High-Perfor mance Symbolic Computation in a Hybrid Compiled-Interpreted
Programming Environment

Xin Li Marc Moreno Maza
Ontario Research Center for Computer Algebra Ontario Research Center for Computer Algebra
University of Western Ontario University of Western Ontario
London, Ontario, Canada London, Ontario, Canada
xli96@csd.uwo.ca moreno@csd.uwo.ca
Rageeb Rasheed Eric Schost
Ontario Research Center for Computer Algebra Ontario Research Center for Computer Algebra
University of Western Ontario University of Western Ontario
London, Ontario, Canada London, Ontario, Canada
rrasheed@uwo.ca eschost@csd.uwo.ca
Abstract Meanwhile AXIOM and MAPLE remain highly attrac-

tive: the former one by its programming environment and
We investigate the integration of C implementation of fast the latter one by its users community.
arithmetic operations intdVlAPLE, focusing on triangular In previous work [6, 11, 15] we have investigated the in-
decomposition algorithms. We show substantial improve- tegration of asymptotically fast arithmetic operation®in
ments over existingl APLE implementations; our code also AXIOM. Since AXIOM is based today on GNU Common
outperformsMAGMA on many examples. Profiling data Lisp (GCL), we took the following approach. We realized
show that data conversion can become a bottleneck forhighly optimized implementations of these fast routines in
some algorithms, leaving room for further improvements. C and made them available to the AXIOM programming
environment through the kernel of GCL, Therefore, library
functions written in the AXIOM high-level language could
be compiled down to binary code and then linked against
1 Introduction our C code. To observe significant speed-up factors, it was
sufficient to extend existing AXIOM polynomial domain

Since the early days of computer algebra systems, theircor_]struc_tqrg with our fast routines (for u_nivar_iat_e muitip _
designers have investigated many aspects of this kind ofcation, d|V|S|on_, GCD etc.) and_call_them in existing geaeri
software. For the systems born in the 70’s and 80’s, suchpackages (for mstance_, for univariate squarefree fatdori
as AXIOM and MaPLE, the primary concerns were prob- o). See [15] for details.
ably the expressiveness of the programming language and Few other languages allow the integration of user-written
the convenience of the user interface; the implementationC code in the kernel. For instance AdMA allows users to
of modular methods for operations such as polynomial fac- Open pipes or sockets to communicate with external pro-
torization was also among these concerns. grams, but such programs cannot cala&vA functions;

Computer algebra systems born in the 90's, such aswithin MAGMA, users can defingackageswhere functions
MAGMA and NTL, have brought forward a new priority: ~are compiled in MGMA internal pseudo-code, but notin C.
the implementation of asymptotically fast arithmetic for In the present paper, we investigate the integration of fast
polynomials and matrices. They have demonstrated thatarithmetic operations implemented in C intoaWLE. Most
for relatively small input data size, FFT-based polynomial of MAPLE library functions are high-level interpreted code.
operations could outperform operations based on classicalThis is the case for those of tiRegul ar Chai ns library,
guadratic algorithms or on the Karatsuba trick. With this our main focus here, which could greatly benefit from our
breakthrough, they increased in a spectacular manner théast routines for triangular decompositions [14, 12]. This
range of problems solvable by computer algebra systems. question is made more difficult by the following factors.

First, and up to our knowledge, the connection be- Two-equation solver. This application takes as input two

tween C and MPLE code is simple but quite rudimentary. polynomialsFy, F» in several variables(; < --- < X,

The only structured data which can be exchanged by theand with coefficients irK. It returns the resultank; of

two sides are the simple ones such as strings, arrays, ta#}, F» w.r.t. X,, and a regular GCD of?, F> modulo (the
bles. This leads to conversion overheads. Indeed, generprimitive part of)R;. This application is an extension of the
ally, MAPLE polynomials are represented by sparse data- previous one to the case of two equations with an arbitrary
structures whereas those used by fast arithmetic opesationnumber of variables.

are dense.

This situation implies a second downside factor: con-
versions between C and A#LE must be performed on the
MAPLE side or both sides, as interpreted code. Clearly, one
would like to implement them on the C side, as compiled
and optimized code.

The fact that the MPLE language does not enforce
“modular programming” or “generic programming” is a
third disadvantage compared to AXIOM integration. Pro-
viding a MAPLE connection-packageapable of calling
our efficient C routines will not be sufficient to speed-up
all MAPLE libraries using polynomial arithmetic. Clearly,
high-level MAPLE code needs to be rewritten to call this
connection-package and obtain improved performances.

These constraints being raised, bearing in mind that we
aim at achieving high-performance, we can now state the
guestions which have motivated the design of a framework
in this compiled-interpreted programming environment, to
gether with the experimental evaluation of this framework.

Invertibility test. This application takes as input a zero-
dimensional regular chai and a polynomiap. It sepa-
rates the points of the zero 9é{T") of T that cancep from
those which do not. More precisely, this application com-
putes two triangular decompositions: one ¥o(T') NV (p)

and one fol/(T') \ V(p). Thisis a fundamental operation
when computing modulo a regular chain. It is used, actu-
ally, by our two other applications.

In each case, the “top-level” algorithm is written in
MAPLE and relies on our C routines for different tasks such
as the computation of subresultant chain, normal form of a
polynomial w.r.t. a zero-dimensional regular chain, etc.

These three applications perform triangular decomposi-
tions of a polynomial system of different types. They are
therefore well representative of the high-leveh®LE code
that we aim at improving with our C routines, while also
simple enough such that their performance can be sharply
evaluated. Moreover, these applications put to challenge
our framework in different ways, revealing its strengthd an

(Q1) To which extent triangular decomposition algorithms weaknesses. Our experimental results are reported and ana-

(implemented in theRegul ar Chai ns library in ~ lyzedin Section 5.
MAPLE) can take advantage of fast polynomial arith- Acknowledgments. The authors were supported by
metic (implemented in C)? NSERC and MITACS.

