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Abstract

We present a new algorithm for computing the characteristic poly-
nomial of an arbitrary endomorphism of a finite Drinfeld module
using its associated crystalline cohomology. Our approach takes
inspiration from Kedlaya’s p-adic algorithm for computing the
characteristic polynomial of the Frobenius endomorphism on a
hyperelliptic curve using Monsky-Washnitzer cohomology. The
method is specialized using a baby-step giant-step algorithm for
the particular case of the Frobenius endomorphism, and in this case
we include a complexity analysis that demonstrates asymptotic
gains over previously existing approaches.
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1 Introduction

Drinfeld modules were first introduced by Vladimir Drinfel’d in
order to prove the Langlands conjecture for GL, over a global
function field [11]. Since then, Drinfeld modules have attracted at-
tention due to the well established correspondence between elliptic
curves and the rank two case. Moreover, the rank one case, often
referred to as Carlitz modules, provides a function field analogy of
cyclotomic extensions; the role played in class field theory over
number fields by elliptic curves with complex multiplication shows
strong parallels with that of Drinfeld modules of rank two for the
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function field setting. This has motivated efforts to translate con-
structions and algorithms for elliptic curves, including modular
polynomials [6], isogenies [6], and endomorphism rings [13, 27].

Naturally, cryptographic applications of Drinfeld modules have
also been explored [28], but were long anticipated to be vulnera-
ble for public key cryptography based on isogenies [23, 36]. This
question was finally put to rest by Wesolowski who showed that
isogenies between Drinfeld modules of any rank could be computed
in polynomial time [38].

Drinfeld modules of rank r > 2 do not have such a clear parallel,
although an analogy exists between abelian surfaces and so called ¢-
modules [1]. Owing to this discrepancy, rank two Drinfeld modules
have been studied far more closely than the case of more general
ranks.

The main goal of this work is to study a Drinfeld module ana-
logue of p-adic techniques such as Kedlaya’s algorithm [25] for
computing the characteristic polynomial of the Frobenius endomor-
phism acting on an elliptic or hyperelliptic curve over a finite field.
Algorithms for elliptic curves compute the action of the Frobenius
on a basis of a particular subspace of the de Rham cohomology
of a characteristic 0 lift of the curve, with coefficients in Qp. Our
approach follows a very similar outline, but turns out to be remark-
ably simpler to describe, resting crucially on a suitable version
of crystalline cohomology for Drinfeld modules due Gekeler and
Angles [2].

More generally, the approach we present can be used to compute
the characteristic polynomial of any Drinfeld module endomor-
phism.

2 Background and Main result

2.1 Basic Preliminaries

Let Rbe any ring, r € R,and ¢ : R — R’ a ring homomorphism. We
will follow the notational convention that writes o(r) = o = r°
throughout this work. If R is a polynomial ring and o acts on its
coefficient ring, r° denotes coefficient-wise application.

Let g be a prime power, and let Fy denote a finite field of order
g fixed throughout. We also fix a field extension L of Fy such that
[L : Fq] = n. Explicitly, L is defined as I = Fg[t]/(£(t)) for some
degree n irreducible £(t) € Fq[t], so elements of L are represented
as polynomials in F[¢] of degree less than n. We will discuss below
an alternative representation, better suited for some computations.

2.2 Drinfeld Modules

In general, Drinfeld modules can be defined over a ring A consist-
ing of the functions of a projective curve over Fy that are regular
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outside of a fixed place at infinity. For our purposes, we will restrict
ourselves to the consideration of Drinfeld modules defined over the
regular function ring of P! — {co}; that is A = Fqlx].

We fix a ring homomorphism y : A — L and let p € A the monic
irreducible generator of ker y. Then Fy, = Fy[x]/(p) is isomorphic
to a subfield of L; we let m = deg(p), so that m divides n. This gives
us an isomorphism L =~ Fg[x, t]/(p(x),g(x, t)), with g monic of
degree n/m in t. It will on occasion be convenient to switch from
the representation of elements of L as univariate polynomials in ¢ to
the corresponding bivariate representation in x, t; in that case, for
instance, yy is simply the residue class of x modulo (p(x), g(x, t)).
We assume that p and g are given as part of the input.

To define Drinfeld modules, we also have to introduce the ring
L{r} of skew polynomials, namely

L{r}={U=up+uir+---+ust® | seNu,...,us €L},

where multiplication is induced by the relation ru = u9z, for all u
in L.

DEFINITION 1. A Drinfeld A-module of rank r over (L,y) is a
ring homomorphism ¢ : A — L{r} such that

b =yx + AT AT
with A; inL for alli and A, # 0.

For readers interested in the more general setting under which
Drinfeld modules are typically defined, we recommend the survey
by Deligne and Huseméller in [9].

A Drinfeld module is defined over the prime field when L = Fy
(that is, m = n). Algorithms for Drinfeld modules in the prime field
case tend to be algorithmically simpler, and we will often highlight
the distinction with the more general case.

ExampLE 1. Let Fy = Z/5Z and n = 4. Set £(t) = t* + 2 and
L =Fs[t]/(£(t)). Letyx = t mod £(t), in which case L. = Fp. A rank
two Drinfeld module is given by ¢y = 72 + 7+ 1.

