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Abstract

We exhibit a genus–2 curve C defined over Q(T ) which admits two
independent morphisms to a rank–1 elliptic curve defined over Q(T ). We
describe completely the set of Q(T )–rational points of the curve C and
obtain a uniform bound for the number of Q–rational points of a rational
specialization Ct of the curve C for a certain (possibly infinite) set of values
t ∈ Q. Furthermore, for this set of values t ∈ Q we describe completely
the set of Q–rational points of the curve Ct. Finally we show how these
results can be strengthened assuming a height conjecture of S. Lang.

1 Introduction

In 1983, G. Faltings proved Mordell’s Conjecture, which asserts that for any
number field K, the set C(K) of K–rational points of a curve C defined over
K of genus at least 2 is finite (see [Fal83]). In order to have more insight on
Faltings’ Theorem one may ask about the behaviour of the set of K–rational
points of a given K–definable family f : S → P

1(Q) of curves of (fixed) genus
≥ 2. This question is strongly related to the following conjecture of S. Lang
[Lan86]:

Conjecture A Let V be a variety of general type defined over a number field
K. Then the set V (K) of K-rational points of V is contained in a subvariety
of V of codimension at least 1.
∗Research was partially supported by the following Argentinian and French grants : UBA-

CyT X198, PIP CONICET 4571, ECOS A99E06, UNGS 30/3003. Some of the results
presented here were first announced at the Workshop Argentino de Informática Teórica,
WAIT’01, held in September 2001 (see [GKMS01]).
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As an attempt to understand Conjecture A, L. Caporaso, J. Harris and
B. Mazur showed the following consequence of this conjecture in the case of
algebraic curves (see [CHM95], [CHM97]):

Theorem 1 If Conjecture A is true, then for any number field K and any
integer g ≥ 2 there exists an integer B(K, g) such that any non–singular curve
defined over K of genus g has at most B(K, g) K-rational points.

Partial results in the direction of Theorem 1, namely uniform upper bounds
on the number of Q–rational points of families of curves of genus ≥ 2, were
obtained in [Sil87], [Sil93], [Kul99], [Sto01]. These articles consider families of
twists of certain fixed curves of genus ≥ 2 and a family of curves defined by a
Thue’s equation.

In this article we obtain uniform upper bounds on the number of Q–rational
points of the (non–isotrivial) family of plane curves {Ct}t∈Q of equation

y2 = x6 + tx4 + tx2 + 1.

By means of a direct computation of the invariants of the curve Ct we see that
for all but finitely many pairs (t, u) ∈ Q2 with t 6= u the curves Ct and Cu are
isomorphic over C if and only if u = 15−t

1+t holds. Furthermore, this isomorphism
is Q–definable if and only if 2+2t is a square in Q. This implies that the family
of curves {Ct}t∈Q contains infinitely many non–Q–isomorphic curves.

Let us observe that the family of curves {Ct}t∈Q may be intrinsically defined
in the following terms: it is (up to Q–isomorphism) the only family of genus–2
curves with two independent degree–2 morphisms to a family of elliptic curves
with a distinguished rational 2–torsion point.

Indeed, following e.g. [CF96] we see that any Q–definable genus–2 curve
with a degree–2 morphism to an elliptic curve is isomorphic to a curve Cα,β of
equation y2 = x6 + αx4 + βx2 + 1 for suitable α, β ∈ Q. This implies that the
curve Cα,β admits two independent degree–2 morphisms to the elliptic curves of
equations y2 = x3 +αx2 +βx+1 and y2 = x3 +βx2 +αx+1. Let λ ∈ Q be such
that λ2 + λ + 1 = 0. Then the above elliptic curves have the same j–invariant
if and only if one of the following conditions hold: (i) β = α; (ii) β = −α − 3;
(iii) β = λα or β = −(λ+ 1)α; (iv) β = −λα+ 3(λ+ 1) or β = (λ+ 1)α− 3λ.

A direct computation shows that the unidimensional family of curves
{Cα,β}α∈Q corresponding to the cases (iii) and (iv) is Q–isomorphic to one
of the families corresponding to the cases (i) and (ii). On the other hand, the
family of curves corresponding to the case (ii) is mapped into the families of
elliptic curves {Eα,1}α∈Q, {Eα,2}α∈Q of equation y2 = x3 + αx2 + αx + 1 and
y2 = x3 + αx2 − (α + 3)x + 1 respectively. Since Eα,2 does not have any 2–
torsion point defined over Q(α) we conclude that the family {Ct}t∈Q, which
corresponds to the case (i), is characterized by the property of having two inde-
pendent degree–2 morphism to one family of elliptic curves with a distinguished
rational 2–torsion point.
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Let T denote an indeterminate over Q, let Q(T ) and Q(T ) denote the field of
rational functions in the variable T with coefficients in Q and Q respectively and
let Q(T ) denote the algebraic closure of Q(T ). First we analyze the arithmetic
behaviour of the plane curve C defined over Q(T ) of equation y2 = x6 + Tx4 +
Tx2+1. Our methods rely on the observation that the (independent) morphisms
φ1, φ2 defined by

φ1(x, y) := (x2, y), φ2(x, y) :=
(

1
x2
,
y

x3

)
,

map the curve C into the elliptic curve E defined over Q(T ) of equation y2 =
x3 + Tx2 + Tx + 1. We first characterize the structure of the group of Q(T )–
rational points of E applying Shioda’s theory of Mordell–Weil lattices. Then,
using a variant of Dem’janenko–Manin’s method [Dem68, Man69] to find the
set of rational points of a given plane curve, we obtain the following result:

Theorem 2 C
(
Q(T )

)
= {(0, 1), (0,−1)}.

Then for a given value t ∈ Q we analyze the arithmetic behaviour of the
curve Ct using Dem’janenko–Manin’s method. For this purpose, we observe
that the restriction φ1|C∩Q2 , φ2|C∩Q2 of the morphisms φ1, φ2 defined above map
the curve Ct into the elliptic curve Et defined over Q of equation

y2 = x3 + tx2 + tx+ 1.

For any value t ∈ Q such that the abelian group Et(Q) of Q–rational points of
the elliptic curve Et has rank 1 and its free part is generated by the point (0, 1),
we determine the set Ct(Q) of Q–rational points of the curve Ct. We prove the
following result:

Theorem 3 Let P ⊂ Q denote the set of all t ∈ Q such that the abelian group
Et(Q) has rank 1 and its free part is generated by the point (0, 1). Then the
following statements hold for all but finitely many t ∈ P:

(i) If there exists v ∈ Q such that t = −(v4 − v2 + 1)/v2 holds, then

Ct(Q) =
{

(0, 1), (0,−1), (v, 0), (−v, 0),
(1
v
, 0
)
,
(
− 1
v
, 0
)}

.

(ii) Otherwise, we have
Ct(Q) = {(0, 1), (0,−1)}.

Let h and ĥ denote the naive (logarithmic) height on Q and the canonical
height on a given elliptic curve Ẽ defined over Q respectively (see the next section
for precise definitions). Then the statement of Theorem 3 can be significantly
improved for values t ∈ N assuming that the following conjecture of S. Lang
holds [Lan78]:
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Conjecture B There exists a universal constant c > 0 such that for any elliptic
curve Ẽ defined over Q of discriminant ∆ and any nontorsion point P ∈ Ẽ(Q),
the estimate ĥ(P ) > c · h(∆) holds.

Let us observe that Conjecture B has been proved for elliptic curves with integral
j–invariant [Sil94]. Furthermore, [HS88] shows that the abc–conjecture implies
Conjecture B.

Under the assumption of the validity of Conjecture B we have the following
result, which shows that the condition that (0, 1) is a generator of the free part
of the group Et(Q) is not essential for t ∈ N:

Theorem 4 If Conjecture B is true there exists a universal constant C > 0
with the following property: for any t ∈ N such that the abelian group Et(Q) has
rank 1, the cardinality of the set Ct(Q) is bounded by C.

Finally, let us observe that the validity of the statement of Theorems 3 and
4 depends on either or both of the following conditions on the parameter t ∈ Q:

1. The rank of the abelian group Et(Q) is 1.

2. (0,1) is a generator of the free part of Et(Q).

