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Bit complexity for computing one point in each
connected component of a smooth real algebraic set
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David R. Cheriton School of Computer Science, University of Waterloo, On, Canada

Abstract

We analyze the bit complexity of an algorithm for the computation of at least
one point in each connected component of a smooth real algebraic set. This work
is a continuation of our analysis of the hypersurface case (On the bit complexity of

finding points in connected components of a smooth real hypersurface, ISSAC’20). In
this paper, we extend the analysis to more general cases.

Let F = (f1, . . . , fp) in Z[X1, . . . ,Xn]
p be a sequence of polynomials with V =

V (F ) ⊂ Cn a smooth and equidimensional variety and 〈F 〉 ⊂ C[X1, . . . ,Xn] a radical
ideal. To compute at least one point in each connected component of V ∩Rn, our start-
ing point is an algorithm by Safey El Din and Schost (Polar varieties and computation

of one point in each connected component of a smooth real algebraic set, ISSAC’03).
This algorithm uses random changes of variables that are proven to generically ensure
certain desirable geometric properties. The cost of the algorithm was given in an alge-
braic complexity model; here, we analyze the bit complexity and the error probability,
and we provide a quantitative analysis of the genericity statements. In particular, we
are led to use Lagrange systems to describe polar varieties, as they make it simpler to
rely on techniques such as weak transversality and an effective Nullstellensatz.

Keywords— Real algebraic geometry; weak transversality; Noether position; com-
plexity

1 Introduction

Background and problem statement. Computing one point in each connected com-
ponent of a real algebraic set S is a basic subroutine in real algebraic and semi-algebraic
geometry; it is also useful in its own right, since it allows one to decide if S is empty or not.

We consider the case where S is given as S = V ∩ Rn, where V = V (F ) ⊂ Cn is a com-
plex algebraic set defined by a sequence of polynomials F = (f1, . . . , fp) in Z[X1, . . . , Xn]

p.
Algorithms for this task have been known for decades, and their complexity is to some extent
well understood. Suppose that all fi’s have degree at most d, and coefficients of bit-size at
most b. Without making any assumption on these polynomials, the algorithm given in [8,
Section 13.1] solves our problem using dO(n) operations in Q; in addition, the output of the
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algorithm is represented by polynomials of degree dO(n), with coefficients of bit-size hdO(n).
The key idea behind this algorithm goes back to [21]: sample points are found through the
computation of critical points of well-chosen functions on V .

The number of connected components of V admits the lower bound dΩ(n), so up to
polynomial factors this result is optimal. However, due to the generality of the algorithm,
the constant hidden in the exponent O(n) in its runtime turns out to be rather large: the
algorithm relies on infinitesimal deformations, that affect runtime non-trivially.

In this paper, we will work under the additional assumption that V = V (f1, . . . , fp) is a
smooth complex algebraic set, equidimensional of dimension δ = n − p, and that f1, . . . , fp
generate a radical ideal (we explain these terms in the next section). We place ourselves in
the continuation of the line of work initiated by [4]: that reference deals with cases where
V is a smooth hypersurface and V ∩ Rn is compact, pointing out how polar varieties (that
were introduced in the 1930’s in order to define characteristic classes [29, 37]) can play a
role in effective real geometry. This paper was extended in several directions: to V being a
smooth complete intersection, still with V ∩ Rn compact [5], then without the compactness
assumption [31, 6]; the smoothness assumption was then partly dropped in [2, 3].

Our starting point is the algorithm in [31], whose assumptions are slightly more general
than ours (V is not required to have dimension δ = n− p). In the cases we consider in this
paper, its runtime is

(

n

p

)

2+o(1)d(4+o(1))n operations in Q. As with many results in this vein,
the algorithm is randomized, as we need to assume that we are in generic coordinates; this
is done by applying a random change of coordinates prior to all computations. In addition,
the algorithm relies on procedures for solving systems of polynomial equations that are
themselves randomized. Altogether, we choose nO(1) random vectors, each of them in an
affine space of dimension nO(1); every time a choice is made, there exists a hypersurface of
the parameter space that one has to avoid in order to guarantee success. In this paper, we
revisit this algorithm, modify it in part, and give a complete analysis of its probability of
success and its bit complexity.

This work is a continuation of the analysis of the hypersurface case that we gave in [16]
(that is, the case p = 1). A very useful property in the hypersurface case is that polar
varieties can be described by straightforward equations (the partial derivatives of the input
polynomial) that form a regular sequence, at least in generic coordinates. In higher codi-
mension, this is not the case anymore: the natural description of polar varieties now involves
minors of the Jacobian matrix of the input equations (this is the approach used in [31]).
The resulting equations are in general not a complete intersection anymore, which makes it
impossible to extend directly several arguments we used in [16].

Our solution is to use a description of polar varieties by means of so-called Lagrange
equations. These equations are complete intersections (in generic coordinates), but they
involve more variables. As such, they describe algebraic sets that cover polar varieties; we
will discuss in detail the relationship between these two presentations, using in particular
several results from [7, 33].

2



Data structures. The output of the algorithm is a finite set in Qn. To represent it, we
rely on a widely used data structure based on univariate polynomials [26, 27, 17, 20, 1, 18,
19, 30]. For a zero-dimensional algebraic set S ⊂ Cn defined over Q, a zero-dimensional
parameterization Q = ((q, v1, . . . , vn), λ) of S consists in polynomials (q, v1, . . . , vn), such
that q ∈ Q[T ] is monic and squarefree, all vi’s are in Q[T ] and satisfy deg(vi) < deg(q), and
in a Q-linear form λ in variables X1, . . . , Xn, such that

• λ(v1, . . . , vn) = Tq′ mod q;

• we have the equality S =
{(

v1(τ)
q′(τ)

, . . . , vn(τ)
q′(τ)

)

| q(τ) = 0
}

.

The constraint on λ says that the roots of q are the values taken by λ on S. The param-
eterization of the coordinates by rational functions having q′ as a denominator goes back
to [26, 27]: as pointed out in [1], it allows one to control precisely the size of the coefficients
of v1, . . . , vn.

Main result. To state our main result, we need to define the height of a rational number,
and of a polynomial with rational coefficients.

The height of a non-zero a = u/v ∈ Q is the maximum of ln(|u|) and ln(v), where u ∈ Z

and v ∈ N are coprime. For a polynomial f with rational coefficients, if v ∈ N is the minimal
common denominator of all non-zero coefficients of f , then the height ht(f) of f is defined
as the maximum of the logarithms of v and of the absolute values of the coefficients of vf .

Theorem 1.1. Let F = (f1, . . . , fp) ∈ Z[X1, . . . , Xn]
p be a sequence of polynomials with

deg(fi) ≤ d and ht(fi) ≤ b. Suppose that the ideal generated by f1, . . . , fp is radical and
that V = V (F ) ⊂ Cn is smooth and equidimensional of dimension n− p. Also suppose that
0 < ǫ < 1.

There exists a randomized algorithm that takes F and ǫ as input and produces n− p+ 1
zero-dimensional parameterizations, the union of whose zeros includes at least one point in
each connected component of V (F ) ∩ Rn, with probability at least 1 − ǫ. Otherwise, the
algorithm either returns a proper subset of the points, or FAIL. In any case, the algorithm
uses

O∼(d3n+2p+1 log(1/ǫ)(b+ log(1/ǫ)))

bit operations. The polynomials in the output have degree at most dn+p, and height

O∼(dn+p+1(b+ log(1/ǫ))).

Here we assume that F is given as a sequence of polynomials in dense representation.
Following references such as [20, 18, 19, 4, 31], it would be possible to refine the runtime esti-
mate by assuming that F is given by a straight-line program (that is, a sequence of operations
+,−,× that takes as input X1, . . . , Xn and evaluates F ). Any polynomial of degree d in n
variables can be computed by a straight-line program that does O(dn) operations: evaluate
all monomials of degree up to d in n variables, multiply them by their respective coefficients
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and sum the results. However, some inputs may be given by a shorter straight-line program,
and the algorithm would actually benefit from this.

The algorithm itself is rather simple. To describe it, we need to define polar varieties,
which will play a crucial role in this paper. Let V = V (F ), for F = (f1, . . . , fp) as in the
theorem. For i ∈ {1, . . . , n − 1}, denote by πi : Cn → Ci the projection (x1, . . . , xn) 7→
(x1, . . . , xi). The i-th polar variety

W (i, F ) := {x ∈ V | dim πi(TxV ) < i}

is the set of critical points of πi on V . We will recall below that it is defined by the vanishing
of all p-minorsMi,1, . . . ,Mi,Si

of the last n− i columns of the Jacobian matrix of F , together
with the equations F themselves (here, Si is simply the binomial number

(

n−i

p

)

).

In general, we cannot say much about the geometry of W (i, F ), but if we apply a generic
change of coordinates A to F , then W (i, F ) is known to be equidimensional of dimension
(i− 1) or empty [4, 7, 33], and to be in so-called Noether position [31] (background notions
in algebraic geometry are in [28, 36, 15]; we will recall key definitions). If this is the case,
the algorithm in [31] chooses arbitrary σ1, . . . , σn−1 in Q and solves the systems defined by

X1 − σ1 = · · · = Xi−1 − σi−1 = f1 = · · · = fp =Mi,1 = · · · =Mi,Si
= 0 (1)

for i = 1, . . . , n − p + 1. They all admit finitely many solutions, and Theorem 2 in [31]
proves that the union of their solution sets contains one point on each connected component
of V ∩ Rn.

One of our contributions is to analyze precisely what conditions on the change of coor-
dinates A guarantee success. This is done by revisiting the key ingredients in the proofs
given in [7, 31], and giving quantitative versions of these results, bounding the degrees of
the hypersurfaces we have to avoid.

