). Hence, according to Proposition 3.7, and after a few straightfor-
ward simplifications, we deduce that RoadmapBounded either outputs fail or a one-dimensional
parametrization Zr of degree at most

B, =0 (u163d(n loan)2(2d—2+12log2d)(10g2d+6)D(2n+3)(10g2d+4)) 7

using
O~ (M3169dE(n logyn )6(2d—2+12 logsd ) (logod +7) [y3(2n+3) (log,d +5)>

operations in Q. Moreover, in case of success, Zr describes a roadmap of (Fg, Pr).

Step 11 Remark that #5 and #ZF both have degree at most %,.. hence, by [33, Lemma J.§],
on input #5 and Zp, Union either outputs fail or a one-dimensional parametrization of degree
at most O™ (A, ) using ON(n%%F) operations in Q. Therefore, the complexity of this step is
bounded by the one of previous step. Moreover, in case of success, the output describes W U Fy,.

It follows that under assumption (A), all assumptions from Proposition 3.9 are satisfied.
Hence, since Z(%r) is a roadmap of (Fg,Pr) and Pr = P U (Fg N W), by Proposition 3.9,
Algorithm 1 returns a roadmap of (V,P). Since P contains Py, the output is a roadmap of
(V,Po) as well.
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In conclusion, if a € €2 and all calls to the subroutines are successful then, on input I' and &,
such that assumption (A) is satisfied, Algorithm 1 outputs a one-dimensional parametrization
encoding a roadmap of (V,Py). Moreover this parametrization has degree bounded by %z, and
all steps have complexity bounded by the one of Step 10. Since these bounds match the ones
given in the statement of Theorem 3.8, we are done. O

Our main result, namely Theorem 1.1, is a direct consequence of Theorem 3.8 since, if
n —c < 2 then V(f) is a roadmap of (V(f),Z(2)).

Remark 3.10. Remark that, as long as the restriction of ¢, to V/(f) NR"™ is proper and bounded
below, the above proof still holds. This could allow for a more ad-hoc choice for ¢.

4 Subroutines

4.1 Proof of Lemma 3.2

Lemma 4.1. Let I' and I'? be straight-line programs of respective lengths E and E' computing
sequences of polynomials respectively f and ¢ = (p1,...,9;) i Q[x1,...,zn]. Then there exists
an algorithm IncSLP which takes as input ', T'? and returns a straight-line program T of length

E+ FE +i,
that evaluates ff = (f,p1—e1,...,pi—e;) in QE, X], where E = (ey1,...,e;) are new variables.
Proof. Up to reordering, we can suppose that the polynomials ¢1,...,@; correspond to the
respective indices B/ —i+1,...,E' in I'?. Let 1 < j7 < N, then the straight-line program

1B _ (F‘P, (B =it 1, —n—it+1),...,(+ E, —n))
has length E’ 4+ i and computes (¢1 —€1,...,9; —€;) in Qleq, ..., €;,21,...,2,]. Finally let
I = (I, 79 B,
then I is a straight-line program of length E+ E’+i, that computes f? = (f,p1—e€1,...,0;—¢€;)
in Q[eh...,ei,xl,...,xn]. L]
Let 1 <i < n be integers and ¢ = (¢1,...,¢;) C C[X], and set
¥,: C" — Cite
y = (ey)y)’

Then W, is an isomorphic embedding of algebraic sets, with inverse the projection on the last
n coordinates. We call ¥, the incidence isomorphism associated to .

Let V' C C" be a d-equidimensional algebraic set with 1 < d < n. Then V¥ = ¥, (V) C C*"
is called the incidence variety associated to V with respect to g, or in short, the incidence variety
of (V. ¢p).

Finally, we note @ = (eq,...,¢;) so that for 0 < j <1, ; is the canonical projection on the
first j coordinates in C**t". The following lemma is immediate, and illustrates the main feature
that motivates the introduction of incidence varieties.

Lemma 4.2. For any 0 < j <1, the following diagram commutes

\I/‘P
V—2 e

k‘ iﬂ'j .
CJ
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Lemma 4.3. Let 2 be a zero-dimensional parametrization of degree k such that Z(2) C C"
and let T be a straight-line program of length E' which evaluates polynomials ¢ = (o1, ..., ;).
There exists an algorithm IncParam which takes as input 2, I'Y and returns a zero-dimensional
parametrization 2 of degree k and encoding U, (Z(2)) C C™*", where Uy, is the incidence
1somorphism associated to ¢, using

o~ (E,IQ)
operations in Q.

Proof. Write 2 = ((q,v1, ..., vy,), ) following the definition of zero-dimensional parametrizations
given in the introduction. Since

2(2) = {(v1(t),...,va(t)) | q(t) = 0}
then ¥, (Z(2)) is

{((pl(vl(t),...,vn(t)),...,cpi(vl(t),...,vn(t)),vl(t),...,vn(t)) | q(t) :o}.

Let e1,...,e; be new indeterminates and '(e1, ..., e, 21,...,2,) = [(21,...,2,) and for all 1 <

j <, letw; = pj(v,...,v,) mod g€ Q[t]. Then we claim that 2 = ((q,w1,...,w;,v1,...,vy),[)
is a zero-dimensional parametrization of W, (Z(£2)). Indeed for all 1 < j < i, deg(w;) < deg(q)
and

[/(wl,...,wi,vl,...,vn) = [(vl,...,vn) =1t.
Besides, computing 2 is done by evaluating 'Y at vy, ..., v, doing all operations modulo ¢; this
can be done using O~ (E’k) operations in Q. O

We can now prove Lemma 3.2.

Proof of Lemma 3.2 Let ¥, be the incidence isomorphism associated to ¢. By Lemma 4.2,
the image of Z(Z?) by ¢, can be obtained by projecting the incidence variety Vo, (Z(2)) on
the first j coordinates.

Hence the algorithm Image can be performed as follows. First, according to Lemma 4.3,
there exists an algorithm IncParam which, on input & and I'¥, computes a zero-dimensional
parametrization & of degree k, encoding ¥, (Z(£?)) C C'*", and using O~ (E'k) operations
in Q. Secondly, according to [33, Lemma J.5.], there exists an algorithm Projection which, on
input Z and j €{1,...,i}, computes a zero-dimensional parametrization 2 encoding

7 (P) = 7; (Vo (Z(2))) = ¢;(Z(2)),

J J

using O~ (ngﬁz) operations in Q. O

4.2 Auxiliary results for generalized polar varieties

We reuse the notation introduced in the previous subsection. Let E = (e; ..., e;) new indeter-
minates. Recall that V' C C” is a d-equidimensional algebraic set.

Lemma 4.4. Let h C C[X] be a set of generators of I(V'). Then
h¥ = (h’(pl — €159 _61) - C[EaX]

is a set of generator of I(V¥) C C[E, X], which is equidimensional of dimension d.
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Proof. Remark that by Lemma 2.2, for any (¢,y) € V%,

0 Jacy(h)

Y\ _
rank J&Ct,y(h ) = rank |:—Iz JaCy(‘P)

] = rank Jacy(h) + 1,
so that for all y € reg(V'), since Jac(h) has rank n — d at y, then Jac(h¥) has rank n —d + i at
U, (y). Hence, since reg(V') is Zariski dense in V, by |32, Lemma 15| (h¥) is an equidimensional
radical ideal of dimension d.

Besides, let (t,y) € C", then h¥(t,y) = 0 if and only if h(y) = 0 and ¢(y) = t that is
(t,y) € V¥ since h generates I(V). Hence V((h¥)) = V¥ so that by Hilbert’s Nullstellensatz

[15, Theorem 1.6],
I(V?) = \/(h#) = (h¥).

The following lemma shows an important consequence of Lemma 4.2 for polar varieties.

Lemma 4.5. For 0 < j <1, the restriction of ¥y, induces an isomorphism between W, (j,V)
(resp. Kp(3,V)) and W(mw;, V#) (resp. K(m;,V¥)).

Proof. Let h be generators of I(V). By Lemma 4.4, h¥ are generators of I(V). Let y € V,
y? =¥, (y) € V¥ and 0 < j <i. Then by Lemma 2.2,

0 Jacy(h)
rank Jacye ([h¥, 7;]) = rank | —I;  Jacy(p)| = rank Jacy([h, ¢;]) +1, (2)
I, o 0

where I, denotes the ¢ x ¢ identity matrix. Since both V and V¥ are d-equidimensional, then
by [33, Lemma A.2|, K(j,V) and K(m;,V¥) are the sets of points y € V and y¥ € V¥ where
respectively

Jacy([h,p;]) <n—d+j and Jacye([h¥,7j]) <n+i—d+j.
Hence by (2), the two conditions are equivalent and then it holds that
Vo (Ky(j,V)) = K(m;,V?) forall 0 < j <.
In particular, for j = 0, ¥, (sing(V')) = sing(V'*¥), so that for all 0 < j <4,
Vo (We (5, V) = Wo(m;, V¥).

Since W, is an isomorphism of algebraic sets, it is a homeomorphism for the Zariski topology,
so that it maps the Zariski closure of sets to the Zariski closure of their image. Hence, we can
conclude that We, (W (j,V)) = W(m;, V¥) for all 0 < j <. O

Lemma 4.6 (Chart and atlases). Let 1 < e <n, @ C C° be a finite set and S be an algebraic
set such that V. and S lie over QQ with respect to ¢. By a slight abuse of notation, we denote
equally m € C[X] when seen in C[E,X]. Then, the following holds.

1. Let x = (m,h) C C[X] be a chart of (V,Q, S, ), then x¥ = (m,h?) C CIE,X] is a chart
of (V¥,Q,S8%,m), where S¥ = U,(5).

2. Let x = (Xxj)1<j<s be an atlas of (V,Q,S,p), then if x¥ = (Xf)lgjgs as defined in the
previous item, X% is an atlas of (V¥,Q, S?,m).
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Proof. We start with the first statement. Let @, S and x = (m, h) be as in the statement. Then,
it holds that:

Cy: Let y € O(m) NV — S, which is non-empty by property C; of x. Then by definition
U, (y) € V¥, and since ¥, is an isomorphism on V¥, ¥, (y) ¢ S¥. Finally since m €
C[X], then m(V,(y)) = m(y) # 0 so that O(m) N V¥ — S¥ is not empty.

Cy : Note that since m € C[X], ¥, (O(m)) is defined by m # 0. By a slight abuse of notation,
we still denote this Zariski open set O(m). Hence, it follows from the definition of ¥, that
U, (O(m)NV =8)=0(m)NV¥ —S¥. Besides, by Lemma 4.2, w, 0 ¥, and ¢, coincide
on V. Then
Z1p.cQ=Yp(Z) g eq forany Z C V.

Finally, as seen in the proof of Lemma 4.4, ¥, (V' (h)) = V(h¥). Hence by property Cy of
X

Om)NV¥ =S¢ =V, ,(O(m)NV(h)pcq—5)=0m)NV(h?®)x cq— 5%,
since O(m) NV (h)|, cq — S is a subset of V.

Cs : Let ¢ be the cardinality of h, then h¥ has cardinality ¢ + i. Hence by property Cs of y,
e+ c+1 <1+ n as required.

C4 : Finally let y? = (t,y) € O(m) NV¥ — §¥, we know from above that y € O(m)NV — S5,
so that by property C4 of x, Jacy[h,¢,] has full rank ¢ 4+ e. But by equality (2) in the
proof of Lemma 4.5, this means that Jacye ([h¥,7,]) has full rank ¢ + i + e as required.

We have shown that charts can be transferred to incidence varieties, let us now prove that
this naturally gives rise to atlases. Consider an atlas x = (x;j)i<j<s of (V,Q, S, ), and let
x¥ = (X;P)lgjg& where for all 1 < j <'s, X;P is defined from x; as above. We proved that x¥
is an atlas of (V¥,Q,S%, ).

Property A1 is straightforward, and As is given by the first statement of this lemma which
we just proved. Finally, since U, (V —5) = V¥ — S®, then for any y¥ = (t,y) € V¥ — S%,
by property As of x, there exists 1 < j < s such that m;(y®) = m;(y) # 0. Then x¥ satisfies
property As of atlases. ]

We deduce the following results for two important particular cases.

Lemma 4.7. Let S C C" be an algebraic set, x = (m,h) and x = (xj)1<j<s be respectively a
chart and an atlas of (V,S), and let x¥ and x¥ the chart and atlas constructed from respectively
x and x¥ as in Lemma 4.6. The following holds.

1. If h has cardinality ¢, then for any c-minor m’ of Jac(h) and any (c+ i — 1)-minor m” of
Jac([h, ¢,;]), containing the rows of Jac(ep;), the following holds. If Wepart (X, m’',m”) is a
chart of W = (W (i,V), S), then Wepart (X%, m’, m") is a chart of W = (W (w;, V¥),S?¥).

2. If Wartas(X, V, S, @, 1) is an atlas of W then, Watlas(X?, V¥, S, 7, i) is an atlas of W'%®.

Proof. Let m' and m” be respectively a c-minor of Jac(h) and a (¢4 ¢ — 1)-minor of Jac([h, ¢,]),
containing the rows of Jac(e,). Assume that

Wenare O/, ) = ((mm'm”, (b, Hop (o i,m")) )
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is a chart of #. By Cy, O(mm/m”) N W,(i,V) — S is not empty, so that m’ and m” are not

identically zero. Since
0 Jac(h) )
Jac(h¥) = ,
(B) (—u Jac(p,)
Lemma 2.1 shows that m' is a (¢ + ¢)-minor of Jac(h?) and m” is a (¢ + i + ¢ — 1)-minor of
Jac(h¥, ;) containing I; = Jac(mr;). Hence, according to Definition 2.10,

Wchart (ch’ m/7 m”) = (mm/m”7 (hL‘D? %71' (h‘P’ ia m”))) ’

where, by definition, H, (h¥, i, m") is the sequence of (c+i+14)-minors of Jac([h?, 7r,]) obtained
by successively adding the missing row and the missing columns of Jac([h¥,,;]) to m”.