In Section 5 we discuss how restrictive these conditions on the parameter t ∈ Q
are. Theorem 4 shows that our uniform upper bound on the cardinality of the
set Ct(Q) does not depend on condition 2 if Conjecture B holds. We exhibit
statistical results which seem to show that condition 1 holds with a probability
of success of approximately 1/3. Furthermore, let Q be the set of values t ∈ Q
for which Et(Q) has rank 1. Our experimental results seem to show that the
set of values t ∈ Q for which (0,1) is a generator of the free part of Et(Q) has
density 1 in Q.

The results of this article required an important computational effort. The
experimental results presented in Section 5 were done using J. Cremona’s soft-
ware mwrank [Cre] and took about two months of CPU time on a 1Ghz PC. All
the other symbolic computations were done using the Magma computer algebra
system [Mag]. All software and hardware resources were provided by the French
computation center MEDICIS [MED].

2 Basic Notions and Results

In this section we fix notations and recall some standard notions and results
about elliptic curves, heights and morphisms. Details can be found in [Kna92],
[Sil86] and [Sil94].

Let K denote any of the fields Q or Q(T ) and let OK denote its ring of
integers i.e. Z or Q[T ] respectively. For x = x1/x2 ∈ K with x1 ∈ OK ,
x2 ∈ O∗K and gcd(x1, x2) = 1, we denote by h(x) the (naive) height of x, namely
h(x) := log(max{|x1|, |x2|}) if K = Q and h(x) := max{deg(x1),deg(x2)} if
K = Q(T ).
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For a given algebraic curve C defined over K we denote by C(K) the set of
points of the curve C whose coordinates lie in K.

Let C be the K–definable affine (hyperelliptic) curve of A2(K) of equation
y2 = f(x), where f ∈ K[x] is a square–free polynomial of degree at least 3. For
any point P =

(
x(P ), y(P )

)
∈ C(K) we define the (naive) height h(P ) of P as

h(P ) := h
(
x(P )

)
. Further, if P ∈ P2(K) is the point of C at infinity we define

h(P ) := 0.
Let E be an elliptic curve defined over K and let [n] denote the morphism

of multiplication by n in E for any n ∈ Z \ {0}. For any point P ∈ E(K) we
denote by ĥ(P ) the canonical height of P , namely ĥ(P ) := lim

n→∞
4−nh([2n]P ).

For P,Q ∈ E(K) let 〈P,Q〉 denote the Néron–Tate pairing, namely 〈P,Q〉 :=
1
2

(
ĥ(P +Q)− ĥ(P )− ĥ(Q)

)
. Let us recall that 〈 , 〉 induces a positive–definite

bilinear form on E(K)/E(K)tors, where E(K)tors denote the set of K–rational
points of torsion of E .

It is well–known (see e.g. [Sil86, Theorem 9.3]) that the difference between
the canonical and the naive height is uniformly bounded on any given elliptic
curve E defined over K, i.e. there exists a universal constant cE > 0, depending
only on the elliptic curve E , such that the estimate

|ĥ(P )− h(P )| < cE (1)

holds for any P ∈ E(K). The following result will allow us to make the constant
cE explicit (see e.g. [Kna92]):

Lemma 1 Let E be an elliptic curve defined over K and let cE > 0 be a constant
satisfying the inequality |h([2]P )− 4h(P )| ≤ cE for any point P ∈ E(K). Then
the inequality |ĥ(P )− h(P )| ≤ cE/3 holds for any point P ∈ E(K).

3 Points over Q(T )

This section is devoted to the proof of Theorem 2, which determines the set of
Q(T )–rational points of the genus–2 curve C of equation y2 = x6+Tx4+Tx2+1.

As expressed in the introduction, there are two Q(T )–definable morphisms
φ1, φ2 : C → E mapping this curve to the elliptic curve E defined over Q(T ) of
equation y2 = x3 + Tx2 + Tx + 1. In order to determine the set C

(
Q(T )

)
we

first determine the structure of the group E
(
Q(T )

)
.

3.1 The structure of E over Q(T )

In order to analyze the group E
(
Q(T )

)
we need an explicit upper bound of the

difference between the canonical and naive height on E . Our next result yields
such an upper bound for a short Weierstrass form of E .

More precisely, making the change of variable x′ = x + T/3 we transform
the elliptic curve E into the elliptic curve E ′ defined over Q(T ) of equation
y2 = x′3 + a′x′ + b′, where a′ := −1/3T (T − 3) and b′ := 1/27(2T + 3)(T − 3)2.
Then we have the following result:
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Lemma 2 Let notations and assumptions be as above. Then for any rational
point P ∈ E ′(Q(T )) the inequality |ĥ(P )− h(P )| ≤ 3/4 holds.

Proof.– Following [ZS01], letMQ(T ) denote the usual set of all non–equivalent
absolute values over Q(T ), namely the set of all the absolute values vp :=
− log | |p, where either p = ∞ and |F |p := edeg(F ), or p runs over the set of
all monic prime elements of Q[T ], and |F |p := e−ordp(F ) denotes the standard
p–adic valuation. For any such absolute value v, let

µv := min{ 1
2v(a′), 1

3v(b ′)}, µ :=−
∑

v∈MQ(T )

µv,

µl :=
1
2

∑
v∈MQ(T )

min{0, µv}, µu :=
1
2

∑
v∈MQ(T )

max{0, µv}.

Then [ZS01, Theorem and Proposition 4] shows that −µ−µu ≤ ĥ(P )−h(P ) ≤
−µl holds for any P ∈ E ′(Q(T )).

In our case, the only nonzero values of µv are obtained at p = ∞ and
p = T − 3, namely µ∞ = −1 and µT−3 = 1/2. This shows that µ = 1/2,
µl = −1/2 and µu = 1/4 hold, and then −3/4 ≤ ĥ(P ) − h(P ) ≤ 1/2. This
proves the lemma.

Now we determine the structure of the group of Q(T )–rational points of
the elliptic curve E . For this purpose, we are going to apply Shioda’s theory
of Mordell–Weil lattices of elliptic surfaces (cf. [Shi90, OS91, Shi91]), which
actually allows us to describe the larger group E(Q(T )).

Following [Shi90], associated to the elliptic curve E we have an elliptic surface
f : S → P

1
(
Q

)
(the Kodaira–Néron model of E/Q(T )) whose generic fiber is

E . For a given v ∈ P1(Q) let Fv := f−1(v) denote the fiber over v, and let R
denote the set of reducible fibers Fv. For any v ∈ R, let

Fv = Θv,0 +
mv−1∑
i=1

µv,iΘv,i,

where Θv,i (0 ≤ i ≤ mv−1) are the irreducible components of Fv occurring with
multiplicity µv,i and Θv,0 is the unique component meeting the zero section.

The global sections of S can be naturally identified with the points of
E
(
Q(T )

)
, namely a given section s : P1

(
Q

)
→ S is identified with its restric-

tion to the generic fiber E , which is a Q(T )–rational point of E . For a given
point P ∈ E

(
Q(T )

)
let (P ) denote the prime divisor which is the image of the

section P : P1
(
Q

)
→ S. With this identification Shioda shows that E

(
Q(T )

)
is isomorphic to NS(S)/T , where NS(S) denotes the Néron–Severi group of S
(the group of divisors of S modulo algebraic equivalence) and T denotes the
subgroup of NS(S) generated by the zero section (O) and all the irreducible
components of fibers. In [OS91] there is a complete classification of the possible
structures of the group E

(
Q(T )

)
in terms of the root lattices associated with

the reducible fibers Fv.
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There exists a height pairing 〈 , 〉 : E
(
Q(T )

)
× E

(
Q(T )

)
→ Q, which is

obtained by embedding E
(
Q(T )

)
into NS(S)⊗Q. Let us denote by φ this em-

bedding. Then we have kerφ = E
(
Q(T )

)
tors

, and using the intersection number
as a pairing in NS(S) the height pairing is defined by 〈P,Q〉 := −

(
φ(P ), φ(Q)

)
.

In case that the elliptic surface is rational we have

〈P, P 〉 = 2 +
(
(P ), O

)
−
∑
v∈R

contrv(P ), (2)

where the possible terms contrv(P ) are described in [Shi90] in terms of the root
lattice associated to the fiber Fv.