We may instead take yx = t> +t* + t + 3 mod £(t) in which case
p = x? +4x +2 and Fy = Fys. The field L admits the representations

L =Fs[t]/(€(1)) = Fs[x, t]/ (p(x), g(x. 1)),

with g(x, t) = t2 + 4tx + 3t + x. A rank three Drinfeld module is given
bydx =2+ (B3 + )2 +tr+ 13+ 12+t +3.

Given Drinfeld A-modules ¢, i defined over (L, y), an L-morphism
u:¢ — Yisau € L{r} such that up, = Ysu for all a € A. The
set Endy, (¢) is the set of L-morphisms ¢ — ¢; it is therefore the
centralizer of ¢ in L{z}. It admits a natural ring structure, and con-
tains the Frobenius endomorphism ™. The degree of an L-morphism
u is the 7-degree of the underlying skew polynomial in L{z}.

2.3 Characteristic Polynomials

The characteristic polynomial of an endomorphism u € Endy (¢)
can be defined through several points of view.

Through the action of ¢, A = F4[x] and its fraction field K =
Fq(x) can be seen as a subring, resp. subfield of the skew field
of fractions L(7) of L{r}. Then, End](l)d(qﬁ) = Endp (§) ®4 K is the
centralizer of ¢ in L(7); this is a division ring that contains K in
its center.
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DEFINITION 2. The characteristic polynomial CharPoly(u) ofu €
Endy (@) is its reduced characteristic polynomial, relative to the sub-
fieldK ofEndE(gS) [35, Section 9.13].

The characteristic polynomial of u has degree r and coefficients
in A C K, so that it belongs to A[Z]. More precisely, if deg(u) =
d, CharPoly(u) has coefficients ao, ...,a,-1 € A with deg(a;) <
d(r —i)/r for all i [27, Prop. 4.3] and satisfies

r—1
u” + Z pau’ = 0. (1)
i=0

Another definition of CharPoly(u) follows from the introduction
of the Tate modules of ¢. The Drinfeld module ¢ induces an A-
module structure on the algebraic closure L of L by setting a * ¢ =
dalc) fora € A, ¢ € L (defining 7' (c) = ¢7'). Then, for [ € A, the
I-torsion module of ¢ is defined as ¢[1] = {c € L. | Isc = 0}. Setting
I to be any irreducible element of A different from p, we can define
the [-adic Tate module as T;(¢) = liLn(ﬁ[Ii].

Letting A{ be the [-adic completion of A, T;(¢) becomes a free A;-
module of rank r and elements of Endp, (¢) induce endomorphisms
on T;(¢). Then, for u € Endy (¢), the characteristic polynomial
CharPoly 4 (u) of the induced endomorphism u € Endg, (Ti(¢))
agrees with CharPoly(u) [2, 17].

ExampLE 2. LetFg, L be as in the context of example 1, and yx =
t3 + 4t> + t + 1 mod £(t). A rank 5 Drinfeld module is given by
b=+ 2 +2)0 + (B 432+t + D)t + (4 +3) 3 + B2+ 4t +
4)7% + (483 + 412 + 40T + yy.

The characteristic polynomial of T on ¢ is Z° +3Z* + (x> + 4x° +
)23+ (2x% +4x +3) 2% + (3 +2x% + 4x + 2) Z +2x* +3x% + dx + 2

The results in this paper are based on another interpretation
of CharPoly(u), as the characteristic polynomial of the endomor-
phism induced by u in a certain crystalline cohomology module,
due to Gekeler and Anglés [2]. Our first main result is an algo-
rithm for computing the characteristic polynomial of the Frobenius
endomorphism.

Here, w is a real number such that two s X s matrices over a ring
R can be multiplied in O(s“) ring operations in R; the current best
value is w < 2.372 [12]. We will also let A denote an exponent such
that the characteristic polynomial of an s X s matrix over a ring R
can be computed in o(sh) ring operations in R. When R is a field,
this can be done at the cost of matrix multiplication and therefore
A = w [32]. For more general rings, the best known value to date is
A~ 2.7 [24].

THEOREM 1. Let ¢ be a rank r Drinfeld module over (L, y). There
is a deterministic algorithm to compute the characteristic polynomial
of the Frobenius endomorphism t™ with bit complexity

o (r®nSlog q+nlog? q)"*°) for the prime field case (m = n)
o ((r*/m+r® /\/m)n?log g+nlog® )'*°(1) for the general case
m<n.

When r and q are fixed, the runtime in the theorem is thus
essentially linear in n?/+/m, which is n!- in the prime field case
and gets progressively closer to n? as m decreases. The best prior
results [30] were limited to the case r = 2, with runtimes essentially
linear in n' in the prime field case and n? otherwise (for fixed g).
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This first algorithm builds upon techniques for linear recurrences
originating from [10], which are so far limited to the particular case
of the Frobenius endomorphism.

We also obtain two algorithms that can be applied to any u €
Endy, (¢). The complexity in this case partly depends on the bit cost
of multiplication and Euclidean division in L{z}, which we will
denote SM(d, n, ) and which will be discussed in more detail in
Section 3.