We actually do not solve the equations (1), since the (large) number of minors Si makes
this analysis difficult. Instead, we replace (1) by equations involving Lagrange multipliers.
Proving correctness requires us to guarantee further genericity properties, but once this is
done, we can rely on the algorithm in [34] to solve these equations, for which a complete bit
complexity analysis is available.

Further work. This paper is an extension of [16], where the analysis was done for the
hypersurface case. In addition, this work should also be seen as a step toward the analy-
sis of further randomized algorithms in real algebraic geometry. In particular, randomized
algorithms for deciding connectivity queries on smooth, compact algebraic sets have been de-
veloped in a series of papers [32, 35], and could be revisited using the techniques introduced
here. The techniques would apply to algorithms in real algebraic geometry where transver-
sality or Noether position are required geometric properties established by a random change
of coordinates.

Outline. The next section summarizes the main concepts from algebraic geometry needed
in this paper. In Section 3, we compare the descriptions of determinantal varieties by the
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vanishing of matrix minors, and through the use of Lagrange multipliers; these results, while
rather simple, are used throughout. A first application is in Section 4, where we give a
quantitative form of Thom’s “weak transversality lemma”.

Section 5 introduces polar varieties and discusses the algorithm sketched above and the
genericity conditions required for it to succeed. These conditions are studied in detail in
Sections 6, 7 and 8; this allows us to complete the analysis of the algorithm in Section 9,
thereby proving Theorem 1.1.

2 Preliminaries

In this section, we gather several basic definitions and properties of algebraic sets and locally
closed sets. General references for this material are [28, 36, 15].

Algebraic sets. An algebraic set V ⊂ Cn is the set of common zeros of an ideal I in
C[X1, . . . , Xn]. Conversely, the ideal of a subset V of Cn, that is, the set of polynomials in
C[X1, . . . , Xn] that vanish at all points of V , is called the ideal of V ; this is a radical ideal,
which we write I(V ).

The smallest algebraic set containing an arbitrary set Y is called the Zariski closure of
Y and written Y .

Irreducible decomposition. An algebraic set V ⊂ Cn is irreducible when V = V1 ∪ V2,
with V1, V2 algebraic sets, implies V = V1 or V = V2; this is the case if and only if I(V )
is prime. An algebraic set V ⊂ Cn can be decomposed into a finite union of irreducible
algebraic sets

V = V1 ∪ V2 ∪ · · · ∪ Vr,
with Vi 6⊂ Vj for all i 6= j. The sets V1, . . . , Vr are called the irreducible components of V ;
they are uniquely defined, up to order. In terms of ideals, I(V ) being radical, it admits
a decomposition as an irredundant intersection of prime ideals I1, . . . , Ir; the irreducible
algebraic sets V (I1), . . . , V (Ir) are the irreducible components of V .

Dimension. The dimension of an algebraic set V ⊂ Cn, denoted dim(V ), can be defined
as the unique integer d such that V ∩ H1 ∩ · · · ∩ Hd is finite, but not empty, for a generic
choice of hyperplanes H1, . . . , Hd. The codimension of V is n− dim(V ).

An algebraic set V is equidimensional if each of its irreducible components has the same
dimension; if each component has dimension d then we say that V is d-equidimensional.

Degree. We use the definition of degree from [22]: the degree deg(V ) of an irreducible
algebraic set V is the number of intersection points between itself and dim(V ) generic hy-
perplanes, and the degree of an arbitrary algebraic set is defined as the sum of the degrees
of its irreducible components.
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The degree of a hypersurface defined by a squarefree polynomial f is deg(f). We par-
ticularly care about algebraic sets of dimension zero; by definition, these sets are finite and
their degree is equal to their cardinality.

We will often apply the Bézout bound from [22, Theorem 1], which says that deg(V ∩V ′) ≤
deg(V ) deg(V ′) holds for all algebraic sets V, V ′. A last useful property is that for any linear
mapping ψ : Cn → Cm, deg(ψ(V )) ≤ deg(V ).

Noether position. Suppose that the ambient dimension n is fixed. For i in {1, . . . , n},
let πi denote the projection

Cn → Ci

(x1, . . . , xn) 7→ (x1, . . . , xi).

A d-equidimensional algebraic set V ⊂ Cn is in Noether position for the projection πd when
the extension

C[X1, . . . , Xd]→ C[X1, . . . , Xn]/I(V )

is injective and integral; here, I(V ) ⊂ C[X1, . . . , Xn] is the defining ideal of V . It is then a
consequence that for any x in Cd, the fiber V ∩ π−1

d (x) has dimension zero and is thus finite
and not empty.

Gradient vectors and Jacobian matrices. The gradient vector of a polynomial f ∈
C[X1, . . . , Xn] is written grad(f) ∈ C[X1, . . . , Xn]

1×n (so this is a row vector). Most of the
time, the variables with respect to which we differentiate are clear from the context, but we
may write gradX(f) for clarity, with X = X1, . . . , Xn.

The Jacobian matrix of polynomials F = f1, . . . , fs is the s × n matrix jac(F ), with
∂fi/∂Xj at entry (i, j), for 1 ≤ i ≤ s and 1 ≤ j ≤ n. As we do for gradients, we will write
jacX(F ) if we want to highlight what variables we differentiate with respect to.

Given x in Cn, we then write grad(f,x), resp. jac(F,x), for the evaluation of respectively
grad(f) and jac(F ) at x.

Tangent spaces, regular and singular points. Assume that V ⊂ Cn is a d-equidimen-
sional algebraic set. The Zariski-tangent space to V at x ∈ V is the vector space TxV ⊂ Cn

defined by the equations

grad(g,x) · v = 0 for all g ∈ I(V ), v ∈ Cn×1.

Then, the point x ∈ V is a regular point (or non-singular) if dim(TxV ) = d; otherwise, x
is a singular point. We let reg(V ) and sing(V ) respectively denote the regular and singular
points of V ; when the latter is empty, we say that V is smooth. If I(V ) is generated by
polynomials G = (g1, . . . , gs) ∈ C[X1, . . . , Xn]

s, then at any point x of reg(V ), the Jacobian
matrix jac(G,x) has rank n− d and the right kernel of jac(G,x) is TxV.
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Changes of variables. For a matrix A in Cn×n and a polynomial g in C[X1, . . . , Xn], we
write

gA := g(AX) ∈ C[X1, . . . , Xn],

where X is the column vector with entries X1, . . . , Xn. Similarly, for a sequence of poly-
nomials G = (g1, . . . , gs) in C[X1, . . . , Xn]

s, we write GA =
(

gA1 , . . . , g
A
s

)

. For an alge-
braic set V ⊂ Cn and a matrix A ∈ GL(n), we define V A as the image of V by the map
φA : x 7→ A−1x. Notice in particular that V (GA) = φA(V (G)) = V (G)A.

Locally closed sets. We will also need to work with locally closed sets: we say that
Y ⊂ Cn is locally closed if we can write it as Y = V − V ′, for some algebraic sets V, V ′.

The notions of dimension and equidimensionality carry over to this context (they are
defined through the Zariski closure of Y ), as does that of tangent space: for x in Y , we
set TxY = TxV (this is independent of the choice of V, V ′ in the definition above). If Y
is equidimensional, as we did for algebraic sets, we can then define the regular points (or
non-singular points) of Y as those points at which the tangent space has dimension d, and
we say that Y is smooth if all its points are regular.

Open sets are locally closed. As another example, for any d-equidimensional algebraic
set V , reg(V ) is a smooth d-equidimensional locally closed set.

3 Describing determinantal varieties

In this section, we work with polynomials in C[Y1, . . . , YN ], for some positive integerN . Given
a matrix A in C[Y1, . . . , YN ]

q×r, with q ≤ r, together with some equations B = (b1, . . . , bs)
in C[Y1, . . . , YN ], we consider the locus S defined as

S = {y ∈ CN | b1(y) = · · · = bs(y) = 0 and rank(A(y)) < q}.

One of our goals here is to give a degree bound for S; this will be used twice, in the next
section for our discussion of the weak transversality lemma (in a slightly more general context
where we work in an open subset of CN ), then also to control the degrees of the systems of
equations we will solve.

Consider the polynomials

J(A, B) = (b1, . . . , bs,M1, . . . ,MP ),

where M1, . . . ,MP are the q-minors of A, with P =
(

r

q

)

. Since we have V (J(A, B)) = S,
we may derive a degree bound on S using the Bézout inequality. However, even the refined
form given in [23, Proposition 2.3] involves an exponential dependency in either the ambient
dimension N or the number of minors P . This might be acceptable in some contexts (such
as when estimating the degrees of polar varieties), but is way beyond our target bound in
the context of weak transversality, for instance.
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Instead, we use Lagrange systems. We let L1, . . . , Lq be new variables, thought of as
Lagrange multipliers, and consider the “Lagrange polynomials” given as the r entries of
[L1 · · · Lq] ·A. We denote by Z ⊂ CN+q the algebraic set defined by the vanishing of

(b1, . . . , bs, [L1 · · · Lq] ·A)

and by Z ′ the algebraic set

Z ′ := Z − {(y, 0, . . . , 0) ∈ CN+q | (y, 0, . . . , 0) ∈ Z},

where the bar denotes Zariski closure (we have to remove such points, since L1 = · · · = Lq = 0
is always a trivial solution to the Lagrange equations). Finally, consider the projection

µ : CN+q → CN

(y, ℓ) 7→ y.