Proposition 1 The rank of the abelian group E
(
Q(T )

)
is one and its free part

is generated by the point G := (0, 1).

Proof.– Let us observe that the singular fibers of S are given at v = −1, 3,∞.
By applying Tate’s algorithm for the determination of the reduction types of
the fiber Fv (see [Tat75, Sil94]) we see that the special fibers at v = −1, 3,∞
are of type I1, III, I∗2 respectively. This implies m−1 = 1, m3 = 2 and m∞ = 7
respectively. Therefore, only v = 3,∞ correspond to reducible fibers. Applying
the classification of [OS91] we conclude that E

(
Q(T )

) ∼= A∗1 ⊕ Z/2Z holds, i.e.
E
(
Q(T )

)
has rank 1 and E

(
Q(T )

)
tors

= Z/2Z.
Since (−1, 0) is a nontrivial torsion point of E

(
Q(T )

)
we conclude that

E
(
Q(T )

)
tors

= 〈(−1, 0)〉 holds.
Let us observe that the elliptic surface associated to the elliptic curve E is

rational. Therefore, [Shi90, Theorems 10.8 and 10.10] shows that the group
E
(
Q(T )

)
is generated by the points P =

(
x(P ), y(P )

)
satisfying

(
(P ), O

)
= 0,

and hence of the form x(P ) = gT 2 + aT + b, y(P ) = hT 3 + cT 2 + dT + e.
From [Shi90, Lemma 5.1] we see thatA∗1 has a basis consisting of a vector P of

(minimal) norm 〈P, P 〉 = 1/2. Taking into account that contr∞(P ) ∈ {0, 1, 3/2}
and contr3(P ) ∈ {0, 1/2} holds (see [Shi90]), from formula (2) we conclude that
contr∞(P ) 6= 0 holds. Arguing as in [Shi91a] we see that this implies that P
must intersect the singular fiber F∞ (which is a cusp) at the singular point,
namely at (0, 0). We conclude that g = h = 0 holds.

Replacing x(P ) = aT +b in the right–hand term of the equation defining the
elliptic curve E we see that the term pa,b(T ) := (aT +b)3 +T (aT +b)2 +T (aT +
b)+1 is not a square in Q[T ] for a 6= 0 because it has odd degree. Hence we have
a = 0. Furthermore, for b 6= 0,−1 the polynomial p0,b(T ) = T (b2 + b) + b3 + 1
is not a square. Since b = −1 yields a torsion point we conclude that a = b = 0
is the only possible choice for x(P ). This shows that G = (0,±1) is a generator
of the free part of E(Q(T )).

3.2 The structure of C over Q(T ): Proof of Theorem 2

In this section we prove the following result:
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Theorem 2 Let C be the genus–2 plane curve C defined over Q(T ) of equation
y2 = x6 + Tx4 + Tx2 + 1. Then we have C

(
Q(T )

)
= {(0, 1), (0,−1)}.

For this purpose we are going to use a simplified version [Kul99] of the
Dem’janenko–Manin’s method [Dem68, Man69] for computing the set of rational
points of a given genus–2 curve.
Proof.– Let us recall that we have two morphisms φ1, φ2 : C → E mapping
the curve C into the elliptic curve E , namely φ1(x, y) := (x2, y) and φ2(x, y) :=
(1/x2, y/x3).

As in the proof of Lemma 2 we make the change of variable x′ = x + T/3,
which transforms the elliptic curve E into the elliptic curve E ′ of equation y2 =
x′3 + a′x′ + b′, where a′ := −1/3T (T − 3) and b′ := 1/27(2T + 3)(T − 3)2. We
denote by C′ the genus–2 curve defined over Q(T ) obtained from C under this
change of variables and denote by φ′1, φ

′
2 : C′ → E ′ the corresponding morphisms,

namely
φ′1(x′, y) := ((x′ − T/3)2 + T/3, y),
φ′2(x′, y) :=

(
(x′ − T/3)−2 + T/3, y(x′ − T/3)−3

)
.

We claim that for any P ∈ C′
(
Q(T )

)
the following inequality holds:

|h(φ′1(P ))− h(φ′2(P ))| ≤ 1. (3)

Indeed, let P be an arbitrary element of C′
(
Q(T )

)
and let x′(P ) = N/D be a

reduced representation of x′(P ). Then the abscissa of φ′1(P ) is ((3N −DT )2 +
3TD2)/(9D2). Observe that

(
(3N −DT )2 +3TD2

)
/(9D2) is a reduced fraction

and hence h(φ′1(P )) = max{deg((3N −DT )2 + 3TD2),deg(9D2)} holds. Since
the leading coefficients of (3N −DT )2 and 3TD2 are positive rationals we con-
clude that deg

(
(3N−DT )2 +3TD2)

)
= max{deg

(
(3N−DT )2

)
,deg(3TD2)} >

deg(9D2) holds and then h
(
φ′1(P )

)
= max{deg

(
(3N − DT )2

)
,deg(3TD2)}.

Similarly, we see that the abscissa of φ′2(P ) is (27D2 +T (3N −DT )2)/(3(3N −
DT )2) and h

(
φ′2(P )

)
= max{deg(27D2),deg

(
T (3N −DT )2

)
} holds.

Let a := deg(D), b := deg(3N −DT ). Then we have h(φ′1(P )) = max{2a+
1, 2b} and h(φ′2(P )) = max{2a, 2b+1}, which immediately implies estimate (3).
This completes the proof of our claim.

Proposition 1 asserts that the abelian group E ′
(
Q(T )

)
has rank 1 and G′ :=

(T/3, 1) is a generator of its free part. Then for any point P ∈ C′
(
Q(T )

)
there

exist integers n, m and points T1, T2 ∈ E ′
(
Q(T )

)
tors

satisfying the identities
φ′1(P ) = [n]G′ + T1 and φ′2(P ) = [m]G′ + T2. Then we have

ĥ(φ′1(P )) = n2ĥ(G′), ĥ(φ′2(P )) = m2ĥ(G′). (4)

Hence, combining identity (3) and Lemma 2 we obtain the following estimate:

|ĥ
(
φ′1(P )

)
− ĥ
(
φ′2(P )

)
| ≤ |ĥ

(
φ′1(P )

)
− h
(
φ′1(P )

)
|+ |ĥ

(
φ′2(P )

)
− h
(
φ′2(P )

)
|

+|h
(
φ′1(P )

)
− h
(
φ′2(P )

)
|

≤ 2 · 3/4 + 1 = 5/2.
(5)
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Let us suppose first that φ′1(P ) ± φ′2(P ) /∈ E ′
(
Q(T )

)
tors

holds. Then m2 −
n2 6= 0 and equations (4) and (5) imply ĥ(G′)|m2 − n2| < 5/2. Taking into
account that h([5]G′) = 15 holds, from Lemma 2 we obtain the estimate ĥ(G′) ≥
1/2. Therefore, we have min{|n|, |m|} < 5/2 and hence

n,m ∈ {0,±1,±2}. (6)

A direct computation shows that the only Q(T )–rational points of C′ satis-
fying the condition φ′1(P ) ± φ′2(P ) /∈ E ′

(
Q(T )

)
tors

are {(T/3, 1), (T/3,−1)}.
We conclude that the only Q(T )–rational points of C satisfying the condition
φ1(P )± φ2(P ) /∈ E

(
Q(T )

)
tors

are {(0, 1), (0,−1)}.
On the other hand, suppose now that φ1(P ) ± φ2(P ) ∈ E

(
Q(T )

)
tors

=
{OE , (−1, 0)} is satisfied, where OE denotes the zero element of the group
E
(
Q(T )

)
. We have that (φ1 +φ2)(x, y) =

(
f+(x), yg+(x)

)
and (φ1−φ2)(x, y) =(

f−(x), yg−(x)
)
, where

f+(x) =
−2x3 − 3x2 − 2x+ Tx2

(x4 + 2x3 + 2x2 + 2x+ 1)
, f−(x) =

2x3 − 3x2 + 2x+ Tx2

(x4 − 2x3 + 2x2 − 2x+ 1)
.