THEOREM 2. With assumptions as in Theorem 1, there are deter-
ministic algorithms to compute the characteristic polynomial of an
endomorphism u of degree d with bit complexities

N (w((i + m)nlogq + r'n(d + m)/mlogq +

nlogz q) 1+0(1)

o (rSM(d +r,n,q) + r'n(d + m)/mlog q + nlog? g)+o(1).

Again, it is worth considering the situation with r and q fixed. In
this case, the runtimes we obtain are, respectively, essentially linear
in d(d + m)n/m and SM(d, n, q). In the next section, we review
known values for SM; for the best known value of w, and fixed g, it
is (d%6°n) () for d < n®76 and (dn'-52)1+0(1) otherwise. In the
case d = ©(n), the runtimes are thus essentially linear in n3/m and
n?33, respectively (so which is the better algorithm depends on the
value of m). For u = 7", the algorithm in the previous theorem is of
course superior.

3 Computational Preliminaries

The key element in our complexity analyses is the cost of the follow-
ing operations in LL: addition/subtraction, multiplication, inverse
and (iterated) Frobenius application.

Some of the algorithms we use below (multiplication and Eu-
clidean division in L{zr} from [7, 34]) assume that all these oper-
ations can be done using O"(n) operations in Fg. For the repre-
sentation of L we use, this is however not known to be the case;
Couveignes and Lercier proved the existence of “elliptic bases” that
satisfy these requirements [8], but conversion to our representation
does not appear to be obvious.

This explains why in our main result, we do not count opera-
tions in Fg, but bit operations instead (our complexity model is a
standard RAM); we explain below how this allows us to bypass the
constraints above.

Using FFT based algorithms, polynomials of degree at most n
with coefficients in Fg can be multiplied in boolean time (nlog q) 1+o(1)
[5, 20]. It follows that elementary field operations (addition, multi-
plication, inversion) in L = Fg [t]/(£(t)) can be done with the same
asymptotic cost.

Conversions between univariate and bivariate representations
for elements of L take the same asymptotic runtime. Denote by
the isomorphism L = Fq[]/(£(t)) — Fq[x, t]/(p(x), g(x, t)); then,
given f of degree less than n in Fy[¢], we can compute the image
a(f mod £(t)) in (nlog q)”"(l) bit operations; the same holds for
a1 [22,33].

The last important operation is the application of the g-power
Frobenius in L. Recall that given polynomials f, g, h € Fq[x] of de-
gree at most n, modular composition is the operation that computes
f(g) mod h. As showed in [15], for cin L = Fg[t]/(£(t)), c¢? can be
computed in the same asymptotic time (up to logarithmic factors)
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as degree n modular composition, following a one-time precompu-
tation that takes (nlog? q)“o(l) bit operations. This then extends
to arbitrary powers (positive and negative) of the Frobenius. We
should point out that modular composition techniques also underlie
the algorithms for switching between the two representations of
the elements in L mentioned above.

In [26], Kedlaya and Umans proved that modular composition in
degree n can be computed in (nlog q)1+°(1) bit operations (see also
the refinement due to van der Hoeven and Lecerf [22]), whence
a similar cost for (iterated) Frobenius in L. Here, the fact that we
work in a boolean model is crucial: Kedlaya and Umans’ algorithm
is not known to admit a description in terms of Fq-operations.

From this, we can directly adapt the cost analyses in [7, 34] to our
boolean model. In particular, following the latter reference (which
did so in an algebraic cost model), we let SM(d, n, q) be a function
such that

o degree d multiplication and right Euclidean division in L{z}
can be done in O(SM(d, n, q)) bit operations
e for n, q fixed, d = SM(d, n, q)/d is non-decreasing.

The latter condition is similar to the super-linearity of multiplica-
tion functions used in [14], and will allow us to streamline some
cost analyses. Unfortunately, there is no simple expression for
SM(d, n, q): on the basis of the algorithms in [7, 34], the analysis
done in [7] gives the following upper bounds:

e ford < n(®=©)/2 e can take SM(d, n, q) in (d(©@*1)/2n 1og q)1*+o(1)

o else, we can take SM(d, n, q) in (dn4/(5_“’) log q)”o(l)

For instance, with d = n, this is (n(9=©)/(5-©) Jog g)1*0(1)

With o = 2.37, the cost is (d"°nlog q)'*°(") for d < n%7¢, and
(dn'%2log q)"*°(1) otherwise; the exponent for d = n is 2.53. For
completeness, we point out that these algorithms heavily rely on
Frobenius applications, and as such, require spending the one-time
cost (nlog? q)1+0(1) mentioned previously.

One should also keep in mind that these asymptotic cost analyses
are not expected to reflect practical runtimes. To the authors’ knowl-
edge, software implementations of the Kedlaya-Umans algorithm
achieving its theoretical complexity, or of matrix multiplication
with exponent close to 2.37, do not currently exist. For practical
purposes, implementations of modular composition use an algo-
rithm due to Brent and Kung [4], with an algebraic complexity of
0(n{@*1)/2) gperations in Fgq. Revisiting skew polynomial algo-
rithms and their analyses on such a basis is work that remains to
be done.

