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Abstract
We present a new algorithm for computing the characteristic poly-

nomial of an arbitrary endomorphism of a finite Drinfeld module

using its associated crystalline cohomology. Our approach takes

inspiration from Kedlaya’s 𝑝-adic algorithm for computing the

characteristic polynomial of the Frobenius endomorphism on a

hyperelliptic curve using Monsky-Washnitzer cohomology. The

method is specialized using a baby-step giant-step algorithm for

the particular case of the Frobenius endomorphism, and in this case

we include a complexity analysis that demonstrates asymptotic

gains over previously existing approaches.

CCS Concepts
• Computing methodologies→ Symbolic and algebraic algo-
rithms.
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1 Introduction
Drinfeld modules were first introduced by Vladimir Drinfel’d in

order to prove the Langlands conjecture for GL𝑛 over a global

function field [11]. Since then, Drinfeld modules have attracted at-

tention due to the well established correspondence between elliptic

curves and the rank two case. Moreover, the rank one case, often

referred to as Carlitz modules, provides a function field analogy of

cyclotomic extensions; the role played in class field theory over

number fields by elliptic curves with complex multiplication shows

strong parallels with that of Drinfeld modules of rank two for the
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function field setting. This has motivated efforts to translate con-

structions and algorithms for elliptic curves, including modular

polynomials [6], isogenies [6], and endomorphism rings [13, 27].

Naturally, cryptographic applications of Drinfeld modules have

also been explored [28], but were long anticipated to be vulnera-

ble for public key cryptography based on isogenies [23, 36]. This

question was finally put to rest by Wesolowski who showed that

isogenies between Drinfeld modules of any rank could be computed

in polynomial time [38].

Drinfeld modules of rank 𝑟 > 2 do not have such a clear parallel,

although an analogy exists between abelian surfaces and so called 𝑡-

modules [1]. Owing to this discrepancy, rank two Drinfeld modules

have been studied far more closely than the case of more general

ranks.

The main goal of this work is to study a Drinfeld module ana-

logue of 𝑝-adic techniques such as Kedlaya’s algorithm [25] for

computing the characteristic polynomial of the Frobenius endomor-

phism acting on an elliptic or hyperelliptic curve over a finite field.

Algorithms for elliptic curves compute the action of the Frobenius

on a basis of a particular subspace of the de Rham cohomology

of a characteristic 0 lift of the curve, with coefficients in Q𝑝 . Our
approach follows a very similar outline, but turns out to be remark-

ably simpler to describe, resting crucially on a suitable version

of crystalline cohomology for Drinfeld modules due Gekeler and

Anglès [2].

More generally, the approach we present can be used to compute

the characteristic polynomial of any Drinfeld module endomor-

phism.

2 Background and Main result
2.1 Basic Preliminaries
Let 𝑅 be any ring, 𝑟 ∈ 𝑅, and 𝜎 : 𝑅 → 𝑅′ a ring homomorphism. We

will follow the notational convention that writes 𝜎 (𝑟 ) = 𝜎𝑟 = 𝑟𝜎

throughout this work. If 𝑅 is a polynomial ring and 𝜎 acts on its

coefficient ring, 𝑟𝜎 denotes coefficient-wise application.

Let 𝑞 be a prime power, and let F𝑞 denote a finite field of order

𝑞, fixed throughout. We also fix a field extension L of F𝑞 such that

[L : F𝑞] = 𝑛. Explicitly, L is defined as L = F𝑞 [𝑡]/(ℓ (𝑡)) for some

degree 𝑛 irreducible ℓ (𝑡) ∈ F𝑞 [𝑡], so elements of L are represented
as polynomials in F𝑞 [𝑡] of degree less than 𝑛. We will discuss below

an alternative representation, better suited for some computations.

2.2 Drinfeld Modules
In general, Drinfeld modules can be defined over a ring 𝐴 consist-

ing of the functions of a projective curve over F𝑞 that are regular
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outside of a fixed place at infinity. For our purposes, we will restrict

ourselves to the consideration of Drinfeld modules defined over the

regular function ring of P1 − {∞}; that is 𝐴 = F𝑞 [𝑥].
We fix a ring homomorphism 𝛾 : 𝐴→ L and let 𝔭 ∈ 𝐴 the monic

irreducible generator of ker𝛾 . Then F𝔭 = F𝑞 [𝑥]/(𝔭) is isomorphic

to a subfield of L; we let𝑚 = deg(𝔭), so that𝑚 divides 𝑛. This gives

us an isomorphism L ≃ F𝑞 [𝑥, 𝑡]/(𝔭(𝑥), 𝑔(𝑥, 𝑡)), with 𝑔 monic of

degree 𝑛/𝑚 in 𝑡 . It will on occasion be convenient to switch from

the representation of elements of L as univariate polynomials in 𝑡 to

the corresponding bivariate representation in 𝑥, 𝑡 ; in that case, for

instance, 𝛾𝑥 is simply the residue class of 𝑥 modulo (𝔭(𝑥), 𝑔(𝑥, 𝑡)).
We assume that 𝔭 and 𝑔 are given as part of the input.

To define Drinfeld modules, we also have to introduce the ring

L{𝜏} of skew polynomials, namely

L{𝜏} = {𝑈 = 𝑢0 + 𝑢1𝜏 + · · · + 𝑢𝑠𝜏𝑠 | 𝑠 ∈ N, 𝑢0, . . . , 𝑢𝑠 ∈ L},

where multiplication is induced by the relation 𝜏𝑢 = 𝑢𝑞𝜏 , for all 𝑢

in L.

Definition 1. A Drinfeld 𝐴-module of rank r over (L, 𝛾) is a
ring homomorphism 𝜙 : 𝐴→ L{𝜏} such that

𝜙𝑥 = 𝛾𝑥 + Δ1𝜏
1 + . . . + Δ𝑟𝜏𝑟

with Δ𝑖 in L for all 𝑖 and Δ𝑟 ≠ 0.

For readers interested in the more general setting under which

Drinfeld modules are typically defined, we recommend the survey

by Deligne and Husemöller in [9].

A Drinfeld module is defined over the prime field when L � F𝔭
(that is,𝑚 = 𝑛). Algorithms for Drinfeld modules in the prime field

case tend to be algorithmically simpler, and we will often highlight

the distinction with the more general case.

Example 1. Let F𝑞 = Z/5Z and 𝑛 = 4. Set ℓ (𝑡) = 𝑡4 + 2 and
L = F5 [𝑡]/(ℓ (𝑡)). Let 𝛾𝑥 = 𝑡 mod ℓ (𝑡), in which case L = F𝔭 . A rank
two Drinfeld module is given by 𝜙𝑥 = 𝜏2 + 𝜏 + 𝑡 .

We may instead take 𝛾𝑥 = 𝑡3 + 𝑡2 + 𝑡 + 3 mod ℓ (𝑡) in which case
𝔭 = 𝑥2 + 4𝑥 + 2 and F𝔭 � F25. The field L admits the representations

L = F5 [𝑡]/(ℓ (𝑡)) ≃ F5 [𝑥, 𝑡]/(𝔭(𝑥), 𝑔(𝑥, 𝑡)),

with 𝑔(𝑥, 𝑡) = 𝑡2 + 4𝑡𝑥 + 3𝑡 +𝑥 . A rank three Drinfeld module is given
by 𝜙𝑥 = 𝜏3 + (𝑡3 + 1)𝜏2 + 𝑡𝜏 + 𝑡3 + 𝑡2 + 𝑡 + 3.

GivenDrinfeld𝐴-modules𝜙,𝜓 defined over (L, 𝛾), anL-morphism

𝑢 : 𝜙 → 𝜓 is a 𝑢 ∈ L{𝜏} such that 𝑢𝜙𝑎 = 𝜓𝑎𝑢 for all 𝑎 ∈ 𝐴. The
set EndL (𝜙) is the set of L-morphisms 𝜙 → 𝜙 ; it is therefore the

centralizer of 𝜙𝑥 in L{𝜏}. It admits a natural ring structure, and con-

tains the Frobenius endomorphism 𝜏𝑛 . The degree of an L-morphism

𝑢 is the 𝜏-degree of the underlying skew polynomial in L{𝜏}.