(Q2) What is a good design for such hybrid applications?

2. A Compiled-Interpreted Programming En-
(@3) Can an implementation based on this strategy outper- yironment

form other highly efficient computer algebra packages

performing similar computations?)) _ _
Our library contains two levels of implementation:

(Q4) Does the observed performance of this hybrid C- MAPLE code (interpreted) and C code (compiled); our pur-
MAPLE application comply to its estimated perfor- pose is to reach high-performance while spending reason-
mance by complexity analysis? able amount of development time.

.) Relying on asymptotically fast algorithms, the C level
This paper attempts to provide elements of answers to thesgoytines are highly optimized. The core operations are fast
questions. In Section 2, we start by describing the frame- gperations modulo triangular sets (multiplication / irsien
work that we hav_e designed in th_is compiled-interpreted 55 in [14]), ged's, resultants, lifting techniques [21] dast
programming environment. In Sections 3 and 4 we presentinterpolation. This library of functions is calletbdpn and
the three applications that we have implemented in this js introduced in more detail in [12]. At the MpLE level, we
framework. We introduce them hereafter (definitions are \yrite more abstract algorithms; typically, these are highe

given in the latter sections). level polynomial solvers. The major trade-off between two
Bivariate solver. This application takes as input a poly- levels are language abstraction and high-performance.
nomial system of two equationk;, F; in two variables We use multiple polynomial data encodings at each

X, < X, and with coefficients in a prime fieldl (whose level: some encodings are specifically devoted to some al-
size is a machine word size Fourier prime). It returns a tri- gorithms; others “intermediate” encodings are written to
angular decomposition of the common rootsgfand F5. speed-up data conversions.

There are multiple issues to take care of: what opera-tations of the same algorithm to verify our results. In
tions should be written in C, how to map theAWLE data our case, we checked our results using Tné ade and
to C ones and vice versa, to what extent we should rely Regul ar Chai ns packages [8, 9].
on existing packages or develop our own ones, etc. Of the At the MAPLE level, we use two types of polynomi-
questions mentioned in the introduction, we discuss the fol als: MAPLE DAGs andRecDen (recursive dense) poly-
lowing ones here: to which extent triangular decomposition nomials. D:Gs are the canonical data representation for
algorithms can take advantage of fast polynomial aritheneti MAPLE polynomialsTr i ade andRegul ar Chai ns use
implemented in C, and what is a good design for a hybrid them uniformly. Thus, to access functionalities from these

C-MAPLE application. packages, we need to useARLE DAGS. In addition, we
usedRecDen when implementing dense polynomial algo-
2.1 The C Level rithms in MAPLE: operations modulo a triangular set are

essentially dense methods, so tRetcDen is one of the

Primarily, our C code targets on the best performance.best candidate at the APLE level.
All operations are based on asymptotically fast algorithms ~ When designing our algorithms, we tried to rely on our C
rooted at Fast Fourier Transform (FFT) and its variant Trun- library’s fast arithmetic for the efficiency critical opéi@ns.
cated Fourier Transform (TFT) [7]. These operations are Recall our first question: is this an effective approach? Our
optimized with respect to crucial features of hardware ar- answer is a conditional yes: if the integration process is
chitecture: memory hierarchy, instruction pipe-liningda careful, our C level fast arithmetic provides a large spegd-
vector instructions. As reported in [14, 11, 6], our C liyrar for the MAPLE code; this is reported in Section 5.
often outperforms the best known implementations such as
Magma and NTL [23, 22]. 2.3 MaprLE and C Cooperation
The C code is dedicated to triangular set operations mod-
ulo a machine size prime number. Such computations typi- For general MPLE users (as we are), the use of the
cally generate dense polynomials; thus, we use multidimen-gxt er nal Cal | i ng package is the standard way to link
sional arrays as the canonical encoding, and we call themin externally defined C functions. The action of linking is
Cuses (since all partial degrees are bounded in advance).not very complicated: the user just needs to carefully map
This encoding is the most appropriate for FFT based multi- M apLE level data onto C. For example, addLE r t abl e
plication, inverSion, resultant modulo a triangular Sml- type can be direct|y mapped toaC array. However, if the
polation, ... Besides, we can pre-allocate the workingdsuff -\ apLE data encoding is different from the C one, an im-
and use in-place operations whenever applicable. Tracingyortant issue arises, data conversion.
coefficients and degrees also becomes trivial. Locality of Thjs a difficult problem in our design. Only a small
reference is easily preserved by transposing or permittinggroup of simple M\PLE data structures, such as integers,
the data inside theseuBEs [1]. arrays or tables, can be automatically converted. When the
Besides the GBE encoding, we used another polyno- data structure are &ss, we have to manually pack the data
mial encoding at C level. With a view to apply triangular into a buffer, and unpack it at the target level. Especially
lifting algorithms [21, 4], we designed a Directed Acyclic hen the conversions mostly happen at therVie level,
Graph representation @&). By setting “smart” flags in the overhead may be significant.
the nodes of these AZs, we can track the information of There are two major ways to reduce this overhead: care-
visibility, liveness, and reducibility information in cstant |y designing the algorithm to reduce the total number of
time. We do not report on such operations here; see [13]. conversions, and implementing efficient converters to mini
We implemented a third data structure, theezx\ oren- mize the time of each unit conversion.
coding, which is dedicated to facilitate thg conversion be- The frequency of encoding conversions is application de-
tween QBE and MAPLE's RecDen(recursive dense) en- nendent; it turns out that it can happen quite often in our al-

coding, and is described below. gorithms for triangular decomposition. Hence, we try to
reuse C objects as much as possible. Many conversions
2.2 The MapPLE Level are “voluntary”: we are willing to conduct them, expecting

