
Algorithms for Linearly Recurrent Sequences
of Truncated Polynomials

Seung Gyu Hyun

University of Waterloo

Waterloo, ON, Canada

Vincent Neiger

Univ. Limoges, CNRS, XLIM, UMR 7252

F-87000 Limoges, France

Éric Schost

University of Waterloo

Waterloo, ON, Canada

ABSTRACT
Linear recurrent sequences are those whose elements are defined as

linear combinations of preceding elements, and finding recurrence

relations is a fundamental problem in computer algebra. In this

paper, we focus on sequences whose elements are vectors over the

ring A = K[𝑥]/⟨𝑥𝑑 ⟩ of truncated polynomials. Finding the ideal of

their recurrence relations has applications such as the computation

of minimal polynomials and determinants of sparse matrices over

A. We present three methods for finding this ideal: a Berlekamp-

Massey-like approach due to Kurakin, one which computes the ker-

nel of some block-Hankel matrix overA via a minimal approximant

basis, and one based on bivariate Padé approximation. We propose

complexity improvements for the first two methods, respectively

by avoiding the computation of redundant relations and by exploit-

ing the Hankel structure to compress the approximation problem.

Then we confirm these improvements empirically through a C++

implementation, and we discuss the above-mentioned applications.

CCS CONCEPTS
• Computing methodologies→ Algebraic algorithms; • The-
ory of computation→ Design and analysis of algorithms.

KEYWORDS
Linear recurrences; Berlekamp-Massey-Sakata; Approximant basis;

Kurakin’s algorithm; Sparse matrix.

ACM Reference Format:
Seung Gyu Hyun, Vincent Neiger, and Éric Schost. 2021. Algorithms for

Linearly Recurrent Sequences of Truncated Polynomials. In Proceedings of

the 2021 International Symposium on Symbolic and Algebraic Computation

(ISSAC ’21), July 18–23, 2021, Virtual Event, Russian Federation. ACM, New

York, NY, USA, 8 pages. https://doi.org/10.1145/3452143.3465533

1 INTRODUCTION
Linear recurrences appear in many domains of computer science

andmathematics, and computing recurrence relations efficiently is a

fundamental problem in computer algebra. More specifically, given

a sequence of elements in K𝑟 for some field K and integer 𝑟 > 0,
we seek a representation of its annihilator, which is a polynomial

ideal corresponding to all recurrence relations which are satisfied

ISSAC ’21, July 18–23, 2021, Virtual Event, Russian Federation

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not

for redistribution. The definitive Version of Record was published in Proceedings of the

2021 International Symposium on Symbolic and Algebraic Computation (ISSAC ’21), July

18–23, 2021, Virtual Event, Russian Federation, https://doi.org/10.1145/3452143.3465533.

by the sequence; the polynomials in the annihilator are said to

cancel the sequence. In dimension 𝑟 = 1, the Berlekamp-Massey

algorithm [4, 26] computes the unique monic univariate polynomial

of minimal degree that cancels the sequence. Sakata extended this

algorithm first to dimension 2 [33] and then to the general case

𝑟 > 1 [34]; see also Norton and Fitzpatrick’s extension to 𝑟 > 1
[13]. Recent work includes variants of Sakata’s algorithm such as

one which handles relations that are satisfied by several sequences

simultaneously [35], approaches relating the problem to the kernel

of a multi-Hankel matrix and exploiting either fast linear algebra [5]

or a process similar to Gram-Schmidt orthogonalization [27], and

an algorithm relying directly on multivariate polynomial arithmetic

[6]. As for the representation of the output, all these algorithms

compute a Gröbner basis or a border basis of the annihilator.

In this paper, we focus on computing recurrence relations for

sequences whose elements are in A𝑛 , where A = K[𝑥]/⟨𝑥𝑑 ⟩. This
problem can be solved using a specialization of Kurakin’s algo-

rithm [20, 21], as detailed in Section 3, where we explicitly describe

the output generating set of the annihilator as a lexicographic

Gröbner basis of some bivariate ideal. We derive a cost bound

of 𝑂 (̃𝛿𝑑 (𝑛2𝛿𝑑 + 𝑛𝜔𝑑)) operations in K, where 𝛿 is the order of

recurrence (see Section 2.1), and 𝜔 is an exponent for matrix mul-

tiplication over K [1, 9, 24]. Because the Gröbner bases computed

by Kurakin’s algorithm are often non-minimal, in Section 4 we

propose a modified algorithm which aims at limiting as much as

possible the computation of these extraneous generators. This low-

ers the cost to 𝑂 (̃𝛿𝑑∗ (𝑛2𝛿𝑑 + 𝑛𝜔𝑑)), where 𝑑∗ is a number arising

in the algorithm as an upper bound on the cardinality 𝑑opt of min-

imal Gröbner bases of the annihilator. In Section 7, we observe

empirically that 𝑑∗ is often close or equal to 𝑑opt.

Despite the improvement, the above cost bound still has a de-

pendence at least quadratic in the dimension 𝑛. Our interest in the

case 𝑛 ≫ 1 is motivated among others by the following fact: given

a zero-dimensional ideal I ∈ K[𝑥,𝑦], one can recover a Gröbner

basis of it via I = Ann(𝒔) for some well-chosen 𝒔 ∈ AN only if

K[𝑥,𝑦]/I has the Gorenstein property [16, 25]. When that is not

the case, one can recover a basis of I via the annihilator of several

sequences simultaneously, which means precisely 𝑛 > 1. For large
𝑛, we compute the annihilator via a minimal approximant basis

of a block-Hankel matrix over A constructed from 𝒔. Computing

this approximant basis via the algorithm PM-Basis of [14] leads to

a complexity of 𝑂 (̃𝛿𝜔𝑛𝑑) operations in K (Section 5.1). We then

propose a novel improvement of this minimal approximant basis

computation, based on a randomized compression of the input ma-

trix which leverages its block-Hankel structure, reducing the cost

to 𝑂 (̃𝛿2𝑛𝑑 + 𝛿𝜔𝑑) operations in K (Section 5.2).

The four above algorithms have been implemented in C++ using

the libraries NTL [37] and PML [18], using Lazard’s structural

ar
X

iv
:2

10
2.

03
58

3v
2

 [
cs

.S
C

]
 8

 J
un

 2
02

1

https://doi.org/10.1145/3452143.3465533
https://doi.org/10.1145/3452143.3465533

theorem [23] for generating examples of sequences; see Section 7

for more details. Our experiments on a prime field K highlight

a good match between cost bounds and practical running times,

confirming also the benefit obtained from the improvements of both

Kurakin’s algorithm and the plain approximant basis approach.

Furthermore, in Section 6 we propose an algorithm with cost

quasi-linear in the order 𝛿 , whereas the above cost bounds are at

least quadratic. For 𝑑 ∈ 𝑂 (𝛿), we compute the annihilator via the

bivariate Padé approximation algorithm of [28]: this uses𝑂 (̃𝑑𝜔+1𝛿)
operations in K, at the price of restricting to 𝑛 ∈ 𝑂 (1).

Finally, in Section 8 we mention applications to the computation

of minimal polynomials and determinants of sparse matrices over

A. To design Wiedemann-like algorithms [39] for such matrices

𝐴 ∈ A`×` , we need to compute annihilators from sequences of

the form (𝑢𝑇𝐴𝑖𝑣)𝑖≥0 ∈ AN for some vectors 𝑢 and 𝑣 ; several such

sequences may be needed, leading to the case 𝑛 > 1.
Sakata’s 2-dimensional algorithm shares similarities with the

case 𝑛 = 1 of Kurakin’s algorithm, and has the same complexity

𝑂 (𝛿2𝑑2) [33, Thm. 3]. Apart from this, to the best of our knowledge

previous work has 𝑛 = 1 and considers 𝑟 -dimensional sequences

over K for an arbitrary 𝑟 ≥ 2 [5, 6, 27]. Complexity in this 𝑟 -variate

context is often expressed using the degree 𝐷 of the considered

zero-dimensional ideal; here, 𝛿 ≤ 𝐷 ≤ 𝛿𝑑 and a minimal Gröbner

basis or a border basis will have at most min(𝛿, 𝑑) + 1 elements.

The Scalar-FGLM algorithm has cost 𝑂 (̃𝑑opt𝛿𝜔𝑑) [5, Prop. 16].
Both theArtinian border basis and Polynomial-Scalar-FGLM algo-

rithms [6, 27] cost𝑂 (𝐷2𝛿𝑑), which is𝑂 (𝛿3𝑑) in themost favourable

case 𝐷 = 𝛿 , and 𝑂 (𝛿3𝑑3) when 𝐷 ∈ Θ(𝛿𝑑) (which will be the case

in our experiments, see Section 7). In all cases, a better complexity

bound can be achieved by one of our algorithms outlined above.

While this is not reflected in the cost estimates above, Kurakin’s

algorithm and our modified version are still affected by the shape

of the staircase of the computed Gröbner basis, due to early termi-

nation of the iterations and late additions; we leave a more refined

complexity analysis with respect to 𝐷 as future work.

2 LINEARLY RECURRENT SEQUENCES
In this section, we review key facts about linearly recurrent se-

quences and algorithmic tools used throughout the paper.

2.1 Recurrent sequences over K[𝑥]/⟨𝑥𝑑⟩
We consider the set S = (A𝑛)N of (vector) sequences over the

ring A = K[𝑥]/⟨𝑥𝑑 ⟩ for some 𝑑 ∈ Z>0, that is, sequences 𝒔 =

(𝑆0, 𝑆1, . . .) with each 𝑆𝑘 in A𝑛 . Such a sequence is said to be lin-

early recurrent if there exist 𝛾 ∈ N and 𝑝0, . . . , 𝑝𝛾 ∈ A with 𝑝𝛾
invertible such that

𝑝0𝑆𝑘 + · · · + 𝑝𝛾−1𝑆𝑘+𝛾−1 + 𝑝𝛾𝑆𝑘+𝛾 = 0 for all 𝑘 ≥ 0; (1)

the order of 𝒔 is the smallest such 𝛾 , denoted by 𝛿 hereafter. A

polynomial 𝑝0 + · · · + 𝑝𝛾𝑦𝛾 in A[𝑦] is said to cancel 𝒔 if 𝑝0, . . . , 𝑝𝛾
satisfies Eq. (1) (without requiring that 𝑝𝛾 be invertible). The set of

canceling polynomials forms an ideal Ann(𝒔) in A[𝑦], called the

annihilator of 𝒔. Thus 𝒔 is linearly recurrent of order 𝛿 if and only

if there is a monic polynomial of degree 𝛿 in Ann(𝒔): such polyno-

mials are called generating polynomials of 𝒔. Unlike for sequences
over fields, here there may be canceling polynomials of degree less

than 𝛿 , which prevents uniqueness of generating polynomials; and

there are sequences which are not linearly recurrent but still admit

a nonzero canceling polynomial (i.e. Ann(𝒔) ≠ {0}).

