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ABSTRACT

In this paper, we consider the problem of deciding the existence
of real solutions to a system of polynomial equations having real
coefficients, and which are invariant under the action of the sym-
metric group. We construct and analyze a Monte Carlo probabilistic
algorithm which solves this problem, under some regularity assump-
tions on the input, by taking advantage of the symmetry invariance
property.

The complexity of our algorithm is polynomial in d°, (";d), and
(sfl), where n is the number of variables and d is the maximal
degree of s input polynomials defining the real algebraic set under
study. In particular, this complexity is polynomial in n when d and
O(1)9n

s are fixed and is equal to n whend = n.
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1 INTRODUCTION

Let f = (f1,..., fs) be polynomials in the multivariate polynomial
ring Q[x1,...,x,] and let V(f) c C" be the algebraic set defined
by f. We denote by Vg (f) := V(f) N R" the set of solutions in R”
to the system f. In addition we assume that all f;’s are invariant
under the action of the symmetric group Sy, that is, are symmetric
polynomials (or equivalently, S,-invariant polynomials).

Under this invariance property, we design an algorithm which,
on input f, decides whether Vi (f) is empty or not. As is typical for
such problems, we assume that the Jacobian matrix of f with respect
toxi, ..., xp hasrank s at any point of V(). In this case the Jacobian
criterion [22, Thm 16.19] implies that the complex algebraic set
V(f) is smooth and (n — s)-equidimensional (or empty).
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Previous work. The real root decision problem for polynomial
systems of equations (and more generally systems of inequalities)
lies at the foundations of computational real algebraic geometry.
Algorithms for solving polynomial systems over the real numbers
start with Fourier [29] who provided a first algorithm for solving
linear systems of inequalities (rediscovered in 1919 by Dines [21]).
These algorithms are important because they make the first con-
nection with elimination theory. Tarski’s theorem [54] states that
the projection of a semi-algebraic set on a coordinate subspace is
a semi-algebraic set. This theorem, and its algorithmic counter-
part which relies on Sturm’s theorem for real root counting in the
univariate case, enable recursive algorithmic patterns (eliminating
variables one after another). The first algorithm with an elementary
recursive complexity, Cylindrical Algebraic Decomposition, is due
to Collins (see [19] and references in [16, 17, 24, 35, 37, 38, 51, 52]
for various further improvements).

It turns out that these algorithms run in time doubly exponential
in n [13, 20]. Note that some variants actually solve the quantifier
elimination problem, a much more general and difficult computa-
tional problem than the real root decision problem.

Algorithms which solve the real root decision problem in time
singly exponential in n and polynomial in the maximum degree
of the input were pioneered by Grigoriev and Vorobjov [32] and
Renegar [40], and further improved by Canny [15], Heintz, Roy and
Solerné [34] and Basu, Pollack and Roy [8]. The method used in
this framework is referred to as the critical point method. It reduces
the real root decision problem to the computation of finitely many
complex critical points of a polynomial map which reaches extrema
at each connected component of the semi-algebraic set under study.

The algorithm proposed here for solving the real root decision
problem for systems of symmetric polynomial equations also builds
on the critical point method. It borrows ideas from probabilistic
algorithms which have been designed to obtain sharper complexity
estimates (e.g. cubic either in some Bézout bound attached to some
critical point system or in some geometric intrinsic degree) and
obtain practical performances that reflect the complexity gains [2-7,
45]. These algorithms make use of geometric resolution or symbolic
homotopy techniques to control the complexity of the algebraic
elimination step (see e.g. [31, 46] and references therein), and of
regularity assumptions to easily derive critical point systems from
the input polynomials.
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Under the Jacobian criterion assumptions, critical points are
defined as the intersection of the affine variety V(f) with a deter-
minantal variety derived from a certain Jacobian matrix. The design
of dedicated algebraic elimination algorithms for this particular
setting has attracted some attention already [1, 27, 33, 47, 50]. When
adding the symmetry property to polynomials defining the variety
and the polynomial map for which one computes the critical points,
significant improvements have been achieved recently in [25] by
using the symbolic homotopy algorithms in [36].

These improvements, which allows one to obtain complexity
gains related to the combinatorial complexity of the symmetric
group, also borrow ideas from algebraic algorithms working with
data which are invariant by the action of this group [28]. We
emphasize that taking advantage of symmetries in data is a top-
ical and difficult issue, which involves a variety of methodolo-
gies [14, 18, 26, 39, 53].

In [55], Timofte proves a breakthrough result which is now
known as the degree principle. It states that a symmetric polynomial
of degree d with real coefficients has real solutions if and only if
one of these solutions has at most d distinct coordinates.

This shows that when d is fixed and n grows, the real root deci-
sion problem can be solved in polynomial time. This is far better
than computing at least one sample point per connected component
(see also [10-12]), and is one of the rare interesting cases where
the best known algorithms for these two problems admit different
complexities. This is also the starting point of several results which
enhance the real root decision problem and polynomial optimiza-
tion under some Sp-invariance property for classes of problems
where d remains fixed and n grows (see [30, 41, 42, 44] and [43] for
equivariant systems).

Main contributions. Being able to leverage Sp-invariance for crit-
ical point computations is not sufficient to solve root decision prob-
lems more efficiently using the critical point method. Additional
techniques are needed.