that better algorithms or better implementations can tleen b
Our algorithms for triangular decompositions are of a used in C. However, some conversions are “involuntary”.
higher level, so it seems sensible to implement them in alndeed, even if we would like all computational intensive
well equipped interpreted environment likeAMLE. First, operations be carried out at the C level, our algorithms are
the implementation effort is much less intensive than in C complex, so that it becomes unrealistic to implement every-
or C++; besides, MPLE has comprehensive mathemati- thing in C. Thus, there are cases where we have to convert
cal libraries, so it is possible to use different implemen- polynomials from C to MPLE and use its library opera-

tions. 3.1 Theoretical Background

The second direction — minimizing the cost of each unit
conversion — is crucial as well. As mentioned above, we The main theoretical tools of our bivariate solver algo-
designed a so-called 2¢ToR polynomial representation: rithm are subresultant theory and polynomial GCDs mod-
one vector recursively encodes the degrees of all polyno-ulo regular chains. Classical textbooks for the former
mial coefficients, and another vector all the coefficients, are [24, 16] whereas the latter was introduced in [18].
in the same traversal order. This data representation in
our library does not participate to any real computation: it Subresultant theory. In Euclidean domains such as
is specifically designed for facilitating the data convensi K[X;], polynomial GCDs can be computed by the Eu-
from CuBE to RecDen encoding. The 2¥cToRencoding clidean Algorithm and by the subresultant algorithm (we
has the same recursive structureResDen, so the map- refer here to the algorithm presented in [5]) .

ping is easy between these two. Besides, the@koren- Consider next more general rings, suchigsy;, X,].
coding use flattened polynomial tree structures, which areAssume F,,F, are non-constant polynomials with
convenient to pass from C to MPLE. deg(F1,X2) > q := deg(Fy,X2). The polyno-

It remains to estimate if the benefits from the conversion mials computed by the subresultant algorithm form
outweighs the overhead of the conversionitself. Asregorte a sequence, called thsubresultant chainof F; and
in Section 5, for certain cases the data conversion time be-F;, and denoted by sféy, ;). This sequence con-

come dominant, thus the corresponding algorithm needs tosjsts of ¢ + 1 polynomials, starting at (@2’X2)5 F,

be adjusted to reduce number of conversions. with & = deg(Fy, X2) — deg(Fs, X2), and ending at
Ry := res(Fy, Fy), the resultant offy by Fr w.rt. Xo.
3 Bivariate Solver We write this sequenc§,, ..., S, where the polynomial

S; = Sj(F1, F») is called thesubresultan{of F}, F5) of

The first application that we use to evaluate our software index;. Let j be an index such that< j < q. If S; is not
framework is the solving of bivariate polynomial systems zero, it turns out that its degree is at mgsind S; is said
by means of triangular decompositions. We consider two regularwhendeg(S;, X») = j holds.
bivariate polynomials/; and F», with ordered variables The subresultant chain df; and F; satisfies a funda-
X, < X, and with coefficients in a field&k. We assume mental property, called thielock structure which implies
thatK is perfect; in our experimentatidfi is a prime field the following fact: if the subresultarf; of index j with
whose characteristic is a machine word size prime. j < deg(Fy, X2) —1, is not zero and not regular, then there

We rely on an algorithm introduced in [19, 12] and based €eXists a non-zero subresultaftwith indexi < j such that
on the following well-known fact [2]. The common roots of S; is regular, has the same degreésaand foralli < £ < j

F, and I, over an algebraic closur& of K are “likely” the subresultant, is null.
to be described by the common roots of a system with a The subresultant chain df; and F> satisfies another
triangular shape: fundamental property, called thepecialization property
which plays a central in our algorithm. Lét be a homo-
{ Li(Xy) = 0 morphism fromK[X1, X5] to K[X5], with ®(X;) € K.
B(X1,X2) = 0 Assumed(a) # 0 wherea = lc(f1, X2). Then we have:
such that the leading coefficient®f w.r.t. X, is invertible (S (F1, Fy)) = ®(a)™"S;(®(F), ®(F)) (1)
modulo7}; moreover the degree @b w.r.t. X5 is “likely” '
to bel. For instance, the system whereq = deg(F, X3) andk = deg(®(F%), Xa).
{ Xt + Xg +1 =0 Regular GCDs modulo regular chains. Let 77 €
X1+ X3+1 =0 K[X;]\ K andT, € K[X1, X»] \ K[X;] be two polynomi-
is solvedby the triangular system als. Note thafl; has a positive degree w.rx;, fori = 1, 2.
The pair{T},T>} is aregular chainif Ic (73, X»), the lead-
{ X{+2X7+ X142 = 0 ing coefficient ofI, w.r.t. X5, is invertible moduldl}. By
Xo+XP+1 = 0 definition, the se{7 } is also a regular chain.

The goal of this section is to show that this algorithm can ~ FOr simplicity, we will requireT: to be squarefree,
easily be implemented in our software framework while Which has the following benefit: the residue class ring
providing high-performance. In Section 3.1 we review L= K[X1]/(T1) is a direct product of fields. For instance,
briefly the necessary mathematical concepts. Sections 3.2Vith 71 = X1(X1 +1), we have:

and 3.3_ contain the algorithm and the corresponding code, K[X1]/(T}) K[X1]/(X1) ® K[X1]/(X1 + 1)
respectively. Ko K.

~
~

Let /i, F5, G € K[X1X5]. We sayG is aregular GCDof
Fy, F; moduloT if the following conditions hold:

(1) le(G, X») is invertible moduldl?,

(77) there existd;, Ay € K[X;, Xs] suchthatG = A, f1+
Az fo mod T,

(3i) if deg(G, X2) > 0thenG dividesF; andF; in L[X5].

The polynomialFy, F; may not have a regular GCD in the
previous sense. However the following holds.

Proposition 1 There exists polynomialsAy,..., A, in
K[X;] and polynomial€3y, .. ., B. in K[X1, X5] such that
the following properties hold:

e the product4; --- A, equalsTy,

e forall 1 < i < e, the polynomiald3; is aregular GCD
of Iy, I, moduloA;.

The sequenceA,, By),...,(A., B.) is called aGCD se-
quenceof F; and F; moduloT;.