From the expression of f+ and f− we easily conclude that there do not exist
points P ∈ C

(
Q(T )

)
for which φ1(P )±φ2(P ) ∈ {OE , (−1, 0)} holds. Therefore,

the image of the morphisms φ1, φ2 is contained in the set {(0, 1), (0,−1)}. In
particular we see that x(P ) = 0 holds for any point P ∈ C

(
Q(T )

)
. This shows

that C
(
Q(T )

)
= {(0, 1), (0,−1)} and completes the proof of Theorem 2.

4 Points over Q

Let t ∈ Q and let Ct be the curve of equation y2 = x6 + tx4 + tx2 + 1. The
purpose of this section is to analyze the arithmetic structure of the curve Ct.
For this purpose we first determine the arithmetic structure of the elliptic curve
Et of equation y2 = x3 + tx2 + tx+ 1.

4.1 Explicit bounds

In this section we obtain an explicit upper bound on the height h(P ) of any
point P ∈ Et(Q) in terms of the height of t. For this purpose, we first obtain
an explicit upper bound on the difference between the naive and the canonical
height on Et.

Let us observe that general estimates on the difference between the naive and
the canonical height were already given in e.g. [Sil90] and [ZS01]. Nevertheless
the following explicit estimate gives better bounds in this case, which allows us
to significantly reduce the subsequent computational effort.
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Lemma 3 Let t ∈ Q. Then for any Q–rational point P of the elliptic curve Et
the following estimate holds:

|ĥ(P )− h(P )| ≤ 5h(t) + log(1314)
3

.

Proof.– Let t := b/a and let P be a point of Eb/a(Q). Let us suppose first
that P is not a 2–torsion point. This implies that x(P ) does not cancel the
2–division polynomial x3 + (b/a)x2 + (b/a)x+ 1. Then the x–coordinate of the
point [2]P is given by the expression

x([2]P ) =
a2x(P )4 − 2abx(P )2 − 8a2x(P )− 4ab+ b2

4a
(
ax(P )3 + bx(P )2 + bx(P ) + a

) . (7)

Let us write x(P ) := p/q, where p and q are coprime integers. Then we have
h
(
P
)

= max{log |p|, log |q|}. Rewriting the identity (7) in terms of p and q we
obtain

x([2]P ) =
a2p4 − 2abp2q2 − 8a2pq3 + (b2 − 4ab)q4

4qa(ap3 + bp2q + bpq2 + aq3)
.

Let N := a2p4 − 2abp2q2 − 8a2pq3 + (b2 − 4ab)q4 and D := 4qa(ap3 + bp2q +
bpq2 + aq3) denote the numerator and denominator of the above expression.
Then we have the estimates

|N | ≤ (|a|2 + 2|ab|+ 8|a|2 + |b2 − 4ab|) max{|p|, |q|}4
≤ 16 max{|a|, |b|}2 max{|p|, |q|}4,

|D| ≤ 4(|a|2 + |ba|+ |ba|+ |a|2) max{|p|, |q|}4
≤ 16 max{|a|, |b|}2 max{|p|, |q|}4.

This yields

h
(
x([2]P )

)
≤ 4h

(
x(P )

)
+ 2 max{log |a|, log |b|}+ log 16. (8)

Following the proof of [Kna92, Proposition 4.12], let CN , CD, C ′N , C ′D be inte-
gers of minimal height satisfying the Bézout identities

CNN + CDD = Ca3p7, C ′NN + C ′DD = Cq7, (9)

where C := 108a4 − 72a2b2 + 32ab3 − 4b4. By a direct computation we obtain
the following estimates:

|CN | ≤ 664 max{|a|, |b|}5 max{|p|, |q|}3,
|CD| ≤ 650 max{|a|, |b|}5 max{|p|, |q|}3,
|C ′N | ≤ 40 max{|a|, |b|}2 max{|p|, |q|}3,
|C ′D| ≤ 38 max{|a|, |b|}2 max{|p|, |q|}3.

This implies

|p|7 ≤ 1314 max{|a|, |b|}5 max{|p|, |q|}3 max{|N |, |D|}
|C||a3|

, (10)

|q|7 ≤ 78 max{|a|, |b|}2 max{|p|, |q|}3 max{|N |, |D|}
|C|

. (11)
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Now we are going to express these estimates in terms of the height of N/D.
Let g be the gcd of N and D. Then (9) shows that g divides Ca3p7 and Cq7,
i.e. g divides Ca3. Let n := N/g and d := D/g. Then we have

N = ng ≤ nCa3, D = dg ≤ dCa3.

Combining these estimates with inequalities (10) and (11) we obtain

|p|7 ≤ 1314 max{|a|, |b|}5 max{|p|, |q|}3 max{|n|, |d|},
|q|7 ≤ 78 max{|a|, |b|}5 max{|p|, |q|}3 max{|n|, |d|},

max{|p|7, |q|7} ≤ 1314 max{|a|, |b|}5 max{|p|, |q|}3 max{|n|, |d|}.
(12)

Since n and d are coprime, h
(
x([2]P )

)
=h(N/D) =h(n/d) =max{log|n|, log|d|}.

Taking logarithms in inequality (12) we obtain

4h
(
x(P )

)
≤ h

(
x([2]P )

)
+ 5 max{log |a|, log |b|}+ log(1314).

Combining this estimate with inequality (8) we deduce the following estimate

|h([2]P )− 4h(P )| ≤ 5 max{log |a|, log |b|}+ log(1314). (13)

Let now P ∈ E(Q) be a 2–torsion point. Then x(P ) is a root of the
polynomial x3 + (b/a)x2 + (b/a)x + 1. We easily conclude that h

(
x(P )

)
≤

max{log |a|, log |b|}+ 2. This implies that estimate (13) also holds in this case.
Finally, combining estimate (13) and Lemma 1 finishes the proof of the

lemma.

In order to find to set of Q–rational points of the curve Ct we are going to
follow Dem’janenko–Manin’s method [Dem68, Man69, Cas68]. For this purpose
we consider the morphisms φ1, φ2 : Ct → Et defined by

φ1(x, y) := (x2, y), φ2(x, y) :=
(

1
x2
,
y

x3

)
.

The application of Dem’janenko –Manin’s method requires an estimate on the
difference h(φ1(P ) +φ2(P ))− 4h(P ) for any P ∈ Ct(Q), which is the content of
our next result.

Lemma 4 With notations and assumptions as above, for any point P ∈ Ct(Q)
the following inequality holds:

|h
(
φ1(P ) + φ2(P )

)
− 4h(P )| ≤ 2h(t) + log(62).

Proof.– Let t := b/a and let P :=
(
x(P ), y(P )

)
be a Q–rational point of the

curve Ct. Suppose first that x(P ) = −1. Then φ1(P ) = −φ2(P ) and h(P ) = 0.
We conclude that the statement of Lemma 4 holds in this case.

Suppose now that x(P ) 6= −1 holds. Then we have

x
(
φ1(P ) + φ2(P )

)
=

−2ax(P )3 + (b− 3a)x(P )2 − 2ax(P )
ax(P )4 + 2ax(P )3 + 2ax(P )2 + 2ax(P ) + a

. (14)
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Let us write x(P ) = p/q, where p and q are coprime integers. Rewriting identity
(14) in terms of p and q we obtain

x
(
φ1(P ) + φ2(P )

)
=

−2ap3q + (b− 3a)p2q2 − 2apq3

ap4 + 2ap3q + 2ap2q2 + 2apq3 + aq4
.

Let N := −2ap3q + (b − 3a)p2q2 − 2apq3 and D := ap4 + 2ap3q + 2ap2q2 +
2apq3 + aq4. Then x

(
φ1(P ) + φ2(P )

)
= N/D and we have the estimates

|N | ≤ (2|a|+ |b− 3a|+ 2|a|) max{|p|, |q|}4

≤ 8 max{|a|, |b|}max{|p|, |q|}4,
|D| ≤ (|a|+ 2|a|+ 2|a|+ 2|a|+ |a|) max{|p|, |q|}4

≤ 8 max{|a|, |b|}max{|p|, |q|}4.