Finally, we will note that an instance of the characteristic poly-
nomial computation consists of the following inputs:

e the finite fields L, Fy
e the coefficients of a Drinfeld module of rank r over L
o adegree d endomorphism.

The fields can be specified using O(nlog q) bits, and the Drinfeld
module itself costs O(nrlog q) bits to encode. The endomorphism
itself costs O(dnlog q) to write down in general, and costs O(1) for
the Frobenius.



ISSAC, 2023,

4 Prior Work

The question of computing the characteristic polynomial, particu-
larly of the Frobenius endomorphism, was studied in detail in [18]
for the rank two case only.

The most general approach constructs a linear system based
on the degree constraints of the coefficients a; = Z'i(r)_i)/r ai jx’.
Evaluating the characteristic polynomial at the Frobenius element
and equating coeflicients gives a linear system based on

r—1 n(r,_i) n(r—i)
HEDY D aifirm =0, @
i=0 j=0 k=0

with f; i the coefficient of * in ¢, . Letting MinPoly(z") denote
the minimal polynomial of 7" (as an element of the division algebra
Endﬂ(l((ﬁ) over the field K = Fg(x)), the solution of the preceding
system is unique and yields the characteristic polynomial generi-
cally, and only if MinPoly(z") = CharPoly(z").

Garai and Papikian gave an algorithm for computing the charac-
teristic polynomial [13, §5.1] valid for the prime field case only. As
with the previous approach, this relies on the explicit computation
of ¢,.i, which is the dominant computational step. This can be done
by O(n?) evaluations of the recurrence

@’ NI
firrj =vx fi,j+ZAt fij-r.
t=1

Thus the bit complexity of computing all of ¢y, Py 2,...,Pxn is
(rn? log(g)) '+ (D).

Further study of algorithms for the specific case of the Frobenius
endomorphism in rank r = 2 was done in [31] and [30]. The latter
focused on the complexity of the algorithms and used the same
computational model that will be used here. As we reported after
Theorem 1, the best known runtime to date was quadratic in n,
except in the case where MinPoly(z") = CharPoly(z"), or in the
prime field case where a bit cost of (n'- log g + nlog? g)1*°() is
possible [10]. To our knowledge, no previous analysis is available
for an arbitrary endomorphism u.

In the context of elliptic curves, Kedlaya’s algorithm [25] com-
putes the characteristic polynomial of a matrix representation of the
lift of the Frobenius action to a subspace of the Monsky-Washnitzer
cohomology, up to some finite precision. Our algorithm follows
the same high-level approach: we compute a matrix for the endo-
morphism acting on the crystalline cohomology with coefficients
in a power series ring analogue to Witt vectors. The induced en-
domorphism turns out to be quite simple to describe in terms of
skew-polynomial multiplication, which eliminates the need for a
complicated lifting step.

5 Crystalline Cohomology

In this section, we first review the construction of the crystalline
cohomology of a Drinfeld module and its main properties; this can
be found in [2], where the definition is credited to unpublished work
of Gekeler. Then, we introduce truncated versions of these objects,
which reduce the computation of characteristic polynomials of
endomorphisms of a Drinfeld module to characteristic polynomial
computations of matrices over truncated power series rings.

Yossef Musleh and Eric Schost

5.1 Definition

The contents of this subsection is from [2, 16]. The set of derivations
D(¢, L) of a Drinfeld module ¢ is the set of Fy-linear maps 7 : A —
L{r}r satisfying the relation

Nab = Yallp + NaPp, a,b €A

Let then y be a new variable. The set D(¢,L) can be made into an
L[y]-module in the following manner.

DEFINITION 3. [2, Section 2] The set D(¢$,L) is an L[y]-module
under (cy' * )q = cadyi, forn inD(¢,L), cinL,i > 0 and a in A.

Let further I be the ideal of L[y] generated by y — yy; for k > 1,

we set

Wi =L[y]/1*
and

W= lim Wi = L{[y - psll.

Thus W comes equipped with projections n; : W — W, obtained
by truncation of a power series, written as sum of powers of (y—yx),
in degree k. We have canonical ring homomorphisms 1 : A — W
given by 1 (x) = y mod I*. They lift to an inclusion 1 : A —
W, simultaneously commuting with each ., which represents
elements of A via their I-adic expansion.

The crystalline cohomology Hrys(¢,L) of ¢ is the W-module
W &p[y) D(¢,L), that is, the completion of D(4,L) at the ideal
I'=(y—yx)of L[y].

Gekeler proved that D(¢,L) is a projective, hence free, L[y]-
module of rank r [16], with canonical basis ﬁ(i) such that ﬁ(i) (x) =
i for 1 < i < r. From this, it follows that Hirys(¢,L) is a free
W-module of rank r as well, as pointed out in [2].

REMARK 1. In that reference, A is not necessarily a polynomial
ring, and L[y] is replaced by Ap, =L ®r, A. In this case, D(¢p, L) is
a projective Ay -module of rank r, the definition of ideal I changes,
but it remains maximal in Ay, so the completion W of A, at I is still
a local ring and Hgyys (¢, L) is still free of rank r over W.