Consider for instancé&; = X;(X; + 1), Fi = X3 X5 +
(X1+1)(X2+1) andly = Xl(X2+1)+(X1+1)(X2+1).
Then (X, Xo + 1), (X1 + 1,1) is a GCD sequence df
andF, moduloT].

3.2 Algorithm

Recall that we aim at computing the Sé{F;, F») of
the common roots of; andF;, overK. For simplicity, we
assume that botlty; and F, have a positive degree w.r.t.
Xo; we defineh; = lc(f1, X2), ha = Ic(f2, X2) andh =
ged(hq, h2). Recall thatR; denotes the resultant % and
F> w.rt. X5, Itis well-known thath divides R;. Thus,
we defineR;’ to be the quotient of the squarefree part of
R, by the squarefree part @f Our algorithm relies on the
following observation.

Theorem 1 Assume thaV (£, F5) is finite and not empty.
ThenR;’ is not constant. Moreover, for any any GCD se-
quence(Ay, By), ..., (A., B.) of F; and F; moduloR,’,
we have

V(Fy, F) = | JV(Ai, Bi) UV (h, Fy, F).

=1

(2)

and for all1 < ¢ < e the polynomialB; has a positive
degree w.r.t.X, and thusV (4;, B;) is not empty.

This theorem implies that the pointsB{ £, F») which
do not canceh can be computed by means of one GCD
sequence computation. This is the purpose of Algorithm 1.
The entire seV ([, F») is computed by Algorithm 2.

Algorithm 1
Input: Fy, Fy asin Theorem 1.

Output: (Ay, B1),...,(Ae, Be) asin Theorem 1.

ModularGenericSolve2(F, Fp, h) ==
(1) Computesrg F, F»)

(2) Let Ry’ be asin Theorem 1

() i:=1

(4) while R’ ¢ K repeat

(5) Let S, € srd(Fy, Fy) regular withj > ¢ minimum
(6) ifIc(S;,X2) =0 mod Ry
theni:= i+ 1; goto (5)
(7) G = ng(Rl/, |C(Sj, XQ))
(8) ifGekK
then output (R;’, S;); exit
9) output (R quo G, S;)
(10) R/ :=G;i=i+1

The following comments justify Algorithm 1 and are es-
sential in view of our implementation. In Step (1) we com-
pute the subresultant chain 6%, F5 in the following lazy
fashion

1. B 2d1dy is a bound for the degree of
Ry, where d; max(deg(F;, X1)) and ds
max(deg(F;, X2)). We evaluateF;, and F» at B +
1 different values ofXy, sayzo,...,xp, such that
none of these specializations cancel§Fic X») or

|C(F‘27 XQ)

2. Foreach = 0,..., B, we compute the subresultant
chain OfF1 (Xl = ZCZ',XQ) andFQ(Xl = Iy, XQ)

3. We interpolate the resultai; and do not interpolate

any other subresultants in $fG , F5).

In Step (5) we conside$; the regular subresultant of
Fy, F5 with minimum index; greater or equal ta. We
view S; as a “candidate GCD” of, F» moduloR;" and
we interpolate its leading coefficient w.rX; only. In Step
(6) we test whether IS, X5) is null moduloR,’; if this is
the case, then it follows from the block structure property
thatS; is null moduloR;’ and we go to the next candidate.
In Step (8), ifG € K then we have proved th&t; is a
GCD of Fy, F» moduloR;’; in this case we interpolatg;
completely and return the paiz;’, S;). In Steps (9)-(10)
Ic(S;, X2) has been proved to be a zero-divisor. Sifé
is squarefree, we apply tHg5 Principleand the computa-
tion splits into two branches:

1. Ic(S;, X2) is invertible modula?,’ quo G, so we out-
put the pair R’ quo G, S;)

2. Ic(S, X2) = 0 mod G; we go to the next candidate.

Algorithm 2 “Scube”; this array is allocated on theAviLE side and

) is available at the C level without any data conversions.
Input: Fi, F» asin Theorem 1.

e The resultanf?; (of F; andF» w.r.t. X5) is obtained

Output: regular chains(Ay, B1), .-, (A, Be) such that from the “Scube” by fast interpolation techniques.

V(F1, Fz) = Uiy V(A Bi).
In Step (5) the “Scube” is passed to a C function which
computes the index and interpolates the leading coeffi-
cientloS;, X2) of S}, the candidate GCD. Testing whether
Ic(S;, X2) is zero or invertible moduldz;” is done at the
MAPLE level using theRecDen module. Finally, in Step
(8), when I¢S;, X) has been proved to be invertible mod-
ulo R,’, the “Scube” is passed to a C function in order to
interpolates;.

The implementation of Algorithm 2 is much more
straightforward, since the operatiodModularSolve2
consists mainly of recursive calls and calls to
ModularGenericSolve2. The only place where com-
putations take place “locally” is at Step (9) where the

The following comments justify Algorithm 2. Recall that Eer(]:sDen module is called for performing GCD computa-

V(F1, F») is assumed to be non-empty and finite. Steps 0
(2)-(2) handle the case where one input polynomial is uni-
variate inXy; the only motivation of the trick used hereisto 4 Two-equation Solver and Invertibility Test
keep pseudo-code simple. Step (4) computes the points of
V(Fy, F») which do not canceb. From Step (6) one com-

putes the points oF (£, I) which do canceh, sowere- ,so tg evaluate the framework presented in Section 2.
placer’, F by their reductums w.r.tX. In Steps (8)-(10) T top-level algorithms are presented in Sections 4.2 and
we filter qut the solutions computed at Step (7), discarding 4.3. In Section 4.1, we specify the main subroutines on
those which do not cancél which these algorithms rely; we also include there the spec-
X ifications of Algorithm 4, for convenience. As we shall
3.3 Implementation see in Section 5, under certain circumstances, the data-
conversions implied by the calling of these subroutines can

We explain in the section how Algorithms 1 and 2 are pecome a bottleneck. It is, thus, important to have a good
implemented in MPLE interpreted code and based on the picture not only of these top-level algorithms but also of
functions of tharodpn library. their subroutines.