2.3 Characteristic Polynomials
The characteristic polynomial of an endomorphism 𝑢 ∈ EndL (𝜙)
can be defined through several points of view.

Through the action of 𝜙 , 𝐴 = F𝑞 [𝑥] and its fraction field 𝐾 =

F𝑞 (𝑥) can be seen as a subring, resp. subfield of the skew field

of fractions L(𝜏) of L{𝜏}. Then, End0

L (𝜙) = EndL (𝜙) ⊗𝐴 𝐾 is the

centralizer of 𝜙𝑥 in L(𝜏); this is a division ring that contains 𝐾 in

its center.

Definition 2. The characteristic polynomial CharPoly(𝑢) of 𝑢 ∈
EndL (𝜙) is its reduced characteristic polynomial, relative to the sub-
field 𝐾 of End0

L (𝜙) [35, Section 9.13].

The characteristic polynomial of 𝑢 has degree 𝑟 and coefficients

in 𝐴 ⊂ 𝐾 , so that it belongs to 𝐴[𝑍 ]. More precisely, if deg(𝑢) =
𝑑 , CharPoly(𝑢) has coefficients 𝑎0, . . . , 𝑎𝑟−1 ∈ 𝐴 with deg(𝑎𝑖 ) ≤
𝑑 (𝑟 − 𝑖)/𝑟 for all 𝑖 [27, Prop. 4.3] and satisfies

𝑢𝑟 +
𝑟−1∑︁
𝑖=0

𝜙𝑎𝑖𝑢
𝑖 = 0. (1)

Another definition of CharPoly(𝑢) follows from the introduction

of the Tate modules of 𝜙 . The Drinfeld module 𝜙 induces an 𝐴-

module structure on the algebraic closure L of L by setting 𝑎 ∗ 𝑐 =
𝜙𝑎 (𝑐) for 𝑎 ∈ 𝐴, 𝑐 ∈ L (defining 𝜏𝑖 (𝑐) = 𝑐𝑞

𝑖
). Then, for 𝔩 ∈ 𝐴, the

𝔩-torsion module of 𝜙 is defined as 𝜙 [𝔩] = {𝑐 ∈ L | 𝔩 ∗𝑐 = 0}. Setting
𝔩 to be any irreducible element of 𝐴 different from 𝔭, we can define

the 𝔩-adic Tate module as 𝑇𝔩 (𝜙) = lim←−−𝜙 [𝔩
𝑖 ].

Letting𝐴𝔩 be the 𝔩-adic completion of𝐴,𝑇𝔩 (𝜙) becomes a free𝐴𝔩-

module of rank 𝑟 and elements of EndL (𝜙) induce endomorphisms

on 𝑇𝔩 (𝜙). Then, for 𝑢 ∈ EndL (𝜙), the characteristic polynomial

CharPoly𝐴𝔩
(𝑢) of the induced endomorphism 𝑢 ∈ End𝐴𝔩

(𝑇𝔩 (𝜙))
agrees with CharPoly(𝑢) [2, 17].

Example 2. Let F𝑞 , L be as in the context of example 1, and 𝛾𝑥 =

𝑡3 + 4𝑡2 + 𝑡 + 1 mod ℓ (𝑡). A rank 5 Drinfeld module is given by
𝜙𝑥 = (4𝑡3 + 𝑡2 + 2)𝜏5 + (𝑡3 + 3𝑡2 + 𝑡 + 1)𝜏4 + (4𝑡 + 3)𝜏3 + (3𝑡2 + 4𝑡 +
4)𝜏2 + (4𝑡3 + 4𝑡2 + 4𝑡)𝜏 + 𝛾𝑥 .

The characteristic polynomial of 𝜏𝑛 on 𝜙 is 𝑍 5 + 3𝑍 4 + (𝑥3 + 4𝑥2 +
𝑥)𝑍 3 + (2𝑥2 + 4𝑥 + 3)𝑍 2 + (𝑥3 + 2𝑥2 + 4𝑥 + 2)𝑍 +2𝑥4 + 3𝑥2 + 4𝑥 + 2

The results in this paper are based on another interpretation

of CharPoly(𝑢), as the characteristic polynomial of the endomor-

phism induced by 𝑢 in a certain crystalline cohomology module,

due to Gekeler and Anglès [2]. Our first main result is an algo-

rithm for computing the characteristic polynomial of the Frobenius

endomorphism.

Here, 𝜔 is a real number such that two 𝑠 × 𝑠 matrices over a ring

𝑅 can be multiplied in 𝑂 (𝑠𝜔 ) ring operations in 𝑅; the current best

value is 𝜔 ≤ 2.372 [12]. We will also let 𝜆 denote an exponent such

that the characteristic polynomial of an 𝑠 × 𝑠 matrix over a ring 𝑅

can be computed in 𝑂 (𝑠𝜆) ring operations in 𝑅. When 𝑅 is a field,

this can be done at the cost of matrix multiplication and therefore

𝜆 = 𝜔 [32]. For more general rings, the best known value to date is

𝜆 ≈ 2.7 [24].

Theorem 1. Let 𝜙 be a rank 𝑟 Drinfeld module over (L, 𝛾). There
is a deterministic algorithm to compute the characteristic polynomial
of the Frobenius endomorphism 𝜏𝑛 with bit complexity

• (𝑟𝜔𝑛1.5
log𝑞 +𝑛 log

2 𝑞)1+𝑜 (1) for the prime field case (𝑚 = 𝑛)
• ((𝑟𝜆/𝑚+𝑟𝜔/

√
𝑚)𝑛2

log𝑞+𝑛 log
2 𝑞)1+𝑜 (1) for the general case

𝑚 < 𝑛.

When 𝑟 and 𝑞 are fixed, the runtime in the theorem is thus

essentially linear in 𝑛2/
√
𝑚, which is 𝑛1.5

in the prime field case

and gets progressively closer to 𝑛2
as𝑚 decreases. The best prior

results [30] were limited to the case 𝑟 = 2, with runtimes essentially

linear in 𝑛1.5
in the prime field case and 𝑛2

otherwise (for fixed 𝑞).
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This first algorithm builds upon techniques for linear recurrences

originating from [10], which are so far limited to the particular case

of the Frobenius endomorphism.

We also obtain two algorithms that can be applied to any 𝑢 ∈
EndL (𝜙). The complexity in this case partly depends on the bit cost

of multiplication and Euclidean division in L{𝜏}, which we will

denote SM(𝑑, 𝑛, 𝑞) and which will be discussed in more detail in

Section 3.

Theorem 2. With assumptions as in Theorem 1, there are deter-
ministic algorithms to compute the characteristic polynomial of an
endomorphism 𝑢 of degree 𝑑 with bit complexities

•
(

min(𝑑𝑟 2,(𝑑+𝑟 )𝑟𝜔−1 )
𝑚 (𝑑 + 𝑚)𝑛 log𝑞 + 𝑟𝜆𝑛(𝑑 + 𝑚)/𝑚 log𝑞 +

𝑛 log
2 𝑞

)
1+𝑜 (1)

• (𝑟SM(𝑑 + 𝑟, 𝑛, 𝑞) + 𝑟𝜆𝑛(𝑑 +𝑚)/𝑚 log𝑞 + 𝑛 log
2 𝑞)1+𝑜 (1) .

Again, it is worth considering the situation with 𝑟 and 𝑞 fixed. In

this case, the runtimes we obtain are, respectively, essentially linear

in 𝑑 (𝑑 + 𝑚)𝑛/𝑚 and SM(𝑑, 𝑛, 𝑞). In the next section, we review

known values for SM; for the best known value of 𝜔 , and fixed 𝑞, it

is (𝑑1.69𝑛)1+𝑜 (1) for 𝑑 ≤ 𝑛0.76
, and (𝑑𝑛1.52)1+𝑜 (1) otherwise. In the

case 𝑑 = Θ(𝑛), the runtimes are thus essentially linear in 𝑛3/𝑚 and

𝑛2.53
, respectively (so which is the better algorithm depends on the

value of𝑚). For 𝑢 = 𝜏𝑛 , the algorithm in the previous theorem is of

course superior.