Indeed, to solve the real root decision problem by finding the
critical points of a polynomial map ¢, one typically defines ¢ as the
distance from points on the variety to a generic point. This map
reaches extrema at each connected component of the semi-algebraic
set under study. However, the map ¢ is not symmetric. If it was,
our problem would be solved by the critical point algorithm of [25].
Unfortunately there does not appear to be an obvious symmetric
map that fits the bill.

Instead, our approach is to apply the critical point method on
individual Sp-orbits, with suitable ¢ found for each orbit. Thus
while we cannot use the critical point algorithm of [25] directly we
can make use of the various subroutines used in it to construct a fast
decision procedure. Intuitively, working with S, -orbits is the same
as separately searching for real points having distinct coordinates,
or real points having two or more coordinates which are the same,
or groups of coordinates each of which has equal coordinates and so
on. In each case an orbit can be described by points having n or fewer
pairwise distinct coordinates, a key observation in constructing
generic maps invariant for each orbit.

THEOREM 1.1. Let f = (fi,..., fs) be symmetric polynomials in
Q[x1, . .., xn] having maximal degree d. Assume that the Jacobian
matrix of f with respect tox1, . .., xp has rank s at any point of V(f).
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Then there is a Monte Carlo algorithm Real_emptiness which solves
the real root decision problem for f with

e () ()
)™

operations in Q. Here the notion O" indicates that polylogarithmic
factors are omitted.

o

The remainder of the paper proceeds as follows. The next section
reviews known material, on invariant polynomials over products
of symmetric groups, the tools we use to work with Sy,-orbits, and
our data structures. Section 3 discusses our smoothness require-
ment and shows that it is preserved by alternate representations of
invariant polynomials. Section 4 shows how we construct critical
point functions along with their critical point set. This is followed
in Section 5 by a description of our algorithm along with a proof
of correctness and complexity. The paper ends with a section on
topics for future research.

2 PRELIMINARIES

2.1 Invariant Polynomials

We briefly review some properties of polynomials invariant under
the action of Sy X -+ X Sy, with S, the symmetric group on t;
elements, for all i. In this paragraph, we work with variables z =
(2z1,...,2x), witheach z; = (z14,...,2s,;); for all i, the group Sy,
permutes the variables z;. For j > 0, we denote by

E i =

1<smi<mp<---<m;<t;

Zmy,iZmg,i """ Zmj,is

the elementary polynomial in the variables z;, with each E; ; having
degree j, and by
Pji=z;+ +z;
the j-th Newton sum in the variables z;, for i = 1,..., k. The fol-
lowing two results are well-known.
Fori=1,...,klete; = (e1,...,es,i) beaset of t; new variables
and let E; = (Eq,...,Ey i); we write e = (eq,...,ex) and E =

(Ev,... Ep).

LEMMA 2.1. Let g € [z1,...,2x] be invariant under the action
of S, X - -+ X Sy Then there exists a unique y, in Q[e] such that
9="44(E).

Similarly, let pj ; be new variables, and consider the sequences
pi = (pris---»pri) and p = (p1,..., px), together with their
polynomial counterparts P; = (Py;,..., P, ;) and P = (P, ..., Py).

LEMMA 2.2. Let g € [z1,...,2x] be invariant under the action
of S X =+ X Sy, Then there exists a unique {y in Q[p] such that
g= }’g(P ).

ExAMPLE 2.3. Let

g=2(z1122,1 + zil +2z1,1221 + zg,l)(ziz + zg’z),

a polynomial invariant under Sy X Sz, with z1 = (211,221), 22 =
(21,2, 22,2), k = 2 and t; = tp = 2. In this case, we have

g= (3P12,1 —P12)P22
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and hence y4 = (317%’1 = P1,2)p2,2 € Q[p1,1. p1,2. P21, P2,2]-

2.2 Describing S,-orbits via Partitions

Sp-orbits are subsets of C" that play a central role in our algorithm.
In this section, we review notation and description of Sj-orbits,
along with the form of the output used in [25].

A simple way to parameterize S,-orbits is through the use of
partitions of n. A sequence A = (ni1 . n]tck), where ny < -+ < ng
and n;’s and t;’s are positive integers, is called a partition of n if
nity + - -+ + ngty = n. The length of the partition A is defined as
=11+ + 1.

For a partition A = (ni1 . n]ik) of n, we use the notation from
[25, Section 2.3] and let U, denote the set of all points u in C" that
can be written as

u-= (u1,1,...,u1’1, cees Ut 1o UL e
N————— N
ni ni
Ui s s Upfs -5 U oo utk,k). (1)
ng ng

For any point u in C", we define its type as the unique partition A of
n such that there exists o € Sy, such that o(u) € Uy, with the u; ;’s
in (1) pairwise distinct. Points of a given type A = (ni1 e n][ck) are
stabilized by the action of S := Sy, X - - X Sy, the cartesian product
of symmetric groups Sy,.

For a partition A as above, we can then define a mapping F, :
Uy — Clas

uasin (1) —
(Evi(uii,--ouryi)s - Erpi(uai - Uri) ) 1<i<ko

where Ej ; (uy,;, . . .,us,;) is the j-th elementary symmetric function
inuy,...,uyifori=1,...,kand j = 1,...,t;. One can think of
the map F as a compression of orbits. By applying this map, we can
represent an Sp-orbit O of type A by the single point F; (O N Uy).