Example 2.1. Consider A = K[𝑥]/⟨𝑥2⟩ and the sequence 𝒔 =

(1, 1 + 𝑥, 1, 1 + 𝑥, 1, 1 + 𝑥, . . .) in AN. Note that 𝑥𝒔 = (𝑥, 𝑥, 𝑥, 𝑥, . . .).
This sequence has order 𝛿 = 2, a generating polynomial is 𝑦2 − 1,
and a canceling polynomial of degree less than 2 is 𝑥 (𝑦−1). One can
verify thatAnn(𝒔) = ⟨𝑦2−1, 𝑥 (𝑦−1)⟩; in particular𝑦2+𝑥 (𝑦−1)−1
is also a generating polynomial. For any sequence 𝒔 in KN which

is not linearly recurrent, the sequence 𝑥𝒔 in AN is not linearly

recurrent but is canceled by 𝑥 , i.e. 𝑥 ∈ Ann(𝑥𝒔) \ {0}.

Like for sequences over fields, here canceling polynomials can

be characterized as denominators of the (vector) generating series

of the sequence, defined as𝐺𝒔 =
∑
𝑘≥0 𝑆𝑘𝑦

−𝑘−1
in (A[[𝑦−1]])𝑛 . In

what follows, the elements ofA[𝑦]𝑛 are called polynomials, and for

𝑔 = (𝑔1, . . . , 𝑔𝑛) ∈ A[𝑦]𝑛 we define deg(𝑔) = max1≤ 𝑗≤𝑛 deg(𝑔 𝑗).

Lemma 2.2. Let 𝒔 ∈ S, let 𝐺𝒔 be its generating series, and let 𝑝 ∈
A[𝑦]. Then, 𝑝 ∈ Ann(𝒔) if and only if the series 𝑝𝐺𝒔 ∈ (A[[𝑦−1]])𝑛
is a polynomial, in which case deg(𝑝𝐺𝒔) < deg(𝑝).

In this paper, we want to compute a generating set for Ann(𝒔),
for a linearly recurrent 𝒔 ∈ S, but for algorithms we typically only

have access to a finite number of terms of the sequence. Suppose

we have access to the partial sequence 𝒔𝑒 = (𝑆0, . . . , 𝑆𝑒−1) in S𝑒 =

(A𝑛)𝑒 , for some 𝑒 ∈ Z>0. Similar to Eq. (1), a polynomial 𝑝0 + · · · +
𝑝𝛾𝑦

𝛾
of degree 𝛾 < 𝑒 cancels 𝒔𝑒 if

𝑝0𝑆𝑘 + · · · + 𝑝𝛾𝑆𝑘+𝛾 = 0 for all 0 ≤ 𝑘 < 𝑒 − 𝛾 . (2)

Like for sequences over fields, here polynomials of degree 𝛾 which

cancel 𝒔𝑒 also cancel thewhole sequence 𝒔, provided the discrepancy
between 𝑒 and 𝛾 is sufficiently large (namely, 𝑒 ≥ 𝛾 + 𝛿).

Lemma 2.3. Let 𝒔 ∈ S be linearly recurrent of order 𝛿 . For any

𝑒 ∈ Z>0 and any 𝑝 ∈ A[𝑦] with deg(𝑝) ≤ 𝑒−𝛿 , one has 𝑝 ∈ Ann(𝒔)
if and only if 𝑝 cancels 𝒔𝑒 .

2.2 Bivariate interpretation and generating sets
Uni-dimensional sequences of vectors in A𝑛 as above can be in-

terpreted as two-dimensional sequences of vectors in K𝑛 , that is,

sequences 𝝈 = (Z𝑖, 𝑗)𝑖, 𝑗≥0 in 𝔖 = (K𝑛)N2
. This is based on the

natural injection 𝜑 : A[𝑦] → K[𝛼, 𝛽] with (𝜑 (𝑥), 𝜑 (𝑦)) = (𝛼, 𝛽).
Here we recall from [13, 33] that a polynomial 𝑞 =

∑
𝑖, 𝑗 𝑞𝑖 𝑗𝛼

𝑖𝛽 𝑗

in K[𝛼, 𝛽] is said to cancel a sequence 𝝈 = (Z𝑖, 𝑗)𝑖, 𝑗≥0 ∈ 𝔖 if∑
𝑖, 𝑗 𝑞𝑖 𝑗Z𝑖+𝑘1, 𝑗+𝑘2

= 0 for all 𝑘1, 𝑘2 ≥ 0.

Then, let 𝒔 = (𝑆0, 𝑆1, . . .) ∈ S, and define 𝝈 = (Z𝑖, 𝑗)𝑖, 𝑗≥0 ∈ 𝔖 such

that Z𝑖, 𝑗 ∈ K𝑛 is the coefficient of degree 𝑑 − 1 − 𝑖 of the truncated
polynomial vector 𝑆 𝑗 ∈ A𝑛 if 𝑖 < 𝑑 , and Z𝑖, 𝑗 = 0 otherwise. Then, a

polynomial 𝑝 ∈ A[𝑦] cancels 𝒔 if and only if the polynomial 𝜑 (𝑝)
cancels 𝝈 . Furthermore, the set of polynomials in K[𝛼, 𝛽] which
cancel 𝝈 is an ideal of K[𝛼, 𝛽] which contains 𝛼𝑑 , and this ideal is

zero-dimensional if and only if 𝒔 is linearly recurrent.

In what follows, we define 𝜑 (I) = ⟨{𝜑 (𝑝) | 𝑝 ∈ I} ∪ {𝛼𝑑 }⟩ for
any ideal I ofA[𝑦], providing a correspondence between the ideals

ofA[𝑦] and those ofK[𝛼, 𝛽] containing𝛼𝑑 . For insight into possible
“nice” generating sets for Ann(𝒔), we consider the lexicographic
order ≼lex with 𝛼 ≼lex 𝛽 , and use the fact that Gröbner bases of

the ideals in K[𝛼, 𝛽] for this order are well understood [23]. Below,

unless mentioned otherwise, we use ≼lex when some term order is

needed, e.g. leading terms and Gröbner bases.

Consider a zero-dimensional ideal I in K[𝛼, 𝛽] that contains a
power of 𝛼 and let G be its reduced Gröbner basis. Let

(𝛽𝑒0 , 𝛼𝑑1𝛽𝑒1 , . . . , 𝛼𝑑𝑡−1𝛽𝑒𝑡−1 , 𝛼𝑑𝑡)
be the leading terms of the elements of G listed in decreasing

order, i.e. the 𝑒𝑖 ’s are decreasing and the 𝑑𝑖 ’s are increasing. We

set 𝑑0 = 𝑒𝑡 = 0, and for 1 ≤ 𝑖 ≤ 𝑡 we set 𝛿𝑖 = 𝑑𝑖 − 𝑑𝑖−1, so that

𝑑𝑖 = 𝛿1 + · · · + 𝛿𝑖 . Similarly, for 0 ≤ 𝑖 < 𝑡 we set Y𝑖 = 𝑒𝑖 − 𝑒𝑖+1.
Then write G = {𝑔0, . . . , 𝑔𝑡 }, with 𝑔𝑖 having leading term 𝛼𝑑𝑖 𝛽𝑒𝑖 ;

in particular 𝑔𝑡 = 𝛼
𝑑𝑡 = 𝛼𝛿1+···+𝛿𝑡 and 𝑔0 is monic in 𝛽 .

Lazard’s Theorem states the following [23]: for 0 ≤ 𝑖 ≤ 𝑡 one
can write 𝑔𝑖 = 𝛼

𝑑𝑖𝑔𝑖 , with 𝑔𝑖 monic of degree 𝑒𝑖 in 𝛽 . In addition,

for 0 ≤ 𝑖 < 𝑡 , 𝑔𝑖 = 𝑔𝑖/𝛼𝑑𝑖 is in the ideal generated by

⟨𝑔𝑖+1, 𝛼𝛿𝑖+2𝑔𝑖+2, . . . , 𝛼𝛿𝑖+2+···+𝛿𝑡 ⟩ =
〈
𝑔𝑖+1
𝛼𝑑𝑖+1

,
𝑔𝑖+2
𝛼𝑑𝑖+1

, . . . ,
𝑔𝑡

𝛼𝑑𝑖+1

〉
;

in particular, 𝛼𝛿1 divides 𝑔1, . . . , 𝑔𝑡 . Lazard also proved that a set

of polynomials which satisfies these conditions is necessarily a

minimal Gröbner basis.

With the above notation, a minimal Gröbner basis of I has cardi-

nality 𝑡 + 1, with 𝑡 ≤ min(𝑒0, 𝑑𝑡) since 0 = 𝑑0 < 𝑑1 < · · · < 𝑑𝑡 and
0 = 𝑒𝑡 < · · · < 𝑒1 < 𝑒0. Since for the reduced Gröbner basis G each

polynomial 𝑔𝑖 is represented by at most 𝑒0𝑑𝑡 coefficients in K, the
total size of G in terms of field elements is at most 𝑒0𝑑𝑡 min(𝑒0, 𝑑𝑡).
Finer bounds for the cardinality and size of G could be given using

the vector space dimension dimK (K[𝛼, 𝛽]/I).

2.3 Univariate and bivariate approximation
For a univariate polynomial matrix 𝐹 ∈ K[𝑥]`×a and a positive

integer 𝑑 , we consider a free K[𝑥]-module of rank ` defined as

A𝑑 (𝐹) = {𝑝 ∈ K[𝑥]1×` | 𝑝𝐹 = 0 mod 𝑥𝑑 };
its elements are called approximants for 𝐹 at order 𝑑 [2, 38]. Bases of

such submodules can be represented as ` × ` nonsingular matrices

overK[𝑥] and are usually computed in so-called reduced forms [40]

or the corresponding canonical Popov forms [31]. Extensions of

these forms have been defined to accommodate degree weights or

degree constraints, and are called shifted reduced or Popov forms [2,

3, 38]. The algorithm PM-Basis [14] computes an approximant basis

in shifted reduced form in time𝑂 (̃`𝜔−1 (` +a)𝑑); using essentially
two calls to this algorithm, one recovers the unique approximant

basis in shifted Popov form within the same cost bound [19].