3 Computational Preliminaries
The key element in our complexity analyses is the cost of the follow-

ing operations in L: addition/subtraction, multiplication, inverse

and (iterated) Frobenius application.

Some of the algorithms we use below (multiplication and Eu-

clidean division in L{𝜏} from [7, 34]) assume that all these oper-

ations can be done using 𝑂˜(𝑛) operations in F𝑞 . For the repre-

sentation of L we use, this is however not known to be the case;

Couveignes and Lercier proved the existence of “elliptic bases” that

satisfy these requirements [8], but conversion to our representation

does not appear to be obvious.

This explains why in our main result, we do not count opera-

tions in F𝑞 , but bit operations instead (our complexity model is a

standard RAM); we explain below how this allows us to bypass the

constraints above.

Using FFT based algorithms, polynomials of degree at most 𝑛

with coefficients in F𝑞 can bemultiplied in boolean time (𝑛 log𝑞)1+𝑜 (1)
[5, 20]. It follows that elementary field operations (addition, multi-

plication, inversion) in L = F𝑞 [𝑡]/(ℓ (𝑡)) can be done with the same

asymptotic cost.

Conversions between univariate and bivariate representations

for elements of L take the same asymptotic runtime. Denote by 𝛼

the isomorphismL = F𝑞 [𝑡]/(ℓ (𝑡)) → F𝑞 [𝑥, 𝑡]/(𝔭(𝑥), 𝑔(𝑥, 𝑡)); then,
given 𝑓 of degree less than 𝑛 in F𝑞 [𝑡], we can compute the image

𝛼 (𝑓 mod ℓ (𝑡)) in (𝑛 log𝑞)1+𝑜 (1) bit operations; the same holds for

𝛼−1
[22, 33].

The last important operation is the application of the 𝑞-power

Frobenius in L. Recall that given polynomials 𝑓 , 𝑔, ℎ ∈ F𝑞 [𝑥] of de-
gree at most 𝑛, modular composition is the operation that computes

𝑓 (𝑔) mod ℎ. As showed in [15], for 𝑐 in L = F𝑞 [𝑡]/(ℓ (𝑡)), 𝑐𝑞 can be

computed in the same asymptotic time (up to logarithmic factors)

as degree 𝑛 modular composition, following a one-time precompu-

tation that takes (𝑛 log
2 𝑞)1+𝑜 (1) bit operations. This then extends

to arbitrary powers (positive and negative) of the Frobenius. We

should point out that modular composition techniques also underlie

the algorithms for switching between the two representations of

the elements in L mentioned above.

In [26], Kedlaya and Umans proved that modular composition in

degree 𝑛 can be computed in (𝑛 log𝑞)1+𝑜 (1) bit operations (see also
the refinement due to van der Hoeven and Lecerf [22]), whence

a similar cost for (iterated) Frobenius in L. Here, the fact that we
work in a boolean model is crucial: Kedlaya and Umans’ algorithm

is not known to admit a description in terms of F𝑞-operations.
From this, we can directly adapt the cost analyses in [7, 34] to our

boolean model. In particular, following the latter reference (which

did so in an algebraic cost model), we let SM(𝑑, 𝑛, 𝑞) be a function
such that

• degree 𝑑 multiplication and right Euclidean division in L{𝜏}
can be done in 𝑂 (SM(𝑑, 𝑛, 𝑞)) bit operations
• for 𝑛, 𝑞 fixed, 𝑑 ↦→ SM(𝑑, 𝑛, 𝑞)/𝑑 is non-decreasing.

The latter condition is similar to the super-linearity of multiplica-

tion functions used in [14], and will allow us to streamline some

cost analyses. Unfortunately, there is no simple expression for

SM(𝑑, 𝑛, 𝑞): on the basis of the algorithms in [7, 34], the analysis

done in [7] gives the following upper bounds:

• for𝑑 ≤ 𝑛 (5−𝜔 )/2, we can take SM(𝑑, 𝑛, 𝑞) in (𝑑 (𝜔+1)/2𝑛 log𝑞)1+𝑜 (1)
• else, we can take SM(𝑑, 𝑛, 𝑞) in (𝑑𝑛4/(5−𝜔 )

log𝑞)1+𝑜 (1)

For instance, with 𝑑 = 𝑛, this is (𝑛 (9−𝜔 )/(5−𝜔 ) log𝑞)1+𝑜 (1) .
With 𝜔 = 2.37, the cost is (𝑑1.69𝑛 log𝑞)1+𝑜 (1) for 𝑑 ≤ 𝑛0.76

, and

(𝑑𝑛1.52
log𝑞)1+𝑜 (1) otherwise; the exponent for 𝑑 = 𝑛 is 2.53. For

completeness, we point out that these algorithms heavily rely on

Frobenius applications, and as such, require spending the one-time

cost (𝑛 log
2 𝑞)1+𝑜 (1) mentioned previously.

One should also keep in mind that these asymptotic cost analyses

are not expected to reflect practical runtimes. To the authors’ knowl-

edge, software implementations of the Kedlaya-Umans algorithm

achieving its theoretical complexity, or of matrix multiplication

with exponent close to 2.37, do not currently exist. For practical

purposes, implementations of modular composition use an algo-

rithm due to Brent and Kung [4], with an algebraic complexity of

𝑂 (𝑛 (𝜔+1)/2) operations in F𝑞 . Revisiting skew polynomial algo-

rithms and their analyses on such a basis is work that remains to

be done.

Finally, we will note that an instance of the characteristic poly-

nomial computation consists of the following inputs:

• the finite fields L, F𝑞
• the coefficients of a Drinfeld module of rank 𝑟 over L
• a degree 𝑑 endomorphism.

The fields can be specified using𝑂 (𝑛 log𝑞) bits, and the Drinfeld
module itself costs 𝑂 (𝑛𝑟 log𝑞) bits to encode. The endomorphism

itself costs𝑂 (𝑑𝑛 log𝑞) to write down in general, and costs𝑂 (1) for
the Frobenius.
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4 Prior Work
The question of computing the characteristic polynomial, particu-

larly of the Frobenius endomorphism, was studied in detail in [18]

for the rank two case only.

The most general approach constructs a linear system based

on the degree constraints of the coefficients 𝑎𝑖 =
∑𝑛 (𝑟−𝑖 )/𝑟
𝑗=0

𝑎𝑖, 𝑗𝑥
𝑗
.

Evaluating the characteristic polynomial at the Frobenius element

and equating coefficients gives a linear system based on

𝜏𝑛𝑟 +
𝑟−1∑︁
𝑖=0

𝑛 (𝑟−𝑖 )
𝑟∑︁
𝑗=0

𝑛 (𝑟−𝑖 )∑︁
𝑘=0

𝑎𝑖, 𝑗 𝑓𝑗,𝑘𝜏
𝑘+𝑛𝑖 = 0, (2)

with 𝑓𝑗,𝑘 the coefficient of 𝜏𝑘 in 𝜙𝑥 𝑗 . Letting MinPoly(𝜏𝑛) denote
the minimal polynomial of 𝜏𝑛 (as an element of the division algebra

End
0

L (𝜙) over the field 𝐾 = F𝑞 (𝑥)), the solution of the preceding

system is unique and yields the characteristic polynomial generi-

cally, and only if MinPoly(𝜏𝑛) = CharPoly(𝜏𝑛).
Garai and Papikian gave an algorithm for computing the charac-

teristic polynomial [13, §5.1] valid for the prime field case only. As

with the previous approach, this relies on the explicit computation

of 𝜙𝑥𝑖 , which is the dominant computational step. This can be done

by 𝑂 (𝑛2) evaluations of the recurrence

𝑓𝑖+1, 𝑗 = 𝛾
𝑞 𝑗

𝑥 𝑓𝑖, 𝑗 +
𝑟∑︁
𝑡=1

Δ
𝑞 𝑗−𝑡

𝑡 𝑓𝑖, 𝑗−𝑡 .

