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ABSTRACT
For any finite Galois field extension K/F, with Galois group G =
Gal(K/F), there exists an element α ∈ K whose orbit G · α forms

an F-basis of K. Such an α is called a normal element and G · α is a

normal basis. We introduce a probabilistic algorithm for finding a

normal element when G is either a finite abelian or a metacyclic

group. The algorithm is based on the fact that deciding whether

a random element α ∈ K is normal can be reduced to deciding

whether

∑
σ ∈G σ (α)σ ∈ K[G] is invertible. Our algorithm requires

a quadratic number of operations in the size of G for metacyclic G,
and a slightly subquadratic number of operations for abelian G.

CCS CONCEPTS
• Computing methodologies→ Algebraic algorithms.
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1 INTRODUCTION
For a finite Galois extension K/F, with Galois group G = Gal(K/F),
an element α ∈ K is called normal if its Galois conjugates G · α =
{σ (α) : σ ∈ G} form a basis for K as an F-vector space. Constructive
proofs are in most algebra texts, such as [Lang 2002, §6.13].

While there is a wide range of well-known applications of nor-

mal bases in finite fields, such as fast exponentiation [Gao et al.

2000], there also exist applications of normal elements in charac-

teristic zero. For instance, in multiplicative invariant theory, for a

given permutation lattice and related Galois extension, a normal

basis is useful in computing the multiplicative invariants explic-

itly [Jamshidpey et al. 2018].

A number of algorithms are available for finding a normal ele-

ment in characteristic zero fields and finite fields. Because of their

immediate applications in finite fields, algorithms for determining
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normal elements in this case are most commonly seen. A fast ran-

domized algorithm for determining a normal element in a finite

field Fqn /Fq , where Fqn is the finite field with qn elements for any

prime power q and integer n > 1, is presented by von zur Gathen

and Giesbrecht [1990], with a cost of O(n2 + n logq) operations in
Fq . A faster randomized algorithm is introduced by Kaltofen and

Shoup [1998], with a cost of O(n1.815
logq) operations in Fq . In

the bit complexity model, Kedlaya and Umans [2011] reduce the

exponent of n to 1.5+ϵ (for any ϵ > 0), using their quasi-linear time

algorithm for modular composition. Lenstra [1991] gives a deter-
ministic algorithm which uses nO (1)

operations. Augot and Camion

[1994] give the fastest known deterministic method, with a cost of

O(n3 + n2
logq) operations in Fq .

In characteristic zero, Schlickewei and Stepanov [1993] gave an

algorithm for finding a normal basis of a number field overQwith a

cyclic Galois group of cardinality n which requires nO (1)
operations

in Q. Poli [1994] gives an algorithm for the more general case of

finding a normal basis in an abelian extension K/F which requires

nO (1)
operations in F. More generally in characteristic zero, for

any Galois extension K/F of degree n with Galois group given by a

collection of n matrices, Girstmair [1999] gives an algorithm which

requires O(n4) operations in F to construct a normal element in K.
In this paper we present a new randomized algorithm for finding

a normal element for abelian and metacyclic extensions, with a

cost quadratic in the degree n of the extension. The costs of all

algorithms are measured by counting arithmetic operations in F at

unit cost. Our main conventions in this paper are the following.

Assumption 1. Let K/F be a finite Galois extension presented as
K = F[x]/⟨P(x)⟩, for an irreducible polynomial P ∈ F[x] of degree n,
with F of characteristic zero. Then,

• elements of K are written on the power basis 1, ξ , . . . , ξn−1,
where ξ := x mod P ;

• elements of G are represented by their action on ξ .

In particular, for д ∈ G given by means of γ := д(ξ ) ∈ K, and β =∑
0≤i<n βiξ

i ∈ K,д(β) is equal to β(γ ), the polynomial composition

of β at γ (reduced modulo P ).
Our algorithms combine techniques and ideas due to [von zur

Gathen and Giesbrecht 1990; Kaltofen and Shoup 1998]: α ∈ K is

normal if and only if the element Sα :=
∑
д∈G д(α)д ∈ K[G] is

invertible in the group algebra K[G]. The algorithms choose α at

random; a generic choice is normal (so we expect O(1) random
trials to be sufficient). However, writing down Sα involves Θ(n2)

elements in F, which precludes a subquadratic running time. Instead,

knowing α , the algorithms use a randomized reduction to a similar

question in F[G], that amounts to applying a random projection

ℓ : K → F to all entries of Sα , giving us an element sα, ℓ ∈ F[G]. For
this, we adapt algorithms from [Kaltofen and Shoup 1998], that are

written for Galois groups of finite fields.

https://doi.org/10.1145/3326229.3326260
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Having sα, ℓ in hand, we need to test its invertibility. We present

an algorithm for abelian G which relies on the fact that F[G] is
isomorphic to a multivariate quotient polynomial ring by an ideal

(xeii − 1)1≤i≤m , where ei ’s are positive integers.
Formetacyclic groups, two algorithms are introduced to solve the

same problem; which one is faster depends on the parameters defin-

ing our group. Both algorithms are based on testing the invertibility

of an injective homomorphic image of sα, ℓ in a matrix algebra over

a product of fields. These questions are closely related to Fourier

transforms over G, and there is a vast literature on fast algorithms

for Fourier transforms (over C). For recent progress [Clausen and

Müller 2004; Maslen et al. 2018] and references therein, though it is

not clear how to apply these methods here.

Since our main goal is to highlight the exponent (in n) in our

runtime analyses, costs are given using the soft-O notation: S(n) is
in Õ(T (n)) if it is in O(T (n) log(T (n))c ), for some constant c .

The main result of this paper is the following theorem. We use a

constant ω(4/3), defined below, where (3/4) · ω(4/3) < 1.99, that

describes the cost of certain rectangular matrix products.

Theorem 1.1. Under Assumption 1, a normal element of K can be
found using Õ(|G |(3/4)·ω(4/3)) operations in F ifG is abelian. The same
problem for metacyclic groups can be solved using Õ(|G |2) operations
in F. The algorithms are probabilistic of the Las Vegas type: they
can select random elements from F at unit cost, the output is always
correct, and the run-times are an expected number of operations in F.

Although the cost of our algorithm is quadratic in the size of in-

put for a general metacyclic group, it will be (slightly) subquadratic

under specific parameters defining G (see Section 4).

Section 2 of this paper is devoted to definitions and preliminary

discussions. In Section 3, two subquadratic-time algorithms are

presented for the randomized reduction of our main question to

invertibility testing in F[G], for respectively abelian and metacyclic

groups. Finally, in Section 4, we show that the latter problem can

be solved in quasi-linear time for an abelian group; for metacyclic

groups, we give a quadratic-time algorithm, and discuss cases when

this cost can be further improved.