Furthermore, the map F, is onto: for any ¢ = (c1,1, ..., ¢; k) €
C¢, we define polynomials p1 (), ..., px(u) by

pi(T) =Th — e, T 4o 4 (= D)iey, .

We can then find a point u € C" in the preimage F /1_1 (c) by finding
the roots uy;, ..., us,; of pi(T).

2.3 Zero-Dimensional Parametrizations

The subroutines we use from [25] give their output in terms of
zero-dimensional parametrizations, which are defined as follows.
Let W c C" be a variety of dimension zero, defined over Q. A
zero-dimensional parametrization Z = ((v,v1, . ..,0p), 1) of W is

(i) a squarefree polynomial v in Q[¢], where ¢ is a new indeter-
minate, and deg(v) = |[W]|,

(if) polynomials vy, ..., v, in Q[¢] such that deg(v;) < deg(v)
for all i and

v1(7) on(7) n
W = e, c" =0y,
(5 ) ee o
(iii) a linear form p in n variables such that u(vy,...,0,) = to’
(so the roots of v are the values taken by p on W).
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When these conditions hold, we write W = Z(Z). Representing the
points of W by means of rational functions with v’ as denominator
is not necessary, but allows for a sharp control of the bit-size of the
output.

3 PRESERVING SMOOTHNESS

In our main algorithm, we assume that our input system f =
(fi,- .., fs) satisfies the following smoothness condition

(A) : the Jacobian matrix of f has rank s at any point of V(f).
In this section, we discuss consequences of this assumption for
symmetric polynomials.

Mapping to orbits: the map T,. For a partition A = (ni1 . n]ik )
of n, we define the Q-algebra homomorphism T : Q[x1,...,x,] —

Qlz1,...,z¢], with z; = (21,4, ...,2,,;) for all i, which maps the
variables x1, ..., xp to
Z1,15 -5 %115~ o5 2155 2t 15 - s
— — N— ——
ni ni
Zifes -0 2k oo Btk -0 Btk - (2)
ny 103

The operator T extends to vectors of polynomials and polyno-
mial matrices entry-wise. The key observation here is that if f is
symmetric, then its image through T is Sy, X - - - X Sy, -invariant.

Fix a partition A = (ni1 e n][ck) of n, and let ¢ be its length. Set

Iji = {G'j,i+l,.,.,0j’i+ni},lSiSk;lSjSti

with oj; := Zi;% trny + (j — 1)n;. Variables xp,, for m in I ;, are
precisely those that map to z; ; under T). Define further the matrix
Z € Q™" with € = t; + - - - + t;, where rows are indexed by pairs
(j, i) as above and columns by m € {1,. .., n}. For all such (j, i), the
entry of row index (j, i) and column index m € Ij; is set to 1/n;,
all others are zero. In other words, Z = diag(Zs, . .., Z;), where

is a matrix in Q¥ *"iti

ExampLE 3.1. Consider the partition A = (223) of n = 7. Then
ny =2,t; =2,n3 =3, tp =1 and the length of A is 3. In this case,

11
2 2

— 1
Z= 2

1
2
1 1
3 3 3
LEmMmA 3.2. Let f = (fi,....fs) C Q[x1,...,xn] be a sequence of
symmetric polynomials, and let A be a partition of n. Then

Ty (acy,,  x, () =Jacz,, 2 (Ta(f) - Z,

where Z is the matrix defined above.

Proor. For any polynomial f in Q[xy, ..., x,], applying the op-
erator T) on f evaluates fat x;, = zj;for 1 < i<k, 1<j<t
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and m in I} ;. By the multivariable chain rule,
T (f) af
AN EA T [ .
Z A 0Xm

azj’i mEIjﬁi
If f is symmetric, for m,m’ in [ j,i» we then have

()L

so that, for min I ;,
T af \ 19Ty (f)
Al =——.
OXm ni 09zji

This argument can be extended to a sequence of polynomials to
obtain our claim. O

EXAMPLE 3.3. We continue Example 3.1 with a single S7-invariant
polynomial f = }1<i<j<7 Xix;j. Then

Ty(f) = 32%’1 + 32%’1 + 62%,2 +621,121,2 + 421,122,1 + 621,222,1,
and so
Jac(T,l (f)) = (621’1+62132+422,1, 4z1,1+621,2+6221, 621’1+1221’2+62231).
This implies that Jac(T(f)) - Z is equal to (u, u, v,v, w, w, w), with
u = 3z1,1+3212+2221,0 = 221,1+32z12+3221, W = 221,1+4212+2221.
This is precisely T (Jac(f)).

COROLLARY 3.4. Under the assumptions of the previous lemma, if

f satisfies condition (A), then T (f) € Q[z1,...,2zx] does as well.

PrROOF. Let @ = (a1,1,..., 01,1, -+, A1 ks, A ) be a zero of
T, (f) in C. We have to prove that Jacz, .z (TA(f))(@) has a
trivial left kernel.

Consider the point
&= (0(1!1,...,0(1,1,..