But, since m” # 0, Lemma 2.12 implies that Hx(h?,i,m"”) is, as well, the sequence of
(¢ + i)-minors obtained by successively adding the missing row and the missing columns of
Jac(h?,i) = Jac([h, ;) to m”. We deduce that

Hr(h¥,i,m") = He(h, i, m'”),

so that if g = (h, He(h,i,m")), then g% = (h?, Hx(h?,i,m")).

Hence Wepart (x¥, m’',m”) is the chart constructed from Wepart (x, m',m”, ¢) in Lemma 4.6, and
since, by Lemma 4.5, U, (W, (i,V)) = W(m,;,V?¥), the first statement of Lemma 4.6 implies
that Wepare (x¥?, m’,m”) is a chart of #'¥.

To prove the second assertion, remark that by Lemma 2.12 (third assertion), Watias(x%, V¥, S¥®, 7, i)
is the sequence of all those Wepart (X}p, m/,m"), for j € {1,...,s} and for m’,m” respectively a
c+i-minor of Jac(h¥) and a (c+i—1)-minor of Jac(h¥, ) for which O(m;m'm")NW (m;, V®)—S
is not empty.

As seen above, the polynomials m’ and m” are actually c-minors of Jac(h;) and (c+1i — 1)-
minors of Jac([h}a, ®,]), and in the first point, we prove that Wchart(xf, m’,m") is the chart con-
structed in the first point of Lemma 4.6 from Wepar (x5, m',m”). Hence Wagias(x%, V#, 5%, 7, 1)
is exactly the atlas constructed from Wogas(x, V, S, ¢, 1) in the second item of Lemma 4.6.

In conclusion, by Lemma 4.6, if Waas(x, V, S, ¢, ©) is an atlas of #, then Wyas(x¥?, V¥, S?, 7, 1)
is an atlas of #'%¥. O

Lemma 4.8. Let 1 <e <n, Q C C€¢ be a finite set and S be an algebraic set such that V and
S lie over () with respect to . Let further

F = (VI%EQ’ (SUWe(e, V))I%EQ)
and
7= (Vlfee Q’
Let x = (m, h) and x = (xj)1<j<s be respectively a chart and an atlas of (V,Q, S, ¢) and let x¥
and x¥ the chart and atlas constructed from respectively x and x¥ as in Lemma 4.0.
If Fatlas(X, V, Q, S, ) is an atlas of F then Fuas(xX?,V?,Q,S?,m) is an atlas of F¥.

Proof. Without loss of generality one can assume that S C V. Since by Lemma 4.2, w, o ¥,
and ¢, coincide on V, then
Ve ((S U Wv(e, V))\cpee Q) = (S¥Y U W(m,, V¢))|7reeQ-

Hence, for any 1 < j <s, O(m;) N V\ﬁeeQ — (8P UW(m,,V?))ix.cq coincides with

Uy (O(my) NVig,eq — (SUWp(e,V)jp.eq) »
so that these sets are not-empty for the same j’s in {1,...,s}.
Hence Fyutas(x?, V¥®,Q, S?,m) is the atlas constructed from Fyyas(x, V, @, S, ) in Lemma 4.6.

In conclusion, by the second assertion of Lemma 4.6, if Foyas(x, V, @, S, ) is an atlas of %
then Fyyas(x, V,Q, S, ) is an atlas of Z#¥. O

(SPUW (m, VE))im,c ) -
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4.3 Lagrange systems

We present here a simplified version of generalized Lagrange systems defined in [33, Section
5.2] to encode polar varieties and provide equivalent results adapted to our case. As we only
use a simplified version (involving a single block of Lagrange multipliers), we simply call them
Lagrange systems.

4.3.a Definitions

The following is nothing but a simplified version of [33, Definition 5.3].
Definition 4.9. A Lagrange system is a triple L = (I', 2,.%) where

o I' is a straight-line program evaluating a sequence of polynomials F = (f,g) C Q[X, L],
where

— X=(X1,...,Xy) and L = (Ly,...,Lp);
— f=(fi,---. fp) CQ[X] and g = (g1,--.,9¢) C Q[X, L] with degy, g < 1;
e 2 is a zero-dimensional parametrization with coefficients in Q, with Q = Z(2) C C¢;

e . is a zero-dimensional parametrization with coefficients in Q, with S = Z(.¥) C C"
lying over Q;

o (n+m)—(p+q) >e.

We also define N and P as respectively the number of variables and equations, so that
N=n+m, P=p+4+q and d=N-—-—e—P>0.

One checks that such a Lagrange system is also a generalized Lagrange system in the sense of
[33, Definition 5.3]. We can then define the same objects associated to such systems as follows.
We denote by mx : CN — C" the projection on the variables associated to X in any set of CV
defined by equations in C[X, L].

Definition 4.10. Let L = (I, 2,.%) be a Lagrange system and all associated data defined in
Definition 4.9. We define the following objects:

e the type of L is the triple T = (n,p,e) where n = (n,m) and p = (p,q);
o U(L) =y (V(F)‘,TEEQ - 7r;(1(5)> ccr

o % (L) C C" the Zariski closure of % (L).
Then we say that L defines %(L)Z.

(We see here that Lagrange systems are nothing but generalized Lagrange systems of type
(I,n,p,e), in the sense of [33]). We now define local and global normal forms, that can be
seen as equivalent to charts and atlases for Lagrange systems, replacing the notion of complete
intersection by the one of normal form presented below.

For any non-zero polynomial M of a polynomial ring C[Y] we denote by C[Y]ys the local-
ization of C[Y] at M, that is the of all g/M/ where g € C[Y] and j € N.
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Definition 4.11. For a non-zero M € Q[X] and polynomials H C Q[X, L]y, we say that H
is in normal form in Q[X, L] if these polynomials have the form

H:(hl,...,hc,Ll—pl,...,Lm—pm),

where the hj’s are in Q[X] and the p;’s are in Q[X|y. We call h = (hy,..., he) and p =
(Lj — pj)i<j<m respectively the X- and L-components of H .

Definition 4.12. A local normal form of a Lagrange system L = (I',2,.7) is the data of
¥ = (m,0, h, H) that satisfies the following conditions:

Ly m,d € Q[X] — {0} and H is in normal form in Q[X, L]ny with X-component h =
(hiy... he);

Lo H and F have the same cardinalityn —c =N — P;
Ls (F,I(Q)) = (H,I(Q)) in Q[X, L]m,;
Ly (m,h) is a chart of (V,Q,5);
Ls 9 does not vanish on O(m) N % (L).
Given such a local normal form 1 we will note x = (m, h) the associated chart.

As for atlases and charts, we define now global normal forms using local normal forms. The
definition takes into consideration a family %" = (Y1,...,Y,) of algebraic sets; this is specifically
needed to help us prove correctness of the main algorithm.

Definition 4.13. A global normal form of a Lagrange system L = (I, 2,.%) is the data of
Y = (V))1<j<s such that:

Gy each ¥; = (mj,0;, h;, H;) is a local normal form;
G x = ((mj, hj))i<j<s is an atlas of (V,Q,S).

Let further % = (Y1,...,Y,) be algebraic subsets of C™. A global normal form of (L; %) is the
data of a global normal form 1 = (j)1<j<s of L such that for all1 < j <s and 1 <k <r:

Gz for any irreducible component Y of Yy, contained in 'V and such that O(m;) NY — S is not
empty, O(m;9;) NY — S is not empty.

We say that L (resp. (L; %)) has the global normal form property if there exists a global normal
form ap of L (resp. (L; %)) and we will note x the associated atlas.

4.3.b Lagrange system for polar varieties

We give here a slightly different version of results presented in [33, Section 5.5]. We first recall
the construction of |33, Definition 5.11] adapted to our more elementary case.

Definition 4.14. Let L = (I', (1),.%) be a Lagrange system whose type is ((n,0),(p,0),0), let
f C C[X] be the polynomials which are evaluated by T' and let i € {1,...,n — p}.
Let L = (Ly,...,Ly) be new indeterminates, for u = (u1,...,u,) € QP, define

F, = <f, Lagrange(f,i, L), u1L1+ -+ upLy, — 1),
where Lagrange(f,i, L) denotes the entries of
[Ly -+ Lp| - Jac(f,7).
We define Wiy (L, w, 1) as the triplet (I'y, 2,.7), where I'y, is a straight-line program that eval-
uates Fy, it is a Lagrange system of type ((n,p), (p,n —i+ 1),0).
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We can now prove an analog of [33, Proposition 5.13].

Proposition 4.15. Let V, S C C™ be two algebraic sets with V d-equidimensional and S finite.
Let x be an atlas of (V,S) and let i € {2,...,(d+ 3)/2}. Write W = W(x,,V) and assume
that the following holds. Fither W is empty or it is equidimensional of dimension i — 1, with
sing(W) C S, and Wanas(x, V, S, 7,14) is an atlas of (W, S).

Let L = (T',(1),.) be a Lagrange system such that V.= % (L) and S = Z(.). Let ¥ =
(Y1,....,Y,) be algebraic sets in C™ and let finally ¥ be a global normal form for (L; (W, %)) such
that x is the associated atlas of (V,S). There exists a non-empty Zariski open subset (L, 1, %)
of CP such that for alluw € S (L,v,% )N QP, the following holds:

® Wiag(L,u,1i) is a Lagrange system that defines W;
o ifW #0, then Wiag(L,w,i); %) has a global normal form whose atlas is Watias(X, V5 S, 7, ).

Proof. The statement of this proposition is identical to |33, Proposition 5.13| except that, in [33,
Proposition 5.13|, our assumptions on W are replaced by a generic linear change of variables
on V. [33, Proposition 5.13] claims the same statements on VA where A is assumed to lie in a
non-empty Zariski open set 4 (x, V.0, S,4) defined in [33, Proposition 3.4].

In the proof of [33, Proposition 5.13], the fact that A lies in 4 (x,V,0,S,7) allows one to
assume that the statements of [33, Proposition 3.4] but also [33, Lemma B.12] hold. In our
proposition stated above, according to Lemma 2.12; the assumptions on W are exactly the
conclusion of [33, Proposition 3.4|, while [33, Lemma B.12] is nothing but a consequence of
these facts. Therefore, under these assumptions, the proof of |33, Proposition 5.13] can be
replicated, mutatis mutandis, for V instead of VA, and constitutes a valid proof for the above
statement. 0

4.3.c Lagrange system for fibers

Definition 4.16. Let L = (I',(1),.7) be a Lagrange system whose type is ((n,0), (p,0),0) and
let e € {1,...,n —p}. Let 2" be a zero-dimensional parametrization that encodes a finite set
Q" C C¢ and let " be a zero-dimensional parametrization that encodes a finite set " c C™
lying over Q". We define Fiag(L, 2", ") as the triplet (I', 2", "), it is a Lagrange system of
type ((n,0), (p,0),e).

As in the previous paragraph, we state an analogue of [33, Proposition 5.16] where we
replaced the assumption of a generic linear change of variables by the assumptions that such a
change of variables allows us to satisfy. In addition, we handle here the more general situation
where, using the notation below, W = W (., V%), as the case W = W (m,_;, V%) considered in
[33] can be deduced from the former.

Proposition 4.17. Let V, S C C™ be two algebraic sets with V d-equidimensional and S finite.
Let x be an atlas of (V,S) and let e € {2,...,(d+ 3)/2}. Define W = W(w,,V?) and let 2"
and " be zero-dimensional parametrizations with coefficients in Q that respectively encode a
finite set Q" C C® and S" = SUW | cqr and let V" = Vi c gn. Assume that S is finite and,
either V' is empty or its is equidimensional of dimension d — e, with sing(V") contained in S”,
and Faas(x, V, S, 2", m) is an atlas of (V",Q",S").

Let L = (T',(1),.) be a Lagrange system such that V.= % (L) and S = Z(.¥). Let ¥ =
(Y1,...,Y.) be algebraic sets in C™ and let finally ¥ be a global normal form for (L; (V", %))
such that x is the associated atlas of (V,S). Then the following holds:

o (L, 2",.7") is a Lagrange system that defines V" ;
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o if V" £ 0, then (Flag(L, 2", "), %) has a global normal form whose atlas is Faas(X, V, Q", S, 7).

Proof. As above, the statement of this proposition is identical to the one in |33, Proposition
5.16], except that the assumptions on S” and V" are replaced by a generic change of variables
on V. Indeed, |33, Proposition 5.16] claims the same statements as we do on VA where A is
assumed to lie in a non-empty Zariski open set ¥(x, V, 0, S, e) defined in [33, Proposition 3.7].

In the proof of [33, Proposition 5.17], the fact that A € 95(x, V.0, S, e) allows us to assume
that the statements of [33, Proposition 3.7| but also [33, Lemma C.1] hold. In the case of
the proposition stated above, the assumptions on S” and V" are exactly the statement of [33,
Proposition 3.7|, while [33, Lemma C.1] is nothing but a consequence of these facts. Again, under
these assumptions, the proof of [33, Proposition 5.17] can be replicated, mutatis mutandis, for
V instead of V4, and constitutes a valid proof for the above statement. ]

4.4 Proofs of Lemmas 3.3, 3.4, 3.5 and 3.6

As done in Subsection 3.2.b, we fix 1 < ¢ < n — 2 and we refer to the following objects:

e sequences of polynomials g = (g1, ..., 9.) and ¢ = (¢1, p2) in Q[X], of maximal degrees D,
such that g satisfies assumption A that is: g is a reduced regular sequence and sing(V'(g))
is finite;

e straight-line programs I' and I'?, of respective lengths F and E’, computing respectively
g and ¢

e the equidimensional algebraic set V' = V(g), of dimension d = n — ¢, defined by g;

e zero-dimensional parametrizations . and 2", of respective degrees o and ", describing
finite sets S C C"™ and Q" C C, such that sing(V') C S;

e an atlas x of (V,S), given by [33, Lemma A.13|, as S is finite and contains sing(V").