It is then possible to prove that S is the Zariski closure of µ(Z ′), and derive degree bounds
using the equations defining Z. However, while introducing Z ′ is convenient, computing
defining equations for it is non-trivial, as it involves saturation; besides, in several contexts,
it will be advantageous to work with equations in complete intersection, which the follow-
ing construction will guarantee in certain cases. For u = (u1, . . . , uq) ∈ Cq, consider the
equations

L(A, B,u) = (b1, . . . , bs, [L1 · · · Lq] ·A, u1L1 + · · ·+ uqLq − 1),

and let Zu ⊂ CN+q be its zero-set. Using the linear equation u1L1+ · · ·+ uqLq − 1 allows us
to discard solutions where L1 = · · · = Lq = 0, but unlucky choices of u may discard other
components as well. The following proposition makes this more precise.

Proposition 3.1. For any u in Cq, we have the inclusion µ(Zu) ⊂ S. There exists a non-
empty open set O ⊂ Cq such that for u in O, we have the inclusion S ⊂ µ(Zu), and thus
the equalities S = µ(Zu) and

√

〈L(A, B,u)〉 ∩ C[Y1, . . . , YN ] =
√

〈J(A, B)〉.

The set O is the complement of at most deg(S) hyperplanes.

Proof. If (y, ℓ) cancels all polynomials in L(A, B,u), then ℓ is non-zero, so that A(y) is
rank-deficient. As a consequence, y is in S. This proves the first assertion.

For the second one, let S1, . . . , SK be the irreducible components of S. For any given k
in {1, . . . , K}, since all q-minors of A vanish on Sk, they vanish in the function field C(Sk),
so A has rank less than q as a matrix over C(Sk). Thus, there exists a non-zero vector of
rational functions

ℓk = (ℓk,1, . . . , ℓk,q) =

(

Nk,1

Dk

, . . . ,
Nk,q

Dk

)

∈ C(Sk)
q,
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such that ℓk ·A = 0 in C(Sk)
r (here, we see ℓk in C(Sk)

1×q). For definiteness, assume that
Nk,ιk 6= 0. Then, in particular, S ′

k = Sk − V (DkNk,ιk) is dense in Sk; for y in S ′
k, ℓk(y) is

well-defined, non-zero, and still satisfies ℓk(y) ·A(y) = 0.
Then, pick a point yk in S ′

k, so that ℓk(yk) is a well-defined, non-zero vector in Cq. This
allows us to define a non-empty Zariski open set Ok ⊂ Cq by the condition

Ok := {u ∈ Cq | ℓk(yk) · u 6= 0} ,
where in the dot product we take ℓk(yk) in C1×q and u in Cq×1. Finally, we let O :=
∩1≤k≤KOk, which is open, non-empty, and defined as the complement of K ≤ deg(S) hyper-

planes, as claimed. We now prove that for u in O , the inclusion S ⊂ µ(Zu) holds.
For this, we take k as above, and we prove that Sk is contained in µ(Zu). Consider the

rational mapping

S ′
k → C

y 7→ ℓk(y) · u =
u1Nk,1(y) + · · ·+ uqNk,q(y)

Dk(y)
.

Put S ′′
k = S ′

k−V (u1Nk,1+ · · ·+uqNk,q); this is again an open subset of Sk, and the fact that
ℓk(yk) · u is non-zero, with yk in S ′

k, shows that S
′′
k is not empty. In particular, it is dense

in Sk.
Take y in S ′′

k . Then, α := ℓk(y) · u is non-zero, set we can define ℓ′ := 1/α ℓk(y). Then,
ℓ′ is still in the left nullspace of A(y), and by construction ℓ′ · u = 1, so that (y, ℓ′) is in
Zu. In other words, S ′′

k is contained in µ(Zu). Taking the Zariski closure, we obtain that

Sk is contained in µ(Zu), as claimed. The equality S = µ(Zu) follows, as does the claimed
equality between ideals.

Corollary 3.2. If all polynomials b1, . . . , bs have respective degrees at most d1, . . . , ds, and
all entries of A have degree at most d′, then the degree of S is at most d1 · · · ds(d′ + 1)r.

Proof. Choose u in the set O of the previous lemma. The algebraic set Zu is defined by s
equations of respective degrees at most d1, . . . , ds, r equations of degree at most d′ + 1 and
a linear equation. It follows from Bézout’s Theorem [22] that deg(Zu) ≤ d1 · · · ds(d′ + 1)r.
Degree does not increase through projection, so the conclusion follows from the previous
lemma.

Remark 3.3. In the next section, we will consider the following slight variant of the problem
considered here, where we are interested in the locally closed set

S ′ = {y ∈ Ω | b1(y) = · · · = bs(y) = 0 and rank(A(y)) < q},
for some Zariski open set Ω ⊂ CN . The Zariski closure S ′ is the union of certain irreducible
components of the set S defined above, so the degree bound of Corollary 3.2 still holds for S ′.

We note that in some cases, sharper bounds are known for the degrees of determinantal
varieties: for instance, when X is finite, and defined as the set of critical points on a smooth
algebraic set [39], or when we want to take into account differences in the degrees of the rows
and columns of A [38, 40, 41].

9



4 Weak transversality

Several of the generic properties of polar varieties are consequences of weak transversality,
which is an important extension of Sard’s lemma due to Thom (this observation goes back
to work of Giusti, Heintz and collaborators [4, 3]). In this section, we develop a quantita-
tive extension of Thom’s weak transversality theorem, specialized to the particular case of
transversality to a point. In the sequel, we will apply this result to bound the degree of
particular hypersurfaces our algorithm needs to avoid to guarantee success.

4.1 Definitions and statement of the result

In its differential version, Sard’s lemma states that the set of critical values of a smooth
function Rn → Rm has measure zero; extensions exist to smooth mapping between differential
manifolds. In our algebraic context, we will use the following definitions.

Consider a polynomial mapping Φ : Y → Cm from a smooth n-equidimensional locally
closed set Y to Cm, with m ≤ n. A critical point of Φ is a point y ∈ Y for which the image
of the tangent space TyY by the Jacobian matrix jac(Φ,y) has dimension less than m. For
instance, the case that will interest us in this section is when Y is Zariski open in Cn, in
which case we have TyY = Cn for all y in Y , and the condition is equivalent to the Jacobian
of Φ having rank less than m at y. Critical values are the images by Φ of critical points; the
complement of this set are the regular values. Notice then, a regular value is not necessarily
in the image of Φ.

One can then give “algebraic” versions of Sard’s lemma: for instance, [28, (3.7)] shows
that for Y an irreducible algebraic set and Φ dominant, the critical values of Φ are contained
in a strict algebraic subset of Cm; below, we will rely on a straightforward generalization
given in [33]. See also [10, Chapter 9] for the semi-algebraic case.

Thom’s weak transversality lemma, as given for instance in [13], generalizes Sard’s lemma.
In this section, we consider a particular case of this result (transversality to a point), and
establish a quantitative version of it.

Let n, s, and m be positive integers, with m ≤ n as before, let O be a Zariski open
subset of Cn, and denote by Φ : O × Cs → Cm a mapping given by polynomials in n + s
indeterminates X1, . . . , Xn,Θ1, . . . ,Θs (the latter should be thought of as parameters). For
ϑ in Cs, we let Φϑ : O → Cm be the induced mapping x 7→ Φ(x,ϑ). Thom’s weak
transversality lemma tells us that if 0 is a regular value of the mapping Φ, then 0 remains
a regular value of the induced mapping Φϑ for a generic ϑ. (Here, we are dealing with
the particular case of transversality to a point, which can be rephrased entirely in terms of
regular and critical values.) Our quantitative version of this result is the following.

Proposition 4.1 (Weak transversality). Let all notation be as before, and suppose that Φ
is defined by m polynomials of degree at most d. If 0 is a regular value of Φ, there exists
a non-zero polynomial Γ ∈ C[Θ1, . . . ,Θs] of degree at most dm+n such that for ϑ in Cs, if
Γ(ϑ) 6= 0, then 0 is a regular value of Φϑ.
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Example 4.2. Consider a squarefree polynomial f in C[X1, X2], with degree at most d,
defining a smooth curve V (f) in C2, and let the mapping Φ : C2 × C → C2 be defined
by Φ(X1, X2,Θ) = (f(X1, X2), X1 − Θ) (so m = n = 2 and s = 1). One checks that the
Jacobian of Φ with respect to (X1, X2,Θ) has full rank two at any point in Φ−1(0), so that 0
is a regular value of Φ and therefore the assumptions of the proposition apply.

We then deduce that a non-zero polynomial Γ ∈ C[Θ] exists, with degree at most d4 with
the property that, if ϑ in C does not cancel Γ then 0 is a regular value of the induced mapping
Φϑ. In particular, for all ϑ in C except at most d4 values, the ideal (f(X1, X2), X1 − ϑ) is
radical in C[X1, X2]; equivalently, f(ϑ,X2) is squarefree.

In this example, we could of course obtain the same result (with a sharper degree bound)
by considering the discriminant of f with respect to X2, but the construction above will be
useful later on, in a generalized form. (In this example, the bound d4 could be sharpened
by utilizing the fact that only one of the polynomials defining Φ has degree d, whereas the
other one is linear.)

The rest of the section is devoted to the proof of the proposition. The proof of [33,
Theorem B.3] already shows the existence of Γ; it is essentially the classical proof for smooth
mappings [13, Section 3.7], written in an algebraic context. In what follows, we revisit this
proof, establishing a bound on the degree of Γ.

4.2 Proof of the proposition

In what follows, we use the notation of Proposition 4.1, so that we consider m polynomials Φ
that depend on variables X1, . . . , Xn and Θ1, . . . ,Θs, with m ≤ n, and an open set O ⊂ Cn.