Our algorithms make extensive use of known algorithms for

polynomial and matrix arithmetic; in particular, we use the fact that

polynomials of degreed in F[x] can be multiplied in Õ(n) operations
in F [Schönhage and Strassen 1971]. Arithmetic operations (+,×,÷)

in K can thus be accomplished using Õ(n) operations in F [von zur

Gathen and Gerhard 2013].

For matrix arithmetic, we will rely on some non-trivial results

on rectangular matrix multiplication initiated by Lotti and Romani

[1983]. For k ∈ R, we denote by ω(k) a constant such that matrices

of size n × n can be multiplied by matrices of size n × ⌈nk ⌉ with

O(nω(k )) operations. [Le Gall and Urrutia 2018] shows ω(4/3) <

2.654; this follows from the upper bounds they give on ω(1.3) and
ω(1.4), and the fact that k 7→ ω(k) is convex [Lotti and Romani

1983]. In particular, 3/4 · ω(4/3) < 1.99. Note also the inequality

ω(k) ≥ 1 + k for k ≥ 1, from the input/output size.

For square matrix multiplication, [Le Gall 2014] shows ω(1) ≤
2.373, and we denote ω = ω(1). Over a field K, we will frequently
use the fact that further matrix operations (determinant or inverse)

can be done in O(nω ) base operations in K.

2 PRELIMINARIES
Assume K/F is a finite Galois extension with Galois group G =
{д1, . . . ,дn }. If α ∈ K is a normal element, then

n∑
j=1

c jдj (α) = 0, c j ∈ F (2.1)

implies c1 = · · · = cn = 0. For i ≤ n, applying дi to (2.1) yields

n∑
j=1

c jдiдj (α) = 0. (2.2)

Using (2.1) and (2.2), we form the linear systemMG (α)c = 0, with
c = [c1 · · · cn ]

T
and where, for α ∈ K,MG (α) =

[
дiдj (α)

]
1≤i, j≤n .

Classical proofs then show there exists α ∈ K with det(MG (α)) , 0.

This approach can be used as the basis of a randomized algorithm

for finding a normal element: choose a random element α in K until

we find one such thatMG (α) is invertible. A direct implementation

computes all the entries of the matrix and then uses linear algebra to

compute its determinant; using fast matrix arithmetic this requires

O(nω ) operations in K, that is Õ(nω+1) operations in F. This is at
least cubic in n, and only a minor improvement over the previously

best-known approach of Girstmair [1999]. The main contribution

of this paper is to show how to speed up this verification.

If we write α = a0 + · · · + an−1ξ
n−1

, the determinant of MG (α)
is a (not identically zero) homogeneous polynomial of degree n in

(a0, . . . ,an−1). If the ai ’s are chosen uniformly at random in a finite

set X ⊂ F, the Lipton-DeMillo-Schwartz-Zippel implies that the

probability that α be normal is at least 1 − n/|X |.

IfG is cyclic, [von zur Gathen and Giesbrecht 1990] compute the

GCD of Sα :=
∑

1≤i≤n дi (α)x
i−1

and xn − 1 instead of computing

a determinant. This amounts to testing whether Sα is invertible in

the group ring K[G] ≃ K[x]/⟨xn − 1⟩. This is a general fact: for any

G, MG (α) is the matrix of (left) multiplication by the orbit sum

Sα :=
∑
д∈G

д(α)д ∈ K[G],

and α being normal is equivalent to Sα being a unit in K[G]. This
point of view may make it possible to avoid linear algebra of size n
over K, but writing Sα itself still involves Θ(n2) elements in F. The
following lemma gives a randomized reduction to testing whether

a suitable projection of Sα in F[G] is a unit.

Lemma 2.1. For α ∈ K,MG (α) is invertible if and only if

ℓ(MG (α)) := [ℓ(дiдj (α))]i j ∈ Mn (F)

is invertible, for a generic F-linear projection ℓ : K → F.

Proof. (⇒) For α ∈ K, any entry ofMG (α) can be written as∑
k=0, ...,n−1

ai jk ξ
k , (2.3)

and for ℓ : K → F, the corresponding entry in ℓ(MG (α)) can be

written

∑n−1

k=0
ai jk ℓk , with ℓk = ℓ(ξ

k ). Replacing these ℓk ’s by

indeterminates Lk ’s, the determinant becomes a polynomial in

P ∈ F[L1, . . . ,Ln ]. Viewing P over K , we have P(1, ξ , . . . , ξn−1)

= det(MG (α)), which is non-zero by assumption; so, P is not zero.

(⇐) Assume MG (α) is not invertible. Following the proof of

[Jamshidpey et al. 2018, Lemma 4], we first show that there exists a

non-zero u ∈ Fn in the kernel ofMG (α).
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The elements of G act on rows of MG (α) entrywise and the

action permutes the rows the matrix. Assume φ : G → Sn is the

group homomorphism such that д(Mi ) = Mφ(д)(i) for all i , where
Mi is the i-th row ofMG (α).

SinceMG (α) is singular, there exists a non-zerov ∈ Kn such that

MG (α)v = 0; we choose v having the minimum number of non-

zero entries. Let i ∈ {1, . . . ,n} such that vi , 0. Define u = 1/viv .
Then, MG (α)u = 0, which means Mju = 0 for j ∈ {1, . . . ,n}. For
д ∈ G , we have д(Mju) = Mφ(д)(j)д(u) = 0. Since this holds for any

j, we conclude that MG (α)д(u) = 0, hence д(u) −u is in the kernel

of MG (α). On the other hand since the i-th entry of u is one, the

i-th entry of д(u) −u is zero. Thus the minimality assumption on v
shows that д(u) −u = 0, equivalently д(u) = u, so u ∈ Fn .

Now we show that ℓ(MG (α)) is singular for all ℓ. By (2.3),

MG (α) =
∑

j=0, ...,n−1

M(j)ξ j , M(j) ∈ Mn (F) for all j .

Since u is in Fn ,MG (α)u = 0 yieldsM(j)u = 0 for j ≤ n. Hence,∑
j=0, ...,n−1

M(j)ℓju = 0

for any ℓj ’s in F, and ℓ(MG (α)) is not invertible for any ℓ. □
Our algorithm chooses random α in K and ℓ : K → F, and let

sα, ℓ :=
∑
д∈G
ℓ(д(α))д ∈ F[G]. (2.4)

The matrix ℓ(MG (α)) is the multiplication matrix by sα, ℓ in F[G],
so once sα, ℓ is known, we are left with testing whether it is a unit in
F[G]. In the next two sections, we address the respective questions

of computing sα, ℓ , and testing its invertibility in F[G].

