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Abstract

Let k be a field of characteristic zero. We present a fast algorithm for
multiplying multivariate power series over k truncated in total degree.
Up to logarithmic factors, its complexity is optimal, i.e. linear in the
number of coefficients of the series.

1. Introduction

Let k be a field of characteristic zero. We denote by S the multivariate power
series ring in n variables k[[x1, . . . , xn]] and by m its maximal ideal (x1, . . . , xn).
For any positive integer d we write deg(md+1) for the degree of the ideal md+1,
that is the number of monomials in S which are not in md+1. It is well-known
that

deg(md+1) =

(
d+ n

n

)
.

We view a power series f in S at precision md+1 as a vector in the k-algebra
S/md+1; this algebra has dimension deg(md+1).

In this article we give an asymptotically fast algorithm for multiplying two
power series at precision md+1: the cost of one multiplication is linear in deg(md+1)
up to logarithmic factors. As for many other algorithms dedicated to fast mul-
tiplication, our method relies on multipoint evaluation and interpolation: this
brings back the problem to univariate power series multiplication in k[[t]] at
precision td+1, for which fast algorithms are known.

Applications. Our interest for power series multiplication originates from
the field of polynomial system solving. In the second author’s PhD thesis [Schost,
2000], the situation is as follows. We consider some polynomials f1, . . . , fm in
k(x1, . . . , xn)[y1, . . . , ym], and want to solve the system f1 = · · · = fm = 0.
The variables xi play the role of parameters, and we are looking for formulas
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expressing the yi in terms of these parameters. If the system is zero dimensional in
the algebraic closure of k(x1, . . . , xn), we proceed the following way: we pick up a
point p1, . . . , pn at random in kn, we substitute the variables xi by pi in the system
and solve this specialized system. We then lift the dependency of the solutions
in the parameters in the formal power series ring k[[x1−p1, . . . , xn−pn]], using a
refined version of Newton’s iterator, as proposed by Giusti et al. [2001] and Lecerf
[2001a,b]. Once we have reached a sufficient precision we recover the solutions
thanks to a multivariate version of Padé’s approximants. The lifting step is the
bottleneck of this method and this is where we really need fast multivariate
power series multiplication.

In a similar spirit, multiplication routines modulo deg(md+1) are useful to treat
systems of partial differential equations: roughly speaking, once a characteristic
set of the system is known, the Taylor series expansions of non-singular solu-
tions can be computed by successive approximations, which require arithmetic
operations on power series. This idea is presented for instance by Boulier et al.
[1995] and Péladan [1997].

Previous work. To the best of our knowledge, this is the first time that
the question of a fast multiplication algorithm is addressed in this context.
Apart from the naive algorithm, with complexity quadratic in deg(md+1), the
best algorithm known up to now is hinted at by Brent and Kung [1977]: it re-
lies on Kronecker’s substitution [1882]. This method requires to compute modulo
(xd+1

1 , . . . , xd+1
n ) instead of md+1 and amounts to multiplying two univariate poly-

nomials in degree (2d)n. With respect to the size of the series deg(md+1), the
overhead is at least c2nn!, for fixed n, d� n and a positive constant c.

Main Result. All along this paper, our model of computation is the compu-
tation tree, that is the arithmetic circuit over k, with operations (+,×,÷) and
branching. In short, we count the operations in k and the tests at unit cost;
see Bürgisser et al. (Chapter 4.4) for a precise definition. For a positive integer
d, the elements of S/md+1 will be represented by the vector of their coefficients
in the monomial basis.

With these conventions, our main result is the following:

Theorem 1: Let d be a positive integer, and let D denote deg(md+1). Let f and
g be two elements of S/md+1. In terms of operations in k, the product fg has
complexity

O(D log(D)3 log(log(D))).