An endomorphism u of ¢ induces an L[y]-endomorphism u* of
D(¢,L), defined as (u*(n))x = nxu, for n in D(¢, L); the same holds
for the completion Hé‘rys(d), L). Following [2], using the fact that
Hiys(¢,L) is free over W, one can then define the characteristic
polynomial CharPolyy, (¢*) in the usual manner.

Recall now that CharPoly(u) denotes the characteristic polyno-
mial of u, as defined in Section 2.3. The following theorem due to
Angles [2, Thm. 3.2] relates this characteristic polynomial to that
of the induced endomorphism on H (4, L), where 1 below acts
coefficient-wise.

THEOREM 3. Foru in Endy (¢), CharPoly(u)' = CharPolyy, (u*).

REMARK 2. Recall that we have restricted ourselves to the case
where A is the ring of functions on P! regular outside of the point at
infinity. However, theorem 3 holds for any Drinfeld module, and it is
likely that the algorithms presented here can be generalized.

5.2 Truncated Cohomology

Recall now that p € A is the minimal polynomial of y € L over Fy,.
For k > 1, we are going to define an Fg-linear homomorphism
such that the following diagram commutes:
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AT s

]
O:f (x) £ (y) mod p<y>\,4 I
Fqlyl/(p(y)¥)

There exists an isomorphism

Ti : Fglx, y]/ (p(x), (y = 0)F) = Fq[yl/ (p(m)");

see e.g. [29, Lemma 13]. On the other hand, recall that L. = Fg [t]/(£(t))
is isomorphic to

Eqlx, t]/(p(x), 9(x, 1)),
for some g in Fq [x, t], monic of degree n/m in t; in this represen-
tation of L, yy is simply (the residue class of) x. As a result, we
get

Wi = Fqlt,yl/(£(), (y — y)F)
> Fylx,t,y]/(p(x), g(x, 1), (y - )¥)
= Fgly. t1/(p(y)X, G (y. 1)), (3)

for a certain polynomial Gy € Fy[y, t], monic of degree n/m in .
We can then define y; : Wi — Fq[y]/(p(y)k) by

Xk : Z citi — o,
0<i<n/m
and we verify that it satisfies our claim. The details of how to
compute this homomorphism are discussed in Section 6.
For k > 1, we further define the precision k cohomology space
H/(¢,L) as the Wy.-module

D(¢,L)/I* D($, L) = Hiys (6. 1) /1° Hipy (4. 1).

It is thus free of rank r, and an endomorphism u of ¢ induces a
Wj-linear endomorphism u;. of H, ($,L).

REMARK 3. In [16], Gekeler introduced de Rham cohomology of
Drinfeld modules; this is the case k = 1 in this construction (in which
case W = L).

In the following claim, recall that for a polynomial P and for any
map y acting on its coefficient ring, we let PX denote coefficient-
wise application of y to P.

COROLLARY 4. Foru in Endy (@) and k > 1, CharPoly(u)ak =
CharPolyyy, (uz))(k.

Proor. Apply yi o mp coefficient-wise to the equality in Theo-
rem 3. O

If u has degree d in 7, we know that all coefficients of CharPoly (u)
have degree at most d, so they can be recovered from their reduc-
tions modulo p* for k = [%1 € O((d + m)/m). In the prime field
case, where m = n, and for the special case u = 7", the above for-
mula gives k = 2, but we can take k = 1 instead; this is discussed in
Section 6.4.

Note also that if we take k = d + 1, there is no need to consider
the map y: on the representation of Wy, as

Wapr = Fqlx, t,yl/(p(x), g(x, 1), (y — ) %),
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for f of degree up to d, 1 (f) is simply the polynomial f(y), so we
can recover f from i (f) for free. We will however refrain from
doing so, as it causes k to increase.

6 Main Algorithms

We will now see how the former discussion can be made more
concrete, by rephrasing it in terms of skew polynomials only. The
evaluation map n — 1y gives an additive bijection D(4,L) —
L{z}z. This allows us to transport the L[y]-module structure on
D(¢,L) to L{r}: one verifies that it is given by (cy’ * 1) = cng,,
forninL{r}r,cinL and i > 0, and that 8 = (z,...,7") is a basis
of L{r}r over L[y].

Further, an endomorphism u € Endp, (¢) now induces an L[y]-
linear endomorphism u* : L{r}r — L{r}r simply given by u* (v) =
vu for v in L{r}7. Reducing modulo the ideal I* c L[y], we denote
by u,: the corresponding Wy -linear endomorphism on the quotient
module L{r}r/IFL{r}r =~ H; (¢, L).

We can then outline the algorithm referenced in Theorems 1
and 2; its correctness follows directly from Corollary 4 and the
bound on k given previously.

(1) Setk = f%], with d = deg,(u), exceptif n=mand u = 7"
(in which case we can take k = 1)

(2) Compute the coefficients u; 1, ..., u;ir € Wi of iy mod I*
on the basis B, fori=1,...,r

(3) Using the coefficients computed in step 2, construct the ma-
trix for ul’: acting on L{7}z/ I(I:L{T}T and compute its char-
acteristic polynomial CharPolyy, (u]:‘) € Wi[Z]

(4) Apply the map yj to the coefficients of CharPolyy,, (u;:) to
recover CharPoly(u)gk , and thus CharPoly(u).