We start with Algorithm 1. The dominant cost is at Step In this paper, however, we aim at presenting our imple-
(1) and it is desirable to perform this step entirely at the C mentation framework and its experimental evaluation with-
level in one “function call”. On the other hand the data com- ¢ assuming that the reader has a preliminary knowledge
puted at Step (1) must be accessible on theeME side, in - on triangular decomposition algorithms. To this end, the
particular at Step (5). Recall that the only structured data presentation of our bivariate solver in Section 3 was rela-
that the C and MPLE levels can share are arrays. Fortu- tjyely self-contained while omitting proofs. This was made
nately, there is a natural efficient method for implementing easy by the bivariate nature of this application, which al-
Step (1) under these constraints: lowed us to hide some abstract concepts.

Our other two applications, thevo-equation solveand
the invertibility testinvolve polynomials with an arbitrary

the coefficient of; (resp.F) of X3 evaluated at;; qumberof variables, leading to additionallalgebraic diffic

if 7, (resp. F) is given over the monomial basis of tlc_es. Ne_vertheless!we hope that the detailed and elenyentar

K[X1, Xa], then the “cube’; (resp.Cs) is obtained dlscu55|or_1 of Section 3 cquld have prepareq the reader.

by fast evaluation techniques. In Section 3.1 we have introduced the notion oéglula_r

chainand that of aegular GCD (modulo a regular chain)
e For eachi = 0,...,B, the subresultant chain of for bivariate polynomials. In the sequel, we rely on “natu-

Fi(X) = x;, Xo) and F»(X, = 24, X2) is computed ral” generalizations of these notions: we recall them byiefl

and stored in afB + 1) x d2 x ds array, thatwe call and refer to [12, 3] for introductory presentation.

ModularSolve2(Fy, Fy) ==
(1) if Fy € K[X4] then ModularSolve2(F} + Fs, F)
(2) if Iy € K[X4] then ModularSolve2(Fy, F5 + F)
(3) h:= ng('C(Fl,Xg),|C(F2,X2))
(4) G := ModularGenericSolve2(Fy, Fy, h)
(5) ifh=1returnG
(6) (Fi,F):= (reductum(Fy, Xs), reductum(Fs, X2))
(7) D := ModularSolve2(F}, F»)
(8) for (A(X1),B(X1,X2)) € D repeat
(9) g:=gcd(A4,h)
(10) if deg(g, X1) > OthenG :=G U {(g9,B)}
(11)return G

In this section, we present the two other applications

e We represenkt’ (resp.F:) by a(B+1) x dy array (or
“cube”) C (resp.Csy) whereCh [i, j] (resp.Cali, j]) is

4.1 Subroutines

From now on, our polynomials are multivariate in the
ordered variablex; < --- < X,, and with coefficients in
a prime fieldK. LetT = T1(X1), ..., Tn(X1,...,X,,) be
a set ofn non-constant polynomials such that, for ak=
1---n, the largest variable iffi; is X;. (Such a set is called
a triangular set.) The sé@tis aregular chainif, for all i =
2---n, the leading coefficient of; w.r.t. X; is invertible
modulo the ideal generated @y, . . ., 7;_1; moreover, it is
anormalized regular chaiif forall ¢ = 1 - - - n, the leading
coefficient ofT; w.r.t. X, is a constant polynomial, that is,
belongs tak. Observe that a normalized regular chain is a
lexicographical Grobner basis.

In the specification of our subroutines below, we denote

by T" a normalized regular chain andq polynomials in
K[X4,...,X,]. More details about these operation can be
found in theRegul ar Chai ns library [10] where they ap-
pear with the same names and specifications.

MainVariabldp): assumes thab is non-constant and re-
turns its largest (or main) variable.

Initial (p): assumes thap is non-constant and returns its
leading coefficient w.r.t. MainVariab{g).

NormalForn{p, T'): returns thenormal formof p w.r.t. T

(in the sense of Grobner bases). This operation is per-

formed at the C level of our framework; it uses the fast
algorithm of [14].

Normalizep, T'): returnsp if p € K; otherwise assumes
thath := Initial(p) is invertible modulo the ideal gen-
erated byl" and returns NormalForth~!p, T') where
h~'is the inverse o, moduloT. This operation is
also performed at the C level of our framework and
based on [14].

RegularGedp, ¢, T'): assumesp,q non-constant, with
same main variable and such that either Initigh)
or Initial(¢) is invertible moduloT’; then returns
pairs(g1,T%),. .., (ge, T¢) wheregy, .. ., g. are non-
constant polynomials and*, ... 7¢ are normalized
regular chains, such that(7) = V(T') U --- U
V(T*) holds and such that forall=1---e g; is a
regular GCD ofp, ¢ moduloT?, that is, satisfies the
following three properties:

(i) the leading coefficient of; w.r.t. v is invertible
moduloT",

(i1) there existd;, A> € K[Xy,...
gi = A1p + Asg mod T7,

, Xn] such that

(i) if deg(g;,v) > 0theng; dividesp andg modulo
T

This operation is implemented on theAMLE side with
calls to our C routines; the algorithm is very similar to
Algorithm 3.

Isinvertible(p, T): returns pairs (p1,71),. .., (pe, T¢)
where p1,...,p. are polynomials andl't,..., T*¢
are normalized regular chains, such that
V(T) = V(TY) U U V(T holds and
such that forali = 1 - - e the polynomialp; is either
null or invertible moduloT? andp = p; mod T".
The algorithm and implementation of this operation
are described in Section 4.3.

4.2 Two-equation Solver

Let Fy, F» € K[Xq,...,X,] be non-constant polyno-
mials with MainVariabléF;) = MainVariablg F5) = X,,.