Our result is closely related to the algorithms for sparse [Ben-Or and Tiwari,
1988] and [Zippel, 1990] or dense [Canny et al., 1989] multivariate polynomial
multiplication, which achieve a linear complexity in the number of monomials in
the output. All these results rely on a fast multipoint evaluation and interpola-
tion scheme for multivariate polynomials, for a specific choice of sample points,
namely powers of prime numbers.
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This idea was introduced by Grigoriev and Karpinski [1987] and Tiwari [1987].
We recall this fundamental result in Lemma 1, following the presentation of Canny
et al. [1989].

2. Proof of the main result

We first introduce some notation. In the following, C (resp. D) denotes the
number of monomials in n− 1 (resp. n) variables of degree at most d:

C :=

(
d+ n− 1

n− 1

)
, D :=

(
d+ n

n

)
.

The log function is the Neperian logarithm (log(e) = 1).

Our proof is divided in three lemmas, the first of which is taken from Canny
et al. [1989]. Its result is stated in terms of the function Mu(δ), which denotes
the complexity of the multiplication of two univariate polynomials of degree
δ in k[t]. Schönhage and Strassen [1971, 1977] proved that Mu(δ) belongs to
O(δ log(δ) log(log(δ))).

Lemma 1: Canny et al. [1989] Let f be a polynomial in k[x2, . . . , xn] of degree
at most d. Let (p2, . . . , pn) be distinct prime numbers. For i = 0, . . . , C − 1,
we denote by Pi the point (pi2, . . . , p

i
n). There exist computation trees of sizes

O(Mu(C) log(C)) which perform the following tasks:

• Multipoint evaluation: compute the values f(P0), . . . , f(PC−1);

• Interpolation: recover f from the values f(P0), . . . , f(PC−1).

The choice of the points Pi reduces both problems to “transposed” versions
of univariate multipoint evaluation and interpolation, for which asymptotically
fast solutions exist. These solutions require to invert a Vandermonde matrix
built upon all the monomials of degree at most d in (p2, . . . , pn). The key point
is that in characteristic zero, all these monomials have pairwise distinct values.

On the basis of this result, the following lemma gives a first upper bound
on the complexity of multivariate power series multiplication, stated in terms
of the function Mu. In a second stage, we will show that Schönhage-Strassen’s
multiplication scheme yields the claim of Theorem 1.

Lemma 2: Let f and g be two elements of S/md+1. In terms of operations in k,
the product fg has complexity

O
(
dMu(C) log(C) +Mu(d)C

)
,

where C is the number of monomials of degree at most d in n − 1 variables as
defined above.



G. Lecerf and É. Schost: Multivariate Power Series Multiplication 4

Proof. Let h be the product fg, and t a new variable. We define F,G,H by

F := f(t, x2t, . . . , xnt), G := g(t, x2t, . . . , xnt), H := h(t, x2t, . . . , xnt).

The series F , G and H belong to k[x2, . . . , xn][[t]], and can be written

F = f0 + f1t+ . . .+ fdt
d,

G = g0 + g1t+ . . .+ gdt
d,

H = h0 + h1t+ . . .+ hdt
d,

where for all i, fi, gi and hi belong to k[x2, . . . , xn] and have degrees at most i.
The series F , G and H satisfy the equality H = FGmod(td+1).

The polynomial h can be recovered from H the following way: h(x1t, . . . , xnt)
is obtained by homogenizing each hi in degree i with respect to the variable x1,
and the evaluation at t = 1 yields h.

Consequently, we focus on a fast way to compute H. For any P = (p2, . . . , pn)
in kn−1, we write FP for the series f0(P ) + f1(P )t+ . . .+ fd(P )td in k[[t]]/(td+1),
and similarly define GP and HP , so that the equality HP = FPGP mod(td+1)
holds. This leads to the following evaluation-interpolation scheme.

Algorithm. Given f and g in S/md+1, to compute h = fg in S/md+1.