This implies

h
(
φ1(P ) + φ2(P )

)
≤ 4h(P ) + max{log |a|, log |b|}+ log 8. (15)

In order to prove the converse inequality, let CN , CD, C ′N , C ′D be integers of
minimal height satisfying the Bézout identities:

CNN + CDD = Cp7, C ′NN + C ′DD = Cq7,

where C := 3a3 + 2a2b− ab2. By a direct computation we obtain the estimates

|CN | ≤ 28 max{|a|, |b|}2 max{|p|, |q|}3,
|CD| ≤ 34 max{|a|, |b|}2 max{|p|, |q|}3,
|C ′N | ≤ 28 max{|a|, |b|}2 max{|p|, |q|}3,
|C ′D| ≤ 34 max{|a|, |b|}2 max{|p|, |q|}3.

Therefore we have

max{|p|7, |q|7} ≤ 62 max{|a|, |b|}2 max{|p|, |q|}3 max{|N |, |D|}
C

.

Let g be the gcd of N and D. Then g divides Cp7 and Cq7. Since p and q
are coprime, we conclude that g divides C. Let n, d be the integers such that
N = ng and D = dg. Then we have

max{|p|7, |q|7} ≤ 62 max{|a|, |b|}2 max{|p|, |q|}3 max{|n|, |d|}.

Since n and d are coprime we see that h
(
x
(
φ1(P ) + φ2(P )

))
= h(N/D) =

max{|n|, |d|} holds. Therefore, taking logarithms in the previous inequality we
deduce the following estimate:

4h(P ) ≤ h
(
φ1(P ) + φ2(P )

)
+ 2 max log{|a|, |b|}+ log(62).

Combining this estimate with (15) finishes the proof of the lemma.

Now we are ready to obtain an estimate on the height of the points of Ct(Q).
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Theorem 5 Let t be a rational number such that the elliptic curve Et has rank
1 over Q. Then for any point P ∈ Ct(Q) the following estimate holds:

h(P ) ≤ 7h(t) + log(81468)
2

.

Proof.– Let φ1, φ2 : Ct → Et be the morphisms φ1(x, y) := (x2, y) and
φ2(x, y) := (1/x2, y/x3) previously introduced. Let P be a fixed point of Ct(Q).
Following the Dem’janenko–Manin’s method we introduce the matrix Ĥ ∈ C2×2

defined in the following way:

Ĥ :=


ĥ
(
[2]φ1(P )

)
− 2ĥ

(
φ1(P )

)
ĥ
(
φ1(P ) + φ2(P )

)
−

−ĥ
(
φ1(P )

)
− ĥ
(
φ2(P )

)
ĥ
(
φ1(P ) + φ2(P )

)
− ĥ

(
[2]φ2(P )

)
− 2ĥ(φ2(P ))

−ĥ
(
φ1(P )

)
− ĥ
(
φ2(P )

)

 .

Since the elliptic curve Et has rank 1 we have that the points φ1(P ), φ2(P ) ∈
Et(Q) are Z–linear dependent. Therefore, from the positive–definiteness of the
Néron–Tate pairing on Et(Q)/Et(Q)tors we conclude that the matrix Ĥ is singu-
lar. Let us observe that Ĥ can be rewritten as:

Ĥ :=


2ĥ
(
φ1(P )

)
ĥ
(
φ1(P ) + φ2(P )

)
−

−ĥ
(
φ1(P )

)
− ĥ
(
φ2(P )

)
ĥ
(
φ1(P ) + φ2(P )

)
− 2ĥ(φ2(P ))

−ĥ
(
φ1(P )

)
− ĥ
(
φ2(P )

)

 .

Let H ∈ C2×2 be the following matrix:

H :=


2h
(
φ1(P )

)
h
(
φ1(P ) + φ2(P )

)
−

−h
(
φ1(P )

)
− h
(
φ2(P )

)
h
(
φ1(P ) + φ2(P )

)
− 2h(φ2(P ))

−h
(
φ1(P )

)
− h
(
φ2(P )

)

 .

From Lemma 3 we have the estimates:

|h
(
φi(P )

)
− ĥ
(
φi(P )

)
| <

5h(t) + log(1314)
3

, (i = 1, 2)

|h
(
φ1(P ) + φ2(P )

)
− ĥ
(
φ1(P ) + φ2(P )

)
| <

5h(t) + log(1314)
3

.

We conclude that the entries of the matrix H − Ĥ are real numbers of absolute
value bounded by 5h(t) + log(1314).

From the definition of φ1, φ2 we see that h
(
φ1(P )

)
= h

(
φ2(P )

)
= 2h(P )

holds. We deduce that H can be expressed as H = K + 4h(P )I, where K is
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the antidiagonal matrix whose nonzero entries are h
(
φ1(P ) + φ2(P )

)
− 4h(P )

and I denotes the (2 × 2)–identity matrix. Applying Lemma 4 we conclude
that the entries of the matrix K are real numbers of absolute value bounded by
2h(t) + log(62).

Let L := Ĥ − H + K. Then the entries of L are real numbers of absolute
value bounded by 7h(t) + log(81468) and the matrix Ĥ can be written as Ĥ =
L+ 4h(P )I.

For a given matrix M := (mi,j)1≤i,j≤2 ∈ C2×2, let us denote by ‖M‖ the
standard ∞–matrix norm of M . We have ‖M‖ ≤ 2 max{|mi,j | : 1 ≤ i, j ≤ 2}.
Assuming without loss of generality that h(P ) 6= 0, we see that the matrix
(4h(P ))−1L + I =

(
4h(P )

)−1
Ĥ is singular. This implies ‖(4h(P ))−1L‖ ≥ 1

(see e.g. [HJ85]). Since the entries of the matrix (4h(P ))−1L are real numbers
of absolute value bounded by (4h(P ))−1

(
7h(t) + log(81468)

)
we deduce the

estimate h(P ) ≤
(
7h(t) + log(81468)

)
/2.

From Theorem 5 we shall deduce our first uniform upper bound on the
number of rational points of the family of curves {Ct}t∈Q. For this purpose, we
need the following technical result:

Lemma 5 Let G := (0, 1) ∈ Et(Q). Then the following estimate holds:

|h([2]G)− 2h(t)| ≤ log(36).

Proof.– Let t := b/a, with a, b ∈ Z and gcd(a, b) = 1. The x–coordinate of
the point [2]G is given by x([2]G) = (−4ab+ b2)/4a2. Let N := −4ab+ b2 and
D := 4a2. Then we have |N | ≤ 5 max{|a|, |b|}2 and |D| ≤ 4 max{|a|, |b|}2, and
thus

h([2]P ) ≤ 2 max{log |a|, log |b|}+ log(5). (16)

For the converse inequality, let CN , CD, C ′N , C ′D be integers of minimal
height satisfying the Bézout identities

CNN + CDD = 4a2, C ′NN + C ′DD = b3.

By a direct computation we obtain the estimates

4|a|2 ≤ |D|, |b|3 ≤ (5 + 4) max{|a|, |b|}max{|N |, |D|}.

This implies that max{|a|, |b|}2 ≤ 9 max{|N |, |D|} holds. Therefore, we have

2 max{log |a|, log |b|} ≤ log(9) + max{log |D|, log |N |}.

Let g be the gcd of N and D and let n := N/g, d := D/g. Then g divides 4a2

and b3, and hence divides 4. This implies

2 max{log |a|, log |b|} ≤ log(36) + max{log |d|, log |n|}.
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Since n and d are coprime, the above inequality may be rewritten as

2 max{log |a|, log |b|} ≤ h([2]P ) + log(36).

Combining this estimate with estimate (16) completes the proof of the lemma.

Let P ⊂ Q be the set of values t for which the elliptic curve Et has rank 1
over Q and G := (0, 1) is a generator of the free part of the group Et(Q). In
Section 5 we discuss in a statistical sense how many natural numbers belong to
the set P. We have the following result concerning the family of curves {Ct}t∈P :

Corollary 1 There exists N ∈ N such that for any t ∈ P we have

#Ct(Q) ≤ N.

Proof.– Let t ∈ P, let G := (0, 1) ∈ Et and let us fix a point P ∈ Ct(Q). Let
φ1 : Ct → Et be the morphism defined by φ1(x, y) := (x2, y). Then there exists
n ∈ N and T ∈ Et(Q)tors such that φ1(P ) = [n]G + T holds. Then we have
ĥ(φ1(P )) = n2ĥ(G).