Let ¥, be the incidence isomorphism associated to ¢ and let g¥ as defined in Lemma 4.4,
so that V := V(g®) = ¥y, (V). According to Lemmas 4.4 and 4.5, V C C*™™ is equidimensional
with finitely many singular points.

Lemma 4.18. Let ¥ = (Y1,...,Y;) be algebraic sets in C". There exists an algorithm such
that, on input T',.# and TP, runs using at most O~ (E'c) operations in Q, and outputs

° f, a straight-line program of length E + E' + 2, computing g%,
. 57/, a zero-dimensional parametrization of degree o, encoding S = U, (5),

such that the Lagrange system L= (f, (1),% of type ((2+ n,0),(2+ ¢,0),0) defines V, and
(L, %) has a global normal form.

Proof. By Lemmas 4.1 and 4.3, there exist algorithms IncSLP and IncParam respectively, which,
on input I', . and ', output T and . as described in the statement, using at most O~ (E'o)
operations in Q. Let L= (f, (1), 5/) By Lemma 4.4, g¥ is a reduced regular sequence as g
is. Then, according to |33, Proposition 5.10], L defines a Lagrange system that defines V and
¥ = ((1,1,9%,g%)) is a global normal form of (L, %). O

We deduce an algorithm for computing critical points on V.
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Proof of Lemma 3.3 By Lemmas 4.4, 4.2 and 4.5, W, (1, V) can be obtained by projecting
the incidence polar variety W (7, 17) on the last n coordinates. Computing a parametrization of
the latter set can then be done using the algorithm W of [33, Proposition 6.3| on the Lagrange
system given by [33, Proposition 5.10].

According to Lemma 4.18, we can compute a Lagrange system L of type ((2 + n,0), (2 +
¢,0),0), with the global normal form property, that defines V. Hence, by [33, Proposition
6.4], there exists a Monte Carlo algorithm W; which, on input Z, either fails or returns a zero-

dimensional parametrization % which describes it using at most

0~ <(E 4 E')(n + 2)38p2nas(p )2 nJQ)

operations in Q. Moreover, in case of success, % describes W (7, XN/) — g, with the notation of

Lemma 4.18. Besides, by |33, Proposition I.1] (or [34, Proposition 3|) the degree of K (7, V) is

upper bounded by

(DD~ 1) = (73 DD~ 1)

Finally, by Lemma 4.5, W, (1, V') can be obtained by projecting W (7, V') on the last n coordi-
nates and taking the union with S. This is done by performing the subroutines Projection and

Union |33, Lemma J.3 and J.5|, which uses at most
o~ <n2 (701111)2D20+4(D _ 1)2d + ngz)
operations in Q. O

In the following, we consider the polar varieties W = W (2, V') and W = W(my, V) so that,
by Lemma 4.5, W= U, (W).
Lemma 4.19. Let % = (Y1,...,Y,) be algebraic sets in C™. There exists a Monte Carlo
algorithm which, on input T',. and T, runs using at most O~ (E'c +n(E + E’)) operations
mn Q, and outputs a Lagrange system Z\V; of type

((2+n,2+¢), (2+¢,n+1),0).

FEither W is empty or assume that W is 1-equidimensional, with sing(W) C S, and Waas(x, V, S, ¢, 2)
is an atlas of (W, S). Then, in case of success, Ly defines W (s, V) and (E;, %) has a global
normal form.
Proof. According to Lemma 4.18, one can compute, using O~ (E’c) operations in Q, a Lagrange
system L of type ((24n,0),(2+¢,0),0), defining V, and such that (E, (/V[7, %)) has a global
normal form .

Let w be an arbitrary element of Q"2 (such an element can be provided by the proce-
dure Random we mentioned in Subsection 3.3) and let fu; = WLagmnge(z,u, 2). According to
Definition 4.14, E\V; is a Lagrange system of type

((2+n,2+c), (24+¢,n+1), 0).

Computing E\V; boils down to apply Baur-Strassen’s algorithm [6] to obtain a straight-line pro-
gram evaluating the Jacobian matrix associated to g, ¢ as in the proof of [33, Lemma O.1].

By assumption, either W is empty, and so is W, or W is equidimensional of dimension
1, with sing(W) C S. Then, by Lemma 4.5, W is equidimensional of dimension 1, with
sing(W) C U, (S) = S. Moreover, as Watnas(X, V. S, @,2) is an atlas of (W, S) then, by
Lemma 4.7, Walas(X#, V.S, 2) is an atlas of (W, §)

Therefore, by Proposition 4.15, there exists a non-empty Zariski open subset .# (E, P, %) of
CP such that, if u € f(z, , %) then, either W # () or (fml/, %) admits a global normal form.
In both cases, fv; is a Lagrange system that defines W. O
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Proof of Lemma 3.4 According to Lemmas 4.4, 4.2 and 4.5, W,(2,V) can be obtained
by projecting the incidence polar variety W(7r2,17) on the last n coordinates. Computing a
parametrization of the latter set can then be done using the algorithm SolveLagrange of [33,
Proposition 6.3] on the Lagrange system given by Proposmon 4.15.

By Lemma 4.19, we can compute a Lagrange system LW defining W (,, V) that admits
a global normal form. Then, by [33, Proposition 6.3], there exists a Monte Carlo algorithm

SolvelLagrange which, on input [TV; , either fails or returns a one-dimensional parametrization #
of degree at most
6= (n+c+4)DV (D —-1)%c+2),

describing % (fm//), which is exactly 1% by Proposition 4.15. Moreover, by [33, Proposition 6.3],
the execution of SolvelLagrange uses at most

O ((n+ 3(EA4E + (n+)*)D& + (n+ 0)502)

operations in Q. Finally, by Lemma 4.5, W can be obtained by projecting W on the last
n coordinates. Hence, running Projection, with input # and n, we get a one-dimensional
parametrization %, of degree at most 9, encoding W. According to [33, Lemma J.9], the
latter operation costs at most O (n253) operations in Q. O

Proof of Lemma 3.5 By Lemma 4.19, we can compute a Lagrange system fu; defining
W (m,,V), such that (fv;;W(wl,W)) has the global normal form property. Hence, by [33,
Proposition 6.4], there exists a Monte Carlo algorithm W; which, on input fm//, either fails or
returns a zero-dimensional parametrization A of degree at most d(n + ¢)D, where

§=(n+c+4)DV (D —-1)%c+2),

describing W (7, U (L)) — S, which is exactly W (m,, W) — S by Proposition 4.15. Moreover,
by [33, Proposition 6.3], the execution of W; uses at most

O~ ((n+¢)'*(E+ E')D*6* + (n + ¢)o?)

operations in Q. Finally, by Lemma 4.5, W (1, W) can be obtained by projecting W (mr,, W) on
the last n coordinates and taking the union with S. This is done using the subroutines Projection
and Union which, according to [33, Lemma J.3 and J.5], use at most O™ ((n + ¢)*D?6? + no?)
operations in Q. O

Proof of Lemma 3.6 By Lemma 4.19, we can compute a Lagrange system LW defining
W (7, V), such that (LW, wn 771_1(@”)) has the global normal form property. Hence, by [33,
Proposition 6.5], there exists a Monte Carlo algorithm Fiber which, on input fm//, either fails or
returns a zero-dimensional parametrization F of degree at most k"6 where

6= (n+c+4)DV (D —-1)%c+2),

describing [% (L) N 71'1_1(@7/)] — S, which is exactly [W N TrI_I(C/QV”)] — S by Proposition 4.15.
Moreover, by |33, Proposition 6.3|, the execution of FiberPolar uses at most

O~ ((n+c)*[E+ E'+ (n+¢)*] D(K")?6* + (n + c)o?)

operations in Q,according to [33, Definition 6.1]. Finally, by Lemma 4.5, W N ¢ (Q") can be
obtained by projecting W n sy (Q” ) on the last n coordinates and taking the union with S..

This is done, using the subroutlnes Projection and Union which, according to |33, Lemma J.3
and J.5], use at most O~ ((n + ¢)?(x”)?6? + no?) operations. O
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4.5 Proof of Proposition 3.7

This paragraph is devoted to prove Proposition 3.7. We recall its statement below.

Proposition (3.7). Let T' and T'? be straight-line programs, of respective length E and E’, com-
puting polynomials g = (g1,...,9p) and @ = (p1,...,¢n) in Qx1,...,xy), of degrees bounded
by D. Assume that g satisfies (A). Let 2 and 7g be zero-dimensional parametrizations of
respective degrees k and o that encode finite sets Q C C® (for some 0 < e < n) and Sg C C,
respectively. Let V =V (g) and Fg = V|, cq, and assume that

o [y is equidimensional of dimension d — e, where d =mn — p;
o Faas(X, V,Q, @) is an atlas of (Fg, Sq), and sing(Fg) C Sg;
o the real algebraic set Fg NR™ is bounded.

Consider additionally a zero-dimensional parametrization & of degree p encoding a finite subset
P of Fg, which contains Sg. Assume that o < ((n+ e)D)"*e.

There exists a probabilistic algorithm RoadmapBounded which takes as input ((I',T'¥, 2,.7), )
and which, in case of success, outputs a roadmap of (Fg,P), of degree

9

o~ <(M I H)163dF (nplogynr )2(2dp+1210g2dp )(logodr +5) p(2np+1)(logydr +3)>

where np = n+e and dp = d — e, and using

ON (IU/IS 169dF E//(nF loanF )6(2dp+12 lodeF )(lodeF +6)D(6nF+3)(10g2dF +4)>

arithmetic operations in Q where ' = (u+ k) and E" = E+ E' +e.

We start by proving a variant of this result that applies when ¢ encodes projections. Then,
using incidence varieties and the associated subroutines, we generalize it to arbitrary polynomial
maps.

4.5.a The particular case of projections

We study here algorithm RoadmapRecLagrange from [33, Section 7.1]. It takes as input a La-
grange system L, = (I',, 2,,.7,) having the global normal form property, and a zero-dimensional
parametrization &2,, where Z(2,) lies in C®, for some e, > 0; the output is a roadmap for
the algebraic set defined by L,, and Z(Z#?,). The following proposition ensures correction and
establishes runtime. The discussion is entirely similar to that of |33, Proposition O.7], but the
analysis done there assumed that 2, was empty and had e, = 0 (the notation we use, with
objects subscripted by p, is directly taken from there, in order to facilitate the comparison). In
what follows, let r1,...,tm, where m > 0, be new indeterminates.

Proposition 4.20. Let f = (f1,...,fp,) C Qlt1,...,tm] be given by a straight-line program T,
of length E, with deg(f;) < D for 1 <i<p,, let 2, and .7, be zero-dimensional parametriza-
tions which have respective degrees k, and o, and encode finitely many points in respectively
Ce (for some e, > 0) and in C™. Assume that the Lagrange system L, = (I',, 2,,.%,) has the
global normal form property. Let d, = m — p, — e,, hence the dimension of V(Fﬂ)lﬂ'ep6 2(2,)-

Consider a zero-dimensional parametrization &, of degree i, such that Z(Z,) is a finite
subset of V(Fp)lvrepeZ(,%) which contains Z(7,). Assume that o, < (mD)™.
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There exists a Monte Carlo algorithm RoadmapRecLagrange which takes as input ((I'p, 2,,-7,), &)
and which, in case of success, outputs a roadmap for (V(Up)ix, c z(2,), Pp) of degree
ep

o ((Mp + Hp) 1634 (m logym )2(2d+12 logyd, )(logad, +5)D(2m+1)(log2dp +3)>

UsIng
o ((Mp i Hp)3169dp E,(mlogym )(12d+24 logdp ) (logad, +6) )(6m-+3)(logad, +4)>

arithmetic operations in Q.

Proof. Since, by assumption, L, has the global normal form property, one can call the algorithm
RoadmapReclagrange from [33, Section 7.1] on input L, = (I'y, 2,,.7,) and &,. This algorithm
computes data structures, which are called generalized Lagrange systems, that encode:

)

e a polar variety in V(I'y)|x, cz(2,) of dimension d—1~d,/2 for d = Ld”—;?’j'
ep

e appropriate fibers in V(I'y)|x, cz(2,) of dimension d, — (d — 1) ~d,/2.
ep

A generalized Lagrange system (see [33, Definition 5.3]) is encoded by a triplet L = (I, 2,.%)
such that T is a straight-line program that evaluates some polynomials, say F' = (f, f1,..., fs)
where

o f lies in Q[X], with X = (r1,...,1m);

o filiesin Q[X, Ly,..., L;] and has length p;, where the L;’s are sequences of extra variables
of length m; (these are called blocks of Lagrange multipliers);

e for any f; ; in f;, the degree of f; ; in L; is at most 1 for 1 <7 <p; and 1 < j <.

Also, 2 (resp. .¥) is a zero-dimensional parametrization encoding points in C¢ (resp. C™).

The algebraic set of C™ defined by L = (', 2,.%) is the Zariski closure of the projection on
the X-space of V/(F)x, cz(2) \ 7% (Z(2)).

Short description of RoadmapRecLagrange From a generalized Lagrange system L sat-
isfying the global normal form property and encoding some algebraic set X, one can build a
generalized Lagrange system encoding a polar variety W over X using [33, Definition 5.11 and
Proposition 5.13], which satisfies the global normal form property, up to some generic enough
linear change of coordinates and some restriction on the dimension of W. Additionally, given
finitely many base points Q' C C¢ encoded by a zero-dimensional parametrization 2’ [33, Def-
inition 5.14 and Proposition 5.16] show how to deduce from L and 2’ a generalized Lagrange
system for X| meQ satisfying the global normal form property, again assuming the coordinate
system is generic enough.