More generally, in the bivariate case with 𝐹 ∈ K[𝛼, 𝛽]`×a and

(𝑑, 𝑒) ∈ Z>0, the set
A𝑑,𝑒 (𝐹) = {𝑝 ∈ K[𝛼, 𝛽]1×` | 𝑝𝐹 = 0 mod (𝛼𝑑 , 𝛽𝑒)}

is a K[𝛼, 𝛽]-submodule of K[𝛼, 𝛽]1×` whose elements are called

approximants for 𝐹 at order (𝑑, 𝑒). Such submodules are usually rep-

resented by a ≼-Gröbner basis for some term order ≼ onK[𝛼, 𝛽]1×` ;
for definitions of term orders and Gröbner bases for submodules we

refer to [10]. For a ≤ ` algorithms based on an iterative approach or

on efficient linear algebra yield cost bounds in𝑂 (̃` (a𝑑𝑒)2+(a𝑑𝑒)3)
and 𝑂 (̃` (a𝑑𝑒)𝜔−1 + (a𝑑𝑒)𝜔) operations in K respectively [12, 30],

whereas a recent divide and conquer approach costs 𝑂 (̃ (𝑀𝜔 +
𝑀2a)𝑑𝑒), where𝑀 = `min(𝑑, 𝑒) [28, Prop. 5.5]; in these cases the

output is a minimal Gröbner basis.

3 KURAKIN’S ALGORITHM
In [20], Kurakin gives an algorithm based on the Berlekamp-Massey

algorithm that computes the annihilators of a partial sequence over

a ring 𝑅 (and modules over 𝑅) that can be decomposed as a disjoint

union 𝑅 = {0} ∪ 𝑅0 ∪ · · · ∪ 𝑅𝑑−1 where

𝑅𝑖 = {𝑟𝑖𝑟∗ | 𝑟∗ ∈ 𝑅 invertible} for some 𝑟𝑖 ∈ 𝑅.

In this paper we consider 𝑅 = A = K[𝑥]/⟨𝑥𝑑 ⟩; in this case the

canonical choice is 𝑟𝑖 = 𝑥
𝑖
, with

𝑅𝑖 = {𝑥𝑖𝑝∗ | 𝑝∗ ∈ A with nonzero constant term}.

Consider a partial sequence 𝒔𝑒 ∈ S𝑒 of a linearly recurrent

𝒔 ∈ S of order 𝛿 . Kurakin’s algorithm computes 𝑑 polynomials

𝑃𝑖 ∈ A[𝑦], 𝑖 = 0, . . . , 𝑑 − 1, such that 𝑃𝑖 is a canceling polynomial

of 𝒔𝑒 that has leading coefficient 𝑥𝑖 and is minimal in degree among

all canceling polynomials with leading coefficient 𝑥𝑖 . Furthermore,

one has Ann(𝒔) = ⟨𝑃0, . . . , 𝑃𝑑−1⟩ provided 𝑒 ≥ 2𝛿 [21, Thm. 1].

We first define three operations on sequences. Given a partial

sequence 𝒔𝑒 and 𝑐 ∈ A, 𝑐 · 𝒔𝑒 denotes multiplying 𝑐 to every element

in 𝒔𝑒 , while 𝑦 𝑗 · 𝒔𝑒 denotes a shift of 𝑗 elements — that is, removing

the first 𝑗 elements. Given another partial sequence �̂�𝑒 , the sum
𝒔𝑒 + �̂�𝑒 returns the first min(𝑒, 𝑒) elements of the two sequences

added together element-wise.

Kurakin’s algorithm iterates on 𝑠 = 0, . . . , 𝑒 − 1, keeping track

of polynomials 𝑃𝑖,𝑠 as well as partial sequences 𝒔𝑒,𝑖,𝑠 = 𝑃𝑖,𝑠 · 𝒔𝑒 =∑𝑒−𝑠
𝑗=0 𝑃𝑖,𝑠 [𝑗] ·𝑦 𝑗 · 𝒔𝑒 , where 𝑃𝑖,𝑠 [𝑗] is the 𝑗-th coefficient of 𝑃𝑖,𝑠 . An

invariant is that the leading coefficient of 𝑃𝑖,𝑠 is 𝑥
𝑖
for all 𝑠 . For each

𝑠 = 0, . . . , 𝑒 − 1, the algorithm essentially attempts to either create

a zero by using the partial sequences from previous iterations with

equal number of leading zeros (similar to Gaussian elimination), or

shift the sequence if we cannot cancel this element.

At each iteration 𝑠 , let I[𝑘] be theA-submodule ofA𝑛 generated

by the elements 𝒔𝑒,𝑖,𝑠′ [𝑘] for all 𝑖 = 0, . . . , 𝑑 − 1 and 𝑠 ′ < 𝑠 such

that 𝒔𝑒,𝑖,𝑠′ has 𝑘 leading zeros. Furthermore, let P[𝑘, 𝑗] and S[𝑘, 𝑗]
be the corresponding polynomial and partial sequence to the 𝑗-th

element in the basis of I[𝑘], I[𝑘, 𝑗]. At iteration 𝑠 , if 𝒔𝑒,𝑖,𝑠 has 𝑘
leading zeros and 𝒔𝑒,𝑖,𝑠 [𝑘] ∈ I[𝑘], then we can find coefficients

such that 𝒔𝑒,𝑖,𝑠 [𝑘]−
∑

𝑗 𝑐 𝑗I[𝑘, 𝑗] = 0 and 𝒔𝑒,𝑖,𝑠−
∑

𝑗 𝑐 𝑗S[𝑘, 𝑗] results
in a sequence with at least 𝑘 + 1 zeros since both sequences had 𝑘

leading zeros and we canceled 𝒔𝑒,𝑖,𝑠 [𝑘]. The algorithm terminates

when all 𝒔𝑒,𝑖,𝑠 = 0 (see Algorithm 1).

We track the subiterations by the index 𝑡 for analysis; this does

not play a role in the algorithm. Kurakin shows that the total num-

ber of subiterations across all 𝑠 is𝑂 (𝑒) per polynomial, bringing the

total to 𝑂 (𝑒𝑑) ([20, Thm. 2]). However, the analysis of the runtime

in [20] treats all ring operations (including computing solution

to line 12 of Algorithm 1) as constant time operations, which is

unrealistic over A𝑛 . Thus, we will give a cost analysis in terms of

number of field operations over K.
We note that, since A𝑛 is a free K[𝑥]-module of rank 𝑛 (with

a basis given by the canonical vectors of length 𝑛) and K[𝑥] is a
principal ideal domain, any of its K[𝑥]-submodule is free of rank at

most 𝑛. As a consequence, the number of generators of I[𝑘] is at
most 𝑛. This will allow us to bound the cost for solving submodule

membership as well as the equation 𝒔 (𝑡)
𝑒,𝑠,𝑖
[𝑘] −∑𝑗 𝑐 𝑗I[𝑘, 𝑗] = 0.

Algorithm 1 Kurakin(𝒔𝑒)
Input: partial sequence 𝒔𝑒
Output: minimal canceling polynomials of 𝒔𝑒
1: for 𝑖 = 0, . . . , 𝑑 − 1 do
2: set 𝑃𝑖,0 = 𝑥𝑖 and 𝒔𝑒,𝑖,0 = 𝑥𝑖 𝒔𝑒
3: set 𝑘 to be index of first non-zero element of 𝒔𝑒,𝑖,0
4: if 𝒔𝑒,𝑖,0 [𝑘] ≠ 0 then
5: add 𝒔𝑒,𝑖,0 [𝑘], 𝑃𝑖,0, 𝒔𝑒,𝑖,0 to I[𝑘],P[𝑘],S[𝑘] resp.
6: for 𝑠 = 1, . . . , 𝑒 − 1 do
7: for 𝑖 = 0, . . . 𝑑 − 1 do
8: set 𝑡 = 0; 𝑃

(𝑡)
𝑖,𝑠

= 𝑦𝑃𝑖,𝑠−1; and shift 𝒔 (𝑡)
𝑒,𝑖,𝑠

= 𝑦 · 𝒔𝑒,𝑖,𝑠−1
9: if 𝒔 (𝑡)

𝑒,𝑖,𝑠
= 0 then continue to next 𝑖

10: set 𝑘 to be the first non-zero index of 𝒔 (𝑡)
𝑒,𝑖,𝑠

11: if 𝒔 (𝑡)
𝑒,𝑖,𝑠
[𝑘] ∉ I[𝑘] then continue to next 𝑖

12: solve for 𝑐 𝑗 ’s such that 𝒔 (𝑡)
𝑒,𝑠,𝑖
[𝑘] −∑𝑗 𝑐 𝑗I[𝑘, 𝑗] = 0

13: set 𝒔 (𝑡+1)
𝑒,𝑖,𝑠

= 𝒔 (𝑡)
𝑒,𝑖,𝑠
−∑𝑗 𝑐 𝑗S[𝑘, 𝑗]

14: set 𝑃
(𝑡+1)
𝑖,𝑠

= 𝑃
(𝑡)
𝑖,𝑠
−∑𝑗 𝑐 𝑗P[𝑘, 𝑗]

15: go to line 9 with 𝑡 = 𝑡 + 1
16: for 𝑖 = 0, . . . , 𝑑 − 1 do
17: set 𝑠𝑒,𝑖,𝑠 = 𝑠

(𝑡)
𝑒,𝑖,𝑠

and 𝑃𝑖,𝑠 = 𝑃
(𝑡)
𝑖,𝑠

18: set 𝑘 to be the index of first non-zero element of 𝑠𝑒,𝑖,𝑠
19: if 𝑠𝑒,𝑖,𝑠 [𝑘] ∉ I[𝑘] then
20: add 𝒔𝑒,𝑖,𝑠 [𝑘], 𝑃𝑖,𝑠 , 𝒔𝑒,𝑖,𝑠 to I[𝑘],P[𝑘],S[𝑘] resp.
21: reduce the basis of I[𝑘] if needed
22: for 𝑖 = 0, . . . , 𝑑 − 1 do
23: return 𝑃𝑖,𝑠 that makes 𝒔𝑒,𝑖,𝑠 = 0 for the first time

We can check membership 𝑠𝑒,𝑖,𝑠 [𝑘] ∈ I[𝑘] and solve 𝑠𝑒,𝑠,𝑖 [𝑘] −∑
𝑐 𝑗I[𝑘, 𝑗] = 0 by finding the right approximant basis of

𝐹 =
[
I[𝑘, 0] · · · I[𝑘, 𝑛 − 1] 𝑠𝑒,𝑠,𝑖 [𝑘]

]
in Popov form. Since 𝐹 has 𝑛 rows and at most 𝑛 + 1 columns, we

can compute this in cost𝑂 (̃𝑛𝜔𝑑) [19]. The reduction in line 21 can

be computed by the same approximant basis: if 𝐹 has 𝑛 +1 columns,

there is a column in the approximant basis such that at least one

entry has a nonzero constant term. By removing the corresponding

I[𝑘, 𝑗], we get a basis of I[𝑘] of size 𝑛.
At lines 13 and 14, 𝑆 [𝑘, 𝑗] and 𝑃 [𝑘, 𝑗] have length and degree at

most 𝑒 resp., making the cost of these lines𝑂 (̃𝑛(𝑛𝑒𝑑)) = 𝑂 (̃𝑛2𝑒𝑑).
Finally, using the fact that the total number of subiterations is

bounded by 𝑂 (𝑒𝑑), we arrive at the total cost 𝑂 (̃𝑒𝑑 (𝑛2𝑒𝑑 + 𝑛𝜔𝑑)).
We conclude by showing that the output of Algorithm 1 is indeed

a basis of Ann(𝒔) and that it forms a lexicographical Gröbner basis.