First we obtain a lower bound for the quantity ĥ(G). From Lemma 3 we
have the estimate

ĥ([2]G) ≥ h([2]G)− 5
3
h(t)− log(1314)

3
.

Lemma 5 shows that h([2]G) ≥ 2h(t) − log(36) holds. Therefore, taking into
account the identity 4ĥ(G) = ĥ([2]G) and the estimate log(61305984) < 17.94
we obtain the lower bound

ĥ(G) ≥ h(t)− 17.94
12

. (17)

We now estimate the quantity ĥ
(
φ1(P )

)
. On one hand, estimate (13) implies

ĥ
(
φ1(P )

)
− h
(
φ1(P )

)
≤ 5h(t)/3 + log(1314)/3. On the other hand, Theorem 5

yields the estimate h
(
φ1(P )

)
= 2h(P ) ≤ 7h(t) + log(81468). Putting together

these estimates we obtain

ĥ(φ1(P )) ≤ 26
3
h(t) + 13.71. (18)

Let t ∈ P satisfy the condition h(t) > 18.94. Then estimate (17) implies
ĥ(G)−1 ≤ 12

(
h(t)− 17.94

)−1, from which we deduce

n2 ≤ 104
h(t) + 1.59
h(t)− 17.94

. (19)

Since the right–hand side of the last estimate is a bounded quantity for any
t ∈ Q with h(t) > 18.94, we conclude that the cardinality of the set Ct(Q) is
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uniformly bounded in the set of values t ∈ P with h(t) > 18.94. On the other
hand, the set of values t ∈ Q such that h(t) ≤ 18.94 holds is finite. Hence the
cardinality of the set Ct(Q) is uniformly bounded in the set of values t ∈ Q with
h(t) ≤ 18.94. This concludes the proof of the corollary.

Remark 1 From (19) we easily conclude that for all but finitely many t ∈ P
the estimate n ≤ 10 holds.

4.2 The structure of Ct(Q)

In this section we prove Theorem 3, which determines the arithmetic structure
of the curve Ct for all but finitely many values t ∈ P, where P is the set of
rational numbers t for which the elliptic curve Et has rank 1 and (0, 1) is a
generator of the free part of the group Et(Q).

4.2.1 The torsion subgroup of Et(Q)

In order to determine the group Ct(Q) we first describe the torsion group
Et(Q)tors. This is the subject of the following proposition.

Proposition 2 For all but finitely many t ∈ Q the following assertions hold:

(i) if there exists u ∈ Q\{0, 1,−1} such that t = −(u2 − u+ 1)/u holds, then

Et(Q)tors =
{
OEt , (−1, 0), (u, 0),

( 1
u
, 0
)}

,

all points having order 2.

(ii) Otherwise, we have

Et(Q)tors := {OEt , (−1, 0)}.

Proof.– Mazur’s Theorem [Maz78] asserts that the torsion subgroup of Et(Q)
is isomorphic to one of following groups:

• Z/mZ, with 1 ≤ m ≤ 10 or m = 12;

• Z/2Z× Z/2mZ, with 1 ≤ m ≤ 4.

The point P0 := (−1, 0) ∈ Et(Q) is a torsion point of order 2. This restricts the
choices for the torsion subgroup of Et(Q) to Z/mZ with m ∈ {2, 4, 6, 8, 10, 12}
and Z/2Z× Z/mZ with m ∈ {1, 2, 3, 4}. The following lemma restricts further
the possible torsion subgroups.

Lemma 6 For all but finitely many t ∈ Q the torsion subgroup Et(Q)tors of the
group Et(Q) is isomorphic to Z/2Z or Z/2Z× Z/2Z.
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Proof.– Suppose that the torsion group Et(Q)tors is not isomorphic to one of
the groups Z/2Z or Z/2Z×Z/2Z. Then, the above remarks show that Et(Q)tors

has necessarily elements of order 3, 4 or 5. Let i be any of the values 3, 4 or 5.
We claim that the set of values t ∈ Q such that there exists a torsion point of
Et(Q) of order i is finite.

We sketch the strategy of the proof of the general case and detail the com-
putations in the case i = 3.

Let P :=
(
x(P ), y(P )

)
be a point in Et(Q)tors. Then P is an i–torsion point if

and only if the i–torsion polynomial pi(t, x) of the elliptic curve Et(Q) vanishes
in x(P ). A direct computation shows that for any i ∈ {3, 4, 5} the equation
pi(t, x) = 0 defines genus–0 curve C(i). Let x = v

(i)
1 (u), t := v

(i)
2 (u) be a

parametrization of the curve C(i), where v(i)
1 , v

(i)
2 are suitable rational functions

of Q(u). Replacing this parametrization in the equation y2 = x3 + tx2 + tx+ 1
of the elliptic curve Et we obtain a plane curve y2 = v(i)(u) which is an elliptic
curve of rank 0. This implies that there exists a finite set of Q–rational points
(u, y) satisfying the equation y2 = v(i)(u) and thus a finite set of Q–rational
points (t, x) satisfying the equation pi(t, x) = 0. Therefore the set of points(
x(P ), y(P ), t

)
∈ Q3 such that P :=

(
x(P ), y(P )

)
is a torsion point of order i of

the curve Et is finite. We conclude that set of values t ∈ Q for which the curve
Et has torsion points of order i is finite.

Now we detail the computations for the case i := 3. In this case the 3–
division polynomial is p3(t, x) := 3x4 +4tx3 +6tx2 +12x− t2 +4t. The equation
p3(x, t) = 0 defines a plane curve of genus 0 which can be parametrized as
follows:

x =
(−4 + 3u)(u+ 4)

16u
, t = − (−4 + 3u)(3u3 − 12u2 + 144u− 64)

64u3
.

Replacing this parametrization in the equation y2 = x3 + tx2 + tx+ 1 defining
the elliptic curve Et we obtain the plane curve

y2 =
(u− 4)2(3u2 + 24u− 16)3

16384u5
. (20)

Making the change of variables y = (u− 4)(3u2 + 24u− 16)Y/128u3 we see that
the non-zero rational solutions of (20) are in bijection with the rational solutions
of the curve Y 2 = 3u3 + 24u2 − 16u. Taking into account that this is an elliptic
of rank 0 over Q finishes the proof of our assertion in the case i = 3.

Now we can complete the proof of Proposition 2. By Lemma 6 for all but a
finite set of values t ∈ Q the torsion group Et(Q)tors is isomorphic to one of the
groups Z/2Z and Z/2Z × Z/2Z. Let us fix a value t ∈ Q such that the group
Et(Q)tors is isomorphic to the group Z/2Z × Z/2Z. Then Et(Q)tors has three
distinct elements of order 2, whose x–coordinates are three distinct rational
roots of the polynomial

p2,t(x) := x3 + tx2 + tx+ 1 = (x+ 1)(x2 + tx− x+ 1).
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In such a case, there exists a root u ∈ Q \ {0,−1, 1} of the polynomial p2,t and
hence t = −(u2 − u + 1)/u holds (observe that the values u = ±1 make the
curve Et singular). We easily conclude that the torsion subgroup of Et(Q) is

Et(Q)tors =
{
OEt , (−1, 0), (u, 0),

( 1
u
, 0
)}

.

On the other hand, if the group Et(Q)tors is isomorphic to Z/2Z, taking
into account that (−1, 0) is a nontrivial torsion point of Et(Q) we conclude that
Et(Q)tors = {OEt , (−1, 0)} holds. This completes the proof of Proposition 2.

4.2.2 The set Ct(Q)

Now we are able to prove Theorem 3, which determines the set of Q–rational
points of the curve Ct for all but finitely many values t ∈ P.
Theorem 3 For all but finitely many values t ∈ P the following assertions
hold:

(i) if there exists v ∈ Q such that t = −(v4 − v2 + 1)/v2 holds, then

Ct(Q) =
{

(0, 1), (0,−1), (v, 0), (−v, 0),
(1
v
, 0
)
,
(
− 1
v
, 0
)}

.

(ii) Otherwise, we have
Ct(Q) = {(0, 1), (0,−1)}.

Proof.– Let t ∈ Q and let as before φ1, φ2 : Ct → Et denote the morphisms
defined by φ1(x, y) := (x2, y) and φ2(x, y) := (1/x2, y/x3). Observe that for any
point P =

(
x(P ), y(P )

)
of Ct(Q) we have φ1(P ) ∈ Et(Q) and φ2(P ) ∈ Et(Q).