.,0([1’1,...,0(;1,1,...,

ni ny

s s s o2 Agpfer -2 U k) €CT (3)

ni ni

which lies in V(f). In particular, for any g in Q[x1,...,x,], we
have T (g) (@) = g(¢). Applying this to the Jacobian matrix of f,
we obtain T) (Jac(f))(a) = Jac(f)(¢). Since by assumption f is
symmetric, the previous lemma implies that

Jac(f)(¢) = Jacz,, 2 (Ta(f)) (@) - Z.

Since Jac(f)(¢) has rank s (by condition A), the left kernel of
Jac(f)(e) is trivial.

It follows that the left kernel of Jac, . (T (f))(e@) is also
trivial. O

When we represent Sy, X - - - X Sy, -invariant functions in terms
of Newton sums, we can show that the new representation also
preserves condition (A).

LEMMA 3.5. Assume (g1,...,9s) C Q[z1,..., 2] isSy X+ XSy, -
invariant and satisfies condition (A). If we set h; = yg, for all i, then
(h1, ..., hs) also satisfies condition (A).
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Proor. The Jacobian matrix Jac(g) of (g1,...,gs) factors as
Jac(g) =Jac(h)(P) - V, where V = diag(V1,..., Vi)

with each V; a row-scaled Vandermonde matrix given by

1 1 1 s 1
2 Z1,i Z2,i Ztg,i
Vi = . : e (4)
i ti—1 ti—1 ti—1
Lif \zy; 22 2130

Let n be a point in the vanishing set of (h1,..., hs) and let £ be in
P~1(n). If Jac(h) is rank deficient at i then Jac(h)(P)(e) is also
rank deficient. This implies that the rank of Jac(g)(¢), which is
bounded above by those of Jac(h)(P)(¢) and V(¢), is deficient. O

Similarly, instead of using a row-scaled Vandermonde matrix
V; as in (4), we can use V; as the Jacobian matrix of elementary
symmetric functions in z;. This gives a similar result but for the

polynomials {y,, . . ., {g,.

LEMMA 3.6. Assume (g1,...,9s) C Q[z1,..., 2] isSg X=X Sy, -
invariant and satisfies condition (A). Then the sequence of polynomi-
als ({g,, ..., {y,) also satisfies condition (A).

4 CRITICAL LOCI

If W c C! is an equidimensional algebraic set, and ¢ a polynomial
function defined on W, a non-singular point w € W is called a
critical point of ¢ on W if the gradient of ¢ at w is normal to the
tangent space T,, W of W atw.

If g = (g1,...,9s) are generators of the ideal associated to W,
then T, W is the right kernel of the Jacobian matrix Jac(g) of g
evaluated at w. In the cases we will consider, this matrix will have
rank s at all points of W (that is, g satisfies condition A). The set
of critical points of the restriction of ¢ to W is then defined by the
vanishing of g, and of the (s + 1)-minors of the Jacobian matrix

Jac(g, ¢) of g and ¢.

4.1 Finiteness through genericity

Let g = (91,...,9s) in Q[z1, ... .2zx] with each g; invariant under
the action of Sy, X - -+ X Sy, ; we write £ = 1 +- - - + .. We introduce
some useful Sy X --- X Sy -invariant mappings and discuss the
properties of their critical points on V(g) c C¥.

For1 < i < k,let a; = (ay...,0a,;) be new indeterminates,
and recall that P ; is the j-th Newton sum for the variables z;. Set

k k &
$a = Z CiPr+1,i + Z Z a;iPj; 6

i=1 i=1 j=1

where ¢; = 1if t; is odd and ¢; = 0 if t; is even. So ¢, has even
degree and is invariant under the action of Sy X --- x Sy, . For
a=(ay,...,a)in Ch x ... x C, with each a; in C!i, we denote
by ¢4 the polynomials in C[zy, ..., z;]| obtained by evaluating the
indeterminates a; at a; in ¢, for all i.

Further, we denote by U c C? the open set consisting of points
w = (wi,...,wg) such that the coordinates of w; are pairwise
distinct for i = 1,..., k. Note that U depends on the partition
A= (nli1 ... nltck); when needed because of the use of different parti-
tions, we will denote it by U,
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PRrOPOSITION 4.1. Letg = (g1, ...,9s) beSy X - -+ X Sy -invariant
polynomials in Q[z1,...,zx]. Suppose further that g satisfies con-
dition (A). Then there exists a non-empty Zariski open set A C
Ch x .- x Ct* such that for a € A, the restriction of ¢4 to V(g) has
finitely many critical points in U.

4.2 Proof of Proposition 4.1
Ls, we denote by S, the polynomials

1] - Jac(g. ¢a))-

For a = (ay,...,a;) in C1 x ... x C', with each a; in C, we
denote by Sq the polynomials in C[Ly, ..., Ls, 21, . . . .z ] obtained
by evaluating a; at @; in S,, for all i. Finally, denote by = the
projection from the (L, z)-space C5*¢ to the z-space C’.

For new variables L1, ...,

Sa = (91, - [Ly---Ls

> 9s,

LEMMA 4.2. Suppose that g satisfies condition (A). Then fora €
Chx .. xCh, m(V(8Sq)) is the critical locus of the restriction of the

map $a to V(g).

PrROOF. For any @ € C"1 x - - - x C'k, we denote by W(¢q, g) the
set of critical points of the restriction of ¢4 to V(g). Since g satisfies
condition (A), the set W (¢4, g) is given by

rank(Jac(g, dq)(w)) < s}.