In the context of Thom’s weak transversality, the “bad” parameter values show up as
the critical values of a certain projection. Put Y = Φ−1(0) ∩ (O × Cs), and let V be the
Zariski closure of Y. If Y is empty, there is nothing to do, since all values ϑ in Cs satisfy the
conclusion of the proposition. We therefore assume that Y is not empty. Take (x,ϑ) in Y ;
then by assumption, jac(Φ, (x,ϑ)) has full rank m. Since in a neighbourhood of (x,ϑ), V
coincides with Y = Φ−1(0) ∩ (O × Cs), the Jacobian criterion [15, Corollary 16.20] implies
that there is a unique irreducible component V(x,ϑ) of V that contains (x,ϑ), that (x,ϑ) is
regular on this component and that dim V(x,ϑ) = n+s−m. This implies that Y is a smooth,
(n+ s−m)-equidimensional locally closed set. Now, consider the projection

π : Cn+s → Cs

(x,ϑ) 7→ ϑ,

and let Z be the set of critical points of the restriction π|Y of π to Y ; that is,

Z := {(x,ϑ) ∈ Y | dim(π(Tx,ϑY )) < s}.

The projection π(Z) ⊂ Cs is thus the set of critical values of π|Y .

Lemma 4.3. The Zariski closure π(Z) is a strict subset of Cs.
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Proof. The discussion above implies that reg(V ) is a smooth, (n + s−m)-equidimensional
locally closed set containing Y . Let then Z

′

be the critical points of π| reg(V ); by the algebraic
form of Sard’s lemma as given in [28, Theorem 3.7] (for irreducible V ) and [33, Proposi-
tion B.2] (for general V ), the Zariski closure π(Z ′) is a strict closed subset of Cs. Now, at
any point (x,ϑ) of Y , the tangent spaces T(x,ϑ)Y and T(x,ϑ) reg(V ) coincide. As a result, Z
is contained in Z

′

, and the claim follows.

We can now explain how ϑ being a regular value of π|Y relates to 0 being a regular value of
Φϑ. In what follows, we write our indeterminates as blocks of variables, withX = X1, . . . , Xn

and Θ = Θ1, . . . ,Θs. When not explicitly mentioned, Jacobian matrices involve derivatives
with respect to both X and Θ.

Lemma 4.4. For (x,ϑ) in Y , (x,ϑ) is in Z if and only if jacX(Φ, (x,ϑ)) has rank less
than m.

Proof. Let M denote the (s + m) × (s + n) Jacobian matrix of π and Φ with respect to
X1, . . . , Xn and Θ1, . . . ,Θs, that is,

M =

[

jac(π)
jac(Φ)

]

=

[

0s×n Is
jac(Φ)

]

.

Take (x,ϑ) on Y . Then, the rank of M(x,ϑ) can be written as rank(jac(Φ, (x,ϑ))) +
rank([0s×n Is] | ker jac(Φ, (x,ϑ))), where the latter is the rank of the restriction of [0s×n Is]
to the nullspace of jac(Φ, (x,ϑ)).

Since (x,ϑ) is in Y and since 0 is a regular value of Φ, jac(Φ, (x,ϑ)) has full rank m. On
the other hand, the nullspace of that matrix is the tangent space Tx,ϑY , and rank([0s×n Is] |
ker jac(Φ, (x,ϑ))) is the dimension of π(Tx,ϑY ). In other words, the rank of M(x,ϑ) is
equal to m+ dim(π(Tx,ϑY )).

This proves that for (x,ϑ) in Y , (x,ϑ) is in Z if and only if the matrix M has rank less
than s+m at (x,ϑ). Now, notice that

M(x,ϑ) =

[

0s×n Is
jacX(Φ, (x,ϑ)) jacΘ(Φ, (x,ϑ))

]

.

This shows that the rank of M(x,ϑ) equals s + rank(jacX(Φ, (x,ϑ))), and the lemma
follows.

As a result, suppose we take ϑ in Cs−π(Z). Then for all x in Φ−1
ϑ (0)∩O , (x,ϑ) is in Y ,

so it is not in Z; the previous lemma then implies that the Jacobian matrix of Φϑ, which is
jacX(Φ, (X,ϑ)), has full rank m at x. In other words, 0 is a regular value of Φϑ in the open
set O . To prove Proposition 4.1, it is thus enough to establish the existence of a non-zero
polynomial of degree at most dm+n that vanishes on π(Z). We already established that π(Z)
is a strict subset of Cs, so the only missing ingredient is to prove that it has degree at most
dm+n.
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We start by bounding above the degree of Z. The previous lemma shows the equality

Z = {(x,ϑ) ∈ Ω× Cs | Φ(x,ϑ) = 0 and rank(jacX(Φ, (x,ϑ))) < m}.

Since all polynomials in Φ have degree at most d, and all entries of jacX(Φ) at most d − 1,

we can apply Corollary 3.2, so as to deduce that deg(Z) ≤ dm+n. This implies that π(Z)

has degree at most dm+n, and the equality π(Z) = π(Z) allows us to conclude the proof.

5 Overview of the main algorithm

Let F = (f1, . . . , fp) be a sequence of polynomials in C[X1, . . . , Xn]. Suppose that the ideal
〈F 〉 ⊂ C[X1, . . . , Xn] is radical and that V (F ) is smooth and equidimensional of dimension
δ = n− p.

In this section, we give a high-level description of an algorithm from [31] that computes
at least one point in each connected component of V (F )∩Rn. Correctness of this algorithm
was established in [31] provided we are in generic coordinates: the algorithm solves a family
of systems of equations that describe points on the polar varieties of V (F ), and being in
generic coordinates ensures several desirable properties for these polar varieties.

After a brief review of the basic properties of polar varieties, we sketch the main algorithm
and highlight what properties are needed for its correctness (the next sections will give
quantitative statements regarding the genericity of these properties). In that, we mainly
follow [31], but we also introduce requirements related to Lagrange systems, as introduced
in Section 3, as they will be of help in further sections.

5.1 Polar varieties

Let F be as in the preamble and let V = V (F ). Recall that, for i ∈ {1, . . . , n}, we denote
by πi the projection

Cn → Ci

(x1, . . . , xn) 7→ (x1, . . . , xi).

For i ≤ δ, the i-th polar variety W (i, F ) is the set of critical points of the restriction of πi
to V , that is,

W (i, F ) := {x ∈ V | dim πi(TxV ) < i} .
We naturally extend this definition to i = δ + 1, by setting W (δ + 1, F ) = V .

For 1 ≤ i ≤ δ+1, let jac(F ), resp. jac(F, i), denote the Jacobian matrix of F = (f1, . . . , fp)
with respect to (X1, . . . , Xn), resp. to (Xi+1, . . . , Xn) :

jac(F ) =







∂f1
∂X1

. . . ∂f1
∂Xn

...
...

∂fp
∂X1

. . . ∂fp
∂Xn






, jac(F, i) =







∂f1
∂Xi+1

. . . ∂f1
∂Xn

...
...

∂fp
∂Xi+1

. . . ∂fp
∂Xn






.
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Since F generates a radical ideal, for any x in V , the tangent space Tx(V ) is the kernel of
jac(F,x); the assumption that V be δ-equidimensional and smooth implies that this kernel
has dimension δ = n − p at all such x. It follows that we can rephrase the definition of
W (i, F ) as

W (i, F ) = {x ∈ Cn | f1(x) = · · · = fp(x) = 0 and rank(jac(F, i,x)) < p} .

Let Pi =
(

n−i

p

)

be the number of p-minors in jac(F, i), and letMi,1, . . . ,Mi,Pi
be these minors

(for i = δ + 1, Pδ+1 = 0 since jac(F, δ + 1) has size p× (p− 1)). Then, as in Section 3, we
deduce that W (i, F ) is defined by the polynomials

J(i, F ) =
(

f1, . . . , fp,Mi,1, . . . ,Mi,Pi

)

. (2)

The downside to defining polar varieties using minors of the truncated Jacobian matrix is
that these equations are in general not complete intersection, due to the relations between
minors of a matrix (the hypersurface case is an exception, since in this case only partial
derivatives are used to define polar varieties). For both the polynomial system algorithm
we will use below, and an application we will make of an effective Nullstellensatz, it will
be necessary to have equations without such relations. To make this possible, we use an
alternative modeling of polar varieties that uses Lagrange variables, as in Section 3. We may
thus consider the zero-set of the polynomials

(

F, [L1 · · · Lp] · jac(F, i)
)

∈ C[X1, . . . , Xn, L1, . . . , Lp]
p+n−i,

but as before, we will want to discard from the zero-set of these equations in Cn+p those
components where all Li’s vanish identically. We pointed out that the saturation needed
to remove such components is unlikely to yield convenient sets of generators, so we will
again introduce a single additional equation, of the form u1L1 + · · ·+ upLp− 1, for a certain
u = (u1, . . . , up) in Cp. Thus, for such a vector u, we define the following polynomials:

L(i, F,u) =
(

F, [L1 · · · Lp]·jac(F, i), u1L1+· · ·+upLp−1
)

∈ C[X1, . . . , Xn, L1, . . . , Lp]
p+n−i+1.

(3)
Introducing the last equation discards all solutions with L1 = · · · = Lp = 0, but other
components of interest may be removed as well. However, Proposition 3.1 shows that for
a generic vector u, the Zariski closure of the projection of the zero-set of these equations
on the X1, . . . , Xn-space is indeed W (i, F ). In the algorithm, we will use random ui’s; the
former proposition will allow us to quantify bad choices.