We assume tha®; = res(Fy, F», X,,) is non-constant. Al-
gorithm 3 below is simply the adaptation of Algorithm 1 to
the case wheré’, F, aren-variate polynomials instead of
bivariate polynomials. The relevance of Algorithm 3 to our
study is based on the following observation.

As we shall see in Section 5, the implementation of Al-
gorithm 1 in our framework is quite successful. Itis, there-
fore, natural to check how these results are affected when
some of the parameters of Algorithm 1 are modified. A
natural parameter is the number of variables. Increasing it
makes some routine calls more expensive and could raise
some overheads.

In broad terms, Algorithm 3 computes the “generic so-
lutions” of Fy, F». Formally speaking, it computes regular
chainsI ..., T such that we have

Vv(F‘l7 Fg) = W(Tl)U . -UW(TG)UV(Fl, Fs, hlhg) (3)

whereh; hs is the product InitiglF7) Initial (F») and where

W (T*) denotes the Zariski closure of the quasi-component
of T". It is out of the scope of this paper to expand on the
theoretical background of Algorithm 3; this can be found
in[17, 12]. Instead, as mentioned above, our goal is to mea-
sure how Algorithm 1 scales when the number of variable

increases.

Algorithm 3

Input: Fi, Fy € K[Xl,,Xn] with deg(Fl,Xn) >
0,deg(F», X,,) > 0 andres(Fy, F», X,,) ¢ K.

Output: T' = (A1, By),...,T¢ = (Ae, Be) asin (3).

ModularGenericSolveN(Fy, Fy) ==

(1) ComputesrdFy, F»); Ry = res(Fy, Fy, X))
h := ged(Initial (Fy), Initial (F3))

(2) Ry’ := squarefreePart(R;) quo squarefreePart(h)
v = MainVariablg R,);

Ry = primitivePart(R1, v) If the call RegularGceth, T, C') (Step (7)) outputs many

() i:=1 cases, that is, if computations split in many branchesgthes
(4) whiledeg(R;’,v) > 0 repeat conversions could become a bottleneck as we shall see in
(5) Let S; € srqFy, F») regular withj > ¢ minimum Section 5.
(6) ifIc(S;,X,) =0 mod Ry’
theni:= i+ 1; goto (5) Algorithm 4
(M) Gi=ged(Ry,le(S), X))
(8) if deg(G,v) =0 Input: 7" a normalized regular chain ang a polynomial,
then output (Ry’, S;); exit both inK[X}, ..., X,].
9) output (R quo G, S;) o .
(10) R/ =G i=i+1 Output: See specification in Section 4.1.

The implementation plan of Algorithm 3 is exactly the Isinvertible(p, T') ==
same as that of Algorithm 1. In particular, the computations (1) P = NormalFormip, T)
of squarefree parts, primitive parts and the GCDs at Steps(?) if p € K thenreturn [p. T
(1) and (7) are performed on theAWILE side, whereas the (3) v := MainVariablgp)
subresultant chain st&}, F») is computed on the C side. In (4) r:=res(p,T,,v) _
the complexity analysis of Algorithm 3 (see [12]) the dom- (5) for (¢, C') € Isinvertible(r, T,,) repeat

inant cost is given by st&}, F;) and a natural questionis (6) if ¢ # 0 then output [p, CUT,UT%.,]
whether this is verified experimentally. If this is the case, (7) elsefor (g, D) € Regulach-ﬁp, T,,C) repeat
this will be a positive point for our implementation frame- (8) g := Normalizeg, D)
work. (9) output [0, DUgUT.,]
(10) q := NormalForn{quo(Ty, g), D)
(11) if deg(q, v) # 0 then

4.3 Invertibility Test output IsInvertiblg p, DUqUT-.,)

Invertibility test modulo a regular chain is a fundamen-
tal operation in algorithms computing triangular decompo- .
sitions. The precise specification of this operation hasbee 2- EXperiments
given in Section 4.1. In broad terms, for a regular chain
T =Ti(X1),...Th(Xy,...,X,) and a polynomiap the We discuss here the last questions from Section 2: Can
call Isinvertiblep, T') “separates” the points df (T') that our implementation based on the above strategy outperform
cancelp from those which do not. The output is a list of other highly efficient systems? Does the performance com-
pairs(pi,,T), ..., (pe, T¢) wherepy, ..., p. are polyno- ply with the theoretical complexity?

mials andT™", ..., T are normalized regular chains: the Our answer for the first one is “yes, if the application is
points of V(T') which cancebp are given by thé™’s such well suited to our framework”. As shown below, we have
thatp; is null. improved the performance of triangular decompositions in

Algorithm 4 is in the spirit of those in [18, 17] imple- MAPLE; on the example of the invertibility test, our code
menting this invertibility test. However, it offers more-op is competitive with NaGMA and often outperforms it. The
portunities for using modular methods and fast polynomial answer to the second one is “yes” as well, even though there
arithmetic. The trick is based on the following result (The- are interferences due to the data conversion and other over-
orem 1 in [3]): the polynomiap is invertible modular” if heads.
and only if the iterated resultant pfw.r.t. 7" is non-zero. We give two kinds of data. First, we compare the opera-

Iterated resultants can be computed efficiently by evalu- tions we have implemented with their existing counterparts
ation and interpolation, following the same implementatio in MAPLE or MAGMA: we give details for the invertibil-
techniques as those of Algorithm 1. Our implementation of ity test. Second, we profile our algorithms to determine for
Algorithm 4 employs this strategy. In particular the resul- which kind of computations our framework is best suited.
tantr (computed at Step (4)) and the regular GGRsD) Besides invertibility, we will then discuss our two otherop
(computed at Step (7)) are obtained from the same “Scube”.erations — the bivariate and two-equation solvers. In all ex

The calls NormalForttp, T') (Step (1)) Normalizgy, D) amples, the base field %B/pZ, wherep is a large machine-
(Step (8)) and NormalForfquo(T,, g), D) (Step (10)) are word size FFT prime. In the following profiling samples,
performed on the C side: they require the conversions ofwe just calculate the MPLE conversion time. The convert-
regular chains encoded by A®LE polynomials to regular ers operating at the C level are fairly efficient; their compu
chains encoded by C “cube” polynomials. tation time is negligible.