In Subsections 6.1 to 6.3, we discuss how to complete Step 2: we
give two solutions for the case of an arbitrary endomorphism u,
and a dedicated, more efficient one, for u = 7. We freely use the
following notation:

e forcinLand t € Z, let c[*] denote the value of the tth power
Frobenius applied to c, that is, clt] = ¢d'

o for finL[y], f [l e L[y] is obtained by applying the former
operator coefficient-wise, so deg(f) = deg(f[t])

o for M = (m;j)1<i<ui<j<o in L[y]**?, M1 is the matrix

Sisuls )=

Finally, we define ;1 = (y—yx)X € L[y] (with the value of k defined
above); it generates the ideal I kin Lly].

6.1 Using a Recurrence Relation

The following lemma is a generalization of a recurrence noted
by Gekeler [19, Section 5] for r = 2. Recall that we write @5 =
Yx + A1t + ..+ A7, with all A’s in L; in the expressions below,
we write Ag = yx.

LEMMA 1. For anyt > 1, the following relation holds in the L[y]-
module L{t}z:

Al[t]rt” =y=* . (4)
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Proor. This follows directly from the module action of L[y] on
L{r}r, by commuting 7’ across the defining coefficients A; of ¢:

r r
t_ t, _ .t i (] t+i
Y*x7 =T Py =T ZAIT_ZAi o
i=0 i=0

Fori=0,...,r—1,1etA; = —% and define the order ¢t companion

matrix for the recurrence, A; € L[y]rxr, as
[t] [£] (7] Alt]l, y
Ar_1 Ar_2 1\1 A0 + A'r"
1 0 0 0
A = 0 1 oo 0 0 (5)
0 0 1 0

Fort > 1, let k; € L[y]"*" denote the coefficient vector of 7*
with respect to the standard basis 8. Then, we have the following
relation between r X r matrices over L[y]:

Kt+r Ki+r—1
Kt+r—1 Kt+r-2
=A | . (6)
Kt+1 Kt

For k > 1, these relations can be taken modulo y, to give equalities
over Wy = L[y]/p; below, we will write ;s = x; mod p € Wklxr.

Starting from &, . . ., Kt+r—1, We obtain Kz4,—1 using O(r) opera-
tions (divisions, Frobenius) in L to obtain the coefficients appearing
on the first row of A;, followed by O(kr) operations in L to deduce
the entries of K4,

Below, we will need Ky, . . ., K44, Altogether, computing them
takes ((d+r)krnlogq) Lo (1) pjt operations; with our chosen value
of k, this is also

((d+7r)(d+m)rn/mlog q+)1+°(1).
Let us then write u = ug +--- + udrd. Fori=1,...,r, we have
Tu=uy T +-~+u[[il]rd+’,
so the coefficient vector [u;; - u;,] € Wi of 7'y mod I* on the
basis B is given by the product

Ki
. | Kiv1
[i] [i] 1x
e ] ew. "
Kitd
Each such operation takes O(dkrn) operations in L, for a total of
(d(d + m)r®n/mlog q) 1+0(1) pit operations if done independently
of one another (this is the dominant cost in the algorithm).
In cases when d is not small compared to r, we can reduce the

cost slightly using matrix arithmetic, since all coefficient vectors
we want can be read off an r X (d + r) X r matrix product,

u, g 0 0 ®1
u(EZ] uc[il] 0 0 Ki+1

rXr
€ Wk .

0 0 u([)"] ul[i"] Kd+r
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This takes ((d +r)(d + m)r®~n/mlog q) 1+0(1) pit operations.

6.2 Using Euclidean Division

This section describes an alternative approach to computing the
coefficients of an endomorphism u on the canonical basis 8. Com-
putations are done in L[y] rather than Wy = L[y]/u (we are not
able to take reduction modulo p into account in the main recursive
process).

The algorithm is inspired by a well-known analogue for commu-
tative polynomials [14, Section 9.2]: for a fixed a € L[y] of degree
r, we can rewrite any f in L[y] as f = Yo<;<, fi(@)y?, for some co-
efficients fp, ..., fr—1 in L[y]. This is done in a divide-and-conquer
manner.

This approach carries over to the non-commutative setting. We
start by showing how f of degree d in L{z} can be rewritten as

f= 5

for some f; of degree less than r in L{r}. If we let K be such that
d < Kr < 2d, with K a power of 2, index i in the sum above ranges
from 0 to K — 1.

If K = 1, we are done. Else set K’ = K/2, and compute the
quotient g and remainder & in the right Euclidean division of f by
¢§,, so that f = g¢§, + h. Recursively, we compute go . .., gg’—1
and hy, ..., hg’_1, such that

g= > gigk and h= > hik.
0<i<K’ 0<i<K’
Then, we return hy, ..., hg'_1,9o, - - ., gk’—1- The runtime of the
whole procedure is O"(SM(d, n, q)) bit operations, with SM as de-
fined in Section 3 (the analysis is the same as the one done in the
commutative case in [14], and uses the super-linearity of SM with
respect to d).