5.2 The algorithm

All notation being as before, we can now give the outline of Safey El Din and Schost’s
algorithm for computing at least one point in each connected component of V (F ) ∩ Rn. To
ensure its correctness, we will need certain genericity assumptions, which will be discussed
in detail in the next sections.
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After applying a randomly chosen change of variables A, we further choose random
σ = (σ1, . . . , σδ) in Cδ, with δ = n − p. Then, for i = 1, . . . , δ + 1, we compute (in the new
coordinates) the points x = (x1, . . . , xn) satisfying

x1 = σ1, . . . , xi−1 = σi−1, f1(x) = · · · = fp(x) = 0, rank(jac(F, i,x)) < p. (4)

In geometric terms, this means that we compute the intersection of W (i, F ) with the fiber
π−1
i (σ1, . . . , σi−1). Then, we return the union of all these sets.
Departing from [31], and following the discussion in the previous subsection, we will avoid

solving the system generated by F = (f1, . . . , fp) and the p-minors of jac(F, i): to control
costs, it will be beneficial to use the Lagrange system of (3) instead. Hence, some of our
genericity assumptions will concern these equations. For i = 1, . . . , δ + 1, we define the
following properties:

Hi(1) : W (i, F ) is either empty or (i− 1)-equidimensional;

Hi(2) : 0 is a regular value of the n+ p− i polynomials F, [L1 · · · Lp] · jac(F, i) in the open
set defined by (L1, . . . , Lp) 6= (0, . . . , 0);

Hi(3) : assuming Hi(1) holds, W (i, F ) is either empty or in Noether position for πi−1.

As we will see, these properties hold after applying a generic change of variables. Properties
Hi(1) and Hi(3) ensure that Eq. (4) defines a finite set (as a consequence of the definition
of Noether position), and guarantee that the output of the algorithm contains at least one
point in each connected component of V (F ) ∩ Rn (this is proved in [31, Theorem 2]). The
second one will be used to establish that assumption H

′

i defined below holds generically.
Indeed, assuming (possibly after applying a change of variables) that F satisfies Hi, we

define our second genericity property:

H
′

i : σ is such that 0 is a regular value of the n+ p− 1 polynomials

X1 − σ1, . . . , Xi−1 − σi−1, F, [L1 · · · Lp] · jac(F, i),

in the open set defined by (L1, . . . , Lp) 6= (0, . . . , 0).

Again, we will see that this property holds for a generic choice of σ and that as a consequence,
0 is a regular value of the n + p polynomials

X1 − σ1, . . . , Xi−1 − σi−1, F, [L1 · · · Lp] · jac(F, i), u1L1 + · · ·+ upLp − 1. (5)

In particular, these equations admit finitely many solutions.
Suppose that for some i in {1, . . . , δ+1}, F satisfies Hi and σ satisfies H

′

i ; then, we know
that both systems (4) and (5) have finitely many solutions. In order to find the solutions
of (4), we will compute those of (5) and project them on the X1, . . . , Xn-space; we choose
to solve equations (5), since for this input, we can use the algorithm in [34], for which a
complete bit complexity analysis is available. To guarantee success of this approach, we will
rely on our last genericity property:
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H
′′

i : u is such that the projections of the solutions of (5) on the X1, . . . , Xn-space are the
solutions of (1).

Applying Proposition 3.1 to the polynomials in (5) shows that this property holds for a
generic choice of u (notice that since (5) has finitely many solutions, taking the Zariski
closure, as done in the proposition, is not necessary in this case). If this is the case, the
previous discussion shows that solving the systems (5), for i = 1, . . . , δ + 1, and projecting
their solutions on the X1, . . . , Xn-space, solves our problem.

The next three sections prove the claims made above on the genericity of these properties:
Hi(1) andHi(2) in Section 6, as a first application of weak transversality; Hi(3) in Section 7,
as an application of an effective Nullstellensatz; and H ′

i in Section 8, as another first of weak
transversality (essentially, Sard’s lemma). In all cases, we gave quantitative form of these
genericity statements. As we pointed out above, Proposition 3.1 is enough to prove that H ′′

i

holds for generic u, and already gives a quantitative statement.

6 Genericity of Hi(1) and Hi(2)

Notation in this section is as before: we let F = (f1, . . . , fp) ∈ Z[X1, . . . , Xn]
p be a sequence

of polynomials defining a radical ideal, and where the degree of each polynomial is at most d;
we also assume that the zero-set V (F ) ⊂ Cn is smooth and δ-equidimensional, with δ = n−p.

Consider an n×n matrix A with indeterminates with entries (Aj,k)1≤j,k≤n. In this section,
we prove the following proposition.

Proposition 6.1. For i = 1, . . . , δ+1, there exists a non-zero polynomial∆i,1 in C[(Aj,k)1≤j,k≤n]
of degree at most n(d5n + 1) and with the following property. For A in Cn×n, if A does not
cancel ∆i,1, then F

A satisfies Hi(1) and Hi(2).

The rest of this section is devoted to the proof of the proposition; it is based on a
construction introduced by Giusti, Heintz et al. (see for instance [7]). In all that follows, i is
fixed in 1, . . . , δ+1; we then let A≤i denote the in indeterminates (Aj,k)1≤j≤i,1≤k≤n. Writing
X = X1, . . . , Xn, we let Ki(X,A≤i) denote the (p+ i)× n matrix

Ki(X,A≤i) =











jac(F )
A1,1 . . . A1,n

...
...

Ai,1 . . . Ai,n











.

Consider elements a ∈ Cin as vectors of length i of the form a = (a1, . . . ,ai) with ai ∈ Cn;
we say that a has rank i when a is a sequence of linearly independent vectors. Then for
such an a, Ki(X,a) is naturally defined with the indeterminates A≤i evaluated at a.

Let Φ : Cn+p+i × Cin → Cn+p be the polynomial mapping in indeterminates X =
X1, . . . , Xn, L = L1, . . . , Lp, T = T1, . . . , Tp and A≤i defined as

Φ = (F, [L1 · · · Lp T1 · · · Ti] ·Ki),
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and for a in Cni, let Φa : Cn+p+i → Cn+p be the induced mapping Φa = Φ(X,L,T ,a) in
variables X, L and T .

Let further A ⊂ Cn+p+i be the open set defined by the condition (L1, . . . , Lp) 6= (0, . . . , 0).
In [7, Section 3.2], it is shown that, for any (x,λ,ϑ,a) in A×Cin, the Jacobian matrix jac(Φ),
taken with respect to all indeterminates X,L,T ,A≤i, has full rank n + p at (x,λ,ϑ,a).
In particular, this is true for (x,λ,ϑ,a) in Φ−1(0), so that 0 is a regular value of Φ on
A × Cin. It therefore follows by Proposition 4.1 that there exists a non-zero polynomial
Γi ∈ C[A1,1, . . . ,Ai,n] of degree at most

d(n+p+i)+(n+p) ≤ d5n,

such that if a ∈ Cin does not cancel Γi, then 0 is a regular value of Φa on A . That is, for
(x,λ,ϑ) ∈ A ∩ Φ−1

a (0), the Jacobian matrix jac(Φa) has full rank n + p at (x,λ,ϑ).
LetB = A−1 in C((Aj,k)1≤j,k≤n)

n×n and letB1 = [B1,1, . . . ,B1,n], . . . ,Bn = [Bn,1, . . . ,Bn,n]
denote the rows of B. Set

∆i,1 := Γi(B1, . . . ,Bi) · (det(A))deg(Γi)+1.

By multiplying through by (det(A))deg(Γi)+1, we cancel all denominators and make ∆i,1 a
polynomial multiple of det(A).

Lemma 6.2. The degree of ∆i,1 is at most n(d5n + 1).

Proof. Assume that

Bs,t = Ns,t/det(A) with Ns,t, det(A) in C[(Aj,k)1≤j,k≤n],

for 1 ≤ s, t ≤ n. Then, by Cramer’s formulas, we have deg(Ns,t), deg(det(A)) ≤ n, and
since we have cleared all denominators by multiplying through with (det(A))deg(Γi)+1, and
guaranteed the presence of an extra factor det(A), we therefore obtain

deg(∆i,1) ≤ n deg(Γi) + n ≤ n(d5n + 1).

We first prove that ∆i,1 allows us to control when FA satisfies Hi(1). The main ingre-
dients in the proof of the following lemma are taken from [33], with no modification; this
reference itself follows previous work such as [7].

Lemma 6.3. For A in Cn×n, if A does not cancel ∆i,1, then A is invertible and the polar
variety W (i, FA) is either empty or (i− 1)-equidimensional.

Proof. Consider A ∈ Cn×n that does not cancels ∆i,1. Since det(A) divides ∆i,1, A is
invertible, and by construction the first i rows b of A−1 do not cancel Γi. We put

Y := {x ∈ V (F ) | rank(Ki(x, b)) < p+ i} .

Lemma B.5 from [33] shows that all irreducible components of Y have dimension at least
i−1; this is essentially Eagon and Northcott’s result on determinantal varieties [14], and does
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not depend on our choice of b. On the other hand, our assumption on b allows us to apply
Lemma B.11 from [33], which shows that all irreducible components of Y have dimension at
most i− 1. Therefore, Y is either empty or (i− 1)-equidimensional. To conclude the proof,
we use the equality

Y A =W
(

i, FA
)

,

established in the same reference immediately before Lemma B.10.

We conclude this section with the second property, Hi(2).

Lemma 6.4. For A in Cn×n, if A does not cancel ∆i,1, then 0 is a regular value of the n+p−i
polynomials FA, [L1 · · · Lp] · jac(FA, i) in the open set defined by (L1, . . . , Lp) 6= (0, . . . , 0).

Proof. Take A in Cn×n so that ∆i,1(A) 6= 0, and let (x, ℓ) ∈ Cn+p be a zero of the n+ p− i
polynomials FA and [L1 · · · Lp] · jac(FA, i), with ℓ non-zero. We have to show that the
Jacobian matrix of these polynomials has full rank n+ p− i at (x, ℓ).