3 COMPUTING ORBIT SUM PROJECTIONS
In this section we present algorithms to compute sα, ℓ , when G is

either abelian or metacyclic. We start by sketching our ideas in

simplest case, cyclic groups, with G = ⟨д⟩.
Given α ∈ K and ℓ : K → F, we want to compute

ℓ(дi (α)), for 0 ≤ i ≤ n − 1. (3.1)

Kaltofen and Shoup [1998] call this the automorphism projection
problem and gave an algorithm to solve it in subquadratic time,

when д is the q-power Frobenius Fqn → Fqn . The key idea in

their algorithm is to use the baby-steps/giant-steps technique: for

a suitable parameter t , the values in (3.1) can be rewritten as

(ℓ ◦ дt j )(дi (α)), for 0 ≤ j < m := ⌈n/t⌉ and 0 ≤ i < t .

First, we compute all Gi := дi (α) for 0 ≤ i < t . Then we compute

all Lj := ℓ ◦ дt j for 0 ≤ j < m, where the Lj ’s are themselves linear

mappings K → F. Finally, a matrix product yields all values Lj (Gi ).

The algorithm of Kaltofen and Shoup [1998] uses properties of

the Frobenius mapping. In our case, we cannot apply these results

directly; instead, we have to revisit proofs from Kaltofen and Shoup

[1998] using rectangular matrix multiplication.

3.1 Multiple automorphism evaluation
The remark following Assumption 1 reduces automorphism evalu-

ation to modular composition of polynomials (this idea goes back

to von zur Gathen and Shoup [1992], where it was credited to

Kaltofen). For instance, given д ∈ G (by means of γ := д(ξ )), we
can deduce д2 ∈ G (again, by means of its image at ξ ) as γ (γ ); this

can be done with Õ(n(ω+1)/2) operations in F using the modular

composition algorithm of [Brent and Kung 1978]. The algorithms

below describe similar operations along these lines.

Lemma 3.1. Given α1, . . . ,αs in K and д in G, with s = O(
√
n),

we can compute д(α1), . . . ,д(αs ) in Õ(n(3/4)·ω(4/3)) operations in F.

Proof (Compare [Kaltofen and Shoup 1998, Lemma 3]) As noted

above, for i ≤ s , д(αi ) = αi (γ ), with γ := д(ξ ) ∈ K. Let t := ⌈n3/4⌉,

m := ⌈n/t⌉, and rewrite α1, . . . ,αs as

αi =
∑

0≤j<m
ai, jξ

t j ,

where the ai, j ’s are polynomials of degree less than t . The next

step is to compute γi := γ i , for i = 0, . . . , t . There are t products in

K to perform, so this amounts to Õ(n7/4) operations in F.
Havingγi ’s in hand, one can form thematrix Γ := [Γ0 · · · Γt−1]

T
,

where each column Γi is the coefficient vector of γi (with entries in

F); this matrix has t ∈ O(n3/4) rows and n columns. We also form

A :=
[
A1,0 · · ·A1,m−1 · · ·As,0 · · ·As,m−1

]T
,

where Ai, j is the coefficient vector of ai, j . This matrix has sm ∈

O(n3/4) rows and t ∈ O(n3/4) columns.

Compute B := A Γ; by definition of exponents ω(·), this can be

done inO(n(3/4)·ω(4/3)) operations in F, and the rows of this matrix

give all ai, j (γ ). The last step is to write αi (γ ) =
∑

0≤j<m ai, j (γ )γ
j
t .

Using Horner’s scheme, this takes O(sm) operations in K, which is

Õ(n7/4) operations in F. Since ω(3/4) ≥ 7/4, the leading exponent

in all costs so far is (3/4) · ω(4/3). □

Lemma 3.2. Given α in K, д1, . . . ,дr in G and positive integers
(s1, . . . sr ) such that

∏r
i=1

si = O(
√
n) and r ∈ O(log(n)), all

дi1
1
· · ·дirr (α), for 0 ≤ i j ≤ sj , 1 ≤ j ≤ r

can be computed in Õ(n(3/4)·ω(4/3)) operations in F.

Proof (Compare [Kaltofen and Shoup 1998, Lemma 4].) For a given

m ∈ {1, . . . , r }, suppose we have computed

Gi1, ...,im := дimm · · ·дi1
1
(α)

for 0 ≤ i j ≤ sj if 1 ≤ j < m, and 0 ≤ im < km , as well as the

automorphism η := дm
km

(by means of its value at ξ ).
Then, we can obtain Gi1, ...,im for 0 ≤ i j ≤ sj if 1 ≤ j < m, and

0 ≤ im < 2km , by computing η(Gi1, ...,im ), for all indices i1, . . . , im
available to us, that is, 0 ≤ i j ≤ sj if 1 ≤ j < m, and 0 ≤ im <

km . This can be carried out using Õ(n(3/4)·ω(4/3)) operations in F
by applying Lemma 3.1. Prior to entering the next iteration, we

compute η2
by means of a modular composition, at negligible cost.

Using the above doublingmethod forдm , we have to doO(log sm )

steps, for a total cost of Õ(n(3/4)·ω(4/3)) operations in F. We repeat

this procedure for m = 1, . . . , r ; since r is in O(log(n)), the cost

remains Õ(n(3/4)·ω(4/3)). □
We now present dual versions of the previous two lemmas.

Viewed as an F-linear map, д : α 7→ д(α) admits a transpose, map-

ping an F-linear form ℓ : K → F to the F-linear form ℓ ◦ д : α 7→

ℓ(д(α)). The transposition principle [Canny et al. 1989; Kaminski
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et al. 1988] implies that if a linear map FN → FM can be computed

in time T , its transpose can be computed in time T + O(N + M).

Given s linear forms ℓ1, . . . , ℓs and д in G, transposing Lemma 3.1

shows that we can compute ℓ1 ◦д, . . . , ℓs ◦д in time Õ(n(3/4)·ω(4/3)).

Lemma 3.3. Given F-linear forms ℓ1, . . . , ℓs : K → F and д in
G = Gal(K/F), with s = O(

√
n), we can compute ℓ1 ◦ д, . . . , ℓs ◦ д in

time Õ(n3/4ω(4/3)).

Proof. Given ℓi by its values on the power basis 1, ξ , . . . , ξn−1
,

ℓi ◦ д is represented by its values at 1,γ , . . . ,γn−1
, with γ := д(ξ ).

Let t ,m and γ0, . . . ,γt be as in Lemma 3.1. Compute the giant

steps γ
j
t = γ t j , j = 0, . . . ,m − 1 and for i = 1, . . . , s and j =

0, . . . ,m − 1, deduce Li, j defined by Li, j (α) := ℓi (γ
t jα) for α in

K. Each of them is obtained by a transposed multiplication in time

Õ(n) [Shoup 1995, §4.1], so that the total cost thus far is Õ(n7/4).