Theorem 3.1. For each 𝑖 ∈ {0, . . . , 𝑑 − 1}, let 𝑃𝑖 be a canceling

polynomial of 𝒔 with leading coefficient 𝑥𝑖 that is minimal in degree

among all polynomials with leading coefficient 𝑥𝑖 . Then one has

Ann(𝒔) = ⟨𝑃0, . . . , 𝑃𝑑−1⟩. Furthermore, {𝜑 (𝑃0), · · · , 𝜑 (𝑃𝑑−1), 𝛼𝑑 }
forms a Gröbner basis of 𝜑 (Ann(𝒔)) with respect to the lexicographic

term order with 𝛼 ≼lex 𝛽 .

Proof. Suppose that there exists some 𝑄 ∈ A[𝑦] with leading

coefficient 𝑥𝑡 that is in Ann(𝒔) but 𝑄 ∉ ⟨𝑃0, . . . , 𝑃𝑑−1⟩. Note that
for any polynomial in A[𝑦], we can always make the leading coef-

ficient to be some 𝑥𝑡 by pulling out the minimal power of 𝑥 from

the leading coefficient and multiplying by its inverse. Now, since

we assumed minimality of degrees for 𝑃𝑖 ’s, deg(𝑄) > deg(𝑃𝑡) and
𝑄 ′ = 𝑄 −𝑦deg𝑄−deg 𝑃𝑡 𝑃𝑡 ∈ Ann(𝒔) has degree less than𝑄 . By nor-
malizing the leading coefficient of𝑄 ′ to be some 𝑥𝑡

′
, we can repeat

the same process and keep decreasing the degree. This process must

terminate when we encounter some 𝑄 ′ with leading coefficient 𝑥𝑡
′

such that deg𝑄 ′ < deg 𝑃𝑡 ′ , or𝑄
′ = 0. Both cases lead to contradic-

tions; thus, such 𝑄 cannot exist and Ann(𝒔) = ⟨𝑃0, . . . , 𝑃𝑑−1⟩.
Next, let G = {𝑔0, . . . , 𝑔𝑘 }, 𝑔𝑖 ∈ K[𝛼, 𝛽] with leading coeffi-

cient 𝑥𝑑𝑖 , be the minimal reduced (lexicographic) Gröbner basis

of 𝜑 (Ann(𝒔)). We can turn G into another non-minimal Gröbner

basis by adding the polynomials 𝑎𝑐𝑔𝑖 , for 𝑐 = 1, . . . , 𝑑𝑖+1 − 1; we

define the resulting basis as G′ = {𝑔′0, · · · , 𝑔
′
𝑑
}, with 𝑔′

𝑑
= 𝛼𝑑 and

each 𝑔′
𝑖
has leading term 𝛼𝑖𝛽𝑟𝑖 . Furthermore, define𝑢𝑖 as the degree

of 𝑃𝑖 such that 𝜑 (𝑃𝑖) has leading term 𝛼𝑖𝛽𝑢𝑖 .

For 𝑖 = 0, . . . , 𝑑 , we have that 𝑢𝑖 ≥ 𝑟𝑖 , otherwise G′ would not

reduce 𝜑 (𝑃𝑖) to zero, which G′ must since 𝜑 (𝑃𝑖) ∈ 𝜑 (Ann(𝒔)). We

also have that 𝑢𝑖 ≤ 𝑟𝑖 due to the assumed minimality of degree for

𝑃𝑖 ’s. Thus, the leading terms of {𝜑 (𝑃0), . . . , 𝜑 (𝑃𝑑−1), 𝛼𝑑 } generate
the leading terms of 𝜑 (Ann(𝒔)). □

4 LAZY ALGORITHM BASED ON KURAKIN’S
Kurakin’s algorithm requires that we keep track of all 𝑑 possible

generators, regardless of the actual number of generators needed.

For example, consider 𝒔 = (1, 1, 2, 3, 5, . . .) ∈ AN with Ann(𝒔) =
⟨𝑦2−𝑦−1⟩: Kurakin’s algorithm returns {𝑥𝑖 (𝑦2−𝑦−1), 0 ≤ 𝑖 < 𝑑}.
In this section, we outline a modified version of Kurakin’s algorithm

that attempts to avoid as many extraneous computations as possible.

In the previous example, we can see that the polynomials asso-

ciated with 𝑥𝑖 , 𝑖 ≥ 1, were not useful. The next definition aims to

qualify precisely the usefulness of the monomial 𝑥𝑖 .

Definition 4.1. Let 𝑃𝑖,𝑠 and 𝒔𝑒,𝑖,𝑠 be the polynomial and sequence

at the end of step 𝑠 associated with monomial 𝑥𝑖 . A monomial 𝑥𝑖2 is

useful wrt to 𝑥𝑖1 , 𝑖1 < 𝑖2, at step 𝑠 if at least one of two conditions

is true at the end of 𝑠:

U1. 𝑃𝑖2,𝑠 ≠ 𝑥
𝑖2−𝑖1𝑃𝑖1,𝑠

U2. let 𝑘𝑖1 and 𝑘𝑖2 be the index of the first non-zero element of

𝒔𝑒,𝑖1,𝑠 and 𝒔𝑒,𝑖2,𝑠 resp., then 𝑘𝑖1 ≠ 𝑘𝑖2

Suppose a monomial 𝑥𝑖2 is not useful wrt 𝑥𝑖1 at step 𝑠 , then by

negating condition U1, we have 𝑃𝑖2,𝑠 = 𝑥𝑖2−𝑖1𝑃𝑖1,𝑠 . Due to nega-

tion of U2, 𝒔𝑒,𝑖2,𝑠 is the zero sequence if and only if 𝒔𝑒,𝑖1,𝑠 is the

zero sequence; so either we return 𝑃𝑖2,𝑠 = 𝑥𝑡2−𝑡1𝑃𝑖1,𝑠 or we do

not terminate at this step for both monomials. Finally, since 𝑘𝑖1 =

𝑘𝑖2 and 𝒔𝑒,𝑖2,𝑠 = 𝑥𝑖2−𝑖1𝒔𝑒,𝑖1,𝑠 , we always have that 𝒔𝑒,𝑖2,𝑠 [𝑘𝑖2] =
𝑥𝑖2−𝑖1𝒔𝑒,𝑖1,𝑠 [𝑘𝑖1] ∈

(
⟨𝒔𝑒,𝑖1,𝑠 [𝑘𝑖1]⟩ ∪ I[𝑘𝑖1]

)
, meaningwe can safely

ignore 𝒔𝑒,𝑖2,𝑠 [𝑘𝑖2] when updating I[𝑘𝑖2] at the end of step 𝑠 . Thus,

the negation of usefulness conditions U1 and U2 implies that any

computation associated with 𝑥𝑖2 is not needed at step 𝑠 .

However, as defined, U1 and U2 do not impose any conditions

about the subiterations (indexed by 𝑡). The next lemma gives a

different characterization of the usefulness conditions in terms of 𝑡 .

Lemma 4.2. If 𝑥𝑖2 is useful wrt to 𝑥𝑖1 at some step 𝑠 , then at some

subiteration 𝑡 of step 𝑠 , one of u1, u2, u3 is true at the start of 𝑡 :

u1. 𝑃
(𝑡)
𝑖2,𝑠

≠ 𝑥𝑖2−𝑖1𝑃 (𝑡)
𝑖1,𝑠

u2. if 𝑃
(𝑡)
𝑖2,𝑠

= 𝑥𝑖2−𝑖1𝑃 (𝑡)
𝑖1,𝑠

, then 𝑘
(𝑡)
𝑖2

≠ 𝑘
(𝑡)
𝑖1

u3. if 𝑃
(𝑡)
𝑖2,𝑠

= 𝑥𝑖2−𝑖1𝑃 (𝑡)
𝑖1,𝑠

and 𝑘
(𝑡)
𝑖2

= 𝑘
(𝑡)
𝑖1

, then 𝒔 (𝑡)
𝑒,𝑖1,𝑠
[𝑘 (𝑡)

𝑖1
] ∉

I[𝑘 (𝑡)
𝑖1
] and 𝑠 (𝑡)

𝑒,𝑖2,𝑠
[𝑘 (𝑡)

𝑖1
] ∈ I[𝑘 (𝑡)

𝑖1
]

Proof. We prove that if u1, u2, and u3 are false for every subiter-

ation 𝑡 and 𝑠 , then U1 and U2 are false for 𝑥𝑖2 wrt 𝑥𝑖1 . Suppose the

conditions u1, u2, and u3 are all false for every subiteration 𝑡 at 𝑠 .

The negation of u1 forces 𝑃
(𝑡)
𝑖2,𝑠

= 𝑥𝑖2−𝑖1𝑃 (𝑡)
𝑖1,𝑠

at the start of 𝑡 , which

sets the hypothesis of u2 true, implying 𝑘
(𝑡)
𝑖2

= 𝑘
(𝑡)
𝑖1

. Finally, since

the hypothesis of u3 holds, we must have 𝑠
(𝑡)
𝑒,𝑖1,𝑠
[𝑘 (𝑡)

𝑖1
] ∈ I[𝑘 (𝑡)

𝑖1
]

or 𝑠
(𝑡)
𝑒,𝑖2,𝑠
[𝑘 (𝑡)

𝑖1
] ∉ I[𝑘 (𝑡)

𝑖1
]. The two are mutually exclusive since

𝒔 (𝑡)
𝑒,𝑖2,𝑠

= 𝑥𝑖2−𝑖1𝒔 (𝑡)
𝑒,𝑖1,𝑠

, if 𝑠
(𝑡)
𝑒,𝑖1,𝑠
[𝑘 (𝑡)

𝑖1
] ∈ I[𝑘 (𝑡)

𝑖1
], then 𝑠 (𝑡)

𝑒,𝑖2,𝑠
[𝑘 (𝑡)

𝑖1
] ∈

I[𝑘 (𝑡)
𝑖1
]. When 𝑠

(𝑡)
𝑒,𝑖1,𝑠
[𝑘 (𝑡)

𝑖1
] ∈ I[𝑘 (𝑡)

𝑖1
], we can update

𝑃
(𝑡+1)
𝑖1,𝑠

= 𝑃
(𝑡)
𝑖1,𝑠
−
∑︁

𝑐 𝑗I[𝑘 (𝑡)𝑖1
, 𝑗]