80 " Magma e T T T Magma e
70 - our code —+— E 35 our code —— £
60 | 30
50 i 25

) ¢)

E 40 E 20
30 f . 15 +
20 | e] 10}
el _':_;—./ >l

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
d d
Figure 1. Bivariate case: timings, p = 0.98. Figure 2. Bivariate case: timings, p = 0.5.
5.1 Invertibility Test 100 ‘ ‘ ‘ pe0.08 ——

p=0.5 ——

80 - 1
We start with the operation IsInvertible. Designing good o K

test suites for this algorithms is not easy: one of the main
reasons for the high technicality of these algorithms i$ tha
various kinds of degeneracies need to be handled. Using
random systems, one typically does not meet such degen-
eracies: a random polynomial is invertible modulo a ran-

time (%)

40

20 -

dom regular chain. Hence, if we want our test suite to ad- 15 20 25 30 340
dress more than the “generic” case of our algorithms, the degree
examples must be constructed ad-hoc. Figure 3. Bivariate case: profiling.

Here, we report on such examples for bivariate and
trivariate systems. We construct our regular chairby

Chinese Remaindering, starting from smaller regular ahain 5o of the time is spent on other ABLE computations, so
g ofdegzge lor2. The(r;i we interpolate afunctfdlom hat the real C computation costs less than 5%. We also
its values/™ = f mod T""), the(s_,)e values being chosen at proyide the timing of the operationERULARIZE from the
random. The probability that f1* 7 0 is a parameter of 1 ap £ Regul ar Chai ns library. The pure MPLE code,

our construction. We generated families of examples with yith no fast arithmetic, is several hundred times slowentha
p = 0.5, for which we expect that the invertibility test of ,, implementation.

f will generate a large number of splittings. Other families

havep = 0.98, for which few splittings should occur.
100

p=0.98 ——

Thebivariate case. Figure 1 gives results for bivariate sys-
tems withp = 0.98 andd = d, = d- in abscissa. We com-
pare our implementation with MGMA’s counterpart, that
relies on the functiongri angul ar Deconposi ti on
andSat ur at i on (in general, when using NGMA, we al-
ways choose the fastest available solution). We also tested
the casep = 0.5 in Figure 2. Figure 3 profiles the per-

time (%)

20 -

centage of the conversion time w.r.t. the total computation o ‘ ‘ ‘ ‘

time, for the same set of samples. Wijth= 0.98, IsInvert- 2 4 6 8 10 2
ible spends less time on conversions (around 60%) and has degree

fewer calls to the MPLE operations than witp = 0.5 (the Figure 4. Trivariate case: profiling.

conversion ratio wittp = 0.5 reaches up to 83%).

Thetrivariate case. Table 5.1 uses trivariate polynomials The 5 variable case. We performed further tests between
as the input for IsInvertible, witlh = 0.98; Table 5.1 has the MAPLE REGULARIZE operation and our Isinvertible

p = 0.5. Figure 4 profiles the conversion time spent on function, using random dense polynomials in 5 variables.
these samples. The conversion time increases dramaticallysinvertible is significantly faster than B&ULARIZE; the
along the input size. For the largest example, the conversio speedup reaches a factor of 300. Similar experiments with
time reaches 85% of the total computation time. More than sparse polynomials give a speed-up of 100.

Table 1. Trivariate case: timings, p = 0.98.
dids | ds || MAGMA MAPLE
REGULARIZE | IsInvertible
4 3 0.000 1.199 0.091
12 6 0.020 6.569 0.281
24 9 0.050 24.312 0.509
40 | 12 0.170 73.905 1.293
60 | 15 0.550 172.931 1.637
84 | 18 1.990 450.377 5.581
112 | 21 5.130 871.280 9.490
144 | 24 || 12.830 1956.728 12.624
180 | 27 || 30.510 3621.394 23.564
220 | 30 || 62.180 6457.538 32.675
264 | 33 || 129.900 7980.241 89.184
Table 2. Trivariate case: timings, p = 0.5.
dids | ds || MAGMA MAPLE
REGULARIZE | IsInvertible
4 3 0.010 0.773 0.199
12 6 0.020 4,568 0.531
24 9 0.040 17.663 1.082
40 | 12 0.150 47.767 2.410
60 | 15 0.480 126.629 5.023
84 | 18 1.690 284.697 10.405
112 | 21 4.460 632.539 19.783
144 | 24 || 10.960 1255.980 42.487
180 | 27 || 26.070 2328.012 69.736
220 | 30 || 58.700 4170.468 109.667
264 | 33 || 106.140 7605.915 191.514

5.2 Other Operations

We conclude with profiling information for our other ap-
plications. The differences between these algorithms have
noticeable consequences regarding profiling time.

Bivariate solver. For this algorithm, there is no risk of data
duplication. The amount of data conversion is bounded by
the size of the input plus the size of the output; hence we
expect that data conversions cannot be a bottleneck. Third,
the calls to MAPLE interpreted code simply perform uni-
variate operations, thus we do not expect them to become a
bottleneck either.

Table 5.2 confirms this expectation, by giving the pro-
filing information for this algorithm. The input system is
dense and contains 400 solutions. The computation using
the RecDen package costs 49% of the total computation
time. The C level subresultant chain computation spends
around 34%, and the conversion time is less than 11%. With
larger input systems, the conversion time reduces. For sys-
tems with 2,500 and 10,000 solutions, the C computation
takes about 40% of the tim&ecDen computations takes

roughly 50%; other MPLE functions take 5% and the con-
version time is less than 5%.

Table 3. Bivariate solver: profiling, p =0.98.