From there, we are able to compute the coefficients of f € L{r}r
on the monomial basis 8. This essentially boils down to using the
procedure above, taking care of the fact that f is a multiple of 7.
Factor 7 on the left, writing f as rg: if f = Fr,g=F (=11, Apply the
previous procedure, to write g = ¥o<; <, gi, with all g; of degree
less than r and s < d/r.

This gives f = 7g = ZOSiSs(gP]T)qS;, with all coefficients gl[l]
supportedon, ..., 7". Extracting coefficients of 7, . . ., 7", we obtain
polynomials Gy, ..., G, of degree at most s in L[z] such that f =
Zi<icr G

The cost of left-factoring 7 in f, and of multiplying all coeffi-
cients of g back by 7, is (dnlog q)'*(!) | so the dominant cost is
O™ (SM(d, n, q)) bit operations from the divide-and-conquer process.
To obtain the matrix of an endomorphism u of degree d, we apply
r times this operation, to the terms tiu, i =1,...,r. The runtime
is then dominated by O"(rSM(d + r,n,q)). Finally, reducing the
entries of the matrix modulo y = (y — yx)k takes softly linear time
in the size of these entries, so can be neglected.

T

6.3 Special Case of the Frobenius
Endomorphism

In the particular case where u = 7", we may speed up the computa-
tion using a baby-step giant-step procedure, based on the approach
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used in [10]. As a first remark, note that for u = ", d = nand k in
O(n/m).

In this case, it is enough to compute the vectors Kp41, . - -, Kpr-
They are given by
Kn+r
Kn4r—1 _ _
=A,... Ay, (7)
Kn+1

with A, the image of A; modulo y = (y — ¥x)K for all t. To com-
pute the matrix product A = Ay, ... A, we slightly extend the
approach used in [10] (which dealt with the case k = 1). Consider
the following element of L[y]"*":

A1 Arez ... AL Ag

-1
1 0 0 0 0 g A(’)

g=| 0 1 L ) B y. 8
0 0 1 0 00 0

It follows in particular that for ¢ > 1,
A; =81 and A, = Bl mod ,

with reduction applied coefficient-wise.
Write n* = [Vnk] € O(n/4/m), and let n be written as n =
n*ni +ng with 0 < ng < n*, so that n; < +/n/k. Setting

C = glreml . glnot]

and
Co=8lml . gl
the matrix A is the product

A =clm-1nr] ~C["*]CC0.

Our goal is to compute A = A mod p, without computing A itself.

Any Frobenius application (of positive or negative index) in
L takes (nloggq)'™°(!)) bit operations. In particular, computing
all matrices Bli] that arise in the definitions of C and Co takes
(rn? /mlog )1*°(1) bit operations.

Once they are known, the next stage of the algorithm computes
C and Cp in L[y]. This is done using a matrix subproduct-tree
algorithm [14, Chapter 10], using a number of operations in L
softly linear in r®n*. This is (r®n2/vmlog q)1*°(1) bit operations.

To deduce the shifted matrices

clm=0n"1 04 ,u,...,C[”*] mod g,
we use the following lemma.
LEMMA 2. For f inL[y] andt > 0,
f[f] mod y = (f mod y[—t])[f]
ProoF. Let g = f mod ,u[_t 1, so that we have an equality of
the form f = aul=!] + g in L[y]. We raise this to the power g

coeflicient-wise; this gives f[t] = a[t]p + g[t]. Since g, and thus
g[t] , have degree less than k, this shows thatg[t] = f[t] mod p. O
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1: procedure CHARPOLYFROBENTUS
2: Input A field extension L of degree n over Fq, (A1,...,A) €
L” representing a rank r Drinfeld module ¢ over (L, y).
3. Output g; € A such that the characteristic polynomial of the
Frobenius is X" + erz_ol a;iX*.
n*, ny,ng — [Vnk], |n/n*], n mod n*.
B as in (8)
C « glnml  glnoti],
Co — Blml 811 mod
clin'l — (C mod pl=" WMl for 0 < j < ny.
ni—1
9: .ﬁ — ( I_l é[in*])éo
i=0
10: a; « coefficient of Z! in det(A - ZI)
11: return g; = y;(a;) for0 <i<r

Applying this entry-wise, we compute C lin"] mod y by reducing
all entries of C modulo ! =#'1, then raising all coefficients in the
result to the power qi”*, fori=1,...,(n; —1).

Matrix C has degree O(n/+/m), and the sum of the degrees of
the moduli ,u[_t] is kny, which is O(n/+/m) as well. Altogether,
this takes O(r?n/~/m) applications of Frobenius in L, together with
O(r?n/~/m) arithmetic operations in L to perform all Euclidean divi-
sions [14, Chapter 10]. Thus, the runtime is (r2n?/~/mlog q)“"’(l)
bit operations.

Finally, we multiply all matrices C'""! mod ;1 and Cy mod .
This takes (r“n?/+vmlog q)**(1) bit operations.