Maintaining the global normal form property allows us to call recursively RoadmapRecLagrange.
All in all, these computations are organised in a binary tree T, whose root is denoted by p. Each
child node 7 encodes computations performed by a recursive call with input some generalized
Lagrange system L, = (I';, 2;,.%;) and some zero-dimensional parametrization &2, encoding
some control points. Both L, and &2, have been computed by the parent node. Correctness is
proved in [33, Section N.3|. Further, we denote by k,, o and p, the respective degrees of 2.,
S and &,

The dimension of V(L;) is denoted by d,. Calling RoadmapRecLagrange with input L, sets

d; = |43 | and computes
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)

(a) a generalized Lagrange system L’ which encodes the polar variety W = W (e,, d., V(L,)*)

where A is randomly chosen;

(b) a zero-dimensional parametrization 2, which encodes the union of Z(2)* with W (e,, 1, W);
we denote its degree by [3-; note that by construction (see [33], Z(%;) contains Z(.7));

(c) a zero-dimensional parametrization 27 which encodes the projection of %, on the e first
coordinates (with e/ = e, + d, — 1 ); we denote its degree by x;

(d) a zero-dimensional parametrization 2. encoding Z(2,)*UY; with Y, = V(V(L’T))|ﬂ8//€ 7(21)
and a zero-dimensional parametrization &) which encodes those points of Z(Z7.) which

project on Z(2Y”) ; further we denote their degrees by p/. and p/, the degree of Y, will be
denoted by ~v;;

(e) zero-dimensional parametrizations ./ and .#/ of respective degrees o, and ¢ which do
encode Z(.#)* UY; and those points of Z(.#”) which project on Z(2/); note that by
construction, Z(.#) and Z(#") are contained in Z(Z2.) and Z(Z2Y) respectively;

(f) and a generalized Lagrange system L7 which encodes V(L) |x , cz(2n)-

The recursive calls of RoadmapReclLagrange are then performed on (L., 2L) and (LY, 22”).

For a given generalized Lagrange system L. corresponding to some node 7, the number of
blocks of Lagrange multipliers is denoted by k,. The total number of variables (resp. polyno-
mials) lying in Q[X, L1, ..., L;] for ¢ < k, is denoted by M; ; (resp. P; ). By construction, for
i =0, we have Py, = p,. For i = k;, we denote M}, . (resp. Py, ,) by M; (resp. Pr).

As in [33, Section 6.1], we attach to each such generalized Lagrange system the quantity

kr—1
0r = (P + )% DP(D — 1ym=er—pe T My
=0

We establish below that the degree of V(L;) is bounded by ;9.

Complexity analysis The complexity of RoadmapRecLagrange is analysed in [33, Section O],
assuming that e, = 0 (see [33, Proposition O.7]). This is done by proceeding in two steps:

e Step (i) proves some elementary bounds on the number of variables and polynomials (the
m;’s and the p;’s) involved in the data-structures encoding these polar varieties and fibers
in the recursive calls (see [33, Section O.1]);

e Step (ii) proves uniform degree bounds for the parametrizations 2., 2! B, 2., 2/ as
well as .77/, .7/ where T ranges over all nodes of the binary tree 7. Uniform degree bounds
are also given for all V(L;).

These degree bounds are used in combination with the complexity estimates of [33, Section

6.2] for solving generalized Lagrange systems and |33, Sections J.1 and J.2| which do depend
polynomially on these bounds and the ones established in (3).

Since the total number of nodes is O(m), it suffices to take m times the sum of all costs established
by (it). Hereafter, we slightly extend this analysis when e, > 0, following the same reasoning,
which we recall step by step by highlighting the main (and tiny) differences.

Step (i). Both [33, Lemma O.1] and [33, Lemma O.2] control the lengths of the straight-line
programs, the numbers of blocks of Lagrange multipliers and their lengths, as well as the numbers
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of polynomials and total number of variables remain valid, assuming e, = 0. Their proofs are
based on how these quantity evolve when building generalized Lagrange systems encoding polar
varieties and fibers (see [33, Lemmas 5.12 and 5.15]). This is not changed in our context where
the initial call to RoadmapRecLagrange is done with some base points Z(2,) with e, > 0, because
for each node 7, we take d, = |93 | as in [33]. This implies that the conclusions of [33, Lemma
O.1] and [33, Lemma O.2] still hold when taking d, = m —p, — e,.

All in all, we deduce that:

e the maximum number of blocks of Lagrange multipliers and the depth of T are bounded
by [logad), |

e All straight-line programs have length bounded by 4m**2logzd, (E, + m*)

e the total number of variables for the generalized Lagrange system L, is bounded by
d
(mQ)ﬁJrl where h; is the height of the node 7.

Step (it). The two main quantities to consider are

5 — 16dp+2m2dp+12 logzdp Dm

and
¢ = (Np + Iip)162(d”+3) (m IOng )2(2dp+12log2dp )D(2m+1)(log2dp+2 ) )

The first step is to prove that for any node 7, the degree of V(L;) is dominated by x.d.
Using the global normal form property, |33, Propositions 5.13 and 6.2] prove that the degree of
V(L) is upper bounded by k;d,. Recall that, by definition,

kr—1

8- = (P + )% DP(D — 1ym=er—pe T My~
=0

[33, Lemma O.4] shows that the above left-hand side quantity is dominated by d, using the
results of Step (i) which we proved to still hold. We then deduce that the degree of V(L) is
upper bounded by x;4.

[33, Lemma O.5] establishes recurrence formulas for the quantities -, v-, pr + k- and o
when 7 ranges in the set of nodes of the binary tree T. It states that, letting 7" and 7" be the
two children of 7, By, Vr, firr + ks, firr + kipr, 07 and o, are bounded above by 28%¢, (jur + K1)

d

where (; = (m?logy(m)D) it (here h; is the height of 7) in the context of [33] with e, = 0
and assuming that Z(.#%) is contained in Z(Z;) for any node 7 of 7 (this is used to prove the
statements on 0,0, and o,~). In the context of [33], we have Z(~#,) = 0. In our context, we
still take d, = |93 | as in [33], hence the structure of our binary tree 7 is the same as the one
in [33]. Also we assume that Z(.#),) is contained in Z(Z?;) and that its degree is bounded by
(mD)™. This is enough to transpose the recursion performed in the proof of [33, Lemma 0.5
and Proposition O.3| and deduce that p,, s, and o, are bounded by ¢ when 7 ranges over the
set of nodes of T.

The runtime estimates in [33, Section O.3| to compute the parametrizations and generalized
Lagrange systems in steps (a) to (f) above are then the same (they depend on 8, ¢ and the above
bounds on deduced at Step (7)). The statements of [33, Lemmas 0.8, 0.9, 0.10 and O.11] can
then be applied here mutatis mutandis which, as in [33, Section O.3|, allow us to deduce the
same statement as [33, Proposition O.7], i.e. that the total runtime lies in

ON((Mp I Kp)3169dpEp(m long)6(2d+1210g2dp)(10g2dp +6) p3(2m+1)(logad, +4)>
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and outputs a roadmap of degree in

ON((Mp i %p)163d,) (m log2m)2(2d+1210g2dp)(10g2dp +5) [y(2m-+1)(log,d, +3)) ‘

4.5.b Proof of Proposition 3.7

To prove Proposition 3.7, we now show how to return to the case of projections from the
general one, before calling the procedure RoadmapReclLagrange, whose complexity is analysed in
Proposition 4.20.

Consider the notations introduced in the statement of the proposition. In the following let
U, be the incidence isomorphism associated to ¢, and let g¥< as defined in Lemma 4.4, so

that V := V(g¥<) = Wy (V). According to Lemma 4.4 and 4.5, V C C“'" is equidimensional
with ﬁEitely many singular points. Additionally, let Fp = ¥y, (Fg) and Sg = ¥, _(Sg), so that
Fg = Viz_e @, according to Lemma 4.2.

Lemma 4.21. There exists an algorithm such that, on input ', ', 2 and % as above, runs
using at most O~ (E'c) operations in Q, and outputs a Lagrange system Lp of type

((e+n,0), (e+¢,0), e).
Under the assumptions of Proposition 3.7, E: has a global normal form, and defines E}

Proof. According to Lemma 4.18, we can compute a Lagrange system L of type ((e +n,0),(e+
¢,0),0), with the global normal form property, that defines V. Let Lp = Flag(L 2,9, a
defined in Definition 4.16, it is a Lagrange system of type (( (e +n,0), (e +¢,0), e).

By assumptions of Proposition 3.7, either Fg is empty, and so is P/E, or Fg is equidimensional
of dimension d — e, with sing(Fg) C Sg. Then, by Lemma 4.5, f’Q is equidimensional of
dimension d — e, with sing(l%) C ¥y,(Sq) = SNQ Moreover, as Fytlas(X, V, Sg, ®) is an atlas of
(Fg,Sq) then, by Lemma 4.8, Fyias(Xx?, 17, %,ﬂ') is an atlas of (PA’C;,S’Z))

Hence, by Proposition 4.17, either I/*B =0 or IT;: admits a global normal form. O

Suppose now that the Lagrange system E;: given by Lemma 4.21 has been computed.
According to Lemma 4.3, one can compute a zero-dimensional parametrization &, encoding
P = ¥, (P), within the same complexity bound. One checks, by assumption, that Sg C P C Fy

and that Sq has degree bounded by ((n 4 €)D)"+¢

Therefore, according to Proposition 4.20, with m = n + e, there exists a Monte Carlo algo-
rithm RoadmapRecLagrange which, on input LF and 9” outputs, in case of success, a roadmap
%FQ of (FQ,P) of degree

O~ ((M + k) 1630 (np logyn o ) 22dr+121082dr )(l08adr +5) [y (2nr+1)(logadr +3)>

where np =n + e and dp = d — e, and using

o~ (u/3169dF E"(np logynp )6(2dp+12 logydr ) (logadr +6) H3(2np+1)(logydr +4))
arithmetic operations in Q with 4/ = (u+ k) and E” = E+ E' +e.
Finally, let Zry be the degree bound, given above, on the roadmap %r, of (Fg, Q) output
by RoadmapReclLagrange. Then, by [33, Lemma J.9], one can compute the projection Kr, of
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%f’FQ on the last n variables. The complexity of this step is bounded by O™ (n%%ﬂM), that is
bounded by

o~ ((M i K)3169dp (nrlogynr )6(2dF+1210g2dF )(logadr +6) [)3(2np-+1)(logadr +3)>

operations in Q. Finally, since ¥, is an isomorphism of algebraic sets, it induces a one-
to-one homeomorphic correspondence between the semi-algebraically connected components of
Fo NR"™ and Fg NR" by [30, Lemma 2.1]. Therefore, Zf,, is a roadmap of (Fg,P).

5 Proof of Proposition 2.3: finiteness of fibers

We recall the statement of the proposition we address to prove.

Proposition (2.3). Let V. C C" be a d-equidimensional algebraic set with finitely many singular
points and € be in C[X]. Let 2 <t < d+1. For a = (ay,...,0) in C™, we define ¢ =
(p1(X, 1)y .-+, (X, ), where for 2 < j <t

v1(X,a1) =6(X —1—2&1 rrr and  @i(X, ay) Zaﬂkxk
k=1

Then, there exists a non-empty Zariski open subset Q(V,6,t) C C™ such that for every a €
O (V,6,¢) and i € {1,...,t}, the following holds:

1. either W (i,V) is empty or (i — 1)-equidimensional;
2. the restriction of @,_; to W(i,V') is a Zariski-closed map;
3. for any z € C'7L, the fiber K, (i,V) N ;| (2) is finite.

The rest of this section is devoted to the proof of this result. We first establish a general
lower bound on the dimension of the non-empty generalized polar varieties. This is a direct
generalization of |33, Lemma B.5 & B.13].

Lemma 5.1. Let R be an algebraically closed field, and let V. C K" be a d-equidimensional
algebraic set. Then, for any ¢ = (¢1,...,04+1) C RIX], and any 1 <i < d+ 1, all irreducible
components of We(i,V) have dimension at least i — 1.

Proof. Since V is d-equidimensional, the case i = d + 1 is immediate; assume now that i < d.
According to [33, Lemma A.13|, there exists an atlas x = (xj)i<j<s of (V, sing(V)). For
1 <j<s,let xj = (my, hj). By [33, Lemma A.12], h; has cardinality ¢ = n — d. According to
Lemma 2.6, fix j € {1,..., s}, the following holds in O(m;) — sing(V),

We(i,V) = {y € Vigg(hy) | rank(Jacy (hj, ¢i) < ¢+ i} = Wg (i, Vigg(hy))- (3)

Let y € Wg(i,V) = Wg(i,V) — sing(V). Since y € V, there exists j € {1,...,s} such that
y € O(m;). Hence, by (3), in O(m;)—sing(V'), the irreducible component of W (i, V') containing
y is the same as the irreducible component of the Zariski closure of W(i, Vigy(h;)) containing
y. Since these irreducible components are equal over a non-empty Zariski open set, they have
same dimension by [36, Theorem 1.19]. Hence, proving that this common dimension is at least
i — 1 allows us to conclude.
Let m C R[X] be the ideal generated by the (c + i)-minors of Jac[h;, ¢;]. Then,
Wg (i, Vieg(hj)) = Vigg(hyj) NV (m)

reg reg
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which is contained in the algebraic set Vieg(hj) NV (m). We assume that Vieg(hj) NV (m) is not
empty otherwise the statement of the proposition trivially holds.

Note that any irreducible component Z of Vieg(hj) NV (m), has an ideal of definition p in
R[Vieg(hj)] that is an isolated prime component of the determinantal ideal m-&][Vieg(h;)]. Then
by [14, Theorem 3|, p has height at most n —c¢— (i — 1) so that the codimension of Z in Vieg(h;)
is at most n —c — (¢ — 1). Since Vieg(h;) has dimension n — ¢, the dimension of Z is then at
most 7 — 1.