𝑃
(𝑡+1)
𝑖2,𝑠

= 𝑥𝑖2−𝑖1𝑃 (𝑡)
𝑖1,𝑠
− 𝑥𝑖2−𝑖1

∑︁
𝑐 𝑗P[𝑘 (𝑡)𝑖1

, 𝑗] = 𝑥𝑖2−𝑖1𝑃 (𝑡+1)
𝑖1,𝑠

,

which was already implied by the assumption that u1 is false for

all 𝑡 . On the other hand, when 𝑠
(𝑡)
𝑒,𝑖2,𝑠
[𝑘 (𝑡)

𝑖1
] ∉ I[𝑘 (𝑡)

𝑖1
], we also have

𝒔 (𝑡)
𝑒,𝑖1,𝑠
[𝑘 (𝑡)

𝑖1
] ∉ I[𝑘 (𝑡)

𝑖1
], so the subiterations terminate and we must

have 𝑃𝑖2,𝑠 = 𝑥
𝑖2−𝑖1𝑃𝑖1,𝑠 with 𝑘𝑖2 = 𝑘𝑖1 . This implies U1 and U2 also

do not hold for step 𝑠 . □

While the converse is not true, we say a monomial 𝑥𝑖2 is poten-

tially useful wrt 𝑥𝑖1 when at some step 𝑠 and subiteration 𝑡 , at least

one of the conditions u1, u2, and u3 holds. Rather than iterating

through 𝑖 = 0, . . . , 𝑑 − 1, we keep a list of potentially useful mono-

mialsU and iterate through 𝑖 ∈ U, withU = [0] initially. At each
subiteration, we check to see if there exists 𝑖 ′ > 𝑖, 𝑖 ′ ∉ U such that

𝑥𝑖
′
satisfies one of u2 or u3, and add the smallest such 𝑖 ′ toU. Note

that we need not check u1 since if u1 holds, then either u2 or u3

must have been true at some previous subiteration, thus 𝑖 ′ is already
included inU. Condition u2 can be checked in 𝑂 (𝑛) by checking

the valuations of all entries in 𝒔𝑒,𝑖,𝑠 [𝑘] at lines 4 and 10. Condition

u3 can be checked in 𝑂 (log𝑑) membership computations via a

binary search to find the minimal 𝑖 ′ such that 𝑥𝑖
′−𝑖 𝒔𝑒,𝑖,𝑠 [𝑘] ∈ I[𝑘]

when 𝒔𝑒,𝑖,𝑠 [𝑘] ∉ I[𝑘] on line 11. Thus, the complexity for the subit-

erations do not change in terms of 𝑂 (̃·). Defining 𝑑∗ = |U| ≤ 𝑑 ,
this brings the total cost to 𝑂 (̃𝑒𝑑∗ (𝑛2𝑒𝑑 + 𝑛𝜔𝑑)). While we do

not know how far 𝑑∗ is from the number 𝑑opt of polynomials in

the minimal lexicographic Gröbner basis of 𝜑 (Ann(𝒔)), we have
observed empirically that 𝑑∗ is often equal or close to 𝑑opt (see

Section 7).

5 VIA UNIVARIATE APPROXIMANT BASES
5.1 Approximants of a wide Hankel matrix
Extending the classical theory of linearly recurrent sequences over

the field K, another approach is to consider the left kernel of the

block-Hankel matrix

𝐻𝒔,𝑒 =

𝑆0 𝑆1 · · · 𝑆𝑒−1

𝑆1 𝑆2 . .
.

𝑆𝑒
... . .

.
. .
. ...

𝑆𝑒 𝑆𝑒+1 · · · 𝑆2𝑒−1

∈ A(𝑒+1)×(𝑒𝑛) .

Indeed, if 𝑒 is large enough, vectors in this kernel represent poly-

nomials which cancel 𝒔, and which even generate all of Ann(𝒔).

Lemma 5.1. Let 𝒔 ∈ S be linearly recurrent of order 𝛿 , and define

K𝒔,𝑒 = {𝑝 = 𝑝0 + · · · + 𝑝𝑒𝑦𝑒 ∈ A[𝑦] | [𝑝0 · · · 𝑝𝑒]𝐻𝒔,𝑒 = 0}

for 𝑒 ∈ N. Assume 𝑒 ≥ 𝛿 . Then K𝒔,𝑒 = Ann(𝒔) ∩ A[𝑦]≤𝑒 , and in

particular K𝒔,𝑒 is a generating set of Ann(𝒔).

Proof. Let 𝑝 = 𝑝0+· · ·+𝑝𝑒𝑦𝑒 ∈ A[𝑦] and𝛾 = deg(𝑝) ≤ 𝑒 . Then
𝑝 ∈ K𝒔,𝑒 if and only if [𝑝0 · · · 𝑝𝑒]𝐻𝒔,𝑒 = 0, and by definition of

canceling partial sequences this exactly means that 𝑝 cancels 𝒔𝑒+𝛾 .
Now, deg(𝑝) = 𝛾 ≤ 𝑒 + 𝛾 − 𝛿 holds under the assumption 𝑒 ≥ 𝛿 ,
hence 𝑝 cancels 𝒔𝑒+𝛾 if and only if 𝑝 ∈ Ann(𝒔) by Lemma 2.3. It

follows that K𝒔,𝑒 generates Ann(𝒔), since there exists a generating
set of Ann(𝒔) whose polynomials all have degree at most 𝛿 . □

Computing the left kernel of 𝐻𝒔,𝑒 can be done via univariate ap-

proximation. Indeed, calling 𝐹 ∈ K[𝑥] (𝑒+1)×(𝑒𝑛) the natural lifting
of 𝐻𝒔,𝑒 , an approximant basis of 𝐹 at order 𝑑 gives a generating

set of that left kernel. As recalled in Section 2.3, using PM-Basis, a

basis of A𝑑 (𝐹) in shifted reduced or Popov form can be computed

in 𝑂 (̃𝑒𝜔−1 (𝑒 + 𝑒𝑛)𝑑) = 𝑂 (̃𝑒𝜔𝑛𝑑) operations in K.

5.2 Speed-up by compression using structure
Now we show that, when 𝑛 is large, one can speed up the above ap-

proach by a randomized “compression” of the matrix𝐻𝒔,𝑒 . Precisely,

taking a random constant matrix 𝐶 ∈ K(𝑒𝑛)×(𝑒+1) and performing

the right-multiplication 𝐹𝐶 , one obtains a square (𝑒 + 1) × (𝑒 + 1)
matrix such that A𝑑 (𝐹) = A𝑑 (𝐹𝐶) holds with good probability.

The cost of the approximant basis computation is thus reduced to

𝑂 (̃𝑒𝜔𝑑) operations in K, and the right-multiplication can be done

efficiently by leveraging the block-Hankel structure of 𝐹 .

Theorem 5.2. Algorithm 2 takes as input an integer 𝑑 ∈ Z>0,
vectors 𝐹0, . . . , 𝐹`+𝑒−2 ∈ K[𝑥]1×𝑛 of degree less than 𝑑 , and a shift

𝑤 ∈ Z`
>0, and uses 𝑂 (̃`𝑒𝑛𝑑 + `𝜔𝑑) operations in K to compute a

𝑤-Popov matrix 𝑃 ∈ K[𝑥]`×` of degree at most 𝑑 . It chooses at most

`𝑒𝑛 elements independently and uniformly at random from a subset

of K of cardinality ^, and 𝑃 is the 𝑤-Popov basis of A𝑑 (𝐹) with
probability at least 1 − `

^ , where 𝐹 is the block-Hankel matrix

𝐹 =

𝐹0 𝐹1 · · · 𝐹𝑒−1

𝐹1 𝐹2 . .
.

𝐹𝑒
... . .

.
. .
. ...

𝐹`−1 𝐹` · · · 𝐹`+𝑒−2

∈ K[𝑥]`×(𝑒𝑛) . (3)

When applied to the computation of Ann(𝒔) with ` = 𝑒 + 1, the
cost becomes𝑂 (̃𝑒2𝑛𝑑+𝑒𝜔𝑑). Belowwe focus on the case of interest

` ≤ 𝑒𝑛, since when 𝑒𝑛 ∈ 𝑂 (`) this𝑤-Popov approximant basis is

computed deterministically by PM-Basis at a cost of𝑂 (̃`𝜔𝑑) oper-
ations in K. Our approach is based on the following two lemmas.

Lemma 5.3. Let 𝐹 ∈ K[𝑥]`×a and 𝑑 ∈ Z>0. Let𝐶 ∈ K[𝑥]a×𝑟 and
𝐾 ∈ K[𝑥]a×(a−𝑟) , for some 𝑟 ∈ {0, . . . , a}, such that 𝐹𝐾 = 0 and

[𝐶 (0) 𝐾 (0)] ∈ Ka×a is invertible. Then, 𝑟 ≥ 𝜌 where 𝜌 is the rank

of 𝐹 , and A𝑑 (𝐹) = A𝑑 (𝐹𝐶).

Proof. Let 𝑁 = [𝐶 𝐾] ∈ K[𝑥]a×a . The assumption that 𝑁 (0)
is invertible ensures that 𝑁 is nonsingular (since det(𝑁) (0) =

det(𝑁 (0)) ≠ 0), and therefore𝐾 has full rank a−𝑟 . The assumption

that the columns of 𝐾 are in the right kernel of 𝐹 , which has rank

a − 𝜌 , implies that a − 𝑟 ≤ a − 𝜌 and therefore 𝑟 ≥ 𝜌 .
The inclusion A𝑑 (𝐹) ⊂ A𝑑 (𝐹𝐶) is obvious. For the other in-

clusion, let 𝑝 ∈ A𝑑 (𝐹𝐶), i.e. there exists 𝑞 ∈ K[𝑥]1×𝑟 such that

𝑝𝐹𝐶 = 𝑥𝑑𝑞. It follows that 𝑝𝐹𝑁 = 𝑥𝑑 [𝑞 0], and thus

𝑝𝐹 = 𝑥𝑑 [𝑞 0]𝑁−1 =
𝑥𝑑 [𝑞 0]Adj(𝑁)

det(𝑁)
where Adj(𝑁) ∈ K[𝑥]a×a is the adjugate of 𝑁 . Our assumption

det(𝑁) (0) ≠ 0 means that 𝑥𝑑 and det(𝑁) are coprime, hence

det(𝑁) divides [𝑞 0]Adj(𝑁), and 𝑝𝐹 = 0 mod 𝑥𝑑 follows. □

Lemma 5.4. Let 𝐹 ∈ K[𝑥]`×a with rank 𝜌 and ` ≤ a , and let 𝑟 ∈
{𝜌, . . . , `}. LetR be a finite subset ofK of cardinality^ ∈ Z>0, and let
𝐶 ∈ Ka×𝑟 with entries chosen independently and uniformly at random

from R. Then, the probability that there exists 𝐾 ∈ K[𝑥]a×(a−𝑟) such
that [𝐶 𝐾 (0)] is invertible and 𝐹𝐾 = 0 is at least 1− 𝑟

^ ; furthermore

if K is finite and R = K, this probability is at least

∏𝑟
𝑖=1 (1 − ^−𝑖).