We define a vector ϑ = [ϑ1 · · · ϑi] ∈ Ci by writing ℓ · jac(FA) = [−ϑ1 · · · − ϑi 0 · · · 0]
(the trailing zeros result from our assumption on x and ℓ). It follows that (x, ℓ,ϑ) cancels
the equations

FA, [L1 · · · Lp T1 · · · Ti]
[

jac(FA)
Ii 0i×(n−i)

]

, (6)

where the Jacobian matrix of F is taken with respect to the variables X = X1, . . . , Xn.
We then post-multiply the right-hand matrix by A−1, and use the fact that jac(FA) =
jac(F )A A. This shows that (x, ℓ,ϑ) also cancels the polynomials

FA, [L1 · · · Lp T1 · · · Ti]
[

jac(F )A

b

]

, (7)

where again b denotes the first i rows of A−1. Setting x′ = A−1x, we deduce that the point
(x′, ℓ,ϑ) cancels

F, [L1 · · · Lp T1 · · · Ti]
[

jac(F )
b

]

, (8)

that is, the polynomials Φb defined in the preamble. The assumption on A shows that 0 is
a regular value of this mapping in the open set defined by (L1, . . . , Lp) 6= (0, . . . , 0). Since ℓ

is by definition non-zero, this implies that the Jacobian matrix of the polynomials in Eq. (8)
has full rank n+p at (x′, ℓ,ϑ). Back in the original coordinates, we deduce that the Jacobian
matrix of the polynomials in Eq. (7) has full rank n+ p at (x, ℓ,ϑ). Right multiplication by
A−1 in (8) amounts to performing a linear combination of the equations; hence, the Jacobian
matrix of the polynomials in Eq. (6) has full rank n+ p at (x, ℓ,ϑ) as well.

The Jacobian matrix of these polynomials taken with respect to the variables X1, . . . , Xn,
L1, . . . , Lp and T1, . . . , Ti is equal to





jac(FA) 0p×p 0p×i

jacX,L

(

[L,T ] ·
[

jac(FA)
Ii 0i×n−i

])

Ii
0(n−i)×i



 =





jac(FA) 0p×p 0p×i

∗ ∗ ∗ Ii
jacX,L

(

L · jac(FA, i)
)

0(n−i)×i



 .
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Therefore, after removing i rows and columns, we can see that the submatrix
[

jac(FA) 0p×p

jacX,L

(

L · jac(FA, i)
)

]

(9)

has full rank n+ p− i at (x, ℓ).

7 Genericity of Hi(3)

Notation being as before, we now discuss the last genericity property that depends on our
choice of coordinates. We already showed that in generic coordinates, the polar variety
W (i, F ) is either empty or (i − 1)-equidimensional. It remains to do the same for Hi(3),
that is, to prove that if it is not empty, W (i, F ) is generically in Noether position for πi−1.
We will prove the following, where ∆i,1 is from Proposition 6.1.

Proposition 7.1. For i = 1, . . . , δ+1, there exists a non-zero polynomial∆i,2 in C[(Ak,m)1≤k,m≤n]
of degree at most 4n2(2d)4n such that if A does not cancel ∆i,1∆i,2, then F

A satisfies Hi(1),
Hi(2) and Hi(3).

Some results in a similar vein appear in the literature. For instance, Lemma 5 in [24] and
Proposition 4.5 in [25] are quantitative Noether position statements. However, our results
do not follow from these previous references, as these previous works analyze the probability
that for a fixed algebraic set V , V A be in Noether position. This does not solve our question,
since W (i, FA), which we are interested in, is in general different from W (i, F )A.

Instead, we will rely on the proof given in [31] that W (i, FA) is in Noether position for
a generic A. However, we will not directly analyze the constructions used in that reference,
since they involve e.g. primary decomposition in C((Aj,k)1≤j,k≤n)[X1, . . . , Xn], and the re-
sulting degree bounds would be way beyond our target. We will instead combine results
from [31] with an effective form of the Nullstellensatz given in [12]; as a result, we have
to use Lagrange systems to describe polar varieties, since systems of minors do not satisfy
assumptions needed to apply this effective Nullstellensatz.

The rest of this section is devoted to the proof of this proposition. From now on, we fix
i in 0, . . . , δ + 1.

7.1 Preliminaries

Property Hi(2) states that 0 is a regular value of the n+ p− i polynomials F, [L1 · · · Lp] ·
jac(F, i) in the open set defined by (L1, . . . , Lp) 6= (0, . . . , 0); we saw that it holds in generic
coordinates. We start by establishing some consequences of this fact for the polynomials
L(i, F,u) of Eq. (3).

Lemma 7.2. Suppose that 0 is a regular value of the n+ p− i polynomials F, [L1 · · · Lp] ·
jac(F, i) in the open set defined by (L1, . . . , Lp) 6= (0, . . . , 0). Then, for any u = (u1, . . . , up)
in Cp, the n+ p− i+ 1 polynomials

L(i, F,u) = F, [L1 · · · Lp] · jac(F, i), u1L1 + · · ·+ upLp − 1
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define a radical ideal, either trivial or (i− 1)-equidimensional.

Proof. Take (x, ℓ) in Cn+p that cancels the n+ p− i+ 1 polynomials in (3). We prove that
the Jacobian matrix of these equations has full rank n + p − i + 1 at (x, ℓ); the conclusion
then follows from the Jacobian criterion.

Since ℓ cannot be zero, our assumption implies that the Jacobian of the polynomials F
and [L1 · · · Lp] · jac(F, i) has full rank n + p − i at (x, ℓ). The conclusion therefore holds
if grad(u1L1 + · · ·+ upLp − 1) = [01×n u1 · · · up] is not in the row space of this matrix at
(x, ℓ). The Jacobian matrix of F and [L1 · · · Lp] · jac(F, i) is equal to

[

jac(F ) 0p×p

∗ ∗ ∗ jac(F, i)T

]

.

Suppose that [01×n u1 · · · up] is in the row-space of this matrix. Considering the last p
columns gives us an equality [u1 · · · up] = µ jac(F, i)T , for some µ in C1×(n−i). Right-
multiplying by ℓT ∈ Cp×1, we obtain 1 = 0, a contradiction.

The result carries over to our original polynomials in generic coordinates. In what follows,
just as we defined FA for A in Cn×n, we define FA = (fA

1 , . . . , f
A
p ) as

(f1(AX), . . . , fp(AX)) ∈ C((Ak,m)1≤k,m≤n)[X1, . . . , Xn]
p.

Corollary 7.3. For any u = (u1, . . . , up) in Cp, the n + p− i+ 1 polynomials

L(i, FA,u) = FA, [L1 · · · Lp] · jac(FA, i), u1L1 + · · ·+ upLp − 1 (10)

define a radical ideal in C((Ak,m)1≤k,m≤n)[X1, . . . , Xn, L1, . . . , Lp].

Proof. Proposition 6.1 and the previous lemma show that for A in a Zariski-dense subset of
Cn×n, L(i, FA,u) is radical in C[X1, . . . , Xn, L1, . . . , Lp]; as a result, this must also be the
case for the ideal L(i, FA,u) in C((Ak,m)1≤k,m≤n)[X1, . . . , Xn, L1, . . . , Lp].

7.2 Degree bounds for integral dependence relationships

The results in Section 6 imply that FA satisfies Hi(1), so that W (i, FA) is either empty or
equidimensional of dimension i− 1. We now point out that FA also satisfies Hi(3). In what
follows, as in Eq. (2), we let J(i, FA) be the polynomials consisting of FA and all p-minors
of jac(FA, i) in C((Ak,m)1≤k,m≤n)[X1, . . . , Xn], and we let K be the ideal they generate in

C((Ak,m)1≤k,m≤n)[X1, . . . , Xn]. In particular, the defining ideal of W (i, FA) is
√

K .
Our first lemma simply recalls results from [31]. In the following two lemmas, member-

ships statements are all considered in C((Ak,m)1≤k,m≤n)[X1, . . . , Xn]; however, in the course
of the proof of Lemma 7.5, we will work with the same polynomials, but seen in other
polynomial rings.

Lemma 7.4. For j = i, . . . , n, there exists Qj in C((Ak,m)1≤k,m≤n)[X1, . . . , Xi−1, Xj], monic

in Xj and with Qj in
√

K . Furthermore, for any prime component P of the ideal
√

K in
C((Ak,m)1≤k,m≤n)[X1, . . . , Xn], we have P ∩ C((Ak,m)1≤k,m≤n)[X1, . . . , Xi−1] = {0}.
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Proof. If W (i, FA) is empty, then
√

K is the trivial ideal, so we simply take Qj = 1 for all
j; the second statement is vacuously true.

Otherwise, let (Pℓ)1≤ℓ≤L be the prime components of
√

K . By assumption, L ≥ 1 and
all Pℓ have dimension i− 1. By [31, Proposition 1], for all ℓ,

C((Ak,m)1≤k,m≤n)[X1, . . . , Xi−1]→ C((Ak,m)1≤k,m≤n)[X1, . . . , Xn]/Pℓ

is injective and integral. In particular, this means that Pℓ contains no non-trivial poly-
nomial in C((Ak,m)1≤k,m≤n)[X1, . . . , Xi−1], as claimed. Also, it proves that polynomials
qℓ,j ∈ C((Ak,m)1≤k,m≤n)[X1, . . . , Xi−1, Xj] exist, all monic in Xj , with qℓ,j ∈ Pℓ for each
j in {i, . . . , n}. Thence,

Qj :=
∏

1≤ℓ≤L

qℓ,j

is monic in Xj and satisfies Qj ∈
√

K , for each j ∈ {i, . . . , n}.