Corollary 1 and Remark 1 show that for all but a finite set of values t ∈ P
the points φ1(P ) and φ2(P ) can be expressed as φ1(P ) = [n1](0, 1) + T1 and
φ2(P ) = [n2](0, 1) + T2, with |n1|, |n2| ≤ 10 and T1, T2 ∈ Et(Q)tors.

Let us fix for the moment an integer n and a torsion point T := (t1, t2) of
Et. Then the x–coordinate of the point [n](0, 1) + T ∈ Et(Q) can be expressed
as a rational function in the value t, which we denote by Fn,T (t). We shall see
that for any point P ∈ Ct(Q) the definition of the morphisms φ1, φ2 imply that
there exist T1, T2 ∈ Et(Q)tors such that the condition Fn1,T1(t)Fn2,T2(t) = 1 is
satisfied. The existence of this algebraic condition on the value t is a key point
of the proof of Theorem 3.
Proof of Theorem 3(i). Let t ∈ P and let us suppose that there exists v ∈ Q
such that t = −(v4 − v2 + 1)/v2. Letting u := v2 we see that there exists
u ∈ Q \ {0, 1,−1} for which t = −(u2 − u + 1)/u holds. Then Proposi-
tion 2(i) shows that the torsion subgroup of Et(Q) is given by Et(Q)tors ={
OEt , (−1, 0), (u, 0),

(
1
u , 0
)}

=: {T1, T2, T3, T4}, all points having order 2. Then
any point T ∈ Et(Q)tors has order at most 2 and we have that for any n ∈ Z the
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x–coordinates of the points [n](0, 1) +T and [−n](0, 1) +T agree. Therefore, in
order to determine which are the possible x–coordinates of the image of a point
P ∈ Ct(Q) we may assume without loss of generality that n ≥ 0 holds.

For 1 ≤ i ≤ 4 and 0 ≤ n ≤ 10, let Fn,i(u) denote the rational function which
represents the x–coordinate of the point [n](0, 1) + Ti. Let P :=

(
x(P ), y(P )

)
be a point of Ct(Q). Then Proposition 2(i) and Remark 1 show that for all but
finitely many values t ∈ P we have that x(P ) and u satisfy the condition:

x(P )2 = Fn1,j1(u),
1

x(P )2
= Fn2,j2(u), (21)

with 0 ≤ n1, n2 ≤ 10 and j1, j2 ∈ {1, 2, 3, 4}. Let us observe that the cases
n1 = 0, j1 = 1 and n2 = 0, j2 = 1 cannot arise because the point OEt = [0](0, 1)
does not belong to the affine part of the curve Et. On the other hand, the cases
n1 = j1 = 1 and n2 = j2 = 1 yield the point (0, 1) = [1](0, 1), which is the image
of the points (0,±1) ∈ Ct(Q). Finally, the cases n1 = 0, j1 = 2 and n2 = 0, j2 = 2
cannot arise because the x–coordinate of the point [0](0, 1) + (−1, 0) = (−1, 0)
is not a square in Q. In all the remaining cases (21) shows that the equation

Fn1,j1(u)Fn2,j2(u) = 1 (22)

holds. A direct computation shows that this identity is satisfied for all the values
u ∈ Q if and only if n1 = n2 = 0 and j1 = 3, j2 = 4 or j1 = 4, j2 = 3 hold.

In all the other cases Fn1,j1(u)Fn2,j2(u) − 1 is a nonzero rational function
which vanishes in a finite set values u ∈ Q. Since there are only a finite set of
possible choices for the integers n1, n2, j1, j2, we conclude that for all but finite
many values u ∈ Q the identity (22) will not be satisfied unless n1 = n2 = 0
and j1 = 3, j2 = 4 or j1 = 4, j2 = 3 hold. In this latter case the conditions
x2 = F0,3(u) = u or x2 = F0,4(u) = u are satisfied if and only if u is a square
in Q, which holds true since by assumption u = v2. Taking into account that
that the fiber of the set {(u, 0), (1/u, 0)} under the morphisms φ1, φ2 is the set
{(±v, 0), (±1/v, 0)} we easily conclude the statement of Theorem 3(i).

Proof of Theorem 3(ii). Now we have that there does not exist v ∈ Q such that
t = −(v4−v2 +1)/v2. If there exists u ∈ Q for which t = −(u2−u+1)/u holds,
the arguments of the proof of Theorem 3(i) show that Ct(Q) = {(0, 1), (0,−1)}
holds. Therefore, we may assume without loss of generality that that there does
not exist u ∈ Q such that t = −(u2 − u + 1)/u holds. Then Proposition 2(ii)
shows that Et(Q)tors = {OEt , (−1, 0)} holds. Let us fix n ∈ Z. Then there
exist rational functions Fn,1, Fn,2 ∈ Q(t) which represent the x–coordinate of
the points [n](0, 1) and [n](0, 1) + (−1, 0) respectively. Arguing as before we
conclude that without loss of generality we may assume that n ≥ 0 holds.

Let P :=
(
x(P ), y(P )

)
be a point in Ct(Q). From Remark 1 we deduce that

x(P ) and t satisfy the relation:

x2(P ) = Fn1,j1(t),
1

x2(P )
= Fn2,j2(t) (23)
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with 0 ≤ n1, n2 ≤ 10 and j1, j2 ∈ {1, 2}. We observe that the cases n1 = 0, j1 =
1 and n2 = 0, j2 = 1 do not yield points of Ct(Q), because the point [0](0, 1)
does not belong to the the affine part of the elliptic curve Et. On the other hand,
the cases n1 = 0, j1 = 2 and n2 = 0, j2 = 2 do not yield points of Ct(Q), because
the x–coordinate of the point [0](0, 1) + (−1, 0) = (−1, 0) is not a square in Q.
Finally, in the case n1 = j1 = 1 we have the point (0, 1) ∈ Et(Q), whose φ1–fiber
is the set {(0, 1), (0,−1)} for any t ∈ Q.

In all the remaining cases (23) implies Fn1,j1(t)Fn2,j2(t) = 1. Furthermore, in
all these cases Fn1,j1(t)Fn2,j2(t)−1 is a nonzero element of Q(t), thus vanishing
in a finite set of values t ∈ Q. Since there are only a finite set of admissible
choices for the integers n1, n2, j1, j2 we conclude that for all but a finite set of
values t ∈ Q the identity Ct(Q) = {(0, 1), (0,−1)} holds. This concludes the
proof of Theorem 3(ii).

5 Experimental and conjectural results

Theorem 3 asserts that the cardinality of the set Ct(Q) is uniformly bounded in
the set of values t ∈ Q satisfying the following conditions:

1. The rank of the abelian group Et(Q) is 1.

2. (0,1) is a generator of the free part Et(Q).

The purpose of this section is twofold. On one hand, we are going to discuss
the “strength” of conditions 1 and 2 from a experimental point of view. On the
other hand, we are going to show that under the assumption of the validity of
Conjecture B condition 2 is not necessary.

5.1 Rank considerations

Since Theorem 2 shows that conditions 1 and 2 are satisfied by the elliptic
curve E defined over Q(T ), one might expect these conditions to frequently
happen over Q i.e. for the specialized Q–definable curves Et. Unfortunately,
this needs not be true. Indeed, J. Cassels and A. Schinzel [CS82] exhibit a
rank–0 elliptic curve Ẽ defined over Q(T ) with the following property: assuming
Selmer’s conjecture [Sel54], for any t ∈ Q the specialized curve Ẽt has rank at
least 1.

The general question of characterizing the behaviour of the rank of an elliptic
curve defined over Q(T ) under specializations is a difficult problem (see e.g.
[Sil85]). Nevertheless there is some numerical experience, as that of S. Fermigier
[Fer96] who studies 66918 elliptic curves Ẽt with t ∈ Z, coming from 93 Q(T )-
definable elliptic curves Ẽ having ranks between 0 and 4 over Q(T ). S. Fermigier
shows that, with a surprising amount of uniformity, the following identity holds:

rank Ẽt(Q) = rank Ẽ(Q(T )) +N,
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where

N = 0 with probability 32%,
N = 1 with probability 48%,
N = 2 with probability 18%,
N = 3 with probability 2%.