Proof. Consider a right kernel basis 𝐵 ∈ K[𝑥]a×(a−𝜌) for 𝐹 .
Then 𝐵 has unimodular row bases [41, Lem. 3.1], implying that

there exists 𝑉 ∈ K[𝑥] (a−𝜌)×a such that 𝑉𝐵 = 𝐼a−𝜌 . In particular

𝑉 (0)𝐵(0) = 𝐼a−𝜌 and therefore 𝐵(0) has full rank a − 𝜌 . Define
𝐾 ∈ K[𝑥]a×(a−𝑟) as the matrix formed by the first a − 𝑟 columns of

𝐵 (recall a − 𝑟 ≤ a − 𝜌 by assumption). Then 𝐹𝐾 = 0. Furthermore

𝐾 (0) has rank a − 𝑟 , hence the DeMillo-Lipton-Schwartz-Zippel

lemma implies that [𝐶 𝐾 (0)] ∈ Ka×a is singular with probability

at most 𝑟/^ [11, 36, 42]. If K is finite and R = K then [𝐶 𝐾 (0)] is
invertible with probability exactly

∏𝑟
𝑖=1 (1 − ^−𝑖). □

These lemmas lead to Algorithm 2 and Theorem 5.2; indeed

computing 𝐹𝐶 has quasi-linear cost 𝑂 (̃`𝑒𝑛𝑑) thanks to the block-

Hankel structure of 𝐹 , and then the call PM-Basis(𝑑, 𝐹𝐶,𝑤) costs
𝑂 (̃`𝜔𝑑) operations as recalled in Section 2.3.

Algorithm 2 Hankel-PM-Basis(𝑑, 𝐹,𝑤)

Input: integers 𝑑, `, 𝑒, 𝑛 ∈ Z>0, vectors 𝐹0, . . . , 𝐹`+𝑒−2 ∈ K[𝑥]1×𝑛
of degree less than 𝑑 , a shift𝑤 ∈ Z`

>0
Output: a𝑤-Popov matrix 𝑃 ∈ K[𝑥]`×` of degree at most 𝑑

1: 𝐹 ∈ K[𝑥]`×(𝑒𝑛) ← form the block-Hankel matrix as in Eq. (3)

2: if ` ≥ 𝑒𝑛 then return PM-Basis(𝑑, 𝐹,𝑤)
3: Choose 𝑟 ∈ {𝜌, . . . , `} where 𝜌 is the rank of 𝐹 (by default,

choose 𝑟 = ` if no information is known on 𝜌)

4: Fill a matrix 𝐶 ∈ K(𝑒𝑛)×𝑟 with entries chosen uniformly and

independently at random from a subset of K of cardinality ^

5: Compute 𝐹𝐶 ∈ K[𝑥]`×𝑟 (exploiting the Hankel structure of 𝐹)

6: return PM-Basis(𝑑, 𝐹𝐶,𝑤)

Note that 1−𝑟/^ ≥ 3/4 as soon as^ ≥ 4` (which implies^ ≥ 4𝑟);
furthermore

∏𝑟
𝑖=1 (1 − ^−𝑖) ≥ 3/4 already for ^ = 7. The random-

ization is of the Monte Carlo type, since the algorithm may return

𝑃 which is not a basis of A𝑑 (𝐹). Still, since the expected𝑤-Popov

basis 𝑃 of A𝑑 (𝐹) is unique, one can easily increase the probability

of success by repeating the randomized computation and following

a majority rule. Another approach is to rely on the non-interactive,

Monte Carlo certification protocol of [15], which has lower cost

than Algorithm 2 but requires a larger field K; this first asks to
compute the coefficient of degree 𝑑 of 𝑃𝐹 , which here can be done

via bivariate polynomial multiplication in time 𝑂 (̃`𝑒𝑛𝑑) thanks to
the structure of 𝐹 . For a given output 𝑃 , this certification can be

repeated for better confidence in 𝑃 (in which case the coefficient of

degree 𝑑 of 𝑃𝐹 needs only be computed once).

6 VIA BIVARIATE PADÉ APPROXIMATION
Now, we propose another approach which directly uses the inter-

pretation of canceling polynomials as denominators of the gen-

erating series of the sequence (see Lemma 2.2). The next lemma

describes more precisely the link between the annihilator and these

denominators when we have access to a partial sequence, that is,

denominators of the generating series truncated at some order.

One can also view this lemma as a description of the kernel of the

univariate Hankel matrix 𝐻𝒔,𝑒 via bivariate Padé approximation.

Lemma 6.1. Let 𝒔 ∈ S be linearly recurrent of order 𝛿 , and for

𝑒 ∈ N define 𝐺 =
∑

𝑗<2𝑒 𝑆 𝑗𝑦
2𝑒−1−𝑗 ∈ A[𝑦]𝑛 and

P𝒔,𝑒 = {𝑝 ∈ A[𝑦]≤𝑒 | 𝑝𝐺 = 𝑞 mod 𝑦2𝑒 for some 𝑞 ∈ A[𝑦]𝑛<𝑒 }.
Assume 𝑒 ≥ 𝛿 . Then P𝒔,𝑒 = Ann(𝒔) ∩ A[𝑦]≤𝑒 , and in particular

P𝒔,𝑒 is a generating set of Ann(𝒔); furthermore for any 𝑝 ∈ P𝒔,𝑒 the

corresponding 𝑞 ∈ A[𝑦]𝑛<𝑒 satisfies deg(𝑞) < deg(𝑝).

Proof. Let 𝑝 = 𝑝0 + · · · + 𝑝𝛾𝑦𝛾 ∈ A[𝑦]≤𝑒 where 𝛾 = deg(𝑝).
Then 𝑝 ∈ P𝒔,𝑒 if and only if the coefficient of 𝑝𝐺 of degree 2𝑒−1−𝑘
is zero for 0 ≤ 𝑘 < 𝑒 . Since 𝛾 ≤ 𝑒 ≤ 2𝑒 − 1 − 𝑘 , this coefficient is

Coeff (𝑝𝐺, 2𝑒 − 1 − 𝑘) =
𝛾∑︁
𝑖=0

𝑝𝑖𝑆2𝑒−1−(2𝑒−1−𝑘−𝑖) =
𝛾∑︁
𝑖=0

𝑝𝑖𝑆𝑘+𝑖 = 0.

Thus we have proved P𝒔,𝑒 = K𝒔,𝑒 , and Lemma 5.1 shows the

claims in this lemma except the last one. Let 𝑝 ∈ P𝒔,𝑒 and de-

fine 𝑞 as the polynomial in A[𝑦]𝑛<𝑒 such that 𝑝𝐺 = 𝑞 mod 𝑦2𝑒 .
Since 𝑝 ∈ Ann(𝒔), Lemma 2.2 shows that 𝑝𝐺𝒔 is a polynomial. On

the other hand the definitions of 𝐺 and 𝐺𝒔 yield 𝑝𝐺 = 𝑦2𝑒𝑝𝐺𝒔 −
𝑝
∑

𝑗≥2𝑒 𝑆 𝑗𝑦
2𝑒−1−𝑗

. Hence −𝑝∑𝑗≥2𝑒 𝑆 𝑗𝑦
2𝑒−1−𝑗

is a polynomial,

and since it has degree less than 𝛾 , and thus in particular less than

2𝑒 , it is equal to 𝑞. □

From 𝐺 , define 𝐹 ∈ K[𝛼, 𝛽]1×𝑛 of bi-degree less than (𝑑, 2𝑒)
via the morphism 𝜑 from Section 2.2. Equip K[𝛼, 𝛽] with the lex-

icographic order ≼lex, and let ≼ be the corresponding term over

position order on K[𝛼, 𝛽]𝑛+1. Then a minimal ≼-Gröbner basis of
the submodule of simultaneous Padé approximants

{(𝑝, 𝑞) ∈ K[𝛼, 𝛽] × K[𝛼, 𝛽]1×𝑛 | 𝑝𝐹 = 𝑞 mod (𝑥𝑑 , 𝑦2𝑒)}
is computed in 𝑂 (̃ (𝑛𝜔 min(𝑑, 𝑒)𝜔 + 𝑛3min(𝑑, 𝑒)2)𝑑𝑒) operations,
using the algorithm of [28] (see also Section 2.3) with input matrix

of size (𝑛 + 1) × 𝑛 formed by stacking the identity 𝐼𝑛 below 𝐹 .

Lemma 6.1 shows that from this ≼-Gröbner basis one can find a

minimal ≼lex-Gröbner basis of 𝜑 (Ann(𝒔)) by selecting 𝑝 for each

(𝑝, 𝑞) in the basis such that deg𝛽 (𝑞) < deg𝛽 (𝑝).
While the PM-Basis approach had cost quasi-linear in 𝑑 and 𝑛,

the method here is most efficient in an opposite parameter range:

for 𝑛 ∈ 𝑂 (1) and 𝑑 ≤ 𝑒 the above cost bound becomes 𝑂 (̃𝑑𝜔+1𝑒).

7 EXPERIMENTAL RESULTS
In this section, we compare timings for the algorithms in Sections 3

to 5, implemented in C++ using the libraries NTL [37] and PML

[18] which provide high-performance support for univariate poly-

nomials and polynomial matrices. We leave the implementation

of the bivariate algorithm of Section 6 as future work. To control

the cardinality and shape of the Gröbner basis, we use Lazard’s

structural theorem (see Section 2.2). The shape of the monomial

staircase is randomized with maximal 𝛽-degree 𝛿 and 𝛼𝑑 included

in the basis. After generating a random Gröbner basis G of target

degree and size, we use it to generate 𝑛 sequences (with 𝑒 = 2𝛿
terms), using random initial conditions. Finally, we compute the

annihilator of the sequence, which may not necessarily recover G
itself (see Section 8.1). Runtimes are showed below.

𝑛 𝑑 𝛿 𝑑opt 𝐷/𝑑𝛿 K LK 𝑑∗ PM-B HPM

1 64 256 1 1 62.8 0.93 1 1.06 NA

1 64 256 49 0.62 38.0 1.65 53 2.10 NA

1 128 512 16 0.92 >100 12 17 20.5 NA

1 128 32 12 0.91 7.85 0.078 12 0.029 NA

1 256 32 14 0.94 27.3 0.12 14 0.08 NA

1 256 128 27 0.92 >100 1.28 27 1.60 NA

1 512 256 29 0.96 >100 8.65 29 27.8 NA

2 17 256 2 0.5 14.1 0.91 2 0.33 0.29

3 12 512 4 0.4 6.93 1.40 4 2.47 1.86

8 16 256 1 1 54.1 3.16 1 0.56 0.25

32 16 256 1 1 >100 39.8 1 2.79 0.35

64 16 128 1 1 >100 >100 1 1.02 0.13

Table: Runtimes, in seconds, of algorithms Kurakin, Lazy Kurakin,

direct PM-Basis, and Hankel-PM-Basis, observed on AMD Ryzen 5

3600X 6-Core CPU with 16 GB RAM. The base field is K = F9001.