Thus the bit complexity of computing all of 𝜙𝑥 , 𝜙𝑥2 , . . . , 𝜙𝑥𝑛 is

(𝑟𝑛3
log(𝑞))1+𝑜 (1) .

Further study of algorithms for the specific case of the Frobenius

endomorphism in rank 𝑟 = 2 was done in [31] and [30]. The latter

focused on the complexity of the algorithms and used the same

computational model that will be used here. As we reported after

Theorem 1, the best known runtime to date was quadratic in 𝑛,

except in the case where MinPoly(𝜏𝑛) = CharPoly(𝜏𝑛), or in the

prime field case where a bit cost of (𝑛1.5
log𝑞 + 𝑛 log

2 𝑞)1+𝑜 (1) is
possible [10]. To our knowledge, no previous analysis is available

for an arbitrary endomorphism 𝑢.

In the context of elliptic curves, Kedlaya’s algorithm [25] com-

putes the characteristic polynomial of a matrix representation of the

lift of the Frobenius action to a subspace of the Monsky-Washnitzer

cohomology, up to some finite precision. Our algorithm follows

the same high-level approach: we compute a matrix for the endo-

morphism acting on the crystalline cohomology with coefficients

in a power series ring analogue to Witt vectors. The induced en-

domorphism turns out to be quite simple to describe in terms of

skew-polynomial multiplication, which eliminates the need for a

complicated lifting step.

5 Crystalline Cohomology
In this section, we first review the construction of the crystalline

cohomology of a Drinfeld module and its main properties; this can

be found in [2], where the definition is credited to unpublished work

of Gekeler. Then, we introduce truncated versions of these objects,

which reduce the computation of characteristic polynomials of

endomorphisms of a Drinfeld module to characteristic polynomial

computations of matrices over truncated power series rings.

5.1 Definition
The contents of this subsection is from [2, 16]. The set of derivations
𝐷 (𝜙,L) of a Drinfeld module 𝜙 is the set of F𝑞-linear maps 𝜂 : 𝐴→
L{𝜏}𝜏 satisfying the relation

𝜂𝑎𝑏 = 𝛾𝑎𝜂𝑏 + 𝜂𝑎𝜙𝑏 , 𝑎, 𝑏 ∈ 𝐴
Let then 𝑦 be a new variable. The set 𝐷 (𝜙,L) can be made into an

L[𝑦]-module in the following manner.

Definition 3. [2, Section 2] The set 𝐷 (𝜙,L) is an L[𝑦]-module
under (𝑐𝑦𝑖 ∗ 𝜂)𝑎 = 𝑐𝜂𝑎𝜙𝑥𝑖 , for 𝜂 in 𝐷 (𝜙,L), 𝑐 in L, 𝑖 ≥ 0 and 𝑎 in 𝐴.

Let further 𝐼 be the ideal of L[𝑦] generated by 𝑦 − 𝛾𝑥 ; for 𝑘 ≥ 1,

we set

𝑊𝑘 = L[𝑦]/𝐼𝑘

and

𝑊 = lim←−− 𝑊𝑘 � L[[𝑦 − 𝛾𝑥 ]] .
Thus𝑊 comes equipped with projections 𝜋𝑘 :𝑊 →𝑊𝑘 obtained

by truncation of a power series, written as sum of powers of (𝑦−𝛾𝑥 ),
in degree 𝑘 . We have canonical ring homomorphisms 𝜄𝑘 : 𝐴→𝑊𝑘
given by 𝜄𝑘 (𝑥) = 𝑦 mod 𝐼𝑘 . They lift to an inclusion 𝜄 : 𝐴 →
𝑊 , simultaneously commuting with each 𝜋𝑘 , which represents

elements of 𝐴 via their 𝐼 -adic expansion.

The crystalline cohomology 𝐻∗
crys
(𝜙,L) of 𝜙 is the𝑊 -module

𝑊 ⊗L[𝑦 ] 𝐷 (𝜙,L), that is, the completion of 𝐷 (𝜙,L) at the ideal

𝐼 = (𝑦 − 𝛾𝑥 ) of L[𝑦].
Gekeler proved that 𝐷 (𝜙,L) is a projective, hence free, L[𝑦]-

module of rank 𝑟 [16], with canonical basis 𝜂 (𝑖 ) such that 𝜂 (𝑖 ) (𝑥) =
𝜏𝑖 for 1 ≤ 𝑖 ≤ 𝑟 . From this, it follows that 𝐻∗

crys
(𝜙,L) is a free

𝑊 -module of rank 𝑟 as well, as pointed out in [2].

Remark 1. In that reference, 𝐴 is not necessarily a polynomial
ring, and L[𝑦] is replaced by 𝐴L := L ⊗F𝑞 𝐴. In this case, 𝐷 (𝜙,L) is
a projective 𝐴L-module of rank 𝑟 , the definition of ideal 𝐼 changes,
but it remains maximal in 𝐴L, so the completion𝑊 of 𝐴L at 𝐼 is still
a local ring and 𝐻∗

crys
(𝜙,L) is still free of rank 𝑟 over𝑊 .

An endomorphism 𝑢 of 𝜙 induces an L[𝑦]-endomorphism 𝑢∗ of
𝐷 (𝜙,L), defined as (𝑢∗ (𝜂))𝑥 = 𝜂𝑥𝑢, for 𝜂 in𝐷 (𝜙,L); the same holds

for the completion 𝐻∗
crys
(𝜙,L). Following [2], using the fact that

𝐻∗
crys
(𝜙,L) is free over𝑊 , one can then define the characteristic

polynomial CharPoly𝑊 (𝑢∗) in the usual manner.

Recall now that CharPoly(𝑢) denotes the characteristic polyno-
mial of 𝑢, as defined in Section 2.3. The following theorem due to

Anglès [2, Thm. 3.2] relates this characteristic polynomial to that

of the induced endomorphism on 𝐻∗
crys
(𝜙,L), where 𝜄 below acts

coefficient-wise.

Theorem 3. For 𝑢 in EndL (𝜙), CharPoly(𝑢)𝜄 = CharPoly𝑊 (𝑢∗).

Remark 2. Recall that we have restricted ourselves to the case
where 𝐴 is the ring of functions on P1 regular outside of the point at
infinity. However, theorem 3 holds for any Drinfeld module, and it is
likely that the algorithms presented here can be generalized.

5.2 Truncated Cohomology
Recall now that 𝔭 ∈ 𝐴 is the minimal polynomial of 𝛾𝑥 ∈ L over F𝑞 .
For 𝑘 ≥ 1, we are going to define an F𝑞-linear homomorphism 𝜒𝑘
such that the following diagram commutes:
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𝑊

𝐴 𝑊𝑘

F𝑞 [𝑦]/(𝔭(𝑦)𝑘 )

𝜋𝑘

𝜃𝑘 :𝑓 (𝑥 ) ↦→𝑓 (𝑦) mod 𝔭 (𝑦)𝑘

𝜄𝑘

𝜄

𝜒𝑘

There exists an isomorphism

𝑇𝑘 : F𝑞 [𝑥,𝑦]/(𝔭(𝑥), (𝑦 − 𝑥)𝑘 ) → F𝑞 [𝑦]/(𝔭(𝑦)𝑘 );
see e.g. [29, Lemma 13]. On the other hand, recall thatL = F𝑞 [𝑡]/(ℓ (𝑡))
is isomorphic to

F𝑞 [𝑥, 𝑡]/(𝔭(𝑥), 𝑔(𝑥, 𝑡)),
for some 𝑔 in F𝑞 [𝑥, 𝑡], monic of degree 𝑛/𝑚 in 𝑡 ; in this represen-

tation of L, 𝛾𝑥 is simply (the residue class of) 𝑥 . As a result, we

get

𝑊𝑘 = F𝑞 [𝑡, 𝑦]/(ℓ (𝑡), (𝑦 − 𝛾𝑥 )𝑘 )

≃ F𝑞 [𝑥, 𝑡,𝑦]/(𝔭(𝑥), 𝑔(𝑥, 𝑡), (𝑦 − 𝑥)𝑘 )

≃ F𝑞 [𝑦, 𝑡]/(𝔭(𝑦)𝑘 ,𝐺𝑘 (𝑦, 𝑡)), (3)

for a certain polynomial 𝐺𝑘 ∈ F𝑞 [𝑦, 𝑡], monic of degree 𝑛/𝑚 in 𝑡 .