One concludes by observing that, any irreducible component of the Zariski closure of Wg (2, Vi2, (h;))
is the union of irreducible components of Vieg(hj) NV (m).

5.1 An adapted Noether normalization lemma

Consider an algebraically closed field &, let f = (f1,..., fm): 8 — K™ be a polynomial map
and V. C K" and let Y C K" be algebraic sets such that f(V) C Y. Finally, consider the
restriction f: V — Y of f, and recall that the pullback f* of f is defined by

o 8Y] =Ry, Lyl IY) — RV] = Kz, @)/ I(V)

g — gof
Definition 5.2 (|30, Section 5.3]). We say that the restriction f of f is a finite map if
1. f(V) is dense in' Y, which is equivalent to f* being injective;
2. the extension R]Y] < R[V] induced by f* is integral.

The following lemma shows that to verify such conditions, we may not have to work over
an algebraically closed field: if V and Y are defined over a subfield K of g, finiteness of f is
equivalent to the pullback K[Y]/I(Y) — K[X]/I(V) being injective and integral.

Lemma 5.3. Let K C L be two fields, let I,J be ideals in respectively K[Y] = K[y1, ..., Ym]
and K[X] = K[z1,...,x,] and let I', J'" be their extensions in respectively L[Y] and L[X]. Let
finally f = (f1,..., fm) be in K[X], such that for g in I, go f is in J.

Consider the ring homomorphisms
(k : K[Y]/I — K[X]/J and (g, : L]Y]/I' — L|X]/.J',
that both map y; to f;, for all j. Then, (k is injective, resp. integral, if and only if (g, is.

Proof. Injectivity of (k is equivalent to equality between ideals I = (JKI[Y, X]+(y1—f1,- -+, Ym—
Jfm))NK[Y]; similarly, injectivity of (g, is equivalent to I’ = (J'L[Y, X]+{y1— f1, - s Ym— fm))N
L[Y]. These properties can be determined by Grobner basis calculations; since the generators
of I,.J are the same as those of I’, J’, they are thus equivalent.

Next, integrality of (k directly implies that of (7. Conversely, integrality of (g is equiv-
alent to the existence of polynomials G1,...,G, in L{y1,...,Ym,s], all monic in s, such that
Gj(fi,..., fm,xj) is in J’' for all j. If we assume that such polynomials exist, we can then
linearize these membership equalities, reducing such properties to the existence of a solution to
certain linear systems with entries in K. Since we know that solutions exist with entries in L,
some must also exist with entries in K. This then yields integrality of (k. O

The Noether normalization lemma says that for V' r-dimensional and Y = K", the restriction
of a generic linear mapping K" — K™ to V is finite. We give here a proof of this lemma adapted
to our setting, where the shape of the projections we perform is made explicit. We start with a
statement for ideals rather than algebraic sets.
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Proposition 5.4 (Noether normalization). Let K be a field, let J be an ideal in K[X] and let
r be the dimension of its zero-set over an algebraic closure of K. Let further a be r(n —r) new
indeterminates. Then the K(a)-algebra homomorphism

Ca: Kl(a)lz1,...,2/] —> K(a)[X]/JK(a)[X]
n—r
Zj — T+ Z ajk Tryp mod J
k=1
is injective and makes K(a)[X]/JK(a)[X] integral over K(a)|z1, ..., 2.
Proof. We proceed by induction on the number n of variables. The case n = 0 is straightforward.
Assume now that n > 0 and that the statement holds for £ < n variables. Remark that if
J = {0}, we have r = n, (4 is the isomorphism K|z ..., z,] — K[X] mapping z; to x; for all 4
(which is then integral); in this case, we are done.
Assume now that J # {0}, and let f be non-zero in J. Let ¢ be the total degree of f and
let £ = (¢1,...,0,—1) be new indeterminates. Writing f = Zz‘l,...,in Cil,...,in$i11 .- xin the leading
coefficient of f(x1 + l1Zn, ..., Tn-1 + lp-1Tn, Tp) In Ty, 18

Z Cirnin O 0L = f5(01, o b, 1)
Zl++ln:6
where f5 is the homogeneous degree-d component of f. Therefore, taking F' = f5(¢1,...,0n—1,1),
F' is not the zero polynomial and the polynomial

1
ff($1 + 0%, Tyt + Ly 1Tp, xn) S K(E)[X]

is monic in x,,. Let further J’ be the extension of J to K(£)[X], let Y = (y1,...,Yn—1) be new
indeterminates and consider the K(£)-algebra homomorphism

T KWO[Y] — K(K)[X]

yj — l’j — Ejl’n

the contraction J® = 771(.J') is an ideal in K(£)[Y]. For 1 <j <n —1, let [y;] = y; mod J’
and for 1 <k <nlet [z;] = 2; mod J'. Then let

[r]: K([Y]/J* — K()[X]/J
[y;] — [z] = £j[zn)]

and

0(5) = (] + s, gn ] + s, s) € (K@OLY]/T°)s)

this is a monic polynomial in s. If we extend [7] to a K(£)-algebra homomorphism K (€)[Y]/J“ [s] —
K(€)[X]/J [s], g satisfies

Mo (f]) = 3l ) =0,

since f € J by assumption. Since [7] is by construction injective, it makes K(£)[X]/J' an integral
extension of K(€)[Y]/J'® (the integral dependence relation for [z;], for j < n, is obtained by
replacing s by (s — [y;])/¢; in g and clearing denominators).
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In particular, these two rings have the same Krull dimension [27, Corollary 2.13]. This latter
dimension is the same as that of K[X]/J (because it can be read off a Grébner basis of J, and
such Grobner bases are also Grobner bases of J'), that is, r. In other words, the zero-set of J©
over an algebraic closure of K(£) has dimension r.

Then we can apply the induction hypothesis to J' C K(£)[Y]. If welet b = (b; j)1<i<ri<j<n—1—r
be r(n — 1 — r) new indeterminates, and introduce Z = (z1, ..., 2,), the K(¥, b)-algebra homo-
morphism

m: K(,b)Z] — K(£b)[Y]/JK(Db)Y]
n—1-—r

Zj — [yl + Z bjk [Yr+]
k=1

is thus injective and realizes an integral extension of the polynomial ring K(£,b)[Z]. On the
other hand, by Lemma 5.3, the extended map

(7] K(£,B)[Y]/T°K (£, B)[Y] — K(£,b)[X]/J'K(€, b)[X]
remains injective and integral. By transitivity, it follows that the K(£, b)-algebra homomorphism

[r®om:  K(£b)[Z] — K(¢b)[X]/JK(Eb)[X]

Zj — [l D) my [
k=1

9

where for all 1 < j <7,

n—1-r
my = (b1, binoie G — Y bikleik |

k=1

is injective and integral as well. In particular, the restriction of [7]¢ony to a mapping K(m)[Z] —
K(m)[X]/JK(m)[X] is still injective and integral, by Lemma 5.3 (here, we write K(m) =
K(ml,lv s 7mr(n77")))'

Letting @ be 7(n — r) new indeterminates, we observe that ¢ : a;; — m;; defines a K-
isomorphism K(a) — K(m) C K(£, b), since the entries of m are K-algebraically independent.
The conclusion follows. O

Corollary 5.5. Let V. .C C™ be an r-dimensional algebraic set. Let a = (a; j)i1<i<ri<j<n—r b€
r(n —r) new indeterminates and let Vg C 8" be the extension of V' to the algebraic closure & of
K = C(a). Then the restriction f: Vg — & of the polynomial map f = (f1,..., fr) given by

n—r

i :xj+zaj,er+kv l<j<r
k=1

1s finite.

Proof. Let J be the defining ideal of V' in C[X]. Letting Z = z1,. .., z be r new indeterminates,
the previous proposition shows that f* : C(a)[Z] — C(a)[X]/JC(a)[X] is injective and integral.
By Lemma 5.3, we further deduce that it is also the case for the extension of f* : R[Z] —
R[X]/JRIX].

Because C is algebraically closed, J remains radical in K[X], so that JR[X] is the defining
ideal of Vg, and we are done. O
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5.2 Finiteness on polar varieties

In this section, we prove the core of the Proposition 2.3, by proving finiteness properties on the
restriction of the considered morphisms to their associated polar varieties.

Proposition 5.6. Let V C C" be a d-equidimensional algebraic set with finitely many singular
points and let § € C[X]. For a = (au,...,aqy1) in COTY and for 2 < j <d+1, let

(X 051) = 9 +ZO¢1 yTr and QOJ X aj Zaﬂvkmk
k=1

Then for any 1 < i < d+1, there exists a non-empty Zariski open set Q; € CUTV™ such that if
ac Q) and o = (p1(X, 1), ..., 04+1(X, ag41)), then the restriction of pi—1 to Wy (i,V) is a
finite map.

Proof. Let a = (a;)1<j<d+1, with aj = (aj1,...,a;j,) for all j, be (d+ 1)n new indeterminates,
and let C(a) be the field of rational fractions in the entries of a. We let K be the algebraic
closure of C(a), and we denote by Vg C K" the extension of V to & Let further

n
»1(X,a1) =0(X —I—Zal rrr and  ¢;(X, a;) Z%‘,kxk, 2<j<d+1
k=1 k=1

and define ¢ = (¢1, ..., ¢4+1) in C(a)[X]; as before, for 1 < i < d+1, we write ¢; = (¢1,. .., P;).
We will prove the following property, which we call P (i), by decreasing mathematical induction,
fori=d+1,...,1:

P(i) : the restriction of ¢;_1 to We(i, Vi) is a finite map.

Let us first see how to deduce the proposition from this claim; hence, we start by fixing ¢ in
.,d+ 1 and assume that P(i) holds.
Since ¢; and Vi are defined by polynomials with coefficients in C(a), it is also the case for
We(i, Vg) by [33, Lemma A.2]. Then P(i) shows (via the discussion preceding Lemma 5.3) that
the pullback 5;‘_1 :C(a)lz1,. .., zim1) = C(a)[X]/I(Wg(i,Vg)) is injective and integral.

e Injectivity means that the ideal generated by I(Wg(i,Vg)) and the polynomials z; —
1y 2ic1—¢i—1 In C(a)[z1, ..., zi—1, X] has a trivial intersection with C(a)[z1, .. ., zi—1].
Then, this remains true for the restriction of ¢p;—1 to W, (i,V) for e in a non-empty
Zariski-open set in Cl4+1" For instance, it is enough to ensure that the numerators and
denominators of the coefficients of all polynomials appearing in a lexicographic Grébner
basis computation for the ideal above, in C(a)|z1,..., -1, X], do not vanish at «

e Integrality means that there exist n monic polynomials P, ..., P, in C(a)[z1,. .., zi—1][s]
such that all polynomials

Pj(golw"agai—laxj)v 1§]§7’L

belong to I(Wg(i, Vg) in C(a)[X]. Taking G € Cla] as the least common multiple of the
denominators of all coefficients that appear in these membership relations, we see that for
a in CUFI™ if G(a) # 0, ¢;—1 makes C[X]/I(Wy(i,V)) integral over Clz1, ..., zi1].
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Base case: 1 =d+ 1 We prove P(d+ 1). As T,V has dimension d, for every y € reg(Vg),
the polar variety Wg(d + 1, Vi) is nothing but Vi (since the latter only admits finitely many
singular points); hence, we have to prove that the restriction of ¢y to Vy is finite.

Let y1,...,yq be new variables and consider the algebraic set V! € C%" defined by y; —
0,12, ...,yq and all polynomials f, for f in I(V); as above, we denote its extension to 84" by
V. Apply Corollary 5.5 to V' (which is still of dimension d): we deduce that the restriction of
¢q to VY is finite. Since Vi and Vi are isomorphic (since V} is a graph above Vi), we are done
with this case.

Induction step: 1 < i <d Assume now that P(i+ 1) holds. Thus, the restriction of ¢; to a
mapping W (i + 1, Vi) — &' is finite. By [30, Theorem 1.12] this restriction is a Zariski-closed
map so that, since W (i, Vi) C We(i + 1, Vi), ¢i(Wy(i,Vg)) C K is an algebraic set and the
restriction of ¢; to a mapping W (i, Vg) — ¢i(We(i, Vg)) is finite as well.

Let Y = (y1,...,¥i) be new indeterminates. Because these sets are defined over C(a), we
deduce that the pullback C(a)[Y]/I(¢;(Wy(i,Vg))) = C(a)[X]/I(We(i, Vy)) that maps y; to
@; (for all j <) is injective and integral (Lemma 5.3).

On another hand, by the theorem on the dimension of the fibers [36, Theorem 1.25|, for any
irreducible component C' of W (i, Viz) and for a generic y € ¢;(C),

dim C' — dim ¢;(C) = dim ¢; ' (y) N C =0

since, as a finite map, the restriction of ¢; to Wy (i, Viz) has finite fibers. By an algebraic version
of Sard’s theorem |33, Proposition B.2|

dim ¢Z‘(W¢(’i, Vf{)) S 17— 1,

so that dim W (i, Vg) < i—1 as well. Together with Lemma 5.1, this proves that both W (4, Vi)
and its image ¢;(Wg (i, V)) are either empty or equidimensional of dimension i — 1. If they are
empty, there is nothing to do, so suppose it is not the case.