Consider w in W(¢g4, g) and a nonzero vector ¢ in the left kernel
of Jac(g, pa)(w), of the form ¢ = (cy,...,cs, cs41). The last coor-
dinate cg4+1 cannot vanish, as otherwise (cy,...,cs) would be a
nonzero vector in the left kernel of Jac(g) (w) (which is ruled out
by condition (A)). Dividing through by cs41, the point (¢’,w), with
¢; =ci/cse1 fori=1,...,s, is a solution of S.

wlgi(w) =---=gs(w) =0,

Conversely, take (£,w) in V(Sg). Thus,w cancels g, and Jac(g, ¢4)

has rank less than s + 1 at w, so that 7(V(S,)) is in W(¢ge,g). O

Let ¢q and yg, be defined as in (5) and Lemma 2.2, respectively.

Fori=1,...,k,setQ; = YPyanio and let hy, ..., hg = Yoi>---sYgs- I
particular, Lemma 2.2 implies that y,_is given by
ZCzQﬁZZwﬂ
i=1 j=1

The sequence S, can be rewritten as
hioP,...,hs0P,

ohy ohy

P11 Wik

[L1 ... Ls 1] oh, oh, -V,
gplk gpzk.k
1 14973
C1 8p11+a1 1 Ck ET +ay K P(2)

where V is a multi-row-scaled Vandermonde matrix which is the
Jacobian matrix of P with respect to z. This matrix has full rank at
any point w in the open set U defined in Subsection 4.1.

In particular, for any @ € C*t X --. x C, the intersection of
V(8Sq) with C* X U is contained in the preimage by the map Id x P
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of the vanishing set of the sequence

Hy,: hy,... h
ah1 ahl
P11 WMy k
[Ll oo Lg l] ohs ohs
P11 Wk

901

Q%
Cla— o +a1 1 Ck 3Ptk,k +atk,k

Since for all 1 < i < k, P; defines a map with finite fibers (by
Newton identities and Vieta’s formula, the preimage by P of some

point is the set of roots of some polynomial of degree ¢;), we deduce
that P and consequently Id X P define maps with finite fibers. Thus

LEmMA 4.3. IfV(Hg) is finite, then V(Sq) N (C* X U) is finite.
It remains to investigate finiteness properties of V (Hg).

PROPOSITION 4.4. Suppose that h satisfies condition (A). Then,
there exists a non-empty Zariski open set A C Ch x - - - X C'* such
that for anya € A, (Hq) € C[Ly,...,Ls, 21,...,2;] is a radical
ideal whose zero-set is finite.

PrROOF. Let W C Cl1x- - -xC* be the vanishing set of (hy, . . ., hs).
Consider now the map
(w) eC°xW —
oh E, > oh; a
(Z”’a_l+ a&) ,,..,—(Zma i +Ckan ‘
P1,1 P1,1 (w) = Pk Pty k (w)

By Sard’s theorem [49, Chap. 2, Sec. 6.2, Thm 2], the set of critical
values of this map is contained in a proper Zariski closed set 8
of C'' x - .- x C!*, Since h satisfies condition (A), for a outside B,
the Jacobian matrix of H, has full rank at any (n,w) withw in W.
Hence, by the Jacobian criterion [22, Thm 16.19], the ideal generated
by Hg in C[Ly,...,Ls, 21,...,2;] is radical and is of dimension at
most zero. O

Proor oF Prop 4.1. Let A be the non-empty Zariski open set
defined in Prop 4.4. Since g satisfies condition (A), Lemma 4.2 im-
plies that, for any a € A, the critical locus of the map ¢, restricted
to V(g) is equal to 7(V(Sg)). In addition, the sequence (h) also
satisfies condition (A) by Lemma 3.5. Then, by Prop. 4.4, for any
a € A, the algebraic set defined by Hy, is finite.

By Lemma 4.3, this implies that V(S4) contains finitely many
points in C* x U. This finishes our proof of Prop. 4.1. O

Using techniques from [23], one could give a simple exponential
upper bound the degree of a hypersurface containing the comple-
ment of A.

4.3 Finding extrema using proper maps

A real valued function ¢/ : R" — R is proper at x € R if there exists
an £ > 0 such that /=1 ([x —&, x +¢]) is compact. Such functions are
of interest because a proper polynomial restricted to a real algebraic
set W reaches extrema on each connected component of W. Using
[48, Thm 2.1 and Cor 2.2] one can construct proper polynomials in
the following way.
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Let F = Fr(x1,...,xp) + Fp_1(x1, ..., xn) +- -+ Fo(x1,...,%xpn) :
R"™ — R be a real polynomial, where F; is the homogeneous com-
ponent of degree i of F. Assume further that the leading form Fj.
of F is positive definite; then, F is proper. In particular, the map
Py + Z?Zé_l A;P;, with P; the Newton sums in x1, ..., X, and all
Ai in Q, is proper. We can extend this to blocks of variables.

LEmMMA 4.5. Let z1,.. .,z be blocks of t1, . . ., ty. variables, respec-

; o J
tively. If Pj; := 2tz

coefficients A; j in Q, the map

then for any my,...,my > 1 and

k 2m;-1

k
i=1 i=1 j=0
is proper.