We can then define 𝜒𝑘 :𝑊𝑘 → F𝑞 [𝑦]/(𝔭(𝑦)𝑘 ) by

𝜒𝑘 :

∑︁
0≤𝑖<𝑛/𝑚

𝑐𝑖𝑡
𝑖 ↦→ 𝑐0,

and we verify that it satisfies our claim. The details of how to

compute this homomorphism are discussed in Section 6.

For 𝑘 ≥ 1, we further define the precision 𝑘 cohomology space

𝐻∗
𝑘
(𝜙,L) as the𝑊𝑘 -module

𝐷 (𝜙,L)/𝐼𝑘 𝐷 (𝜙,L) ≃ 𝐻∗
crys
(𝜙,L)/𝐼𝑘 𝐻∗

crys
(𝜙,L) .

It is thus free of rank 𝑟 , and an endomorphism 𝑢 of 𝜙 induces a

𝑊𝑘 -linear endomorphism 𝑢∗
𝑘
of 𝐻∗

𝑘
(𝜙,L).

Remark 3. In [16], Gekeler introduced de Rham cohomology of
Drinfeld modules; this is the case 𝑘 = 1 in this construction (in which
case𝑊𝑘 = L).

In the following claim, recall that for a polynomial 𝑃 and for any

map 𝜒 acting on its coefficient ring, we let 𝑃 𝜒 denote coefficient-

wise application of 𝜒 to 𝑃 .

Corollary 4. For 𝑢 in EndL (𝜙) and 𝑘 ≥ 1, CharPoly(𝑢)𝜃𝑘 =

CharPoly𝑊𝑘
(𝑢∗
𝑘
)𝜒𝑘 .

Proof. Apply 𝜒𝑘 ◦ 𝜋𝑘 coefficient-wise to the equality in Theo-

rem 3. □

If𝑢 has degree𝑑 in𝜏 , we know that all coefficients of CharPoly(𝑢)
have degree at most 𝑑 , so they can be recovered from their reduc-

tions modulo 𝔭𝑘 for 𝑘 = ⌈𝑑+1𝑚 ⌉ ∈ 𝑂 ((𝑑 +𝑚)/𝑚). In the prime field

case, where𝑚 = 𝑛, and for the special case 𝑢 = 𝜏𝑛 , the above for-

mula gives 𝑘 = 2, but we can take 𝑘 = 1 instead; this is discussed in

Section 6.4.

Note also that if we take 𝑘 = 𝑑 + 1, there is no need to consider

the map 𝜒𝑘 : on the representation of𝑊𝑑+1 as

𝑊𝑑+1 = F𝑞 [𝑥, 𝑡,𝑦]/(𝔭(𝑥), 𝑔(𝑥, 𝑡), (𝑦 − 𝑥)𝑑+1),

for 𝑓 of degree up to 𝑑 , 𝜄𝑘 (𝑓 ) is simply the polynomial 𝑓 (𝑦), so we

can recover 𝑓 from 𝜄𝑘 (𝑓 ) for free. We will however refrain from

doing so, as it causes 𝑘 to increase.

6 Main Algorithms
We will now see how the former discussion can be made more

concrete, by rephrasing it in terms of skew polynomials only. The

evaluation map 𝜂 ↦→ 𝜂𝑥 gives an additive bijection 𝐷 (𝜙,L) →
L{𝜏}𝜏 . This allows us to transport the L[𝑦]-module structure on

𝐷 (𝜙,L) to L{𝜏}𝜏 : one verifies that it is given by (𝑐𝑦𝑖 ∗ 𝜂) = 𝑐𝜂𝜙𝑥𝑖 ,
for 𝜂 in L{𝜏}𝜏 , 𝑐 in L and 𝑖 ≥ 0, and that B = (𝜏, . . . , 𝜏𝑟 ) is a basis
of L{𝜏}𝜏 over L[𝑦].

Further, an endomorphism 𝑢 ∈ EndL (𝜙) now induces an L[𝑦]-
linear endomorphism𝑢★ : L{𝜏}𝜏 → L{𝜏}𝜏 simply given by𝑢★(𝑣) =
𝑣𝑢 for 𝑣 in L{𝜏}𝜏 . Reducing modulo the ideal 𝐼𝑘 ⊂ L[𝑦], we denote
by 𝑢★

𝑘
the corresponding𝑊𝑘 -linear endomorphism on the quotient

module L{𝜏}𝜏/𝐼𝑘
L
L{𝜏}𝜏 ≃ 𝐻∗

𝑘
(𝜙,L).

We can then outline the algorithm referenced in Theorems 1

and 2; its correctness follows directly from Corollary 4 and the

bound on 𝑘 given previously.

(1) Set 𝑘 = ⌈𝑑+1𝑚 ⌉, with 𝑑 = deg𝜏 (𝑢), except if 𝑛 =𝑚 and 𝑢 = 𝜏𝑛

(in which case we can take 𝑘 = 1)

(2) Compute the coefficients 𝑢𝑖,1, . . . , 𝑢𝑖,𝑟 ∈ 𝑊𝑘 of 𝜏𝑖𝑢 mod 𝐼𝑘

on the basis B, for 𝑖 = 1, . . . , 𝑟

(3) Using the coefficients computed in step 2, construct the ma-

trix for 𝑢★
𝑘
acting on L{𝜏}𝜏/𝐼𝑘

L
L{𝜏}𝜏 and compute its char-

acteristic polynomial CharPoly𝑊𝑘
(𝑢★
𝑘
) ∈𝑊𝑘 [𝑍 ]

(4) Apply the map 𝜒𝑘 to the coefficients of CharPoly𝑊𝑘
(𝑢★
𝑘
) to

recover CharPoly(𝑢)𝜃𝑘 , and thus CharPoly(𝑢).
In Subsections 6.1 to 6.3, we discuss how to complete Step 2: we

give two solutions for the case of an arbitrary endomorphism 𝑢,

and a dedicated, more efficient one, for 𝑢 = 𝜏𝑛 . We freely use the

following notation:

• for 𝑐 in L and 𝑡 ∈ Z, let 𝑐 [𝑡 ] denote the value of the 𝑡 th power
Frobenius applied to 𝑐 , that is, 𝑐 [𝑡 ] = 𝑐𝑞

𝑡

• for 𝑓 in L[𝑦], 𝑓 [𝑡 ] ∈ L[𝑦] is obtained by applying the former

operator coefficient-wise, so deg(𝑓 ) = deg(𝑓 [𝑡 ] )
• for 𝑀 = (𝑚𝑖, 𝑗 )1≤𝑖≤𝑢,1≤ 𝑗≤𝑣 in L[𝑦]𝑢×𝑣 , 𝑀 [𝑡 ] is the matrix

with entries (𝑚 [𝑡 ]
𝑖, 𝑗
)1≤𝑖≤𝑢,1≤ 𝑗≤𝑣 .

Finally, we define 𝜇 = (𝑦 −𝛾𝑥 )𝑘 ∈ L[𝑦] (with the value of 𝑘 defined

above); it generates the ideal 𝐼𝑘 in L[𝑦].

6.1 Using a Recurrence Relation
The following lemma is a generalization of a recurrence noted

by Gekeler [19, Section 5] for 𝑟 = 2. Recall that we write 𝜙𝑥 =

𝛾𝑥 + Δ1𝜏
1 + . . . + Δ𝑟𝜏𝑟 , with all Δ𝑖 ’s in L; in the expressions below,

we write Δ0 = 𝛾𝑥 .