Finally, multiply the (sm ×n)matrix with entries the coefficients

of all Li, j (as rows) by the (n×t)matrix with entries the coefficients

of γ0, . . . ,γt−1 (as columns) to get all ℓi (γ
j ), for i = 1, . . . , s an

j = 0, . . . ,n − 1. This is done in time O(n(3/4)·ω(4/3)). □
From this, we deduce the transposed version of Lemma 3.2,

whose proof follows the same pattern.

Lemma 3.4. Given ℓ : K → F , д1, . . . ,дr inG and positive integers
(s1, . . . sr ) such that

∏r
i=1

si = O(
√
n) and r ∈ O(log(n)), all

ℓ ◦ дi1
1
· · ·дirr , for 0 ≤ i j ≤ sj , 1 ≤ j ≤ r ,

can be computed in Õ(n(3/4)·ω(4/3)) operations in F.

Proof (Compare [Kaltofen and Shoup 1998, Lemma 8].) Form =

1, . . . , r , assume we know Li1, ...,im := ℓ ◦ (дi1
1
· · ·дimm ), for 0 ≤

i j ≤ sj if 1 ≤ j < m, and 0 ≤ im < km . Using Lemma 3.3, we

compute all Li1, ...,im ◦ дm
km , which gives us Li1, ...,im for indices

0 ≤ im < 2km . The analysis is as in Lemma 3.2. □

3.2 Abelian Groups
The first main result in this section is the following proposition.

Assume G is an abelian group presented as

⟨д1, . . . ,дr : дe1

1
= · · · = дerr = 1⟩,

where ei ∈ N is the order ofдi andn = e1 · · · er . Without loss of gen-

erality, we assume ei ≥ 2 for all i , so that r is in O(logn). Elements

of F[G] are written as polynomials

∑
i1, ...,ir ci1, ...,irд1

e1 · · ·дr
er
,

with 0 ≤ i j < ej for all j.

Proposition 3.5. Suppose that G is abelian, with notation as
above. For α in K and ℓ : K → F, sα, ℓ ∈ F[G], as defined in (2.4), is
computable using Õ(n(3/4)·ω(4/3)) operations in F.

Proof. Our goal is to compute

ℓ(дi1
1
, . . . ,дirr (α)), 1 ≤ j ≤ r , 0 ≤ i j ≤ ej , (3.2)

where ℓ is an F-linear projection K → F. For 1 ≤ i ≤ r , define
si := ⌈

√
ei ⌉. As we sketched in the cyclic case, the elements in (3.2)

can be expressed as Lj1, ..., jr (Gi1, ...,ir ), for 1 ≤ m ≤ r , 0 ≤ im <

sm , 0 ≤ jm < sm . Here, Lj1, ..., jr := ℓ ◦ (д
s1 j1
1

· · ·д
sr js
r ) are linear

projections presented as row vectors and Gi1, ...,ir := дi1
1
· · ·дirr (α)

are field elements presented as column vectors. Then, all elements

in (3.2) can be computed with the following steps, the sum of whose

costs proves the proposition.

Step 1. Apply Lemma 3.2 to get

Gi1, ...,ir = д
i1
1
· · ·дirr (α), 1 ≤ m ≤ r , 0 ≤ im < sm ,

with cost Õ(n(3/4)·ω(4/3)).

Step 2. Compute all дsii , i = 1, . . . , r ; using O(log(n)) modular

compositions. The cost is negligible compared to that of Step 1.

Step 3. Use Lemma 3.4 to compute

Lj1, ..., jr = ℓ ◦ (д
s1 j1
1

· · ·д
sr js
r ), 1 ≤ m ≤ r , 0 ≤ jm < sm ,

with cost Õ(n(3/4)·ω(4/3))

Step 4.Multiply the matrix with rows the coefficients of all Lj1, ..., jr
by the matrix with columns the coefficients of all Gi1, ...,ir ; this

yields all required values. We compute this product inO(n(1/2)·ω(2))

operations in F, which is in O(n(3/4)·ω(4/3)). □

3.3 Metacyclic Groups
A group G is metacyclic if it has a normal cyclic subgroup H such

that G/H is cyclic; for instance, any group with a squarefree order

is metacyclic. See [Johnson 1976, p. 88] or [Curtis and Reiner 1988,

p. 334] for more background. A metacyclic group can always be

presented as

⟨σ ,τ : σm = 1,τ s = σ t ,τ−1στ = σ r ⟩, (3.3)

for some integers m, t , r , s , with r , t ≤ m and r s = 1 mod t , rt =
t mod m. For example, the dihedral group

D2m = ⟨σ ,τ : σm = 1,τ 2 = 1,τ−1στ = σm−1⟩,

is metacyclic, with s = 2. Generalized quaternion groups, which

can be presented as

Qm = ⟨σ ,τ : σ 2m = 1,τ 2 = σm ,τ−1στ = σ 2m−1⟩,

are metacyclic, with s = 2 as well.

Using the notation of (3.3), n = |G | is equal toms , and all ele-

ments in a metacyclic group can be presented uniquely as either

{σ iτ j , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ s − 1}, or (3.4)

{τ jσ i , 0 ≤ i ≤ m − 1, 0 ≤ j ≤ s − 1}. (3.5)

Accordingly, elements in the group algebra F[G] can be written as∑
i<m
j<s

ci, jσ
iτ j or

∑
i<m
j<s

c ′i, jτ
jσ i .

Conversion between the two representations involves no operation

in F, using the commutation relation σkτ c = τ cσkr
c
for k, c ≥ 0.

Proposition 3.6. Suppose that G is metacyclic. For α in K and
ℓ : K → F, sα, ℓ ∈ F[G] is computable in time Õ(n(3/4)·ω(4/3)).

Proof. Suppose first that s ≤ m; then, we use the presentation (3.4)

of the elements of G. Take α in K and ℓ : K → F; the goal is to
compute ℓ(σ iτ j (α)), for all 0 ≤ i < m and 0 ≤ j < s . This is
accomplished with the following steps.

Step 1. Apply Lemma 3.2 to compute

Gi, j := σ iτ j (α), 0 ≤ i < ⌈
√
m/s⌉, 0 ≤ j < s .

Note that ⌈
√
m/s⌉s ≤ ⌈

√
sm⌉ ∈ O(

√
n), so we can apply the lemma.

This takes Õ(n(3/4)·ω(4/3)) operations in F.
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Step 2. Compute σ ⌈
√
m/s ⌉

, in O(log(n)) modular compositions in

degree n. The cost is no more than that of Step 1.