6.4 Other Operations

Once the coefficients of the skew polynomials r'u on the basis B8
are known modulo y, we compute the characteristic polynomial of
the matrix formed from these coefficients. This can be done with
a bit cost of (r*knlog q)1*°(1) when the matrix has entries in W,
with A the exponent defined in Section 2.3.

At this stage, we have all coefficients of CharPolyy, (u;) in
Wg. It remains to apply the map y; to each of them to recover
CharPoly(u).

Elements of Wy = Fg[t, yl/(£(t), (y - yx)k) are written as bi-
variate polynomials in ¢, y, with degree less than n in t and less
than k in y. To compute their image through yj, we first apply the
isomorphisms

Wi = Fglt y]/(£(2), (4 - y)¥) 25 Byl 1,1/ (p(x), g(x, 1), (y — x)F)

25 Fyly, 11/ (0¥, Gy 1)

from (3), with p(y)¥ of degree km and Gy, of degree n/m in t.

We mentioned in Section 3 that for ¢ in L = Fg[t]/(£(t)), we can
compute its image a(c) in Fq[x, t]/(p(x), g(x, t) using (nlog q) 1+o(1)
bit operations. Proceedings coefficient-wise with respect to y, this
shows that for C in Wy, we can compute A (C) in (knlogq) L+o(1)
bit operations.

The tangling map of [21, §4.5] provides an algorithm for comput-
ing the isomorphism Fy[x, yl/(p(x), (y - x)¥) — Fylyl/(p(n)")
in (kmlogq)*°(1) bit operations (this could also be done through
modular composition, with a similar asymptotic runtime, but the
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algorithm in [21] is simpler and faster). Applying it coefficient-
wise with respect to ¢, this allows us to compute By (Ax(C)) in
(knlog q)'*°() bit operations again. At this stage, the mapping y
is simply extraction of the degree-0 coeflicient in ¢.

We apply this procedure r times, for a total cost of (rkn log g)1+0(1)
bit operations. This can be neglected in the runtime analysis.

When using precision k = 1 for the prime field case, for u = ",
it is necessary to compute the constant coefficient a separately.
This is done using the formula ag = (—1)"(r+1)+'NL/Fq()/Ar)_lp
from [13] and takes (nlog q)“"’(l) bit operations.

Summing the costs seen so far for the various steps of the algo-
rithm finishes the proof of our main theorems.

6.5 Example

Let Fy =Z/2Z,n =3 and set £(t) = Bat+1andL = Fy[t]/(£(1)).
Let yx =t + 1 mod £(¢), so that

pP=x>+x’+1=¢(x+1),

and L = Fy = Fy[x]/(p(x)), with the isomorphism given by
f(t) — f(x+ 1). Consider the rank 4 Drinfeld module ¢, =
trt + (12 + )2 + 72 + t21 + t + 1. We proceed to compute the
characteristic polynomial using the de Rham cohomology, that is,
crystalline cohomology truncated in degree k = 1. In other words,
all computations are done over L,

The recurrence of equation (4) becomes 78** = (¢ + 1)2kr(k+3) +
(t? + l)2k k2 g 28 et (1+ tl_zk)rk. Running the recurrence
for n = 3 iterations gives:

o =+ D+ (2 + 1+ 1) + 1202 + 1211
e 0=+ + (P + )P+ (P + )+ 1!
T=t*+13+(t+ D)% + 1!

o T

A matrix for the Frobenius endomorphism can be inferred to be

1 ¢ F+1 1
2+1 0 22+1 241
2+l 2+t+1 2 2

1 0 0 0

It has characteristic polynomial Z* + (¢ + 1)Z2 + (¢ + 1)Z. Using
the expression for ap which is valid in the prime field case, the
Frobenius norm can be inferred to be ag = x> + x% + 1.

To recover the final coefficients, observe that ¢t = x + 1 gives
the required map y; : Wi = L — F. Finally, we conclude that the
characteristic polynomial of 7" is Z* + xZ? + xZ + x* + x% + 1.

7 Experimental Results

An implementation of the algorithm of section (6.3) was created
in SageMath [37] and is publicly available at https://github.com/
ymusleh/drinfeld-module. An implementation in MAGMA [3] is
also publicly available at https://github.com/ymusleh/drinfeld-magma
and was used to generate the experimental results included in this
work. Our implementation differs from our theoretical version in a
few ways.
o The Kedlaya-Umans algorithm is most likely not used by
MAGMA for computing Frobenius mappings of elements
of L.
o To compute the images of coefficients under the map yy,
we leverage a simpler procedure using reduction modulo
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bivariate Grobner bases, rather than the tangling map of van
der Hoeven and Lecerf. In any case, this does not impact the
run times presented.
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Run Times for m = 10 ¢ = 25 in seconds
n=100 | n=150 | n =200 | n =300 | n =400 n =500 n =600

r=>5 0.400 2.260 42.190 86.830 269.760 635.170 1099.110
r=9 0.790 4.210 78.860 157.100 | 481.090 1129.670

r=12 | 1.170 6.080 104.630 | 220.430 | 658.950 1531.580

r=18 | 2.300 11.360 170.790 | 366.690 | 1074.840 | 2451.530

r=23 | 3.820 17.580 240.100 | 525.670 | 1518.370
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