Lemma 1. For any 𝑡 ≥ 1, the following relation holds in the L[𝑦]-
module L{𝜏}𝜏 :

𝑟∑︁
𝑖=0

Δ
[𝑡 ]
𝑖
𝜏𝑡+𝑖 = 𝑦 ∗ 𝜏𝑡 . (4)
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Proof. This follows directly from the module action of L[𝑦] on
L{𝜏}𝜏 , by commuting 𝜏𝑡 across the defining coefficients Δ𝑖 of 𝜙 :

𝑦 ∗ 𝜏𝑡 = 𝜏𝑡𝜙𝑥 = 𝜏𝑡
𝑟∑︁
𝑖=0

Δ𝑖𝜏
𝑖 =

𝑟∑︁
𝑖=0

Δ
[𝑡 ]
𝑖
𝜏𝑡+𝑖 . □

For 𝑖 = 0, . . . , 𝑟−1, letΛ𝑖 = − Δ𝑖

Δ𝑟
and define the order 𝑡 companion

matrix for the recurrence, A𝑡 ∈ L[𝑦]𝑟×𝑟 , as

A𝑡 =



Λ
[𝑡 ]
𝑟−1

Λ
[𝑡 ]
𝑟−2

. . . Λ
[𝑡 ]
1

Λ
[𝑡 ]
0
+ 𝑦

Δ [𝑡 ]𝑟

1 0 . . . 0 0

0 1 . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 . . . 1 0


(5)

For 𝑡 ≥ 1, let 𝜅𝑡 ∈ L[𝑦]1×𝑟 denote the coefficient vector of 𝜏𝑡

with respect to the standard basis B. Then, we have the following
relation between 𝑟 × 𝑟 matrices over L[𝑦]:

𝜅𝑡+𝑟
𝜅𝑡+𝑟−1

.

.

.

𝜅𝑡+1


= A𝑡


𝜅𝑡+𝑟−1

𝜅𝑡+𝑟−2

.

.

.

𝜅𝑡


(6)

For 𝑘 ≥ 1, these relations can be taken modulo 𝜇, to give equalities

over𝑊𝑘 = L[𝑦]/𝜇; below, we will write 𝜅𝑡 = 𝜅𝑡 mod 𝜇 ∈𝑊 1×𝑟
𝑘

.

Starting from 𝜅𝑡 , . . . , 𝜅𝑡+𝑟−1, we obtain 𝜅𝑡+𝑟−1 using𝑂 (𝑟 ) opera-
tions (divisions, Frobenius) in L to obtain the coefficients appearing

on the first row ofA𝑡 , followed by𝑂 (𝑘𝑟 ) operations in L to deduce
the entries of 𝜅𝑡+𝑟 .

Below, we will need 𝜅1, . . . , 𝜅𝑑+𝑟 . Altogether, computing them

takes ((𝑑 + 𝑟 )𝑘𝑟𝑛 log𝑞)1+𝑜 (1) bit operations; with our chosen value

of 𝑘 , this is also

((𝑑 + 𝑟 ) (𝑑 +𝑚)𝑟𝑛/𝑚 log𝑞+)1+𝑜 (1) .

Let us then write 𝑢 = 𝑢0 + · · · + 𝑢𝑑𝜏𝑑 . For 𝑖 = 1, . . . , 𝑟 , we have

𝜏𝑖𝑢 = 𝑢
[𝑖 ]
0
𝜏𝑖 + · · · + 𝑢 [𝑖 ]𝑑 𝜏𝑑+𝑖 ,

so the coefficient vector [𝑢𝑖,1 · · ·𝑢𝑖,𝑟 ] ∈ 𝑊𝑘 of 𝜏𝑖𝑢 mod 𝐼𝑘 on the

basis B is given by the product

[𝑢 [𝑖 ]
0
· · · 𝑢 [𝑖 ]

𝑑
]


𝜅𝑖
𝜅𝑖+1
.
.
.

𝜅𝑖+𝑑


∈𝑊 1×𝑟

𝑘
.

Each such operation takes 𝑂 (𝑑𝑘𝑟𝑛) operations in L, for a total of
(𝑑 (𝑑 +𝑚)𝑟2𝑛/𝑚 log𝑞)1+𝑜 (1) bit operations if done independently
of one another (this is the dominant cost in the algorithm).

In cases when 𝑑 is not small compared to 𝑟 , we can reduce the

cost slightly using matrix arithmetic, since all coefficient vectors

we want can be read off an 𝑟 × (𝑑 + 𝑟 ) × 𝑟 matrix product,

𝑢
[1]
0

· · · 𝑢
[1]
𝑑

0 · · · · · · 0

0 𝑢
[2]
0

· · · 𝑢
[1]
𝑑

0 · · · 0

. . .
. . .

0 · · · · · · 0 𝑢
[𝑟 ]
0

· · · 𝑢
[𝑟 ]
𝑑



𝜅1

𝜅𝑖+1
.
.
.

𝜅𝑑+𝑟


∈𝑊 𝑟×𝑟

𝑘
.

This takes ((𝑑 + 𝑟 ) (𝑑 +𝑚)𝑟𝜔−1𝑛/𝑚 log𝑞)1+𝑜 (1) bit operations.

6.2 Using Euclidean Division
This section describes an alternative approach to computing the

coefficients of an endomorphism 𝑢 on the canonical basis B. Com-

putations are done in L[𝑦] rather than𝑊𝑘 = L[𝑦]/𝜇 (we are not
able to take reduction modulo 𝜇 into account in the main recursive

process).

The algorithm is inspired by a well-known analogue for commu-

tative polynomials [14, Section 9.2]: for a fixed 𝑎 ∈ L[𝑦] of degree
𝑟 , we can rewrite any 𝑓 in L[𝑦] as 𝑓 =

∑
0≤𝑖<𝑟 𝑓𝑖 (𝑎)𝑦𝑖 , for some co-

efficients 𝑓0, . . . , 𝑓𝑟−1 in L[𝑦]. This is done in a divide-and-conquer

manner.

This approach carries over to the non-commutative setting. We

start by showing how 𝑓 of degree 𝑑 in L{𝜏} can be rewritten as

𝑓 =
∑︁
𝑖

𝑓𝑖𝜙
𝑖
𝑥 ,

for some 𝑓𝑖 of degree less than 𝑟 in L{𝜏}. If we let 𝐾 be such that

𝑑 < 𝐾𝑟 ≤ 2𝑑 , with 𝐾 a power of 2, index 𝑖 in the sum above ranges

from 0 to 𝐾 − 1.

If 𝐾 = 1, we are done. Else set 𝐾 ′ = 𝐾/2, and compute the

quotient 𝑔 and remainder ℎ in the right Euclidean division of 𝑓 by

𝜙𝐾
′

𝑥 , so that 𝑓 = 𝑔𝜙𝐾
′

𝑥 + ℎ. Recursively, we compute 𝑔0 . . . , 𝑔𝐾 ′−1

and ℎ0, . . . , ℎ𝐾 ′−1, such that

𝑔 =
∑︁

0≤𝑖<𝐾 ′
𝑔𝑖𝜙

𝑖
𝑥 and ℎ =

∑︁
0≤𝑖<𝐾 ′

ℎ𝑖𝜙
𝑖
𝑥 .

Then, we return ℎ0, . . . , ℎ𝐾 ′−1, 𝑔0, . . . , 𝑔𝐾 ′−1. The runtime of the

whole procedure is 𝑂˜(SM(𝑑, 𝑛, 𝑞)) bit operations, with SM as de-

fined in Section 3 (the analysis is the same as the one done in the

commutative case in [14], and uses the super-linearity of SM with

respect to 𝑑).

From there, we are able to compute the coefficients of 𝑓 ∈ L{𝜏}𝜏
on the monomial basis B. This essentially boils down to using the

procedure above, taking care of the fact that 𝑓 is a multiple of 𝜏 .