As we claim in Section 4, 𝑑∗ is often close or equal to 𝑑opt. More

interestingly, Lazy Kurakin outperforms Kurakin more than 𝑑/𝑑∗
would suggest. For example, for 𝛿 = 256, 𝑑 = 64, 𝑑opt = 49, then
𝑑/𝑑∗ ≈ 1.2 but Kurakin is 23 times slower than Lazy Kurakin. This

is because the cost bound 𝑂 (̃𝑒𝑑∗ (𝑛2𝑒𝑑 + 𝑛𝜔𝑑)) for Lazy Kurakin

assumes that 𝑑∗ polynomials are tracked from the beginning of the

algorithms. However, due to its lazy nature, polynomials are often

added later in the algorithm and the bound of 𝑒𝑑∗ subiterations
may significantly overestimate the true number of subiterations.

When 𝛿, 𝑑, 𝑛 are fixed, Kurakin’s algorithm performs worse for

𝑑opt = 1 than 𝑑opt > 1, although this is a favourable case for Lazy

Kurakin. In this case, Kurakin’s algorithm computes 𝑃𝑖 = 𝑥𝑖𝑃0
so there cannot be any early termination. Additionally, the size

of the staircase is maximal (𝐷 = 𝑒𝑑), so this is also the worst

case for algorithms whose complexity depends directly on 𝐷 . Lazy

Kurakin’s algorithm somewhat remedies this by using the extra

structure of A and adding monomials in a lazy fashion. (When it is

known thatAnn(𝒔) = ⟨𝑃⟩, it is possible to design an algorithm that

is quasilinear in 𝑒 via structured system solving, see Section 8.2).

For scalar sequences over A, i.e. 𝑛 = 1, Lazy Kurakin’s algorithm
seems to be the best choice when 𝛿 is large compared to 𝑑 , whereas

PM-Basis seems to be the best choice in the converse. When 𝑒 =

2𝛿 = 𝑑 , Lazy Kurakin outperforms PM-Basis, given that 𝑑∗ is small.

This is predicted by the theoretical complexities, as the former has

complexity 𝑂 (̃𝑒3𝑑∗), while the latter has complexity 𝑂 (̃𝑒𝜔+1).
For 𝑛 > 1, PM-Basis and Hankel-PM-Basis clearly outperform

Kurakin and Lazy Kurakin. This is as predicted since the complexity

of the former depends linearly on 𝑛, while the latter has a factor 𝑛𝜔 .

The theoretical improvement of Hankel-PM-Basis over PM-Basis

is observed empirically, especially for the two cases of 𝑛 = 32, 64.

8 APPLICATIONS TO SPARSE MATRICES
In this section, we outline two applications to sparse matrices 𝐴 ∈
A𝑛×𝑛 : first, the computation of minimal polynomials of 𝐴, which

are polynomials of minimal degree that cancel the matrix sequence

𝒔𝐴 = (𝐴0, 𝐴1, 𝐴2, . . .); second, the computation of the determinant

of 𝐴. In what follows, we assume 𝐴 has sparsity 𝑂 (𝑛), i.e. it has
𝑂 (𝑛) nonzero entries, and that the representation of 𝐴 allows us

to compute matrix-vector products at cost 𝑂 (̃𝑛𝑑). Our approach is

based on Wiedemann’s [39], designed for matrices over fields.

8.1 Minimal polynomials of sparse matrices
Given a matrix 𝐴, the well-known Cayley-Hamilton theorem states

that 𝐴 cancels its own characteristic polynomial. This implies that

the sequence of successive powers of 𝐴 is linearly recurrent, and a

polynomial of minimal degree that cancels this sequence is said to

be a minimal polynomial of 𝐴. A different view one can take is that

such canceling polynomials must cancel the 𝑛2 linearly recurrent

sequences ((𝐴𝑖) 𝑗1, 𝑗2)𝑖≥0 simultaneously for 1 ≤ 𝑗1, 𝑗2 ≤ 𝑛. Then,
as usual, we want to compute a Gröbner basis of the ideal of these

canceling polynomials, denoted by Ann(𝐴).
Over A, trying to deduce Ann(𝐴) from Ann((𝑢𝑇𝐴𝑖𝑣)𝑖≥0), for

random vectors 𝑢, 𝑣 ∈ A𝑛×1, presents a problem when Ann(𝐴)
does not have the Gorenstein property [16, 25]. When Ann(𝐴) has
the Gorenstein property, it has been showed that Ann(𝐴) can be

recovered, with high probability, by using a bidimensional sequence

with random initial conditions, provided K has large characteristic

[5]. When it does not have the property,Ann(𝐴) is still recoverable
with a similar approach, but using several sequences [29]. Over

various commutative rings, the problem of computing minimal

polynomials of a matrix have been studied in [8, 17, 32]. However,

the algorithms given in these works do not exploit sparsity.

Givenmatrix𝐴 as above, we start by choosing random𝑢1, 𝑣 ∈ A𝑛
and generating 𝒔𝐴,1 = (𝑢𝑇1𝐴

𝑖𝑣)0≤𝑖<2𝑛 . Next, we apply one of

the algorithms in the previous sections to compute Ann(𝒔𝐴,1).
If Ann(𝒔𝐴,1) = Ann(𝐴), which can be checked probabilistically

by checking if Ann(𝒔𝐴,1) also cancels some validation sequence

((𝑢 ′)𝑇𝐴𝑖𝑣)0≤𝑖<2𝑛 , we terminate the process. Otherwise, we double

the number of sequences by doubling the number of random 𝑢𝑖 ’s

and generating 𝒔𝐴,1, . . . , 𝒔𝐴,2𝑠 . The cost of the process is𝑂 (̃𝜏𝑛2𝑑 +
L(𝑛,𝑑, 𝜏)), where 𝜏 is the number of sequences used and L(𝑛,𝑑, 𝜏)
is the cost of finding the annihilators of a partial sequence of length

𝑛 in (K[𝑥]/⟨𝑥𝑑 ⟩)𝜏 . Note that this process must terminate. The crud-

est bound is when 𝜏 > 𝑛2 since then we could simply compute

Ann(𝐴) directly. Another slightly more refined bound for the num-

ber of generic linear forms needed is 𝜏 ≤ 𝐷 , where 𝐷 is the size of

the staircase of Ann(𝐴) [29, Prop. 1].

8.2 Determinant of sparse matrices
The determinant of a matrix is easily obtained from its minimal

polynomial when the latter is equal to the characteristic polynomial.

Wiedemann [39] calls such matrices nonderogatory and shows that

preconditioning any matrix 𝐵 ∈ K𝑛×𝑛 with a random diagonal

matrix 𝐷 results in a nonderogatory matrix with high probability.

We will show that the same preconditioning can be applied to

matrices over A. Here, a particular role will be played by sequences

𝒔 ∈ (A𝑛)N such that Ann(𝒔) = ⟨𝑃⟩, for some monic 𝑃 ∈ A[𝑦].
Indeed, the next theorem shows that it is sufficient for the constant

part of 𝐴 to be nonderogatory in K for 𝐴 to be nonderogatory in A
and for the sequence of its powers to satisfy this property.

Theorem 8.1. Let 𝐴0 ∈ K𝑛×𝑛 be the constant part of 𝐴 (i.e. for

𝑥 = 0). If 𝐴0 is nonderogatory, then Ann(𝐴) = ⟨𝑃⟩ for some monic

𝑃 ∈ A[𝑦] of degree 𝑛.

Proof. Let 𝑃 ∈ A[𝑦] be the minimal monic polynomial of the se-

quence 𝒔𝐴 = (𝐴0, 𝐴1, 𝐴2, . . .), then deg(𝑃) ≤ 𝑛 since𝐴 is𝑛×𝑛. Now,
𝐴0 is nonderogatory, so any canceling polynomial must have degree

≥ 𝑛; thus, deg(𝑃) = 𝑛. Furthermore, if there exists another polyno-

mial𝑄 of degree𝑛 and leading coefficient 𝑥𝑖 such that𝑄 ≠ 𝑥𝑖𝑃 , then

𝑄−𝑥𝑖𝑃 is a canceling polynomial of degree less than𝑛, contradicting

the previous statement. Thus, 𝑃, 𝑥𝑃, . . . , 𝑥𝑑−1𝑃 are minimal in de-

gree and, by Theorem 3.1,Ann(𝐴) = ⟨𝑃, 𝑥𝑃, . . . , 𝑥𝑑−1𝑃⟩ = ⟨𝑃⟩. □

The above theorem allows us to use the same preconditioner as

in [39]: a random constant diagonal matrix 𝐷 . The preconditioning

ensures that the ideal of canceling polynomial is generated by a

single monic polynomial; thus, 𝜑 (Ann(𝐴𝐷)) is Gorenstein and

requires only a single linear form to be recovered. Furthermore,

when it is known that the ideal is generated by a single polynomial,

we can recover this polynomial in 𝑂 (̃𝑛𝑑) by taking advantage of

the fact that the constant part of the leading𝑛×𝑛 submatrix of𝐻𝒔,2𝑛

is an invertible Hankel matrix [7]. Once we have 𝑃 , we can compute

det(𝐴) = 𝑃 (0) (∏𝑖 𝐷𝑖,𝑖)−1. Under our sparsity assumption, the cost

of this method is 𝑂 (̃𝑛2𝑑) for computing (𝑢𝑇𝐴𝑖𝑣)𝑖≤2𝑛 , 𝑂 (̃𝑛𝑑) for
computing 𝑃 , and 𝑂 (̃𝑛 + 𝑑) for recovering the determinant from 𝑃 ,

leading to the total cost of 𝑂 (̃𝑛2𝑑) operations in K. This is to be

compared with computing the determinant of 𝐴 “at full precision”,

i.e. by seeing 𝐴 as a matrix over K[𝑥], and then truncating the

result modulo 𝑥𝑑 : this costs 𝑂 (̃𝑛𝜔𝑑) operations in K [22].

REFERENCES
[1] J. Alman and V. Vassilevska Williams. 2021. A Refined Laser Method and Faster

Matrix Multiplication. In Proceedings SODA 2021. 522–539. https://doi.org/10.