Let Z = (21,...,2i—1) and £ = ({1,...,¢;—1) be new indeterminates. Since W (i, Vi), and
thus its image ¢;(Wg(i,Vg)), are defined over C(a), we can apply Noether normalization to
Di(Wy(i,Vg)) (Proposition 5.4) with coefficients in C(a), and deduce that the C(a, £)-algebra
homomorphism

¢: Cla,0[Z] —  C(a, [Y]/T1(9i(Wy(i,Vi)))
zj — yj + 4y mod I(¢i(We(i, Vi)))

is injective and integral. Besides, we deduce from Lemma 5.3 that after scalar extension, the
ring homomorphism

Cla, O]/ T(6:(Wp(i, Vi) — Cla, &)[X]/T(Wy (i, Vi)
that maps y; to ¢, (for all j < i) is still injective and integral. If we set
Vi =¢;+Lip; for1<j<i—1 and v¢;=¢; fori<j<d+1, (4)
and finally ¥ = (¢1,...,%4+1) C C(a, £)[X], then, by transitivity,

Yi-1: C(a,f)[Z] —  C(a,)[X]/I(We(i,Va))
zj — (X)) mod I(Wy(i, Va))

is injective and integral as well.
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Since the first ¢ entries of 1 are elementary row operations of the first ¢ entries of ¢, we
deduce that Wy (i, Vi) = Wy (4, V). Besides, injecting the definition of the ¢;’s in (4), one gets
that ¥ (X) = ¢(X, m), where

m = (a1 + l1a;,...,a;_ 1 +{;_1a;,a;,...,0441)

is a vector of (d+1)n C-algebraically independent elements of C(a, £). Through the isomorphism
C(a,f) — C(m), we see that

¢i-1: C(a,0)[Z] — C(a,)[X]/I(Wg(i,Va))
zj > ¢j(X) mod I(Wg(i, Va))

is injective and integral. From Lemma 5.3, we see that this precisely gives that the restriction
of ¢;—1 to Wy(i, Vg) is finite. This ends the proof of the induction step, and, by mathematical
induction, of the proposition. ]

5.3 Proof of the main proposition

We conclude by proving Proposition 2.3, which is a direct consequence of the previous results.
Let V, 0 and 2 <t <d+ 1 as given in the statement of the proposition.

Let Q be the non-empty Zariski open subset of C@+D" obtained as the intersection, for
all 1 < i < d+1, of the ;s given by application of Proposition 5.6. Let a = (a;)i<i<d+1,
where a; = (a;1,...,ain) be (d+ 1)n new indeterminates. By definition, there exists f =
(fi,---, fp) C Cla], such that @ = CE+I™ — V(f). Then, let Q(V,0,t) be the projection on
the first vn coordinates of €, it is the union, for all o’ € C@H1=97 of the non-empty Zariski

open sets
Cc"_v (f(a', a//)) ’
where @’ = (a1, ..., a,), hence a non-empty Zariski open subset of C*".

Let & € Q(V,6,¢) and ¢ = (p1(X, }), ..., oe(X, ). Let i € {1,...,t} then, there exists
o' € CUF1=97 guch that (a/, o) € Q;. Therefore by Proposition 5.6, the restriction of ;1
to Wi (4, V) is finite.

In particular, by [36, Section 5.3], the restriction of ¢, ; to W, (i, V) is a Zariski-closed map
that has finite fibers. Moreover, since sing(V') is finite, we deduce that K,(i,V) N ;Y (2) is
finite for any z € C*~1. Finally, as a consequence, and by [36, Theorem 1.12 and 1.25], W (i, V)
is equidimensional of dimension ¢ — 1. It is worth noting that the latter can also be seen as a
consequence of [36, Theorem 1.25] and Lemma 5.1.

6 Proof of Proposition 2.13: atlases for polar varieties

This section is devoted to prove Proposition 2.13, that we recall below.

Proposition (2.13). Let V, S C C" be two algebraic sets with V' d-equidimensional and S finite
and x be an atlas of (V,S). For2<tv<d-+1, let @ =(01,...,6;) and € = (&1,...,&), and for
1<j<v letaj=(oj1,...,05,) € C" and

0i(X,a;) = 0;(X) + D ajrar + &) € C[X],
k=1
where §; € C[X] and &: C" — C is a polynomial map, with coefficients in C.
There exists a non-empty Zariski open subset Qw(x,V, S, 0,&,t) C C™ such that for every
a € Qw(x,V,S,0,&,v), writing ¢ = (1(X, @), ..., (X, ), the following holds. For i in
{1,...,¢}, either Wy (i,V) is empty or
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1. Wy (i,V) is an equidimensional algebraic set of dimension i — 1;

2. 4f2 <i < (d+3)/2, then Wayas(x, V. S, @, 1) is an atlas of (W,(i,V), S)
and sing(Wy(i,V)) C S.

6.1 Regularity properties

In this subsection, we fix the three integers (d,t,i) such that2 <t <d+1<n+1landl <i<r.

For 1 < j <4, let aj = (aj1,...,a;,) be new indeterminates, and let A = (a;)1<j<;. For
1 < j <1, we will also denote by A<;, the subfamily (a1,...,a;). Finally, we consider sequences
h = (hi,...,he) C C[X], where c =n —d, and ¢ = (¢1,...,¢;) such that

6;(X,a5) = 0;(X) + > ajpwp +E(a;) € C[X, Agyl,
k=1

for 1 < j <i. We start by investigating the regular situation. The first step towards the proof
of Proposition 2.13 is to establish the following statement.

Proposition 6.1. There exists a non-empty Zariski open set be C C™, such that for all o € Q?,
and ¢ = (01(X, a1),...,¢(X, o)) C C[X], the following holds:

1. for all y € V.2 (h), there exists a c-minor m’ of Jac(h) such that m/(y) # 0;

reg

2. the irreducible components of Wy (i, Vyeg(h)) have dimension less than i — 1;

Assume now that i < (d+3)/2, and let m’ be any c-minor of Jac(h) and let m” be any (c+i—1)-
minors of Jac([h, ;]) containing the rows of Jac(;). Then, the following holds:

3. for ally € V.2 (h) there exists m” as above, such that m"(y) # 0;

reg
4. Wi (i, Vigy(h)) is defined on O(m'm”) by the vanishing of the polynomials in (h, He(h,i,m"));
5. Jac(h, Hy(h,i,m")) has full rank n — (i — 1) on O(m'm") N W (i, Vg, (h)).

reg

6.1.a Rank estimates

We start by proving some genericity results on the ranks of some Jacobian matrix. Two direct
consequences (namely Corollaries 6.3 and 6.4) of Proposition 6.2 below will establish the third
statement of Proposition 6.1.

Let 1 <p<n-—1and M(X,A<;) be a p x n matrix with coefficients in C[X, A<;]. For
1 <5 <14, let

M(X,A<)
Jj(X, Agj) = |0n01(X, a1,) Oz, 01(X, a10) |
02, 65(X, aj,1) e 02, 65(X, ajn) ]
where for all 1 < k <idand 1 < /¢ < n, Op,¢, = 89575() +aie € C[X,ay). Proposition 6.2

below generalizes |33, Proposition B.6|. Our proof follows the same pattern as the one of [33,
Proposition B.6|.
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Proposition 6.2. Assume that there exists a non-empty Zariski open subset &y C C™ such that
for all (y,a) € V.2, (h) x &, the matrix M (y, ) has full rank p. Then, for every

reg
1 <j <min{i,c—p+(d+3)/2},

there exists a non-empty Zariski open subset & C C™ such that for all (y,a) € V.2 (h) x &,

reg

rank M (y,a) =p and rankJi(y,a)>p+j—1.

Before proving the above proposition, we first give two direct consequences of it, whose
conjunction proves the third item of Proposition 6.1. Taking M = Jac(h), the next lemma is a

direct consequence of the definition of Vig,(h).

Corollary 6.3. If1 < i < (d+3)/2 then, there exists a non-empty Zariski open subset & C cn
such that for all (y,a) € Vi3, (h) x &/, the matriz Jac(y o) ([h, ¢]) has rank at least c +1i — 1.

Besides we deduce the following more subtle consequence.

Corollary 6.4. If 1 < i < (n+ ¢+ 1)/2 then, there exists a non-empty Zariski open subset
&/' € C™ such that for all (y,e) € Vg, (h) x &/, the matriz Jacy o) (¢) has full rank i.

Proof. Take M = Jac(¢1). The matrix Jac(¢q) has not full rank if, and only if, all the derivatives
of ¢1 vanish at this point. Following the proof strategy of Lemma 6.6, let

091 091 ) '

Z°=7ZNnVe (h)Cc C"™ wh Z=V |h =, . .. =
N (h) C where < 92 o

reg

whose following Jacobian matrix, has full rank ¢+ n at any (y,a) € Z°

Jac(h) ‘ 0
8¢1 aqbl o * 1 --- 0
JaC(X,al,l,...al,n) , 37:131’ cey 873371 = . Do
* 0o --- 1
Hence, by the Jacobian criterion [15, Theorem 16.19], Z° is either empty or a d-equidimensional

locally closed set. Since d < n by assumption, then the projection of Z° on the variables A<
is a proper subset of C” and taking &p as its complement allows us to conclude.

Indeed, for any 1 < i < (n+2)/2, by Proposition 6.2, there exists a non-empty Zariski open
subset & of C™ such that for all (y,a) € V.2, (h) x &,

reg

rank Jac(y o) (@1, - - -, ¢i) = rank Jac(y o) (¢1,¢1,- .-, ¢i) = 1+i—1=4.
O

The rest of this paragraph is devoted to the proof of Proposition 6.2. Following the con-
struction of the proof of [33, Proposition B.6|, we proceed by induction on j. For all 1 < j <
min{s, [¢ — p + (d + 3)/2}, we denote by R; the statement of Proposition 6.2.

Base case: j =1 By assumption, there exists a non-empty Zariski open subset &y C C" such
that for all (y, ) € Vg,(h) x &, the matrix M (y, 1) has full rank p. Therefore, the matrix

reg

Ji, containing M, has rank at least p. This proves that Ry holds.
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Induction step: 2 <j <min{i,c—p+(d+3)/2} Assume that R;_; holds, and let us
prove that so does R;. Let 9t be the set of ordered pairs m = (m,, m.) where

e {1,....p}Cm, C{l,...,p+j—1}
e m.C{l,...,n}
d |mr‘:’mc‘:p+j_2

Then, for each such m, let Jy be the square submatrix of J; obtained by selecting the rows
and the columns in respectively m, and m.. Such a submatrix can also be obtained by removing
from J;, n — p — j + 2 columns and and two rows, which includes the last row. Besides, let
dm € C[X,A<;_1] be the determinant of Jy, that is the (p + j — 2)-minor of J; associated to
m. Finally, let Sub; be the subset of m € M such that there exists (y, ) € Vo (h) x C’™ such
that dm(y, ) # 0.

Lemma 6.5. The set Subj, thus defined, is not empty.

Proof. By induction assumption R;j_q, there exists a non-empty Zariski open subset &_1 C
CU-1" such that for all (y,a') € Vieg(h) x &1, the matrix J;_1(y,a’) has rank at least
p+j—2and M(y,a’) has full rank p. We deduce that there exists a non-zero (p+ j — 2)-minor
of J;_1(y, @) containing the rows of M(y,a’). Then, by definition of 9,

V(y,a') € Vigg(h) x &1, Im e M,  du(y, ') #0, (5)

where 0, € C[X, A<;_1]. This proves, in particular, that Sub; is not empty, as neither Vieg(h)
nor &j_1 is empty. O

We now prove the following lemma, which is the key step in the proof of R;.

Lemma 6.6. For all m € Subj, there exists a non-empty Zariski open subset &y C CI" such
that, for all (y,o) € Vg (h) X €y, if 0n(y, ) # 0, then J;(y, o) has rank at least p+ j — 1.

reg

Proof. Take m in Sub;. We proceed to show that the subset of the o € CJ™ such that, for all
Y € Vigg(h), du(y, @) # 0 and J;(y, ) has rank at most p + j — 2 is a proper algebraic subset
of CJ". Then, taking the complement will give us &,.

Up to reordering, assume that the rows and columns of J; that are not in Ji, are the ones of
respective indices p+j — 1,p+ j (the last two rows) and p—j+3,...,n (thelast n —p+j — 2
columns). In other words, (p+ k,¢) ¢ m, xm,forall k € {j —1,j} and € {p—j+3,...,n}.
For such k, ¢, we denote by ;¢ the minor of J; obtained by adding to Ji; the row and column
indexed by respectively p + k and £. Let A” be the subset of elements of A< formed by the

2(n — p — j + 2) indeterminates
Aj1p—j+3s--,Gj—1n and  ajp_it3,...,a5n,

and let A’ = A<; — A”. Remark then that for any such k € {j—1,j} and £ € {p—j+3,...,n},
by cofactor expansion there exists a polynomial g, € C[X, A'] such that

5uv:5m'%

, O, (X, are) + gre(X, A') (6)

Let & be the sequence of the 2(n — p — j + 2) minors J; 4. We proceed to prove that, the set
of specialization values a € C/™ of the genericity parameters (the entries of A;), such that all
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these minors in (X, a) are identically zero but not 0y (X, ), is a proper algebraic subset of
C/™. Hence, let t a new indeterminate and consider the locally closed set

Z° =270V (h) Cc C"" where Z =V (h,8,1—t0y).

reg

One observes that if (y, a,t) € Z° then y € Vi3, (h), om(y, @) # 0 and all the d ¢’s vanish.
We claim first that Z° is not empty. Indeed, since m € Subj, there exists (y, ) € Vig,(h) x
C’™ such that dn(y, ) # 0. Since §y, € C[X, A'], it is independent of the entries of A”. Besides,

forany ke {j—1,j}and € {p—j+3,...,n},

s
oxy

(v, ane) = gj;;m + iy € C[X][A"] (7)

is a non-constant polynomial in the entries of A”. Then, according to (6), for every such k, ¢,
one can choose ay, ¢ € C such that 6 ¢(y, @', ag¢) = 0. Let & be the element of C/" obtained
by this choice, then

(y, a, 1/6m(y,5z)) ISAS

We deduce that Z° is non-empty. We now estimate the dimension of Z° . According to (6) and
(7) the following Jacobian matrix has full rank ¢+ 2(n — p — j +2) + 1 at every point of Z°:

[ Jac(h) 0 0 0
* * x| 0m O : 0
JaC(X7A/7A//7t)(h,6,1 —t5m) = 0 0
* * 0 dm| O
i * * * | % * x| Om ]
Therefore, by the Jacobian criterion |15, Theorem 16.19], Z° is an equidimensional locally closed

set of dimension jn — (n — p) 4+ 2(j — 2). Let Z' C C/" be the Zariski closure of the projection
of Z° on the coordinates associated to the variables A, then

dimZ' <dimZ° =jn+d—2(n—p)+2(j —2) < jn, since j <c—p+ (d+3)/2.