Operation || calls | time | time (%)
Subresultant chai 1 0.238| 33.85
Recden 41 | 0.344| 48.93
Conversions 17 | 0.076| 10.81

The profiling information in Figure 5 also concerns the
Bivariate solver; there, the sample input intends to gerera
many splittings (we takg = 0.5, as in the examples in the
previous subsection). The conversion time slowly increase
but does not become the bottleneck (28% to 38%).

100
90
80
70
60
50
40
30
20
10

0

Other time%
Conversion time%
Recden time%

C level time%

10 20 30 40

Figure 5. Bivariate solver: profiling, p =0.5.

Two-equation solver. This algorithm has properties sim-
ilar to the Bivariate Solver, except that the calls to inter-
preted code can be expensive since it involves multivariate

arithmetic. Hence, we expect that the overhead of conver- [7] J. van der Hoeven. The Truncated Fourier Transform and

sion is quite limited. Indeed, in Table 5.2] is the num-
ber of variables and,, d» are the degrees d&fy, Ts re-
spectively 3. The C level computation is the major fac-
tor of the total computation time; it reaches 91% in case
N =4,dy =5, d» =5.

Table 4. Two-equation solver: profiling.
N | di | d3 || C(%) | MAPLE (%) | Conversion (%)
3|1 5| 5| 5647 12.96 30.57
4 | 5| 5| 9154 2.64 5.82
8| 2| 2| 83.67 8.02 8.31

6 Conclusion

The answers to our main questions are mostly positive:
we obtained large performance improvements over exist-
ing MAPLE implementations, and often perform better than
MAGMA, a reference regarding high performace.

Still, some triangular decomposition algorithms are not
perfectly suited to our framework. For instance, we imple-
mented the efficiency-critical operations &l NVERTIBLE
in C, but the main algorithm itself in WPLE. Still, this
algorithm may generate large amount of “external” calls to
the C functions, so the data conversion betweewrM: and
becomes dominant in timings. For this kind of algorithms,
we suggest either to implement them in C or tune the algo-
rithmic structure to avoid intensive data conversion at the
MAPLE level; we are working on both directions.

References

[1] A. Aho, M. Lam, R. Sethi, and J. Uliman.Compilers:
Principles, Techniques and Tools (2nd Editiordddison-
Wesley, 2006.

[2] E. Becker, T. Mora, M. G. Marinari, and C. Traverso. The
shape of the Shape Lemma. IBSAC’'94 pages 129-133.
ACM, 1994.

[3] C. Chen, F. Lemaire, O. Golubitsky, M. Moreno Maza, and
W. Pan.Comprehensive Triangular Decompositimlume
4770 ofLecture Notes in Computer Sciengages 73-101.
Springer Verlag, 2007. ;

[4] X. Dahan, M. Moreno Maza:. Schost, W. Wu, and Y. Xie.
Lifting techniques for triangular decompositions. 8-
SAC’05 pages 108-115. ACM Press, 2005.

[5] L.Ducos. Optimizations of the subresultant algorithlour-
nal of Pure and Applied Algebrd 45:149-163, 2000.

[6] A. Filatei, X. Li, M. Moreno Maza, ancE. Schost. Im-
plementation techniques for fast polynomial arithmeti@in
high-level programming environment. ISSAC’06 pages
93-100. ACM, 2006.

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]
[20]

[21]

[22]

(23]

[24]

applications. INSSAC’04 pages 290-296. ACM, 2004.

F. Lemaire, M. Moreno Maza, and Y. Xie. The TRIADE
library in MAPLE, 2004. With contributions of W. Wu and
E. Schost.

F. Lemaire, M. Moreno Maza, and Y. Xie. The
Regul ar Chai ns library. In Maple 1Q Maplesoft,
Canada, 2005. Refereed software.

F. Lemaire, M. Moreno Maza, and Y. Xie. The
Regul ar Chai ns library. In llias S. Kotsireas, editor,
Maple Conference 2005, pages 355-368, 2005.

X. Li and M. Moreno Maza. Efficient implementation of
polynomial arithmetic in a multiple-level programming en-
vironment. INICMS’06, pages 12-23. Springer, 2006.

X. Li, M. Moreno Maza, and R. Rasheed. Fast arith-
metic and modular techniques for triangular decomposi-
tions, 2008. i

X. Li, M. Moreno Maza, R. Rasheed, affl Schost. The
nodpn library: Bringing fast polynomial arithmetic into
MAPLE. In MICA'08, 2008.

X. Li, M. Moreno Maza, ancE. Schost. Fast arithmetic for
triangular sets: From theory to practice.I8SAC’07 pages
269-276. ACM, 2007.

X. Li, M. Moreno Maza, ancE. Schost. On the virtues
of generic programming for symbolic computation. In
ICCS’07, volume 4488 ofLecture Notes in Computer Sci-
ence pages 251-258. Springer, 2007.

B. Mishra. Algorithmic Algebra Springer-Verlag, New Yor,
1993.

M. Moreno Maza. On triangular decompo-
sitions of algebraic varieties. Technical Re-
port TR 4/99, NAG Ltd, Oxford, UK, 1999.
http://ww. csd. uwo. ca/ ~nor eno.

M. Moreno Maza and R. Rioboo. Polynomial gcd computa-
tions over towers of algebraic extensions.Pirmc. AAECC-
11, pages 365-382. Springer, 1995.

R. Rasheed. Modular methods for solving polynomial sys
tems, 2007. University of Western Ontario.

E. Schost. Complexity results for triangular sefis.Symb.
Comp, 36(3-4):555-594, 2003.

E. Schost. Computing parametric geometric resolutions.
Appl. Algebra Engrg. Comm. Computl3(5):349-393,
2003.

V. Shoup. The Number Theory Library 1996-2008.
http://ww. shoup. net/ntl.

The Computational Algebra Group in the School
of Mathematics and Statistics at the University of
Sydney. The MAGMA Computational Algebra Sys-
tem for Algebra, Number Theory and Geometry
http://magnma. mat hs. usyd. edu. au/ nagne/ .

C. Yap. Fundamental Problems in Algorithmic Algebra
Princeton University Press, 1993.