Factor 𝜏 on the left, writing 𝑓 as 𝜏𝑔: if 𝑓 = 𝐹𝜏 , 𝑔 = 𝐹 [−1]
. Apply the

previous procedure, to write 𝑔 =
∑

0≤𝑖≤𝑠 𝑔𝑖𝜙
𝑖
𝑥 , with all 𝑔′

𝑖
of degree

less than 𝑟 and 𝑠 ≤ 𝑑/𝑟 .
This gives 𝑓 = 𝜏𝑔 =

∑
0≤𝑖≤𝑠 (𝑔

[1]
𝑖
𝜏)𝜙𝑖𝑥 , with all coefficients 𝑔

[1]
𝑖
𝜏

supported on 𝜏, . . . , 𝜏𝑟 . Extracting coefficients of 𝜏, . . . , 𝜏𝑟 , we obtain

polynomials 𝐺1, . . . ,𝐺𝑟 of degree at most 𝑠 in L[𝜏] such that 𝑓 =∑
1≤𝑖≤𝑟 𝐺𝑖 ∗ 𝜏𝑖 .
The cost of left-factoring 𝜏 in 𝑓 , and of multiplying all coeffi-

cients of 𝑔 back by 𝜏 , is (𝑑𝑛 log𝑞)1+𝑜 (1) , so the dominant cost is

𝑂˜(SM(𝑑, 𝑛, 𝑞)) bit operations from the divide-and-conquer process.

To obtain the matrix of an endomorphism 𝑢 of degree 𝑑 , we apply

𝑟 times this operation, to the terms 𝜏𝑖𝑢, 𝑖 = 1, . . . , 𝑟 . The runtime

is then dominated by 𝑂˜(𝑟SM(𝑑 + 𝑟, 𝑛, 𝑞)). Finally, reducing the

entries of the matrix modulo 𝜇 = (𝑦 − 𝛾𝑥 )𝑘 takes softly linear time

in the size of these entries, so can be neglected.

6.3 Special Case of the Frobenius
Endomorphism

In the particular case where 𝑢 = 𝜏𝑛 , we may speed up the computa-

tion using a baby-step giant-step procedure, based on the approach
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used in [10]. As a first remark, note that for 𝑢 = 𝜏𝑛 , 𝑑 = 𝑛 and 𝑘 in

𝑂 (𝑛/𝑚).
In this case, it is enough to compute the vectors 𝜅𝑛+1, . . . , 𝜅𝑛+𝑟 .

They are given by 
𝜅𝑛+𝑟
𝜅𝑛+𝑟−1

.

.

.

𝜅𝑛+1


= ¯A𝑛 . . . ¯A1, (7)

with
¯A𝑡 the image of A𝑡 modulo 𝜇 = (𝑦 − 𝛾𝑥 )𝑘 for all 𝑡 . To com-

pute the matrix product
¯A = ¯A𝑛 . . . ¯A1, we slightly extend the

approach used in [10] (which dealt with the case 𝑘 = 1). Consider

the following element of L[𝑦]𝑟×𝑟 :

B =



Λ𝑟−1 Λ𝑟−2 . . . Λ1 Λ0

1 0 . . . 0 0

0 1 . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 . . . 1 0


+


0 0 . . . Δ−1

𝑟

0 0 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . 0


𝑦. (8)

It follows in particular that for 𝑡 ≥ 1,

A𝑡 = B [𝑡 ] and
¯A𝑡 = B [𝑡 ] mod 𝜇,

with reduction applied coefficient-wise.

Write 𝑛∗ = ⌈
√
𝑛𝑘⌉ ∈ 𝑂 (𝑛/

√
𝑚), and let 𝑛 be written as 𝑛 =

𝑛∗𝑛1 + 𝑛0 with 0 ≤ 𝑛0 < 𝑛∗, so that 𝑛1 ≤
√︁
𝑛/𝑘 . Setting

C = B [𝑛
∗+𝑛0 ] · · · B [𝑛0+1]

and

C0 = B [𝑛0 ] . . .B [1] ,
the matrix A is the product

A = C [ (𝑛1−1)𝑛∗ ] · · · C [𝑛
∗ ]CC0 .

Our goal is to compute
¯A = A mod 𝜇, without computingA itself.

Any Frobenius application (of positive or negative index) in

L takes (𝑛 log𝑞)1+𝑜 (1) bit operations. In particular, computing

all matrices B [𝑖 ] that arise in the definitions of C and C0 takes

(𝑟𝑛2/
√
𝑚 log𝑞)1+𝑜 (1) bit operations.

Once they are known, the next stage of the algorithm computes

C and C0 in L[𝑦]. This is done using a matrix subproduct-tree

algorithm [14, Chapter 10], using a number of operations in L

softly linear in 𝑟𝜔𝑛∗. This is (𝑟𝜔𝑛2/
√
𝑚 log𝑞)1+𝑜 (1) bit operations.

To deduce the shifted matrices

C [ (𝑛1−1)𝑛∗ ]
mod 𝜇, . . . , C [𝑛

∗ ]
mod 𝜇,

we use the following lemma.

Lemma 2. For 𝑓 in L[𝑦] and 𝑡 ≥ 0,

𝑓 [𝑡 ] mod 𝜇 = (𝑓 mod 𝜇 [−𝑡 ] ) [𝑡 ]

Proof. Let 𝑔 = 𝑓 mod 𝜇 [−𝑡 ] , so that we have an equality of

the form 𝑓 = 𝑎𝜇 [−𝑡 ] + 𝑔 in L[𝑦]. We raise this to the power 𝑞𝑡

coefficient-wise; this gives 𝑓 [𝑡 ] = 𝑎 [𝑡 ]𝜇 + 𝑔[𝑡 ] . Since 𝑔, and thus

𝑔[𝑡 ] , have degree less than𝑘 , this shows that𝑔[𝑡 ] = 𝑓 [𝑡 ] mod 𝜇. □

1: procedure CharPolyFrobenius
2: Input A field extension L of degree 𝑛 over F𝑞 , (Δ1, . . . ,Δ𝑟 ) ∈
L𝑟 representing a rank 𝑟 Drinfeld module 𝜙 over (L, 𝛾).

3: Output 𝑎𝑖 ∈ 𝐴 such that the characteristic polynomial of the

Frobenius is 𝑋𝑟 +∑𝑟−1

𝑖=0
𝑎𝑖𝑋

𝑖
.

4: 𝑛∗, 𝑛1, 𝑛0 ← ⌈
√
𝑛𝑘⌉, ⌊𝑛/𝑛∗⌋, 𝑛 mod 𝑛∗.

5: B as in (8)

6: C ← B [𝑛∗+𝑛0 ] . . .B [𝑛0+1]
.

7:
¯C0 ← B [𝑛0 ] . . .B [1] mod 𝜇

8:
¯C [𝑖𝑛∗ ] ← (C mod 𝜇 [−𝑖𝑛

∗ ] ) [𝑖𝑛∗ ] for 0 ≤ 𝑖 < 𝑛1.

9:
¯A ←

( 𝑛1−1∏
𝑖=0

¯C [𝑖𝑛
∗ ]
)

¯C0

10: 𝑎𝑖 ← coefficient of 𝑍 𝑖 in det( ¯A − 𝑍𝐼 )
11: return 𝑎𝑖 = 𝜒𝑘 (𝑎𝑖 ) for 0 ≤ 𝑖 < 𝑟

Applying this entry-wise, we compute C [𝑖𝑛∗ ] mod 𝜇 by reducing

all entries of C modulo 𝜇 [−𝑖𝑛
∗ ]
, then raising all coefficients in the

result to the power 𝑞𝑖𝑛
∗
, for 𝑖 = 1, . . . , (𝑛1 − 1).

Matrix C has degree 𝑂 (𝑛/
√
𝑚), and the sum of the degrees of

the moduli 𝜇 [−𝑡 ] is 𝑘𝑛1, which is 𝑂 (𝑛/
√
𝑚) as well. Altogether,

this takes𝑂 (𝑟2𝑛/
√
𝑚) applications of Frobenius in L, together with

𝑂 (𝑟2𝑛/
√
𝑚) arithmetic operations inL to perform all Euclidean divi-

sions [14, Chapter 10]. Thus, the runtime is (𝑟2𝑛2/
√
𝑚 log𝑞)1+𝑜 (1)

bit operations.

Finally, we multiply all matrices C [𝑖𝑛∗ ] mod 𝜇 and C0 mod 𝜇.

This takes (𝑟𝜔𝑛2/
√
𝑚 log𝑞)1+𝑜 (1) bit operations.