5 MAIN RESULT

Let f = (fi,...,fs) be a sequence of symmetric polynomials in
Q[x1, ..., xn] that satisfies condition (A). In this section we present
an algorithm and its complexity to decide whether the real locus of
V(f) is empty or not.

To exploit the symmetry of f and to decide whether the set
Vr(f) is empty or not, our main idea is slicing the variety V(f)
with hyperplanes which are encoded by a partition A of n. This
way, we obtain a new polynomial system which is invariant under
the action Sy := §;; X -+ X Sy of symmetric groups. We proved
in Lemma 3.4 that this new system also satisfies condition (A). We
then use the critical point method to decide whether the real locus
of the algebraic variety defined by this new system is empty or not
by taking a S)-invariant map as defined in the previous section.

5.1 Critical points along S,-orbits

Let g = (g1, ...,9s) be a sequence of Sy-invariant polynomials and
¢ be a Sy-invariant map in Q[z1, ..., zx], with z; = (21,4, ..., 24,,i)
for all i. As before, we set £ = t1 +- - - + f3., and we assume thats < ¢.
Assume further that the sequence g satisfies condition (A). Let ¢
be a Sj-invariant map in Q[z1, ..., zx].

Let §¢ and {g in Q[ey, ..., ex], where e; = (e, ..., ez,;) is a set
of t; new variables, be such that

¢ = §¢(E1,...,Ek) and g= gg(El,.‘.,Ek)‘

Here E; = (E1,,...,Es, ;) denotes the vector of elementary sym-
metric polynomials in variables z;, with each E;; having degree j
for all j, i.

LEMMA 5.1. Let g, ¢, and A as above. Assume further that {4 has
finitely many critical points on V({g). Then there exists a randomized
algorithm Critical_points (g, §, A) which returns a zero-dimensional
parametrization of the critical points of {y restricted to V({g). The
algorithm uses

o (520/1(6/1 + c/sl)n‘ll“)
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operations in Q, where

¢ = deg(g1) - - - deg(gs) - Er—s(6 —1,...,6 = 0)

t1!~--tk! ’

F:nz(n;5)+n4( :1) and
s

_ n(deg(g1) +1)---(deg(gs) +1) - Ep—s(,...,6 —£+1)
tl!---tk! ’

with § = max(deg(g),deg(¢)). The number of solutions is at most
Cj-

Proor. The Critical_points procedure contains two steps: first
finding {4 and { from g and ¢ and then computing a representation
for the set W ({4, {g) of critical points of {5 on V({g). The first step
can be done using the algorithm Symmetric_Coordinates from [25,
Lemma 9], which uses O~ (([35)2) operations in Q.

Since the sequence g satisfies condition (A), Lemma 3.6 implies
that (g also satisfies condition (A). Then, the set W ({4, {g) is the
zero set of {5 and all the (s + 1)-minors of Jac({y, {4). In particular,
when £ =5, W({y, {g) = V(Lg).

Since each E;; has degree j, it is natural to assign a weight j
to the variable ej;, so that the polynomial ring Q[ey, ..., ex] is
weighted of weights (1,...,¢1,...,1,..., ;). The weighted degrees
of {4 and {4 are then equal to those of g and ¢, respectively. To
compute a zero-dimensional parametrization for W ({y, {g) we use
the symbolic homotopy method for weighted domain given in [36,
Thm 5.3] (see also [25, Sec 5.2] for a detailed complexity analysis).
This procedure is randomized and requires

o (520/1(6/1 + ci)n‘lf) operations in Q.

Furthermore, results from [36, Thm 5.3] also imply that the number
of points in the output is at most c;.
Thus, the total complexity of the Critical_points algorithm is

then O” (520,1(@1 + ci)n‘lr) operations in Q. O

5.2 The Decide procedure

Consider a partition A = (ni1 ... n]ik) of n, and let

Ky = (0,011, .-, 08,155 V1 s - ..,Utk’k,[l)

be a parametrization which encodes a finite set Wy c CY. This set
lies in the target space of the algebraic map F; : Uy — Cf defined
in Subsection 2.2 as

u= (ul,l, e UL e utk’k, ey utk’k)
ni ng

= (El,i(ul,i) e ul’i,i)’ e aEti,i(ul,i’ D) ut,-,i))lgigk’ (6)

where Ej ; (uy,;, . .., us,;) is the j-th elementary symmetric function
inuy;,...,uyifori=1,... kandj=1,...,t.

Let V, be the preimage of W) by F,. In this subsection we present
a procedure called Decide(%,) which takes as input #,, and de-
cides whether the set V) contains real points.

In order to do this, a straightforward strategy consists in solving
the polynomial system to invert the map F;. Because of the group
action of S, X - -+ X Sy, we would then obtain #;!- - - ;! points in
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the preimage of a single point in W): we would lose the benefit of
all that had been done before.

This difficulty can be bypassed by encoding one single point per
orbit in the preimage of the points in W). This can be done via the
following steps.