1. Compute F and G as defined above.

2. Compute (FPi , GPi) for C points (P0, . . . , PC−1), with Pi ∈ kn−1 for all i.

3. Compute the C products HPi = FPiGPi in k[[t]]/(td+1).

4. Compute H by interpolating the polynomials h0, . . . , hd.

5. Recover h.

Steps 1 and 5 can be performed by an arithmetic circuit of size linear in C.
Following Lemma 1, we now choose Pi = (pi2, . . . , p

i
n), for distinct prime numbers

(p2, . . . , pn) and examine the cost of steps 2, 3 and 4 for this specific choice.

• For each j in 0, . . . , d, the values

fj(P0), . . . , fj(PC−1) and gj(P0), . . . , gj(PC−1)

can be computed within O(Mu(C) log(C)) operations in k using the al-
gorithm for fast multipoint evaluation given in Lemma 1. This yields an
overall bound of O(dMu(C) log(C)) operations for step 2.

• For each i in 0, . . . , C − 1, HPi is obtained by an univariate series prod-
uct in k[[t]]/(td+1), which takes O(Mu(d)) operations; step 3 then requires
O(Mu(d)C) operations.

• For each j in 0, . . . , d, the interpolation of hj requires O(Mu(C) log(C))
operations, using the second result given in Lemma 1. The interpolation of
all the hj then takes O(dMu(C) log(C)) operations. �
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The result of Lemma 2 is given in terms of the number of monomials C,
whereas our objective is a bound in terms of the quantity D. The last lemma
answers this question.

Lemma 3: For all d ≥ 0, n ≥ 1, the following inequality holds:

dC

D
=

nd

n+ d
≤ log(D).

Proof. The first equality is obvious. Now we rewrite D into (n+1)...(n+d)
d!

. Then

we fix d, and introduce the functions u : n 7→ nd
n+d

and v : n 7→ log (n+1)...(n+d)
d!

.

For n = 1, the inequality to prove reads d
1+d
≤ log(1 + d), which is true. It is

immediate to check that u′(n) ≤ v′(n) for all n, which implies that u(n) ≤ v(n)
for all n ≥ 1. �

We are now ready to prove Theorem 1. We first replaceMu(C) by the estimate
O(C log(C) log(log(C))) in the complexity of Lemma 2; then, according to the
above lemma we bound C by D log(D)/d. This yields a complexity in:

O
(

D log(D)
(

log(D) + log(log(D))
)2

log
(

log(D) + log(log(D))
)

+D log(D) log(d) log(log(d))

)
.

As for the second term we use d ≤ D, therefore:

dMu(C) log(C) +Mu(d)C ∈ O(D log(D)3 log(log(D))).

This concludes the proof of Theorem 1.

3. Conclusion

The problem of fast computation with multivariate power series modulo any ideal
I, not necessarily a power of the maximal ideal, is still open. A first question in
this direction is the cost of the multiplication modulo the ideal (xd+1

1 , . . . , xd+1
n ).

In this situation, our algorithm requires precision mnd+1; this yields a complexity
in O((ed)n), up to logarithmic factors. We do not improve the best complexity
result, which is in O(Mu(2d)n) using Kronecker’s substitution.

However van der Hoeven [2001] generalized our algorithm to the case when
I = (xd1

1 · · ·xdnn | α1d1 + · · ·+αndn > d), where the αi and d are positive integers.

Moreover our result is stated in terms of arithmetic complexity. It is not im-
mediate to design an efficient implementation of this algorithm. For instance, if
we were on k = Q, we would certainly want to use multimodular and Chinese
remainder techniques in order to avoid the growth of the integers in the inter-
mediate computations; this would require to extend our result to finite fields.
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This naturally opens the more general question of fast computation with mul-
tivariate power series over any ring. The point is to extend Lemma 1; the main
difficulty is to choose points in the base ring such that distinct monomials take
distinct values on these points. A first result in this direction, based on combi-
natorial arguments, is given by Zippel [1990].
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