Step 3. Compute

Lk := ℓ ◦ σk ⌈
√
m/s ⌉ , 0 ≤ k < ⌈

√
sm⌉,

using Lemma 3.4. This takes Õ(n(3/4)·ω(4/3)) operations in F.

Step 4. At this point, we compute all

Lk (si, j ) = ℓ(σ
k ⌈
√
m/s ⌉+iτ j (α)),

for 0 ≤ k < ⌈
√
sm⌉, 0 ≤ i < ⌈

√
m/s⌉ and 0 ≤ j < s; these are

precisely the values we needed.

This can be carried out by multiplying the matrix with rows the

coefficients of all Lk by the matrix with columns the coefficients of

all Gi, j ; this yields all required values, as pointed out above. There

are O(
√
sm) = O(

√
n) linear forms Lk ’s, and O(

√
n) field elements

Gi, j ’s, so we can compute this product in O(n(1/2)·ω(2)) operations

in F, which is O(n(3/4)·ω(4/3)).

This concludes the proof in the case s ≤ m. Whenm ≤ s , use the
presentation (3.5) of the elements of G and proceed as above. □

4 TESTING INVERTIBILITY
In this section we consider the problem of invertibility testing in

F[G], specifically for abelian and metacyclic groups G: given an

element β in F[G], for a field F and a groupG , determine whether β
is a unit in F[G]. Since we are in characteristic zero, Wedderburn’s

theorem implies the existence of an F-algebra isomorphism (which

we will refer to as a Fourier Transform)

F[G] → Md1
(D1) × · · · ×Mdr (Dr ),

where all Di ’s are division algebras over F. If we were working

over F = C, all Di ’s would simply be C itself. A natural solution

to test the invertibility of β ∈ F[G] would then be to compute

its Fourier transform and test whether all its components β1 ∈

Md1
(C), . . . , βr ∈ Mdr (C) are invertible. This boils down to linear

algebra over C, and takes O(dω
1
+ · · · + dωr ) operations. Since d2

1
+

· · · + d2

r = |G |, this is O(|G |ω/2) operations in C.
However, we do not wish to make such a strong assumption as

F = C. Since we measure the cost of our algorithms in F-operations,
the direct approach that embeds F[G] into C[G] does not make it

possible to obtain a subquadratic cost in general. If, for instance,

F = Q and G is cyclic of order n = 2
k
, computing the Fourier

Transform of β requires we work in a degree n/2 extension of Q,
implying a quadratic runtime.

We give algorithms for the problem of invertibility testing for the

families of groups seen so far, abelian andmetacyclic. For the former,

we prove a stronger result: starting from a suitable presentation ofG ,
we give a softly linear-time algorithm to find an isomorphic image

of β ∈ F[G] in a product of F-algebras of the form F[z]/⟨Pi (z)⟩, for
certain polynomials Pi ∈ F[z] (recovering β from its image is softly-

linear time as well). Not only does this allow us to test whether β is

invertible, this would also make it possible to find its inverse in F[G]
in softly-linear time. For metacyclic groups, we describe an injective

F-algebra homomorphism from F[G] to a matrix algebras over a

cyclotomic ring. The codomain is in general of dimension higher

than |G |, so the algorithm we deduce from this is not linear-time.

4.1 Abelian groups
Because an abelian group is a product of cyclic groups, its group

algebra F[G] is the tensor product of cyclic algebras, so it admits a

description of the form F[x1, . . . ,xt ]/⟨x
n1

1
−1, . . . ,xntt −1⟩, for some

integersn1, . . . ,nt . The complexity of arithmetic operations in an F-
algebra such as A := F[x1, . . . ,xt ]/⟨P1(x1), . . . , Pt (xt )⟩ is difficult

to pin down precisely. For general Pi ’s, the cost of multiplication

in A is known to be O(dim(A)1+ε ), for any ε > 0 [Li et al. 2009,

Theorem 2]. From this it may be possible to deduce similar upper

bounds on the complexity of invertibility tests, following [Dahan

et al. 2006], but this seems non-trivial.

Instead, we give an algorithm with softly linear runtime, that

uses the factorization properties of cyclotomic polynomials and

Chinese remaindering techniques to transform our problem into

that of invertibility testing in algebras of the form F[z]/⟨Pi (z)⟩, for
various polynomials Pi . The reference [Poli 1994] also discusses

the factors of algebras such as F[x1, . . . ,xt ]/⟨x
n1

1
− 1, . . . ,xntt − 1⟩,

but the resulting algorithms are different (and the cost of the Poli’s

1994 algorithm is only known to be polynomial in |G |).

Tensor product of two cyclotomic rings: coprime orders. The
following proposition will be the key to foregoing multivariate

polynomials, and replacing them by univariate ones. Letm,m′
be

two coprime integers and define

h := F[x ,x ′]/⟨Φm (x),Φm′(x ′)⟩,

where for i ≥ 0, Φi is the cyclotomic polynomial of order i . In what

follows, φ is Euler’s totient function, so that φ(i) = deg(Φi ) for all i .

Lemma 4.1. There exists an F-algebra isomorphism γ : h →

F[z]/⟨Φmm′(z)⟩ given by xx ′ 7→ z. Given Φm and Φm′ , Φmm′ can
be computed in time Õ(φ(mm′)); given these polynomials, one can
apply γ and its inverse to any input using Õ(φ(mm′)) operations in F.

Proof. Without loss of generality, we prove the first claim over

Q; the result over F follows by scalar extension. In the field

Q[x ,x ′]/⟨Φm (x),Φm′(x ′)⟩, xx ′ is cancelled by Φmm′ . Since this

polynomial is irreducible, it is the minimal polynomial of xx ′,
which is thus a primitive element for Q[x ,x ′]/⟨Φm (x),Φm′(x ′)⟩.
This proves the first claim.