1137/1.9781611976465.32

[2] B. Beckermann and G. Labahn. 1994. A Uniform Approach for the Fast Computa-

tion of Matrix-Type Padé Approximants. SIAM J. Matrix Anal. Appl. 15, 3 (1994),

804–823. https://doi.org/10.1137/S0895479892230031

[3] B. Beckermann, G. Labahn, and G. Villard. 1999. Shifted Normal Forms of Polyno-

mial Matrices. In ISSAC’99. ACM, 189–196. https://doi.org/10.1145/309831.309929

[4] E. Berlekamp. 1968. Nonbinary BCH decoding (Abstr.). IEEE Trans. Inf. Theory

14, 2 (1968), 242–242. https://doi.org/10.1109/TIT.1968.1054109

[5] J. Berthomieu, B. Boyer, and J.-C. Faugère. 2017. Linear algebra for computing

Gröbner bases of linear recursive multidimensional sequences. J. Symb. Comput.

83 (2017), 36–67. https://doi.org/10.1016/j.jsc.2016.11.005

[6] J. Berthomieu and J.-C. Faugère. 2018. A Polynomial-Division-Based Algorithm

for Computing Linear Recurrence Relations. In ISSAC’18. 79–86. https://doi.org/

10.1145/3208976.3209017

[7] A. Bostan, C.-P. Jeannerod, and É. Schost. 2008. Solving structured linear systems

with large displacement rank. Theor. Comput. Sci. 407, 1 (2008), 155–181. https:

//doi.org/10.1016/j.tcs.2008.05.014

[8] W. C. Brown. 2005. Null Ideals of Matrices. Communications in Algebra 33, 12

(2005), 4491–4504. https://doi.org/10.1080/00927870500274820

[9] D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic

progressions. J. Symb. Comput. 9, 3 (1990), 251–280. https://doi.org/10.1016/

S0747-7171(08)80013-2

[10] D. A. Cox, J. Little, and D. O’Shea. 2005. Using Algebraic Geometry (second edition).

Springer-Verlag New-York, New York, NY. https://doi.org/10.1007/b138611

[11] R. A. DeMillo and R. J. Lipton. 1978. A Probabilistic Remark on Algebraic Program

Testing. Inform. Process. Lett. 7, 4 (1978), 193–195.

[12] P. Fitzpatrick. 1997. Solving aMultivariable Congruence by Change of TermOrder.

J. Symb. Comput. 24, 5 (1997), 575–589. https://doi.org/10.1006/jsco.1997.0153

[13] P. Fitzpatrick and G. H. Norton. 1990. Finding a basis for the characteristic ideal

of an 𝑛-dimensional linear recurring sequence. IEEE Trans. Inf. Theory 36, 6

(1990), 1480–1487. https://doi.org/10.1109/18.59953

[14] P. Giorgi, C.-P. Jeannerod, and G. Villard. 2003. On the complexity of polynomial

matrix computations. In ISSAC’03. ACM, 135–142. https://doi.org/10.1145/860854.

860889

[15] P. Giorgi and V. Neiger. 2018. Certification of Minimal Approximant Bases. In

ISSAC’18. ACM, 167–174. https://doi.org/10.1145/3208976.3208991

[16] W. Gröbner. 1935. Über irreduzible Ideale in kommutativen Ringen. Math. Ann.

110, 1 (1935), 197–222.

[17] C. Heuberger and R. Rissner. 2017. Computing J-ideals of a matrix over a principal

ideal domain. Linear Algebra Appl. 527 (2017), 12–31. https://doi.org/10.1016/j.

laa.2017.03.028

[18] S. G. Hyun, V. Neiger, and É. Schost. 2019. Implementations of Efficient Univari-

ate Polynomial Matrix Algorithms and Application to Bivariate Resultants. In

ISSAC’19. ACM, 235–242. https://doi.org/10.1145/3326229.3326272

[19] C.-P. Jeannerod, V. Neiger, and G. Villard. 2020. Fast computation of approximant

bases in canonical form. J. Symb. Comput. 98 (2020), 192–224. https://doi.org/10.

1016/j.jsc.2019.07.011

[20] V. L. Kurakin. 1998. The Berlekamp–Massey algorithm over finite rings, modules,

and bimodules. Discrete Mathematics and Applications 8, 5 (1998), 441–474.

[21] V. L. Kurakin. 2000. Construction of the Annihilator of a Linear Recurring

Sequence over Finite Module with the help of the Berlekamp-Massey Algorithm.

In FPSAC 2000. Springer, 476–483. https://doi.org/10.1007/978-3-662-04166-6_45

[22] G. Labahn, V. Neiger, and W. Zhou. 2017. Fast, deterministic computation of the

Hermite normal form and determinant of a polynomial matrix. 42 (2017), 44–71.

https://doi.org/10.1016/j.jco.2017.03.003

[23] D. Lazard. 1985. Ideal Bases and Primary Decomposition: Case of Two Variables.

J. Symb. Comput. 1, 3 (1985), 261–270.

[24] F. Le Gall. 2014. Powers of Tensors and Fast Matrix Multiplication. In ISSAC’14

(Kobe, Japan). ACM, 296–303. https://doi.org/10.1145/2608628.2608664

[25] F. S. Macaulay. 1934. Modern algebra and polynomial ideals. InMath. Proc. Camb.

Philos. Soc, Vol. 30. Cambridge University Press, 27–46.

[26] J. Massey. 1969. Shift-register synthesis and BCH decoding. IEEE Trans. Inf.

Theory 15 (1969), 122–127.

[27] B. Mourrain. 2017. Fast Algorithm for Border Bases of Artinian Gorenstein

Algebras. In ISSAC’17 (Kaiserslautern, Germany). ACM, 333–340. https://doi.

org/10.1145/3087604.3087632

[28] S. Naldi and V. Neiger. 2020. A Divide-and-Conquer Algorithm for Computing

Gröbner Bases of Syzygies in Finite Dimension. In ISSAC’20. ACM, 380–387.

https://doi.org/10.1145/3373207.3404059

[29] V. Neiger, H. Rahkooy, and É. Schost. 2017. Algorithms for zero-dimensional

ideals using linear recurrent sequences. In CASC 2017. Springer, 313–328.

[30] V. Neiger and É. Schost. 2020. Computing syzygies in finite dimension using fast

linear algebra. J. Complexity 60 (2020), 101502. https://doi.org/10.1016/j.jco.2020.

101502

[31] V. M. Popov. 1972. Invariant Description of Linear, Time-Invariant Controllable

Systems. SIAM Journal on Control 10, 2 (1972), 252–264.

[32] R. Rissner. 2016. Null ideals of matrices over residue class rings of principal ideal

domains. Linear Algebra Appl. 494 (2016), 44–69. https://doi.org/10.1016/j.laa.

2016.01.004

[33] S. Sakata. 1988. Finding a minimal set of linear recurring relations capable of

generating a given finite two-dimensional array. J. Symb. Comput. 5, 3 (1988),

321–337. https://doi.org/10.1016/S0747-7171(88)80033-6

[34] S. Sakata. 1990. Extension of the Berlekamp-Massey algorithm to 𝑁 dimensions.

Information and Computation 84, 2 (1990), 207–239.

[35] S. Sakata. 2009. The BMS Algorithm. In Gröbner Bases, Coding, and Cryptography.

Springer, 143–163. https://doi.org/10.1007/978-3-540-93806-4_9

[36] J. T. Schwartz. 1980. Fast Probabilistic Algorithms for Verification of Polynomial

Identities. J. ACM 27, 4 (1980), 701–717. https://doi.org/10.1145/322217.322225

[37] V. Shoup. 2020. NTL: A Library for doing Number Theory, version 11.4.3.

http://www.shoup.net.
[38] M. Van Barel and A. Bultheel. 1992. A general module theoretic framework for

vector M-Padé and matrix rational interpolation. Numer. Algorithms 3 (1992),

451–462. https://doi.org/10.1007/BF02141952

[39] D. Wiedemann. 1986. Solving sparse linear equations over finite fields. IEEE

Trans. Inf. Theory 32, 1 (1986), 54–62. https://doi.org/10.1109/TIT.1986.1057137

[40] W. A. Wolovich. 1974. Linear Multivariable Systems. Applied Mathematical

Sciences, Vol. 11. Springer-Verlag New-York.

[41] W. Zhou and G. Labahn. 2013. Computing Column Bases of Polynomial Matrices.

In ISSAC’13. ACM, 379–386. https://doi.org/10.1145/2465506.2465947

[42] R. Zippel. 1979. Probabilistic algorithms for sparse polynomials. In EUROSAM’79

(LNCS), Vol. 72. Springer, 216–226.

https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/S0895479892230031
https://doi.org/10.1145/309831.309929
https://doi.org/10.1109/TIT.1968.1054109
https://doi.org/10.1016/j.jsc.2016.11.005
https://doi.org/10.1145/3208976.3209017
https://doi.org/10.1145/3208976.3209017
https://doi.org/10.1016/j.tcs.2008.05.014
https://doi.org/10.1016/j.tcs.2008.05.014
https://doi.org/10.1080/00927870500274820
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1016/S0747-7171(08)80013-2
https://doi.org/10.1007/b138611
https://doi.org/10.1006/jsco.1997.0153
https://doi.org/10.1109/18.59953
https://doi.org/10.1145/860854.860889
https://doi.org/10.1145/860854.860889
https://doi.org/10.1145/3208976.3208991
https://doi.org/10.1016/j.laa.2017.03.028
https://doi.org/10.1016/j.laa.2017.03.028
https://doi.org/10.1145/3326229.3326272
https://doi.org/10.1016/j.jsc.2019.07.011
https://doi.org/10.1016/j.jsc.2019.07.011
https://doi.org/10.1007/978-3-662-04166-6_45
https://doi.org/10.1016/j.jco.2017.03.003
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/3087604.3087632
https://doi.org/10.1145/3087604.3087632
https://doi.org/10.1145/3373207.3404059
https://doi.org/10.1016/j.jco.2020.101502
https://doi.org/10.1016/j.jco.2020.101502
https://doi.org/10.1016/j.laa.2016.01.004
https://doi.org/10.1016/j.laa.2016.01.004
https://doi.org/10.1016/S0747-7171(88)80033-6
https://doi.org/10.1007/978-3-540-93806-4_9
https://doi.org/10.1145/322217.322225
https://doi.org/10.1007/BF02141952
https://doi.org/10.1109/TIT.1986.1057137
https://doi.org/10.1145/2465506.2465947

	Abstract
	1 Introduction
	2 Linearly Recurrent Sequences
	2.1 Recurrent sequences over K[x]/(x**d)
	2.2 Bivariate interpretation and generating sets
	2.3 Univariate and bivariate approximation

	3 Kurakin's algorithm
	4 Lazy algorithm based on Kurakin's
	5 Via univariate approximant bases
	5.1 Approximants of a wide Hankel matrix
	5.2 Speed-up by compression using structure

	6 Via bivariate Padé approximation
	7 Experimental Results
	8 Applications to sparse matrices
	8.1 Minimal polynomials of sparse matrices
	8.2 Determinant of sparse matrices

	References