(i) Group together the variables e; = (ey;, ..
code the values taken by the elementary symmetric func-
tions E;1, ..., Eiy; (see Sec. 2.2) and denote by v; 1, ..
the parametrizations corresponding to ey, ..., ez,i;

(if) Make a reduction to a bivariate polynomial system by con-

sidering the polynomial with coefficients in Q[¢]

., ez;,;) which en-

~svi,ti

pi=0'ult —opul i+ (=1) Yoy, € Q[t][u]

and “solving” the system p; = v = 0. Here we recall that
v € Q[t] and is square-free, so that v and v’ are coprime.
(iii) It remains to decide whether, for all 1 < i < k, there is a real
root & of v such that when replacing ¢ by ¢ in p;, the resulting
polynomial has all its roots real. To do this we proceed by
performing the following steps for 1 < i < k:
(1) first we compute the Sturm-Habicht sequence associated

to (p,-, %) in Q[¢t] (the Sturm-Habicht sequence is a

signed subresultant sequence, see [9, Chap. 9, Algo. 8.21]);

(2) next, we compute Thom-encodings of the real roots of
v, which is a way to uniquely determine the roots of a
univariate polynomial with real coefficients by means of
the signs of its derivatives at the considered real root (see
e.g. [9, Chap. 10, Algo. 10.14]);

(3) finally, for each real root & of v, evaluate the signed subre-
sultant sequence at ¢ [9, Chap. 10, Algo. 10.15] and com-
pute the associated Cauchy index to deduce the number
of real roots of p; (see [9, Cor. 9.5]).

(iv) For a given real root 9 of v, it holds that, for all 1 < i < k,
the number of real roots of p; equals its degree, if and only
if V) is non-empty.

The above steps describe our Decide, which returns false if V)
contains real points, else true.

5.3 The main algorithm

Our main algorithm Real_emptiness takes symmetric polynomials
f=,....s)inQ[xy,...,xu], withs < n, which satisfy condition
(A), and decides whether Vg (f) is empty.

For a partition A, we first find the polynomials f; = T, (f),
which are S)-invariant in Q[z, ..., zx], where T} is defined as in
(2). By Corollary 3.4, f; satisfies condition (A), so we can apply the
results of Section 4.

Let ¢ be the map defined in (5) and A, c Ch x--- x C" be the
non-zero Zariski open set defined in Proposition 4.1. Assume a is
chosen in (A} (this is one of the probabilistic aspects of our algo-
rithm) at step 1b. By Corollary 3.4, f; satisfies condition (A). Then,
the critical locus of the restriction of ¢4 to V(f}) is of dimension at
most zero (by Proposition 4.1). In addition, the map ¢4 is invariant
under the action of the group S,.

Let £, and {f, in Q[ey, ..., e] such that

Pa =§V¢a(E1s~-~:Ek) and f) =§fA(E1""’Ek)'
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Here E; = (Ey,. .., Ey ;) denotes the vector of elementary sym-
metric polynomials in variables z;. In the next step, we compute
a zero-dimensional parametrization %) of the critical set W) :=
W (g, ) of £p, restricted to V() by using the Critical_points
algorithm from Lemma 5.1. The parametrization %) is given by
a sequence of polynomials (v,011,. U1k -5 Vg k) 1D
Q[t] and a linear form p.

At the final step, we run the Decide(#,) in order to determine
whether the preimage of W) by the map F; contains real points.

cs U

Algorithm 1 Real_emptiness(f)

Input: symmetric polynomials f = (fi,..., fs) in Q[x1,...,xn]
with s < n such that f satisfies (A)

Output: false if V(f) N R" is non-empty; true otherwise

(1) for all partitions A = (ni1 e nltck) of n of length at least s, do
(a) compute f) = T, (f), where T is defined in (2)
(b) using a chosen a € A, where A is defined as in Prop 4.1,
we construct ¢ as in (5) and then compute ¢4
(c) compute #Z, = Critical_points(¢q, f1)
(d) run Decide(Z%,)
(e) if Decide(#,) is false return false
(2) return true.

PROPOSITION 5.2. Assume that, on input symmetric f as above,
and satisfying condition (A), for all partitions A of length at least s, a
is chosen in A, and that all calls to the randomized algorithm Criti-
cal_points return the correct result. Then Algorithm Real_emptiness
returns true if V(f) NR" is empty and otherwise it returns false.

ProoF. Since f satisfies condition (A), Lemma 3.4 implies that
[ also satisfies this condition. Then, by the Jacobian criterion [22,
Thm 16.19], V() is smooth and equidimensional of dimension
(¢ — s), where ¢ is the length of A. Therefore, if £ < s, then the
algebraic set V(f)) is empty. Thus, the union of V(f;) N U where
U) is the open set defined in Subsection 4.1 and A runs over the
partitions of n of length at least s, forms a partition of V(). Hence,
V(f) NR™ is non-empty if and only if there exists at least one such
partition for which V(f}) N Uy N R” is non-empty.

We already observed that for all A, fj does satisfy condition (A).
Since we have assumed that each time Step 1b is performed, a is
chosen in A, we apply Proposition 4.4 to deduce that the condi-
tions of Lemma 5.1 are satisfied. Hence, all calls to Critical_points
are valid.

Note that since we assume that all these calls return the correct
result, we deduce that their output encodes points which all lie in
V(f). Hence, if V(f) NR" is empty, applying the routine Decide on
these outputs will always return true and, all in all, our algorithm
returns true when V(f) N R" is empty.