For the second claim, we first determine the images of x and x ′

by γ . Start from a Bézout relation am + a′m′ = 1, for some a,a′

in Z. Since xm = x ′m
′

= 1 in h, we deduce that γ (x) = zu and

γ (x ′) = zv , with u := am mod mm′
and v := a′m′

mod mm′
. To

compute γ (P), for some P in h, we first compute P(zu , zv ), keeping
all exponents reduced modulomm′

. This requires no arithmetic

operations and results in a polynomial P̄ of degree less thanmm′
,

which we eventually reduce modulo Φmm′ (the latter is obtained

by the composed product algorithm of [Bostan et al. 2006] in quasi-

linear time). By [Bach and Shallit 1996, Theorem 8.8.7], we have

the bound s ∈ O(φ(s) log(log(s))), so that s is in Õ(φ(s)). Thus, we
can reduce P̄ modulo Φmm′ in Õ(φ(mm′)) operations, establishing

the cost bound for γ .
Conversely, given Q in F[z]/⟨Φmm′(z)⟩, we obtain its preimage

by replacing powers of z by powers of xx ′, reducing all exponents

in x modulom, and all exponents in x ′ modulom′
. We then reduce

the result modulo both Φm (x) and Φm′(x ′). By the same argument

as above, the cost is softly linear in φ(mm′). □
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Extension to several cyclotomic rings. The natural generaliza-
tion of the algorithm above starts with pairwise distinct primes

p = (p1, . . . ,pt ), non-negative exponent c = (c1, . . . , ct ) and vari-

ables x = (x1, . . . ,xt ) over F. Now, we define

H := F[x1, . . . ,xt ]/⟨Φp1

c
1 (x1), . . . ,Φpt ct (xt )⟩;

when needed, we will write H as Hp,c,x . Finally, we let µ :=

p1

c1 · · ·pt
ct
; then, the dimension dim(H) is φ(µ).

Lemma 4.2. There exists an F-algebra isomorphism Γ : H →

F[z]/⟨Φµ (z)⟩ given by x1 · · · xt 7→ z. One can apply Γ and its inverse
to any input using Õ(dim(H)) operations in F.

Proof. We proceed iteratively. First, note that the cyclotomic poly-

nomials Φpi ci can all be computed in time O(φ(µ)). The isomor-

phism γ : F[x1,x2]/⟨Φp1

c
1 (x1),Φp2

c
2 (x2)⟩ → F[z]/⟨Φp1

c
1p2

c
2 (z)⟩

given in the previous paragraph extends coordinate-wise to an

isomorphism

Γ1 : H→ F[z,x3, . . . ,xt ]/⟨Φp1

c
1p2

c
2 (z),Φp3

c
3 (x3), . . . ,Φpt ct (xt )⟩.

By the previous lemma, Γ1 and its inverse can be applied to any

input in time Õ(φ(µ)). Iterate this process another t − 2 times, to

obtain Γ as a product Γt−1 ◦ · · · ◦ Γ1. Since t is logarithmic in φ(µ),
the proof is complete. □
Tensor product of two prime-power cyclotomic rings, same
p.We now consider cyclotomic polynomials of prime power orders

for a common prime p. As above, we start with two such polynomi-

als. Let thus p be a prime. The key to the following algorithms is

the lemma below. Let c, c ′ be positive integers, with c ≥ c ′, and let

x ,y be indeterminates over F. Define

a := F[x]/Φpc (x), (4.1)

b := F[x ,y]/⟨Φpc (x),Φpc′ (y)⟩ = a[y]/Φpc′ (y). (4.2)

Note a and b have respective dimensions φ(pc ) and φ(pc )φ(pc
′

).

Lemma 4.3. There is an F-algebra isomorphism θ : b→ a
φ(pc

′
)

such that one can apply θ or its inverse to any inputs using Õ(dim(b))

operations in F.

Proof. Let ξ be the residue class of x in A. Then, in a[y], Φpc′ (y)

factors as

Φpc′ (y) =
∏

1≤i≤pc
′
−1

gcd(i,p)=1

(y − ρi ),

with ρi := ξ ip
c−c′

for all i . Even though a may not be a field, the

Chinese Remainder theorem implies thatb is isomorphic to a
φ(pc

′
)
;

the isomorphism is given by

θ : b → a × · · · × a,

P 7→ (P(ξ , ρ1), . . . , P(ξ , ρφ(pc′ )).

Arithmetic operations (+,−,×) in a can be done in Õ(φ(pc )) op-
erations in F. Starting from ρ1 ∈ a, all other roots ρi can then be

computed in O(φ(pc
′

)) operations in a or Õ(dim(b)) operations

in F.
Applying θ and its inverse is done by means of fast evaluation

and interpolation [von zur Gathen and Gerhard 2013, Chapter 10]

in Õ(φ(pc
′

)) operations in a, that is, Õ(deg(b)) operations in F (the
algorithms do not require that a be a field). □

Extension to several cyclotomic rings. Let p be as before, and

consider now non-negative integers c = (c1, . . . , ct ) and variables

x = (x1, . . . ,xt ). We define the F-algebra

A := F[x1, . . . ,xt ]/⟨Φpc1 (x1), . . . ,Φpct (xt )⟩,

which we will sometimes write Ap,c,x to make the dependency on

p and the ci ’s clear. Up to reordering the ci ’s, we can assume that

c1 ≥ ci holds for all i , and define as before a := F[x1]/Φpc1 (x1).

Lemma 4.4. There exists an F-algebra isomorphism Θ : A →

a
dim(A)/dim(a). This isomorphism and its inverse can be applied to

any inputs using Õ(dim(A)) operations in F.

Proof. Without loss of generality, we can assume that all ci ’s are
non-zero (since for ci = 0, Φpci (xi ) = xi − 1, so F[xi ]/⟨Φpci (xi )⟩ =
F). We proceed iteratively. First, rewrite A as

A = a[x2,x3, . . . ,xt ]/⟨Φpc2 (x2),Φpc3 (x3), . . . ,Φpt ct (xt )⟩.

The isomorphism θ : a[x2]/Φpc2 (x2) → a
φ(pc2 )

introduced in the

previous paragraph extends coordinate-wise to an isomorphism

Θ1 : A→ (a[x3, . . . ,xt ]/⟨Φpc3 (x3), . . . ,Φpct (xt )⟩)
φ(pc2 )

;

Θ1 and its inverse can be evaluated in quasi-linear

time Õ(dim(A)). We now work in all copies of

a[x3, . . . ,xt ]/⟨Φpc3 (x3), . . . ,Φpct (xt )⟩ independently, and

apply the procedure above to each of them. Altogether we have

t − 1 such steps to perform, giving us an isomorphism

Θ = Θt−1 ◦ · · · ◦ Θ1 : A→ a
φ(pc2 )·· ·φ(pct ).

The exponent can be rewritten as dim(A)/dim(a), as claimed. All

Θi ’s and their inverses can be computed in time Õ(dim(A)), and
we do t − 1 of them, where t is O(log(dim(A))). □
Decomposing certain p-group algebras. The prime p and inde-

terminates x = (x1, . . . ,xt ) are as before; we now consider positive

integers b = (b1, . . . ,bt ), and the F-algebra

B := F[x1, . . . ,xt ]/⟨x
pb1

1
− 1, . . . ,x

pbt
t − 1⟩

= F[x1]/⟨x
pb1

1
− 1⟩ ⊗ · · · ⊗ F[xt ]/⟨x

pbt
t − 1⟩.