Hence Z' is a proper algebraic set of C/™, so that its complement &, a non-empty Zariski open
subset of C7". Further, for any (y,a) € V;2,(h) X &y such that 6y does not vanish at (y, ),
the point (y, c,1/6m(y, @)) is not in Z°, otherwise a would be in Z’. Hence, there exists (k, ¢)
as above such that dj ¢(y, ) # 0, so that J;(y, ) has a non-zero (¢ + j — 1)-minor, and then,

has rank at least ¢+ j — 1. This proves the lemma. O

We can now conclude on the induction step as follows. Since, by Lemma 6.5, Sub; is not
empty, let

mESubj

where the €, are the non-empty Zariski open sets given by Lemma 6.6. Remark first that &
is a non-empty Zariski open subset of C’/” since it is a finite intersection of non-empty Zariski
open sets. Let (y,a/,a;) € Vg, (h) x &, as seen in (5), there exists mg € Sub; such that
dmo (y, ') # 0. By construction, a = (@, a;) belongs to €y, so that, by Lemma 6.6, J;(y, )
has rank at least p 4+ j — 1. Besides, since o’ € &5_1, M (y, ') has full rank p.

In conclusion, we proved that R;, which the induction step, and, by mathematical induction,
this proves Proposition 6.2.
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6.1.b Dimension estimates

In this paragraph, we aim to prove the second point of Proposition 6.1, using transversality
results. Let

d: C* x C"» x C* x C' — Cex Cn
(v a o A 9 ) — (k@) Jacya (b))

and for any a € C™, let &4 = (y,\,9) — ®(y,\,9,). The interest of such a map is
illustrated by the following lemma. Let ./ C CnT*¢ti be the Zariski open subset of the
elements (y, A, ) where X # 0 and Jacy(h) has full rank.

Lemma 6.7. Let o € C™" and

W;:{yGC”|y€V°

reg

(h) and rankJacy o)(h,¢) <c+i— 1}.

Then W§ = mx (o N ®41(0)).
Proof. Let a € C™™ and y € V,2,(h). Then y € W} if and only if Jac(y ) (h, ¢) has not full

re
rank, which is equivalent to havir%g a non-zero vector in its co-kernel by duality. Besides, since
Yy € Vigg(h), the matrix Jacy(h) has full rank. Hence y belongs to W if and only if there
exists a non-zero vector (X,9) € C* such that ®(y,a, A\,9) = 0 and Jacy(h) has full rank.
Finally ¥ cannot be zero otherwise Jacy(h) would have a non-trivial left-kernel (containing X),

and then would not be full rank. O

Lemma 6.8. Let .o/ C C™" *t be the Zariski open subset of the elements (y, A, 9) where 9 # 0
and Jacy(h) has full rank. There exists a non-empty Zariski open subset Z; C C" such that for
all a € D, Jacy x9) Pa has full rank c+n at any (y,X,9) € & N ,1(0).

Proof. We have

Jac(x 9 )= Jac(h) ‘ 0 ‘ O --- 0
A 0,a1,...,04 ‘ . ‘ﬂljn ﬂZIn

where I,, is the identity matrix of size n. Let a € C™, and (y, A\, 9) € &/ such that the above
Jacobian matrix has full rank ¢ +n at (y, a, X, 9). Hence 0 is a regular value of ® on &/ x C™".
Therefore, by the Thom’s weak transversality theorem [33, Proposition B.3|, there exists a non-
empty Zariski open subset 2; C C™ such that for all & € Z;, 0 is a regular value of &, on 7.
In other words, for all @ € Z;, the matrix Jac ®4 has full rank ¢ + n over &7 N ®_1(0). O

Lemma 6.9. Let 9; C C™ be the non-empty Zariski subset defined in Lemma 6.8. Then, for
all o € 95, W§, has dimension at most © — 1.

Proof. Let o € Z; and suppose that W is not empty. Then, according to Lemma 6.7, & N
®,1(0) is non-empty as well. By Lemma 6.8 and [33, Lemma A.1], &/ N®_(0) is a non-singular
equidimensional locally closed set and

dim(%ﬂ‘b&l(O)) =n+c+i—(c+n)=1i.
Let C be the Zariski closure of & N ®,1(0) and (C})1<j<¢ be its irreducible components. For

all 1 < j < ¢, let T be the Zariski closure of mx(C}j). Since W5 C U;<;<,Tj, it is enough to
prove that dim7j <i—1forall 1 <j </
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Fix 1 < j < 4. The restriction 7x: C; — Tj is a dominant regular map between two
irreducible algebraic sets. Then one can apply the theorem on the dimension of fibers from [30,
Theorem 1.25] and claim that there exists a non-empty Zariski open subset ; of T} such that

Vz € Q, dim (75 (2) N C}) = dimC;j — dim T = i — dim 7. (8)

Then it is enough to prove that dim(rx'(2) N C;) > 1. Let J' = {1 < k < ¢ | T}, = T;}. Then
it holds that
Q=T - | T
ke’

is a non-empty Zariski open subset of Tj. Besides, for all z € Q, 7' (2) N C; = 7' (2) N C
which is the Zariski closure of 5 (2)N./ N®;'(0) if and only if 2 € WS (otherwise it is empty).

However, by definition, CJ’» =adNeH0)N C; is a non-empty Zariski open subset of C, and
then mx (C}) is a non-empty Zariski subset of 7}. Since it contains mx (C?), the set Q3 = W5 N7}
is a non-empty Zariski open subset of T} as well.

Now, let @ = Q; N2 N Q3, it is a non-empty (Zariski open) subset of T}, and let z € €.
Since z is in 23, it is in W by definition. Besides, z € €29, so that

dim (g (2) N C;) = dim (Tr;(l(z) N/ N @;1(0)).
Since z € 1, together with (8), one gets that
VzeQ, zeW;, and dimTj=1i—dim <7T;(1(Z) N/ N @;1(0)), 9)
Let z € ), remark that
5l () N NDL0) = {2} x (Ez NOWert, ... ,ﬁi))

where E, is a linear subspace of C“t*. Indeed, E, is defined by homogeneous linear equations
in the entries of (A,4). Since z € W2 C nx (o N®_1(0)), there exists a non-zero (X, 9) € C*
such that (z,A,9) € & N ®,1(0). Then E, contains a non-zero vector, so that dim E, > 1.
Finally, injecting this inequality in (9) leads to dim7T; < i — 1 as required. O

6.1.c Proof of Proposition 6.1.

We can now tackle the proof of the main proposition of this subsection. Recall that we have
fixed three integers (d, v,7) such that 2 <t <d+1 <n+1and 1 <1i <t. Moreover, we consider
polynomials h = (hi,...,h.) in C[X], where ¢ = n — d. Finally, let ¢ = (¢1,...,¢;), such that

<Z>j(X,aj) = Qj(X) + Zaj,kxk + §j(aj) S C[X, ASj]v
k=1

forall 1 <j <1. Let Q? be the non-empty Zariski open subset of C** defined by

0h —

(2

2;n&NE it < (d+3)/2;
9; else,

where Z;, & and & are the non-empty Zariski open sets given respectively by Lemma 6.8,
Corollaries 6.3 and 6.4. Note that the assumptions of Corollary 6.4 since d < n — 1.
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Now let a € QF and ¢ = (¢1(X,@),...,¢/(X,a)). The first item of the proposition is a
direct consequence definition of Vig,(h). Besides, according to [33, Lemma A.2|, the set W,
defined in Lemma 6.7 is nothing but Wg,(i, Vieg(h)), whose Zariski closure is Wg (i, Vieg(h)), by
definition. Hence, since @ € ¥;, the second item is exactly the statement of Lemma 6.9.

Suppose now that i < (d+ 3)/2, so that a € &' N &/. Hence, by Corollaries 6.3 and 6.4, for
all y € Vg, (h),

rank Jacy(¢p;) =4 and rankJacy(h,¢;) >c+i—1.

Hence, there exists a (¢ + 4 — 1)-minor m” of Jacy(h, ¢,), containing the rows of Jac(y;), that
does not vanish at y. This proves the third item.

In the remaining we proceed to prove the last two items. Let m’ be a c-minor of Jac(h) and
m” be a (¢ + i — 1)-minor of Jac([h, p,]) containing the rows of Jac(yp,). Assume, without loss
of generality, that m” is not the zero polynomial. The next lemma establishes the second to last
item of Proposition 6.1.

Lemma 6.10. Let m' and m" as above. The set Wy (i, Vg (h)) is defined on O(m'm") by the

reg

vanishing set of the polynomials (h, He(h,i,m")). Equivalently,

O(m'm") N W (i, Vigy(h)) = O(m'm") N V (h,Hy(h,i,m")).
Proof. Inside the Zariski open set O(m’), the matrix Jac(h) has full rank, which implies by [33,
Lemma A.2| that

reg

O(m') N W (i, Vigy(h)) = O(m') N {y € V(h) | rank(Jac([h, ¢;]) < ¢ + z}

Besides, by the exchange lemma of |1, Lemma 1], if m is a (¢ 4 ¢)-minor of Jac([h, ¢;]), then
one can write

m''m = Zejm]’m;’ where e =41 and Ne{l,...,d—i+1}
j=1

and where m/ (resp. m;) is obtained by successively adding to m” (resp. removing to m) the
missing row and a missing column of Jac([h, ¢,]) that are in m. Remark that, for such a m, all
the m;-”s are in Hy,(h,i,m”), by definition.

Hence, for all y € V(h), if m"(y) # 0, then all the (¢ + i)-minors of Jac([h, ¢,]) vanish at y

if and only if all the polynomials of H(h, i, m") vanish at y. In other words:
O(m'm") N W2 (i, Vieg(h)) = O(m'm")n V(h,?—lv(h,i,m")).
O

In order to prove the the last item of Proposition 6.1, we need introduce Lagrange systems
for general polynomial applications. This generalizes, in some sense, the construction of [33,
Subsection 5.1|, also presented in Subsection 4.3.

Let Lq,...,L.and Ty, ..., T; be new indeterminates, since m” # 0, consider the ring of ratio-
nal fractions C[X, L1, ..., L¢, Ty, . . ., Tj]pr of the form f/(m”)", for f € C[X, Ly, ..., L¢, T4, ..., T}
and r € N. This the localization ring at the multiplicative set {(m”)" | » € N}.

Let Zyy the ideal of C[X, L1, ..., L¢, T1, ..., T;] e generated by the entries of

Jac(h
ha [le' . 'aLC’Tl’“ ’ 77—;] ‘ |:J;(f((90)):| .

The following lemma is an immediate generalization of [33, Proposition 5.2.].
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Lemma 6.11. Let 1 <. < ¢ such that the index of the row of Jac([h, ;]) not in m" has index ¢.
Then there exist (N\j)i1<jri<c and (7j)1<j<;i in C[X]» such that Iy is generated by the entries
of

h, LHy(h,i,m"), (Lj = XNL)i<jri<es (Tj—7iL)1<j<i- (10)

Proof. For the sake of simplicity, suppose that m” is the lower-left minor of Jac([h, ¢,]), so that
v = 1. Then Hy(h,i,m”) is the sequence of minors obtained by adding the first row and columns

in the ones of index c¢+1,...,n. We denote these minors by My, ..., My,_.—;+1. Then, we write
Ul,c+i—1 W1 n—c—itl
Jac(h, (101) =
Meyi—1,c4+i—1 Ueti—1,n—c—i+1

such that m” = det(m) and the indices are the dimensions of the submatrices. As m” is not
zero, it is a unit of C[X, Ly,..., L¢, 11, ..., Ti]m, so that m has an inverse with coefficients in
the same ring, given by m”~! and the cofactor matrix of m. Hence Ty is generated by the
entries of h and

-1 . _
(L1, LeTh, ..., T} - Jac([h, ;) - {mo (1’] . [Icﬂ—l “]

umfl w—um’lv
- [Lla"'uLC)Tlv'”vE]‘[ :|7

Tevioa 0

where I.+;_1 is the identity matrix of size c+i—1. The first c—1 entries are the L; — [um™!];L;
for 1 < j < c and the i followings are the T; — [um™'];L; for 1 < j < i. Hence taking
(A, 7) = um ™! gives the last terms in (10).

Finally, since m is invertible, we can compute the minors My,..., M,_._j11 of Jac(h, p;),
using the block structure we described above (see e.g. |7, Proposition 2.8.3| and [37, Theorem
1]) to obtain that forall 1 < j<n—c—1i+1,

M; = (—1)"Im [w — um ™).

Hence, the last n — ¢ — i + 1 entries are LiM;/m”, ..., LiMy,_c—i+1/m” up to sign, we are
done. ]

The next lemma ends the proof of the last item Proposition 6.1, and then conclude the proof
of the whole proposition.