6.4 Other Operations
Once the coefficients of the skew polynomials 𝜏𝑖𝑢 on the basis B
are known modulo 𝜇, we compute the characteristic polynomial of

the matrix formed from these coefficients. This can be done with

a bit cost of (𝑟𝜆𝑘𝑛 log𝑞)1+𝑜 (1) when the matrix has entries in𝑊𝑘 ,

with 𝜆 the exponent defined in Section 2.3.

At this stage, we have all coefficients of CharPoly𝑊𝑘
(𝑢★
𝑘
) in

𝑊𝑘 . It remains to apply the map 𝜒𝑘 to each of them to recover

CharPoly(𝑢).
Elements of𝑊𝑘 = F𝑞 [𝑡, 𝑦]/(ℓ (𝑡), (𝑦 − 𝛾𝑥 )𝑘 ) are written as bi-

variate polynomials in 𝑡, 𝑦, with degree less than 𝑛 in 𝑡 and less

than 𝑘 in 𝑦. To compute their image through 𝜒𝑘 , we first apply the

isomorphisms

𝑊𝑘 = F𝑞 [𝑡, 𝑦]/(ℓ (𝑡), (𝑦 − 𝛾𝑥 )𝑘 )
𝐴𝑘−−→ F𝑞 [𝑥, 𝑡,𝑦]/(𝔭(𝑥), 𝑔(𝑥, 𝑡), (𝑦 − 𝑥)𝑘 )
𝐵𝑘−−→ F𝑞 [𝑦, 𝑡]/(𝔭(𝑦)𝑘 ,𝐺𝑘 (𝑦, 𝑡))

from (3), with 𝔭(𝑦)𝑘 of degree 𝑘𝑚 and 𝐺𝑘 of degree 𝑛/𝑚 in 𝑡 .

We mentioned in Section 3 that for 𝑐 in L = F𝑞 [𝑡]/(ℓ (𝑡)), we can
compute its image𝛼 (𝑐) inF𝑞 [𝑥, 𝑡]/(𝔭(𝑥), 𝑔(𝑥, 𝑡) using (𝑛 log𝑞)1+𝑜 (1)
bit operations. Proceedings coefficient-wise with respect to 𝑦, this

shows that for 𝐶 in𝑊𝑘 , we can compute 𝐴𝑘 (𝐶) in (𝑘𝑛 log𝑞)1+𝑜 (1)
bit operations.

The tangling map of [21, §4.5] provides an algorithm for comput-

ing the isomorphism F𝑞 [𝑥,𝑦]/(𝔭(𝑥), (𝑦 − 𝑥)𝑘 ) → F𝑞 [𝑦]/(𝔭(𝑦)𝑘 )
in (𝑘𝑚 log𝑞)1+𝑜 (1) bit operations (this could also be done through

modular composition, with a similar asymptotic runtime, but the
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algorithm in [21] is simpler and faster). Applying it coefficient-

wise with respect to 𝑡 , this allows us to compute 𝐵𝑘 (𝐴𝑘 (𝐶)) in
(𝑘𝑛 log𝑞)1+𝑜 (1) bit operations again. At this stage, the mapping 𝜒𝑘
is simply extraction of the degree-0 coefficient in 𝑡 .

We apply this procedure 𝑟 times, for a total cost of (𝑟𝑘𝑛 log𝑞)1+𝑜 (1)
bit operations. This can be neglected in the runtime analysis.

When using precision 𝑘 = 1 for the prime field case, for 𝑢 = 𝜏𝑛 ,

it is necessary to compute the constant coefficient 𝑎0 separately.

This is done using the formula 𝑎0 = (−1)𝑛 (𝑟+1)+𝑟𝑁L/F𝑞 (𝛾Δ𝑟
)−1𝔭

from [13] and takes (𝑛 log𝑞)1+𝑜 (1) bit operations.
Summing the costs seen so far for the various steps of the algo-

rithm finishes the proof of our main theorems.

6.5 Example
Let F𝑞 = Z/2Z, 𝑛 = 3 and set ℓ (𝑡) = 𝑡3 + 𝑡 + 1 and L = F2 [𝑡]/(ℓ (𝑡)).
Let 𝛾𝑥 = 𝑡 + 1 mod ℓ (𝑡), so that

𝔭 = 𝑥3 + 𝑥2 + 1 = ℓ (𝑥 + 1),
and L � F𝔭 = F𝑞 [𝑥]/(𝔭(𝑥)), with the isomorphism given by

𝑓 (𝑡) ↦→ 𝑓 (𝑥 + 1). Consider the rank 4 Drinfeld module 𝜙𝑥 =

𝑡𝜏4 + (𝑡2 + 𝑡)𝜏3 + 𝜏2 + 𝑡2𝜏 + 𝑡 + 1. We proceed to compute the

characteristic polynomial using the de Rham cohomology, that is,

crystalline cohomology truncated in degree 𝑘 = 1. In other words,

all computations are done over L

The recurrence of equation (4) becomes 𝜏𝑘+4 = (𝑡 + 1)2𝑘𝜏 (𝑘+3) +
(𝑡2 + 1)2𝑘𝜏𝑘+2 + 𝑡2𝑘𝜏𝑘+1 + (1 + 𝑡1−2

𝑘 )𝜏𝑘 . Running the recurrence

for 𝑛 = 3 iterations gives:

• 𝜏5 = (𝑡2 + 1)𝜏4 + (𝑡2 + 𝑡 + 1)𝜏3 + 𝑡2𝜏2 + 𝑡2𝜏1

• 𝜏6 = (𝑡2 + 1)𝜏4 + (𝑡2 + 1)𝜏3 + (𝑡2 + 𝑡)𝜏2 + 𝜏1

• 𝜏7 = 𝜏4 + 𝑡𝜏3 + (𝑡 + 1)𝜏2 + 𝜏1

A matrix for the Frobenius endomorphism can be inferred to be
1 𝑡 𝑡 + 1 1

𝑡2 + 1 𝑡2 + 1 𝑡2 + 𝑡 1

𝑡2 + 1 𝑡2 + 𝑡 + 1 𝑡2 𝑡2

1 0 0 0

 .
It has characteristic polynomial 𝑍 4 + (𝑡 + 1)𝑍 2 + (𝑡 + 1)𝑍 . Using
the expression for 𝑎0 which is valid in the prime field case, the

Frobenius norm can be inferred to be 𝑎0 = 𝑥3 + 𝑥2 + 1.

To recover the final coefficients, observe that 𝑡 ↦→ 𝑥 + 1 gives

the required map 𝜒1 :𝑊1 = L→ F𝔭 . Finally, we conclude that the
characteristic polynomial of 𝜏𝑛 is 𝑍 4 + 𝑥𝑍 2 + 𝑥𝑍 + 𝑥3 + 𝑥2 + 1.

7 Experimental Results
An implementation of the algorithm of section (6.3) was created

in SageMath [37] and is publicly available at https://github.com/

ymusleh/drinfeld-module. An implementation in MAGMA [3] is

also publicly available at https://github.com/ymusleh/drinfeld-magma

and was used to generate the experimental results included in this

work. Our implementation differs from our theoretical version in a

few ways.

• The Kedlaya-Umans algorithm is most likely not used by

MAGMA for computing Frobenius mappings of elements

of L.
• To compute the images of coefficients under the map 𝜒𝑘 ,

we leverage a simpler procedure using reduction modulo

bivariate Gröbner bases, rather than the tangling map of van

der Hoeven and Lecerf. In any case, this does not impact the

run times presented.
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Run Times for𝑚 = 10 𝑞 = 25 in seconds

𝑛 = 100 𝑛 = 150 𝑛 = 200 𝑛 = 300 𝑛 = 400 𝑛 = 500 𝑛 = 600

𝑟 = 5 0.400 2.260 42.190 86.830 269.760 635.170 1099.110

𝑟 = 9 0.790 4.210 78.860 157.100 481.090 1129.670

𝑟 = 12 1.170 6.080 104.630 220.430 658.950 1531.580

𝑟 = 18 2.300 11.360 170.790 366.690 1074.840 2451.530

𝑟 = 23 3.820 17.580 240.100 525.670 1518.370
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