If needed, we will write Bp,b,x to make the dependency on p and

the bi ’s clear. This is the F-group algebra of Z/pb1Z× · · · × Z/pbt Z.

Lemma 4.5. There exists a positive integerN , non-negative integers
c = (c1, . . . , cN ) and an F-algebra isomorphism

Λ : B→ D = F[z]/⟨Φpc1 (z)⟩ × · · · × F[z]/⟨ΦpcN (z)⟩.

One can apply the isomorphism and its inverse to any input using
Õ(dim(B)) operations in F.

Proof. For i ≤ t , we have the factorization

x
pbi
i − 1 = Φ1(xi )Φp (xi )Φp2 (xi ) · · ·Φpbi (xi );

note that Φ1(xi ) = xi −1. The factors may not be irreducible, but are

pairwise coprime, so we have a Chinese Remainder isomorphism

λi : F[xi ]/⟨x
pbi
i − 1⟩ → F[xi ]/⟨Φ1(xi )⟩ × · · · × F[xi ]/⟨Φpbi (xi )⟩.
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It and its inverse can be computed in Õ(pbi ) operations in F [von

zur Gathen and Gerhard 2013, Chapter 10]. This gives an F-algebra
isomorphism

λ : B→

b1∏
c1=0

· · ·

bt∏
ct=0

Ap,c,x ,

with c = (c1, . . . , ct ). Together with its inverse, λ can be com-

puted in Õ(dim(B)) operations in F. Composing with the result in

Lemma 4.4, this gives us an isomorphism

Λ : B→ D :=

b1∏
c1=0

· · ·

bt∏
ct=0

a
Dc
c ,

where ac = F[z]/⟨Φpc (z)⟩, with c = max(c1, . . . , ct ) and Dc =

dim(At,c,x )/dim(ac ). As before,Λ and its inverse can be computed

in quasi-linear time Õ(dim(B)). □
As for B, we will write Dp,b,x if needed; it is well-defined, up

to the order of the factors.

Main result. Let G be an abelian group. We can write the elemen-

tary divisor decomposition ofG asG = G1×· · ·×Gs , where eachGi
is of prime power order paii , for pairwise distinct primes p1, . . . ,ps ,

so that |G | = pa1

1
· · ·pass . Each Gi can itself be written as a product

of cyclic groups,Gi = Gi,1×· · ·×Gi,ti , where the factorGi, j is cyclic

of order pi
bi, j

, with bi,1 ≤ · · · ≤ bi,ti and bi,1 + · · ·+bi,ti = ai . We

henceforth assume that generators γ1,1, . . . ,γs,ts of respectively

G1,1, . . . ,Gs,ts are known, and that elements of F[G] are given on

the power basis in γ1,1, . . . ,γs,ts .

Proposition 4.6. Given β ∈ F[G], written in the basis
γ1,1, . . . ,γs,ts , one can test if β is a unit in F[G] in time Õ(|G |).

From the factorization G = G1 × · · · ×Gs , we deduce that the

group algebra F[G] is the tensor product F[G1] ⊗ · · · ⊗ F[Gs ]. Fur-

thermore, the factorizationGi = Gi,1×· · ·×Gi,ti implies that F[Gi ]

is isomorphic, as an F-algebra, to

F[xi,1, . . . ,xi,ti ]/

〈
x
pb1

i
i,1 − 1, . . . ,x

p
bi,ti
i

i,ti
− 1

〉
= Bpi ,b i ,x i ,

with bi = (bi,1, . . . ,bi,ti ) and x i = (xi,1, . . . ,xi,ti ). Given β on the

power basis in γ1,1, . . . ,γs,ts , we obtain its image B in Bp1,b 1,x 1

⊗

· · · ⊗ Bps ,b s ,x s simply by renaming γi, j as xi, j , for all i, j.
For i ≤ s , by Lemma 4.5, there exist integers ci,1, . . . , ci,Ni such

that Bpi ,b i ,x i is isomorphic to an algebra Dpi ,b i ,zi , with factors

F[zi ]/⟨Φpi ci, j (zi )⟩. By distributivity of the tensor product over di-

rect products, we deduce that Bp1,b 1,x 1

⊗ · · · ⊗Bps ,b s ,x s is isomor-

phic to the product of algebras∏
j
F[z1, . . . , zs ]/⟨Φp1

c
1, j

1
(z1), . . . ,Φps cs, js (zs )⟩, (4.3)

for all indices j = (j1, . . . , js ), with j1 = 1, . . . ,N1, . . . , js =
1, . . . ,Ns ; call Γ the isomorphism. Given B in Bp1,b 1,x 1

⊗ · · · ⊗

Bps ,b s ,x s , Lemma 4.5 also implies that B′
:= Γ(B) can be com-

puted in time Õ(|G |) (apply the isomorphism corresponding to x1

coordinate-wise with respect to all other variables, then deal with

x2, etc). The codomain in (4.3) is the product of all Hp,c j,z , with

p = (p1, . . . ,ps ), c = (c1, j1 , . . . , cs, js ), z = (z1, . . . , zs ).

Apply Lemma 4.2 to allHp,c j,z to obtain an F-algebra isomorphism

Γ′ :

∏
j
Hp,c j,z →

∏
j
F[z]/⟨Φdj (z)⟩,

for certain integers dj . The lemma implies that given B′
, B′′

:=

Γ′(B′) can be computed in softly linear time Õ(|G |) as well. In-

vertibility of β ∈ F[G] is equivalent to A′′
being invertible, that

is, to all its components being invertible in the respective factors

F[z]/⟨Φdj (z)⟩. Invertibility in such an algebra can be tested in softly
linear time by applying the fast extended GCD algorithm [von zur

Gathen and Gerhard 2013, Chapter 11], so our conclusion follows.

With Proposition 3.5, this proves the first part of Theorem 1.1.

4.2 Metacyclic Groups
We next study the invertibility problem for a metacyclic group G.
We use an injective homomorphism, whose image will be easy to

compute. This is the object of the following lemma, where the map

is inspired by the one used in [Curtis and Reiner 1988, §47].

Assume that G = ⟨σ ,τ : σm = 1,τ s = σ t ,τ−1στ = σ r ⟩, where
r s = 1 mod m and rt = t mod m; in particular, n = |G | is equal to

ms . Define A := F[z]/⟨zm − 1⟩ and let ζ be the image of z in A.

Lemma 4.7. The mappingψ : F[G] → Ms (A) where

σ 7→ Diag(ζ , ζ r , . . . , ζ r
s−1

), τ 7→

[
0 ζ

Is−1 0

]
is an injective F-algebra homomorphism.