The former lemma does not directly give us degree bounds on the polynomials Qj . This
is the objective of the next step, where we control degree with respect to all unknowns
involved, X1, . . . , Xn as well as A1,1, . . . ,An,n. In this respect, if P is any polynomial in
C((Ak,m)1≤k,m≤n)[X1, . . . , Xn], we will let D ∈ C[(Ak,m)1≤k,m≤n] be the minimal common
denominator of all its coefficients (defined up to a non-zero constant in C), and we will write
P := DP , so that P is in C[(Ak,m)1≤k,m≤n, X1, . . . , Xn].

Lemma 7.5. For j = i, . . . , n, there exists Pj in C((Ak,m)1≤k,m≤n)[X1, . . . , Xi−1, Xj], monic

in Xj, with Pj in
√

K and deg(Pj) ≤ (2d)2n.

Proof. Consider the following ideals: they all have for generators the polynomials J(i, FA),
that is, FA and the p-minors of jac(FA, i), but they lie in different polynomial rings.

• J is the ideal generated by J(i, FA) in the polynomial ringC[(Ak,m)1≤k,m≤n, X1, . . . , Xn]
in n2 + n indeterminates;

• K , which we already saw is generated by the polynomials J(i, FA) in the polynomial
ring C((Ak,m)1≤k,m≤n)[X1, . . . , Xn] in n indeterminates (this is the ideal we are mainly
interested in);

• M is the ideal defined by the same polynomials, but this time in the polynomial ring
C((Ak,m)1≤k,m≤n, X1, . . . , Xi−1)[Xi, . . . , Xn] in n− i+ 1 indeterminates.

Step 0: Excluding a trivial case. Suppose that W (i, FA) is empty, or equivalently that K
is the trivial ideal. In this case, we take Pj = 1 for all j, and we are done. Henceforth, we
assume that we are not in this situation.

Step 1: Defining the minimal polynomial Pj. The previous lemma shows that every irre-
ducible component of the zero-set W (i, FA) of K has dimension i − 1, and that its image

21



by the projection πi is onto. As a result, the extended ideal M has dimension zero, and the
ring extension

C((Ak,m)1≤k,m≤n, X1, . . . , Xi−1)→ C((Ak,m)1≤k,m≤n, X1, . . . , Xi−1)[Xi, . . . , Xn]/
√

M

is a product of finite field extensions. For j = i, . . . , n, let then Pj be the minimal of Xj in
this extension. Then, Pj is in C((Ak,m)1≤k,m≤n, X1, . . . , Xi−1)[Xj] and is monic in Xj.

Step 2: Pj is polynomial in X1, . . . , Xi−1. For j as above, the polynomial Qj also belongs to√
M , so that Pj divides Qj in C((Ak,m)1≤k,m≤n, X1, . . . , Xi−1)[Xj ]. We can therefore write

Qj = PjRj, Pj, Rj ∈ C((Ak,m)1≤k,m≤n, X1, . . . , Xi−1)[Xj ].

It then follows by Gauss’s lemma that we can write

Qj = pjrj, pj , rj ∈ C((Ak,m)1≤k,m≤n)[X1, . . . , Xi−1, Xj],

such that µj ∈ C((Ak,m)1≤k,m≤n, X1, . . . , Xi−1) exists with

Pj = µjpj, Rj = µ−1
j rj .

Since Qj is monic in Xj , pj and rj must also be monic in Xj, so µj must be the coefficient
of the highest degree term of Pj in Xj. Since Pj is monic in Xj, µj = 1 and hence

Pj = 1 · pj = pj ∈ C((Ak,m)1≤k,m≤n)[X1, . . . , Xi−1, Xj].

Step 3: Pj is in
√

K . It follows that Pj belongs to
√

M∩C((Ak,m)1≤k,m≤n)[X1, . . . , Xi−1, Xj].
Equivalently, there exists a non-negative exponent s such that P s

j is in the intersection
M ∩C((Ak,m)1≤k,m≤n)[X1, . . . , Xi−1, Xj ]. Clearing denominators in the membership equality
in M , this means that there exists D non-zero in C[(Ak,m)1≤k,m≤n, X1, . . . , Xi−1] such that

DP s
j is in K , and thus in

√
K .

By the previous lemma, no prime component of
√

K contains any non-zero polynomial
in C[(Ak,m)1≤k,m≤n, X1, . . . , Xi−1]. As a consequence, P s

j is in
√

K , and thus so is Pj itself.

Step 4: Degree of Pj. For the last step of the proof, the ideal J is used. Let indeed Z be
its zero-set in Cn2+n. Since all polynomials in FA, resp. jac(FA, i), have respective degrees
at most 2d in (Ak,m)1≤k,m≤n, X1, . . . , Xn, resp. 2d−1, Corollary 3.2 shows that Z has degree
at most (2d)2n.

Let further Z ′ be obtained by removing from Z all those irreducible components whose
projection on the space of coordinates (Ak,m)1≤k,m≤n, X1, . . . , Xi−1 is not dense, and let J ′

be its defining ideal. It is a routine verification that the extension of J ′ in the polynomial
ring C((Ak,m)1≤k,m≤n, X1, . . . , Xi−1)[Xi, . . . , Xn] is the radical of M . As a result, Theorem 2
in [11] implies that the total degree of Pj is bounded above by deg(Z); this finishes the
proof.
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7.3 Applying the effective Nullstellensatz

The previous lemma could allow us to give a quantitative proof that Hi(3) holds generically,
if we were able to bound the degree in (Ak,m)1≤k,m≤n of the corresponding membership

equality in
√

K . However, we are not aware of a suitable effective Nullstellensatz. The best
suited one, due to D’Andrea, Krick and Sombra [12], requires that the number of generators
in the ideal we consider be no more than the ambient dimension; this is in general not the
case for the polynomials J(i, FA).

As a result, we will use Lagrange systems instead. For u in Cp, recall the definition
of the Lagrange system L(i, FA,u) given in Eq. (10); let further Lu be the ideal these
polynomials generate in C((Ak,m)1≤k,m≤n)[X1, . . . , Xn, L1, . . . , Lp]. Proposition 3.1 gives the

inclusion
√

K ⊂
√

Lu, and Corollary 7.3 shows that Lu is a radical ideal, so that we have√
K ⊂ Lu. As a consequence, the polynomials Pj, and thus Pj as well, are in Lu for any

u in Cp.
Let then u1, . . . , up be new indeterminates, and consider the ideal Lu generated by the

polynomials L(i, FA, u) in the ring of polynomials in X1, . . . , Xn, L1, . . . , Lp over the field
of coefficients C((Ak,m)1≤k,m≤n, u1, . . . , up); the only difference with the previous setting is
that the linear form involved in these equations is now u1L1 + · · ·+ upLp − 1. The previous
discussion implies that all polynomials Pj belong to Lu; we are now going to apply an
effective Nullstellensatz to these membership equalities.

Let T be a new variable, and let G1, . . . , Gn+p−i+1 be the n + p − i + 1 polynomi-
als in the Lagrange system L(i, FA, u). For j = i, . . . , n applying the Nullstellensatz in
C((Ak,m)1≤k,m≤n, u1, . . . , up)[X1, . . . , Xn, L1, . . . , Lp, T ], and clearing denominators, we ob-
tain the existence of Aj in C[(Ak,m)1≤k,m≤n, u1, . . . , up] − {0} and of polynomial coefficients
Cj,1, . . . , Cj,n+p−i+1, Bj in C[(Ak,m)1≤k,m≤n, u1, . . . , up)[X1, . . . , Xn, L1, . . . , Lp, T ], such that

Aj =

n+p−i+1
∑

ℓ=1

Cj,ℓGℓ +Bj(1− PjT ). (11)

Let us then see Aj as a polynomial in u1, . . . , up with non-zero coefficients in C[(Ak,m)1≤k,m≤n],
and let αj be one of these coefficients, arbitrarily chosen. We can then define

∆i,2 := αi · · ·αn ∈ C[(Ak,m)1≤k,m≤n]− {0}.

With this definition of ∆i,2, we prove the following lemma. It almost completes the proof of
Proposition 7.1, except for the degree bound.

Lemma 7.6. If A ∈ Cn×n does not cancel ∆i,1∆i,2, then FA satisfies Hi(1), Hi(2) and
Hi(3).

Proof. Let us take such a matrix A. The non-vanishing of ∆i,1(A) already guarantees that
FA satisfies Hi(1) and Hi(2). It remains to establish that Hi(3) holds, that is, that if it
is not empty, W (i, FA) is in Noether position for πi−1. In what follows, we assume that
W (i, FA) is not empty; by Hi(1), it is (i− 1)-equidimensional.
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Fix j in i, . . . , n. Because αj(A) is non-zero, the polynomial aj := Aj(A, u1, . . . , up) is
non-zero in C[u1, . . . , up]. We choose u = (u1, . . . , up) in Cp such that aj(u1, . . . , up) does
not vanish, and such that u lies in the open set O associated by Proposition 3.1 to the set
W (i, FA).

Let g1, . . . , gn+p−i+1 be the polynomials in L(i, FA,u). Evaluating (Ak,m)1≤k,m≤n at the
entries of A and u1, . . . , up at u1, . . . , up in (11) gives a relation of the form

ãj =

n+p−i+1
∑

ℓ=1

cj,ℓgℓ + bj(1− pjT ),

with ãj = aj(u1, . . . , up) ∈ C − {0}, polynomials cj,ℓ and bj in C[X1, . . . , Xn, L1, . . . , Lp, T ]
and pj in C[X1, . . . , Xi−1, Xj], monic in Xj.

The next step is routine. Replace T by 1/pj in the previous equality; after clearing
denominators, this gives a membership equality of the form

pkj ∈ 〈L(i, FA,u)〉
for some integer k ≥ 1 (we cannot have k = 0, since we assumed thatW (i, FA) is not empty).
Using our assumption on u, Proposition 3.1 then shows that pkj is in the ideal generated by
J(i, FA), that is, by FA and the p-minors of jac(FA, i). In other words, pj is in the defining
ideal of the polar variety W (i, FA). Repeating this for all j = i, . . . , n proves that W (i, FA)
is in Noether position for πi−1.