Lemma 6.12. The Jacobian matriz of the polynomials in (h, Hy(h,i,m"”)) has full rank n —
(i — 1) at every point of the set O(m'm") N W(i, V3, (h)).

reg

Proof. Recall that ¢ = (¢1(X, @), ..., #i(X,a)), where @ € Q. Then, remark that

Jacx (h)

(h(x), (Li,.... Lo, Th,..., T} - {Jacx(%)

]) = o (X, Lty Lo Ty ),

where @ is the polynomial map considered in Lemma 6.8. Let (Aj)1<jz<c and (75)1<j<; in
C[X],,» given by Lemma 6.11.
Now fix y € O(m'm”) "W, (i, Vi, (h)), and let X = (Aj)1<j<c and 9 = (¥;)1<j<; where

reg

A =1 and Aj=X\j(y)forall 1 <j#:<¢c,
¥ =7j(y) forall 1 < j <.
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These are well defined since m”(y) # 0. Since h and H(h,i,m”) vanish at y, by Lemma 6.10,
all the polynomials in (10) vanish at (y,X,9). Moreover, according to Lemma 6.11 and the
above remark, the polynomials in (10) and the entries of ®,(X, L1, ..., L., T1,...,T;) generates
the same ideal Zyy in C[X],,». Hence, since m”(y) # 0, the entries of ®, vanish at (y, A, ) as
well, that is ®o(y,A,9) =0

Besides, since y € O(m/), Jacy(h) has full rank. Then, ¥ cannot be zero, since A # 0 Jac(h)
has a trivial left-kernel. Hence, according to the notation of Lemma 6.8, (y, X,9) € &/ N®_(0).
Therefore, by Lemma 6.8, Jac &4, has full rank n+ c at (y,A,9), as a € Z; C Qf

Finally, remark that the sequence of polynomials in (10) has length n + ¢. Hence, since the
latters generate the same ideal than the entries of the entries of ® (X, Ly,..., L., T1,...,T;),
their Jacobian matrix has full rank n + ¢ at this point as well. Computing this Jacobian matrix
the latter rank statement amounts to the Jacobian matrix of

(h,, H¢(h,¢,m”))

having full rank n — (i — 1) at y. O

6.2 Proof of Proposition 2.13

Let V, S C C™ be be two algebraic sets with V' d-equidimensional and S finite, and let x =
(Xj)1<j<s be an atlas of (V,S) with x; = (mj, h;) for 1 < j < 's. According to [33, Lemma
A.12], all the h;’s have same cardinality ¢ =n — d.

Besides, let 2 <t < d + 1 and the sequences 0 = (61,...,&) and & = (§1,...,&) in C[X].
For 1 <j<vw let aj = (e1,...,05,) € C" and

0i(X, a5) = 0;(X) + > ajpan + &(ay) € C[X].
k=1

Then, for 1 < ¢ < t, we can apply Proposition 6.1 to the sequences h;, 8 and &, there exist
a non-empty Zariski open subset Q(h;,i) of C™ such that for all & € Q(h;,i), the sequence
e = (p1(X,a),...,pi(X, a)) satisfies the statements of Proposition 6.1. Then we define the
following non-empty Zariski open subset of C™,

QW(X7V7 S7O,€,t) = ﬂ ﬂ Q(h],l) % C(t’*i)n.

1<i<r 1<j<s

Fix now a € Qw(x, V., 5,0,€,t) and ¢ = (¢1(X, a@),...,¢(X,)). From now on, fix also
1 <4 < v and suppose that W, (4,V) is not empty. In the following, and for conciseness, we
might identify Q(h;, ) to Q(h;,i) x CE~I"_ in a straightforward way. We start with the first
item statement of Proposition 2.13. Again, it is proved through the properties of atlases, but
when ¢ is restricted to some values.

Lemma 6.13. The algebraic set W, (i,V) is equidimensional of dimension i — 1.
Proof. By Lemma 2.7, for all 1 < j <'s, as x; is a chart of (V,S) then,
O(mﬂ N W¢(i, V) - S = O(m]) N W:,(Z', V;eg(h]‘)) - S.

Let y € Wy (i,V) — S. Since y € V, by property Az of the atlas x, there exists j € {1,...,s}
such that y € O(m;). Hence, by the above equality, in O(m;) — S, the irreducible component of
W, (4, V) containing y coincides with the one of W (i, Vieg(h;)) containing y. Since these irre-
ducible components are equal over a non-empty Zariski open set, they have the same dimension
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(see e.g. [17, Proposition 10.(1)]). By the second item of Proposition 6.1, since a € Q(hj, 1),
this dimension is less than ¢ — 1.

We just showed that the Zariski closure of W, (i,V) — S has dimension less than 7 — 1. If
i =1, since S is finite this means that W, (i, V) is finite as well and we are done. If i > 2, then
by Lemma 5.1, the irreducible components of W (i, V) have dimension at least s —1 > 1 so that
the Zariski closure of W, (i, V) — S'is W, (4, V). Hence the irreducible components of W (i, V)
have dimension exactly ¢ — 1 d

We now prove a strict generalization of [33, Lemma B.12.] which gives the key arguments
for the proof of the second item statement of Proposition 2.13.

Lemma 6.14. Let x = (m, h) be a chart of (V,S). Then for any c-minor m’ of Jac(h) and any
(c+ 1 — 1)-minor m" of Jac([h, p;]), containing the rows of Jac(ep;), the following holds.

1. The sets O(mm'm") "Wy (i, V) — S and O(mm'm") NV (h,Hy(h,i,m")) — S coincides;
2. if they are not empty, then Wepars (x, m',m") is a chart of (W, (i,V),S).
Moreover, if i < (d+ 3)/2 then the following holds.
3. The sets O(mm'm”) — S, for all m',m" as above, cover O(m)NV — S;
4. the sets O(mm/m") — S, for all m’,m" as above, O(m) N W, (i,V) — S.
Proof. By Lemma 2.7, since x is a chart of (V| S),
O(m) N Wy(i, V) — 8 = O(m) N WS (i, Vieg(h)) — S.

Besides, by the second to last item of Proposition 6.1, W (i, Vieg(h)) is defined in O(m'm”) by
the vanishing of the polynomials (h,H,(h,i,m”)), so that

O(mm'm")NW,(i,V) — S = O(mm'm") NV (h, Hy(hy,i,m")) — S. (11)

The first item is proved. Suppose now that the former sets are not-empty, we proceed to prove
that Wenare(x,m/,m”) is a chart of (W, (7,V),S). Property C; holds by assumption, while
property Ca of Wepart (X, m', m") is exactly equation (11). Besides, since (h, Hy(hj, i, m"”)) has
length n — ¢ — 1 < n, then C3 holds as well. Finally, by the last item of Proposition 6.1,
Jac(h, He(h,i,m")) has full rank on

O(m'm”)N W;(Weg(h), V).

Then, by (11), Jac(h, He(h,3,m”)) has full rank on O(mm/m”) N W, (i,V) — S. This proves
that Wenars (X, m',m”) satisfies the last property C4 of charts and the second statement of the
lemma is proved.

Suppose now that i < (d+3)/2 and let y € O(m)NV —S. Then, by property C4 of x, Jac(h)
has full rank in y, so that y € V¢ (h). Therefore, by the first and third item of Proposition 6.1,
there exists a c-minor m’ of Jac(h) and a (¢ + 4 — 1)-minor m” of Jac([h, ¢,]), containing the
rows of Jac(ep;), such that (m'm”)(y) # 0. Hence y € O(mm'm”) — S and the third item of the
lemma, is proved.

Finally, if y € O(m)NWy(i,V)—.S, then one still has y € O(mm/m”)— S, as W, (:,V) C V.
This proves the last item. O
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We can now prove the second statement of Proposition 2.13. With the above lemmas,
it is mainly a matter of verification. Suppose that 2 < i < (d + 3)/2. We prove that
Wattas(X, V., S, ¢, 1) is an atlas of (W, (4,V),S). In the following, for 1 < j < s, we refer to
m/; and m] as respectively a c-minor of Jac(h;) and a (c + i — 1)-minor of Jac([h;, ¢,]), con-
taining the rows of Jac(yp;).

A1 : Since, by Lemma 6.13, W, (4, V) has dimension at least 1, it is not contained in S. In
particular, there exists 1 < j < s such that O(m;) N W,(i,V) — S is not empty. Hence,
by the third item of Lemma 6.14, there exist minors m’; and mJ such that O(m;m/;m/) N
Wy (i,V) — S is not empty.

Ag : For mj,m/; and m] as in the previous item, since O(m;m;m7) "Wy (i, V) — S is not empty,
then the second item of Lemma 6.14 shows that the sequence Wchart(xj, m ,m/!) is a chart
of (Wy(i,V),S).

J

As: Let y € Wy (i,V) — S, by property As of x there exists 1 < j < s such that y € O(m;).
Then, by the third item of Lemma 6.14, there exist m’ and m] as in the previous points

such that y € O(m;m/m[). In particular O(m;m;m}) N Wy (i, V) — S is not empty.

Hence Watias (X, V, S, ¢, 1) is an atlas of (W, (4,V), S), and since we proved that W, (i, V) is
equidimensional, then by [33, Lemma A.12] sing(W,(¢,V)) C S.

7 Proof of Proposition 2.16: atlases for fibers

This section is devoted to the proof of Proposition 2.16. We recall its statement below.

Proposition (2.16). Let V,.S C C" be two algebraic sets with V d-equidimensional and S finite.
Let x be an atlas of (V,5). Let 2 <t <d+1 and ¢ = (¢1,...,p:) C C[X]. For2 <j<d, let
aj = (aj1,...,05,) € C" and

e1(X,a1) = 0(X —i—Zal rr and  @;(X, ay) ZaJ LTk
k=1

where 0 € C[X].
There exists a non-empty Zariski open subset Qe(x,V,S,0,t) C C™ such that for every
a=(ag,...,0) € Qe(x, V,S,0,t) and writing

e =(P1(X,au),..., (X, o))

the following holds. Let0 < e < d, Q € C° a finite subset and Fgy and Sg be as in Definition 2.15.
Then either Fg is empty or

1. Sq is finite;
2. Vg is an equidimensional algebraic set of dimension d — e;
3. Falas(X, V, Q, S, ) is an atlas of (Fg, Sqg) and sing(Fg) C Sg.

Let V,S and x = (xj)i<j<s be as above, with x; = (m;, h;) for 1 < j < s. Consider and
integer 2 < v < d + 1, we show in the following that it suffices to take Qp(x,V, @, S, 0,t) as the
non-empty Zariski open subset (V,,t) of C' obtained by the application of Proposition 2.3
to V,0 and t.
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Let a € Qp(x, V, S,0,¢) and ¢ = (p1(X, @), ..., (X, ) where for 2 < j <,

(X al) = 9 +ZO&1 ke and QDJ X aJ Za] E Tk
k=1

For1 <e<t—1,let Q C C* be a finite set and F, S¢g as in Deﬁnltlon 2.15. Suppose also that
Fg is not empty. We start with the following lemma, proving local statements on the fibers. It
is a direct generalization of 33, Lemma C.1].

Lemma 7.1. Let 1 < j < s and m = mj, h = h;j and x = (m, h). Then either O(m) N Fg is
empty or x is a chart of (Fg,Q,Sq,¥), and Sq is finite.

Proof. Remark first that since a € Q(V, ), then by Proposition 2.3, the set
So = (SUWy(e,V)) N H(Q)

is finite, since S and @ are. Assume now that O(m) N Fy is not empty, and let us prove that x
is a chart of (Fg, @, Sq, ¥).

C; : This holds by assumption.

Cy @ By property Cs of x, the sets Fiy and V'(h),_c g coincide in O(m) — S. But since S C Sg
in ¢-1(Q) then these sets coincide in O(m) — Sg as well.

Cs: Since V is d-equidimensional, then by [33, Lemma A.12|, ¢ = n — d. Hence, since e <
t — 1 < d, the inequality e + ¢ < n holds.
Cy : Finally, let y € O(m) N Fg — Sg. Since y ¢ So then y & Wy(e, V) N, 1(Q), but since

y € ¢, 1(Q) then actually y ¢ Wy (e,V). Hence since y € O(m), then by Lemma 2.6,
Jacy(h, ¢,) has full rank c + e.

All the properties of charts being satisfied, we are done. O

We now proceed to prove Proposition 2.16. The first statement is given by Lemma 7.1. If e =
d, then the second statement is satisfied by the last item Proposition 2.3, since K, (d+1,V) = V.
Assume now that e < d. By Krull’s principal ideal Theorem |15, Theorem B| or equivalently the
theorem on the dimension of fibers |36, Theorem 1.25|, all irreducible components of Fg have
dimension at least d — e > 0.

We now prove the last statement that is that Fuuas(x, V, @, S, ) is an atlas of (F, Q, Sg, ¢):

A; : Since Fg has positive dimension and Sg is finite, then Fg — Sg is not empty. Since
Fg C V, then by property As of x, there exists 1 < j < s such that O(m;) N Fg — Sq is
not empty.

Az : Let 1 < j < s such that O(m;) N Fgy — Sg is not empty, then by Lemma 7.1, x; is a chart
of (Fg,Q,5q, ). Since the elements of Fyas(x,V,Q, S, @) are exactly such x;, we are
done.

As : Finally let y € Fg — Sg, since y € ¢_1(Q) then y ¢ S. Since Fy C V, then by property
As of x, there exists 1 < j < s such that y € O(m;). In particular, O(m;) N Fg — Sq is
non-empty, so that x; € Fauas(X, V, @, 5, ¢).

Hence Fyas (X, V, @, S, @) is an atlas of (Fp, Q, Sg, ¢). In particular, since V' is d-equidimensional,
all the h;’s have same cardinality ¢ = n —d by [33, Lemma A.12|. Hence by [33, Lemma A.11],
Fgo — Sq is a non-singular (d — e)-equidimensional locally closed set. Since Fp has positive
dimension and S¢ is finite, we deduce that Fg is the Zariski closure of Fg — Sg and then,
is a (d — e)-equidimensional algebraic set, smooth outside Sg. This concludes the proof of
Proposition 2.16.
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