Proof. It is straightforward to verify that ψ (σ )m = Im , ψ (τ )s =
ψ (σ )t and ψi (σ )ψi (τ ) = ψ (τ )ψi (σ )

r
; this shows that ψ is a well-

defined F-algebras homomorphism.

Take β ∈ F[G], and write it β =
∑s−1

j=0

(∑m−1

i=0
bi, jσ

i
)
τ j . For j =

0, . . . , s − 1, define Fj (x) :=
∑m−1

i=0
bi, jx

i ∈ F[x] and, for 1 ≤ i, j ≤ s ,

Fi, j := Fi−1(ζ
r j−1

). Then,ψ (β) is the matrix
F1,1 · · · ζ F3,s−1 ζ F2,1

F2,2 F1,2 · · · ζ F3,s
...

. . .
. . .

...

Fs,s · · · F2,s F1,s


. (4.4)

If β is in Ker(ψ ), we get Fi (ζ ) = 0, that is, Fi mod (zm − 1) = 0, for

0 ≤ i < s . All Fi ’s have degree less thanm, so they are all zero. □
We finally give two algorithms that test whetherψ (β) ∈ Ms (A)

is invertible, for a given β in F[G]. Minor difficulties will arise as

we work over A, since A is not a field, but a product of fields (if the

irreducible factorization of zm − 1 in F[z] is known, we can use the

Chinese Remainder theorem and work in field extensions of F).

Corollary 4.8. Given β in F[G], one can test if β is a unit in F[G]
either by a deterministic algorithm that uses Õ(s2.7m) operations in
F, or a Monte Carlo one that uses Õ(n2) operations in F.

The second statement provides the last part of the proof of The-

orem 1.1. Note that the first algorithm gives a better cost in many

cases. For instance, if s ≤ m, the first algorithm uses O(n1.85) op-

erations in F. This happens if s is prime, since then the number

(m − gcd(m, r − 1))/s is a positive integer, which implies s ≤ m (see

[Curtis and Reiner 1988, Theorem 47.12, Corollary 47.14 ]).

First algorithm. The first algorithm uses fast linear algebra

algorithms over the ring A. Here, we start from β written as
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β =
∑s−1

j=0

(∑m−1

i=0
bi, jσ

i
)
τ j ∈ F[G]. Then, the proof of the previous

lemma shows an explicit formula forψ (β). In order to compute this

matrix, we note that ζ r
j−1

= ζ r
j−1

mod m
; computing this element

and its powers requires no arithmetic operation, so that the coef-

ficients of each Fi, j are obtained in linear time O(m). Hence the

matrixψ (β) can be computed in time O(s2m).

Next, we have to determine whetherψ (β) is a unit (the injectivity
ofψ implies that this is the case if and only if β itself is a unit). This

amounts to computing the determinant of this matrix, which can be

done in Õ(s2.7m) operations in F, using the determinant algorithm

of [Kaltofen and Villard 2004, Section 6]. □

Lemma 4.9. Given β in F[G] and v in As , one can compute
ψ (β)v ∈ As using Õ(sm2) operations in F.
Proof. We use the basis of F[G] of (3.5), writing β =∑m−1

i=0

(∑s−1

j=0
bi, jτ

i
)
σ j =

∑m−1

i=0
Bi (τ )σ

i
, for some B0, . . . ,Bm−1

in F[z] of degree less than s .
Givenv as above, we compute all Bi (ψ (τ ))ψ (σ )

iv independently,

and add them to obtain ψ (β)v . Hence, let us fix an index i in
{0, . . . ,m − 1}. The vectorψ (σ )iv can be obtained by multiplying

each entry ofv by a power of ζ ; this takes Õ(sm) operations in F.
Then, sinceψ (τ ) is thematrix of multiplication byy inA[y]/⟨ys−ζ ⟩,
Bi (ψ (τ )) is the matrix of multiplication by Bi (y) in A[y]/⟨y

s − ζ ⟩.
Thus, applying this matrix to a vector also takes time Õ(sm). Adding

a factor ofm to account for all indices i gives the result. □
Second algorithm for Corollary 4.8. The second algorithm

uses Wiedemann’s 1986 algorithm, and its extension by Kaltofen

and Saunders [1991]. Extra care will be needed to accommodate

the fact that A has zero-divisors. Let F1, . . . , Fs be the (unknown)
irreducible factors of zm − 1 in F[z] and define Ai := F[z]/⟨Fi ⟩ for
i = 1, . . . , s . We write πi : A → Ai for the canonical projection,
and extend the notation to matrices over A.

For β in F[G], M := ψ (β) is invertible if and only if all Mi :=

πi (M) are. We are going to use the algorithm of [Kaltofen and

Saunders 1991, Section 4] to compute the rank of all these matrices

(these ranks are well-defined, since all Ai ’s are fields). Let L and

U be respectively random lower triangular and upper triangular

Toeplitz matrices over A, and define M′
:= LMU ∈ Ms (A). Finally,

let M′′
be M′

, to which we adjoin a bottom row and a rightmost

column of zeros (so it has size s + 1), let M′′
i := πi (M′′) and let

ri := rank(M′′
i ), i = 1, . . . , s . Then, all ri ’s are less than s + 1, and

M is invertible if and only if ri = s for all i .
The condition thatM′′

i has rank less than s+1makes it possible to

apply [Kaltofen and Saunders 1991, Lemma 2]: for generic ui ,vi in

As+1

i and diagonal matrix X inMs+1(Ai ), the minimal polynomial

of the sequence (uTi (M
′′
i Xi )

jvi )j≥0 has degree ri + 1.

To compute these degrees without knowing the factorization

zm − 1 = F1 · · · Fs , we choose random u,v in As+1
and diagonal

matrix X inMs+1(A). Then, we compute 2s terms in the sequence

(γj )j≥0, with γj := uT (M′′X)jv . Since multiplication by L, U and X
all take quasi-linear time Õ(sm), Lemma 4.9 shows that one product

by M′′X takes Õ(sm2) operations in F. Hence, all required terms

can be obtained in Õ(s2m2) = Õ(n2) operations in F.
Finally, we apply the fast Euclidean algorithm to

∑
2s−1

j=0
γjy

j
and

y2s
in the ring A[y] to find the ranks r1, . . . , rs . Since A is not a

field, we rely on the algorithm of [Accettella et al. 2003; Dahan et al.

2006]. Using Õ(sm) operations in F, it reveals a partial factorization
of zm − 1 as G1 · · ·Gt (the factors may not be irreducible) and

integers ρ j , j = 1, . . . , t , such that for all i ≤ s , j ≤ t , if Fi divides
G j , then ri = ρ j . This allows us to determine all ri ’s, and thus

decide whetherψ (β) is singular. □
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