We computed the rank of 284051 elliptic curves Et with h(t) ≤ log(530). We
obtain the following results:

rank Et(Q) = rank E(Q(T )) +N,

where

N = 0 with probability 32.7%,
N = 1 with probability 49.9%,
N = 2 with probability 15.9%,
N = 3 with probability 1.5%.

These figures suggest that condition 1 might hold with a probability of success
of approximately 1/3. We refer to [Sil98] for further discussion on the average
rank of a family of elliptic curves.

5.2 Divisibility considerations

If the point (0, 1) is a generator of the free part of the group E
(
Q(T )

)
, the same

statement does not necessarily hold in a specialized curve Et: even if the elliptic
curve Et has rank 1 over Q, the point (0, 1) could be a multiple of a generator
of the free part of Et(Q).

This problem can be put into a general setting: let Ẽ be a elliptic curve
defined over Q(T ); then for all but finitely many t ∈ P1(Q) the specialized curve
Ẽt is an elliptic curve defined over Q(T ) and we may consider the specialization
homomorphism σt : Ẽ

(
Q(T )

)
7→ Ẽt(Q).

In [Sil85], J. Silverman asks whether the image of σt is divisible in Ẽt(Q)
for values t ∈ N, i.e. whether there are points P ∈ Ẽt(Q) such that [n]P ∈
σt
(
Ẽ
(
Q(T )

))
for some integer n ≥ 2 and P /∈ σt

(
Ẽ
(
Q(T )

))
for t ∈ N. Theorems

2 and 3 of [Sil85] give the following result.

Theorem 6 [Sil85] Let notations and assumptions as above. Suppose further
that the elliptic curve Ẽ has nonconstant j–invariant. Then the following asser-
tions hold:

(i) The set of values t ∈ N for which σt
(
Ẽ
(
Q(T )

))
is indivisible in Ẽt(Q) has

density 1.

(ii) Assuming that Conjecture B is true, there exists an absolute constant C >
0 with the following property : for any t ∈ N and any P ∈ Et(Q) for
which P ∈ σt

(
Ẽ
(
Q(T )

))
⊗ Q holds, there exists 0 ≤ n < C such that

[n]P ∈ σt
(
Ẽ
(
Q(T )

))
holds.
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Applying Theorem 6 to the elliptic curve E of equation y2 = x3+Tx2+Tx+1
we obtain the following result:

Corollary 2 Let Q denote the set of values t ∈ Q such that the abelian group
Et(Q) has rank 1 and let R denote the (density 1) set of values t ∈ N for which
σt
(
E
(
Q(T )

))
is indivisible in Et(Q).

(i) For any t ∈ R ∩Q, the point (0, 1) generates the free part of Et(Q).

(ii) Assuming that Conjecture B is true, there exists C̃ ∈ N such that the
following property holds: for any t ∈ N∩Q, if Gt is a generator of the free
part of Et(Q) then there exists n ≤ C̃ such that (0, 1) − [n]Gt ∈ Et(Q)tors

holds.

Proof.– Let σt : E
(
Q(T )

)
→ Et(Q) be the specialization homomorphism of

the elliptic curve E . [Sil83] shows that for all but finitely many values t ∈ Q
the homomorphism σt is injective. This implies that for all but finitely many
values t ∈ Q the subgroup of Et(Q) generated by the point (0, 1) is a torsion
free subgroup of rank 1.

Let t ∈ R ∩ Q and let Gt be a generator of the free part of the group
Et(Q). Then there exist m ∈ Z and T ∈ Et(Q)tors such that (0, 1) = [m]Gt + T
holds. Therefore, multiplying this identity by n := 3 · 5 · 7 · 8 · 11 we conclude
that [n](0, 1) = [nm]Gt holds. Since [nm]Gt = [n](0, 1) ∈ σt

(
E
(
Q(T )

))
, by the

indivisibility of σt
(
E
(
Q(T )

))
we see that Gt ∈ σt

(
E
(
Q(T )

))
holds.

Let G ∈ E
(
Q(T )

)
be such that σt(G) = Gt holds. By Proposition 1 we

have G = [s](0, 1) + [s′](−1, 0) with s ∈ Z and s′ ∈ {0, 1}. Then we have
Gt = [s]σt(0, 1) + [s′]σt(−1, 0) = [s](0, 1) + [s′](−1, 0). Multiplying this identity
by m we have (0, 1)− T = [m]Gt = [ms]σt(0, 1) + [ms′]σt(−1, 0). We conclude
that the point (1−ms)(0, 1) is a torsion point of Et(Q), which implies ms = 1.
From this we easily deduce that the point (0, 1) generates the free part of the
group Et(Q). This shows assertion (i).

For the second assertion, arguing as above we have that there exists m ∈
Z \ {0} and T ∈ Et(Q)tors such that [m]Gt + T = (0, 1) holds. Then we have
[mn]Gt ∈ σt

(
E
(
Q(T )

))
, where n := 3 · 4 · 5 · 7 · 11. If Gt ∈ σt

(
E
(
Q(T )

))
and G ∈ E

(
Q(T )

)
satisfies σt(G) = Gt, then there exists s, s′ ∈ Z such that

Gt = [s](0, 1) + [s′](−1, 0) holds. Arguing as above we conclude that ms = 1,
which implies (0, 1)− [m]Gt ∈ Et(Q)tors with |m| ≤ 1.

Suppose now that Gt /∈ σt
(
E
(
Q(T )

))
holds. Then Theorem 6(ii) shows that

mn ≤ C ′ holds, where C ′ is the constant of the statement of Theorem 6(ii) for
the curve E . Thus (0, 1) − [m]Gt ∈ Et(Q)tors with |m| ≤ C ′/n. This concludes
the proof of assertion (ii).

We experimentally analyzed the density of the set R∩Q of values t ∈ Q for
which the rank of Et(Q) is 1 and the point (0, 1) generates the free part of the
group Et(Q). For this purpose we tested 28469 elliptic curves Et of rank 1 with
h(t) ≤ log(280). We found that the point G := (0, 1) ∈ Et(Q) is a generator of
the free part of Et(Q) in 99.4% of these curves.
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From Corollary 2 we deduce the following result, which shows that if Con-
jecture B is true then the uniform upper bound of Corollary 1 holds for any
t ∈ N ∩ Q, even in the case that the point (0, 1) ∈ Et(Q) does not generate the
free part of the group Et(Q):
Theorem 4 Assuming that Conjecture B is true, for any t ∈ N ∩ Q the car-
dinality of the set Ct(Q) is uniformly bounded.

Proof.– Let Gt be a generator of the free part of Et(Q). Then Corollary
2(ii) shows that there exists n ≤ C such that (0, 1) − [n]Gt ∈ Et(Q)tors holds,
where C is the constant of Corollary 2(ii) . Then we have ĥ(0, 1) ≤ C2ĥ(Gt).
Moreover, from the proof of Corollary 1 we see that if h(t) > 18.94 holds then
ĥ(0, 1)−1 ≤ 12

(
h(t)− 17.94

)−1 holds. This implies the estimate

1

ĥ(Gt)
≤ 12C2

h(t)− 17.94
. (24)

Let P be a point of Ct(Q). Then there exist n ∈ N and T ∈ Et(Q)tors such
that φ1(P ) = [n]Gt + T holds. Hence we have ĥ

(
φ1(P )

)
= n2ĥ(Gt). On the

other hand, from the proof of Corollary 1 we deduce the estimate

ĥ
(
φ1(P )

)
≤ 26

3
h(t) + 13.71. (25)

Let t ∈ N satisfy the condition t > 18. Then estimates (24) and (25) imply

n2 ≤ 104C2 t+ 1.59
t− 17.94

.

Since the right–hand side of the last estimate is a bounded quantity for any
t ≥ 19, we conclude that the cardinality of the set Ct(Q) can be uniformly
bounded for any t ≥ 19 such that the rank of the group Et(Q) is 1. On the
other hand, the set of values {1, . . . , 18} is finite and hence the cardinality of
the set Ct(Q) can be uniformly bounded for all t ∈ {1, . . . , 18}. This concludes
the proof of the theorem.
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