It remains to prove that it returns false when V(f) N R" is non-
empty. Note that there is a partition A such that V(f}) N R” is
nonempty and has an empty intersection with the complement of
U,. That is, all connected components of V(f}) N R" are in Uj.

Let C be such a connected component. By Lemma 4.5, the map
¢a is proper, and non-negative. Hence, its restriction to V(f;) NR"
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reaches its extremum at all connected components of V(f;) N R".
This implies that the restriction of ¢4 to V(fy) has real critical
points which are contained in C (and by Proposition 4.1 there are
finitely many). Those critical points are then encoded by the output
of the call to Critical_points (Step 1c) and false is returned. O

5.4 Complexity analysis
Let d = max(deg(f)). First for a partition A, applying T to f takes

linear time in O(n(";d)), the number of monomials of f and the

cost of Step 1b is nothing. At the core of the algorithm, computing
%, at Step 1c requires O~ (52CA(€A + ci)n“l") operations in Q by
Lemma 5.1, where § = max(d, deg(¢q)). Also, the degree of %) is
at most c;.

In order to determine the cost of the Decide process at Step
1d, let a be the degree of v and b be the maximum of the par-
tial degrees of p;’s w.r.t. u. By the complexity analysis of [9, Algo.
8.21 ; Sec. 8.3.6], Step (1) above is performed within O (b4a) arith-
metic operations in Q[¢] using a classical evaluation interpola-
tion scheme (there are b polynomials to interpolate, all of them
being of degree < 2ab). Step (2) above requires O (a4 log(a)) arith-
metic operations in Q (see the complexity analysis of [9, Algo
10.14; Sec. 10.4]). Finally, in Step (3), we evaluate the signs of b
polynomials of degree < 2ab at the real roots of v (of degree a)
whose Thom encodings were just computed. This is performed
using O (ba® ((log(a) + b))) arithmetic operations in Q following
the complexity analysis of [9, Algo 10.15; Sec. 10.4]. The sum of
these estimates lies in O (b4a +ba* ((log(a) + b))).

Now, recall that the degree of v is the degree of #),s0 a < c;. The
degree of p; w.r.t. u equals t; and t; < n. This means b < n. Allin all,
we deduce that the total cost of this final step lies in O (n*c) + n?c;),
which is negligible compared to the previous costs.

In the worst case, one need to consider all the partitions of n of
length at least s. Thus the total complexity of Real_emptiness is

Z o (52c/1(eA + ci)n‘lr)
Al=s
operations in Q. In addition, Lemma 34 in [25] implies that

ZCAScand ZeASe,

Ab>s Ab>s

where ¢ = deg({f,)° (n+§_1) and e = n(deg({g) +1)° (";5). Notice
further that ("ga) < (n+ 1)("“;71) and e = n(d + l)s(";(s) <
n(n+ 1)¢’ for § > 2. In addition, since deg(¢q) < max(t;) +1 < n,
the total cost of our algorithm is

e () ()

o (d2n606r) =0

operations in Q.

5.5 An example
Letn =4 and s = 1 with f = (f) where

2, .2,.2, .2
f=x7+x5 +x5 + x5 — 6x1x2x3%4 — 1.
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: . _ (41 — _ 4
Consider first the partition A = (4°). Then f} = T)(f) = -6z, +
4;2%’1 — 1 which has no real solution as f) = —2z‘11’1 - (Z;Zi1 -1)2<0
forall z;1 € R.
Next we consider A = (22). Then

f(ZZ) = 22{1 + 225,1 - 62%,125’1 -1
and we take ¢ = 5(2%1 + zg 1) = 9(z1,2 + 221) — 3. In this case
Uf = 267, —6€5, —4depy —1and gy = Sef | — 9e11 — 10ez,1 3.
The critical points of {y restricted to V(¢ 1, 22)) are solutions to

{f ) = det (Jac(Zy,, . ) = 0,

that is Zeil - 665’1 —dep1 — 1= 120e1,1e21 — 108e21 — 36 = 0. A
zero-dimensional parametrization of these critical points is given
by ((v,01,1,92,1), pt), where
v = 200t* - 3601° + 62t% + 60t — 27,
v11 =t and
1 9 31
vg1 = ——+ —t> - ——r—1/20.
’ 6 20 600
At the final step, we check that the system

p1=0v=0, with p;= o'u? - v1,1u+ 02,1 € Q[t,ul,

has real solutions. This implies that Vg (f) is non-empty.
The output of our algorithm is consistent with the fact that the
point (1,1,1/2,1/2) is in Vg (f).

6 TOPICS FOR FUTURE RESEARCH

Determining topological properties of a real variety Vg (f) is an
important algorithmic problem. Here we have presented an efficient
algorithm to determine if Vg (f) is empty or not. More generally,
we expect that the ideas presented here may lead to algorithmic
improvements also in more refined questions, like computing one
point per connected component or the Euler characteristic for a real
symmetric variety. Furthermore, while our complexity gains are
significant for symmetric input we conjecture that we can do better
in certain cases. In particular, when the degree of the polynomials is
at most n then we expect we that a combination with the topological
properties of symmetric semi algebraic sets found in [12, Prop 9]
can reduce the number of orbits considered, for example, instead
of n¢ we might only need n?/2 for fixed d. Finally, a generalization
to general symmetric semi algebraic sets should be possible.
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