To estimate the degree of ∆i,2, what remains is to give an upper bound on the degrees of
αi, . . . , αn. This will come as an application of the effective Nullstellensatz given in [12]
over the function field C((Ak,m)1≤k,m≤n, u1, . . . , up). For this, we first need to determine
degree bounds, separately in the actual indeterminates X1, . . . , Xn, L1, . . . , Lp, T and in the
“constants” (Ak,m)1≤k,m≤n, u1, . . . , up, of the polynomials in the membership relationship; we
denote the former by degX,L,T and the latter by degA,u. Then, we have

deg
X,L,T {G1, . . . , Gn+p−i+1, u1L1 + · · ·+ upLp − 1} ≤ d, deg

X,L,T (1− TPj) ≤ (2d)2n + 1,

and

degA,u {G1, . . . , Gn+p−i+1, u1L1 + · · ·+ upLp − 1} ≤ d and degA,u(1− TPj) ≤ (2d)2n.

For each j ∈ {i, . . . , n− p+1}, since the number of equations in the ideal we consider is less
than or equal to the ambient dimension n+ p+ 1, it follows from [12, Theorem 0.5] that

deg(Aj) ≤ (2n+ 2)d2n+1((2d)2n + 1);

we will use the slightly less precise bound

deg(Aj) ≤ 4n(2d)4n.

In particular, the same bound holds for the degree of αj, and this gives

deg(∆i,2) ≤ 4n2(2d)4n.

This concludes the proof of Proposition 7.1.
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8 Genericity of H
′
i and consequences

We still consider a sequence of polynomials F = (f1, . . . , fp) ∈ C[X1, . . . , Xn]
p as before; in

particular, recall we write δ = n−p and that d is an upper bound on the degrees of f1, . . . , fp.
Besides, we now also assume that F satisfies all assumptions Hi (for instance, because we
have already applied a generic change of coordinates), and we prove the following.

Proposition 8.1. For i = 1, . . . , δ+1, if F satisfies Hi, there exists a non-zero polynomial
Ξi ∈ C[S1, . . . , Si−1] of degree at most d4n such that if σ = (σ1, . . . , σi−1) ∈ Ci−1 does not
cancel Ξi, then σ satisfies assumption H ′

i, that is, 0 is a regular value of the n + p − 1
polynomials

X1 − σ1, . . . , Xi−1 − σi−1, F, [L1 · · · Lp] · jac(F, i)
in the open set defined by (L1, . . . , Lp) 6= (0, . . . , 0).

Proof. Let Ψ : Cn+p ×Ci−1 → Cn+p−1 be the mapping defined by the n+ p− 1 polynomials

X1 − S1, . . . , Xi−1 − Si−1, F, [L1 · · · Lp] · jac(F, i)

in indeterminates X1, . . . , Xn, L1, . . . , Lp, S1, . . . , Si−1. We claim that 0 is a regular value of Ψ
in the open set Ω×Ci−1 ⊂ Cn+p×Ci−1, here Ω ⊂ Cn+p is defined by (L1, . . . , Lp) 6= (0, . . . , 0).

Consider a zero (x, ℓ,σ) of Ψ, with ℓ non-zero. Indexing columns by

X1, . . . , Xn, L1, . . . , Lp, S1, . . . , Si−1,

the Jacobian matrix of Ψ is equal to

[

Ii−1 0(i−1)×(n+p−i+1) −Ii−1

jacX,L (F, L · jac(F, i)) 0(n+p−i)×(i−1)

]

.

Because ℓ is non-zero,Hi(2) shows that the Jacobian matrix jac(X,L) (F, [L1 · · · Lp] · jac(F, i))
has full rank n + p − i at (x, ℓ). Hence, the entire matrix must have full rank n + p − 1 at
(x, ℓ,σ), and 0 is a regular value of Ψ.

Since all polynomials defining Ψ have degree at most d, it follows by Proposition 4.1 that
there exists a non-zero polynomial Ξi in C[S1, . . . , Si−1] of degree at most d(n+p)+(n+p−1) ≤
d4n, with the property that, if Ξi(σ) 6= 0 then at any root (x, ℓ) of the induced mapping ψσ

given by
X1 − σ1, . . . , Xi−1 − σi−1, F, [L1 · · · Lp] · jac(F, i), (12)

if ℓ non-zero, then the Jacobian matrix of these equations has full rank n + p− 1 at (x, ℓ).
The proposition is proved.

We will use this property through the following corollary, which we already mentioned
in Subsection 5.2.
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Corollary 8.2. For i = 1, . . . , δ + 1, if F satisfies Hi and σ satisfies H ′
i, then for any

u = (u1, . . . , up) in Cp, 0 is a regular value of the n + p polynomials

X1 − σ1, . . . , Xi−1 − σi−1, F, [L1 · · · Lp] · jac(F, i), u1L1 + · · ·+ upLp − 1.

Proof. The proof is similar to that of Lemma 7.2. Suppose that Ξi(σ) is non-zero, let
u = (u1, . . . , up) be arbitrary in Cp and take (x, ℓ) in Cn+p that cancels the n+p polynomials

X1 − σ1, . . . , Xi−1 − σi−1, F, [L1 · · · Lp] · jac(F, i), u1L1 + · · ·+ upLp − 1. (13)

Since ℓ is necessarily non-zero, the previous discussion implies that the Jacobian of the
polynomials in Eq. (12) has full rank n + p− 1 at (x, ℓ). This Jacobian matrix is equal to





Ii−1 0(i−1)×(n−i+1) 0(i−1)×p

jac(F ) 0p×p

∗ ∗ ∗ jac(F, i)T



 .

As in the proof of Lemma 7.2, if we suppose that [01×n u1 · · · up] is in the row-space of
this matrix, considering the last p columns and multiplying by ℓT ∈ Cp×1 leads us to a
contradiction. This proves that the Jacobian matrix of the equations in Eq. (13) has full
rank n+ p at (x, ℓ), as claimed.

9 Analysis of the main algorithm

We conclude this paper by revisiting the algorithm sketched in Subsection 5.2. The proba-
bility analysis is based on the quantitative genericity results we established in the previous
sections, using the DeMillo-Lipton-Schwartz-Zippel lemma. In order to simplify some big-O
estimates, we assume that the bound d on the degrees of the input polynomials satisfies d ≥ 2,
since the case of linear polynomials is trivial.

9.1 Description of the pseudocode

The algorithm is randomized and takes as input a parameter ǫ ∈ (0, 1); the choices made in
the algorithm guarantee that the probability of success is at least 1− ǫ.

Randomness occurs in part due to the various choices we make (change of variables A,
parameter σ, parameter u). Besides, at Step 4, we use a minor modification of [34, Algorithm
2] to solve the system

X1 − σ1, . . . , Xi−1 − σi−1, F
A, [L1 · · · Lp] · jac(FA, i), u1L1 + · · ·+ upLp − 1.

of n+p equations in n+p unknowns X1, . . . , Xn, L1, . . . , Lp. This subroutine is randomized as
well; in order to guarantee a higher probability of success, we repeat the calculation k times,
for a well-chosen parameter k, and keep the output with the largest cardinality (we discuss
this in our probability analysis below). Upon success, we have obtained a zero-dimensional
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parameterization Qi = ((qi, vi,1, . . . , vi,n+p), λi) of the solutions Zi of these equations, but we
are only interested in the projection Z ′

i of these points on the X1, . . . , Xn-space. Recall that
Qi is such that

• λi(vi,1, . . . , vi,n+p) = Tq′i mod qi, with λi a Q-linear form in X1, . . . , Xn, L1, . . . , Lp;

• we have the equality Zi =
{(

vi,1(τ)

q′(τ)
, . . . ,

vi,n+p(τ)

q′(τ)

)

| q(τ) = 0
}

.

The only constraint on λi is that it take pairwise distinct values on the points of Zi. Now,
since the equations defining Zi are linear in L1, . . . , Lp, the projection Zi → Z ′

i is one-to-one;
this means that we can take λi depending onX1, . . . , Xn only. This constraint can be enforced
at no extra cost in the algorithm of [34]; if this is the case, then Q′

i = ((qi, vi,1, . . . , vi,n), λi)
is a zero-dimensional parameterization of Z ′

i.
The algorithm of [34] also requires that the input system be given by a straight-line

program. We build it (at Step 3) in the straightforward manner already suggested in the
introduction: given F = (f1, . . . , fp) in C[X1, . . . , Xn]

p, we can build a straight-line program
that evaluates each fi in O(d

n) operations, by computing all monomials of degree up to d,
multiplying them by the corresponding coefficients in fi, and adding results. To obtain a
straight-line program for fA

i , we add O(n2) steps corresponding to the application of the
change of variables A. The number of operations here is thus

O(ndn + n3) = O∼(dn);

note that here, we use the assumption d ≥ 2. From this, we can compute and evaluate the
required partial derivatives in the Jacobian of FA in

O(ndn) = O∼(dn)

operations [9]. Then, the matrix vector product with the vector of Lagrange multipliers adds
a cost that is polynomial in n and which we can therefore neglect in the soft-O notation.
Finally, we add the linear equations X1 − σ1, . . . , Xi−1 − σi−1; this gives the straight-line
program Γi, whose length is O∼(dn).

As we already pointed out in Subsection 5.2, if FA satisfies Hi, σ satisfies H
′

i and u

satisfies H ′′
i , and if Qi is a zero-dimensional parametrization of the solutions of the equa-

tions (14) at Step 3 (for all i ∈ {1, . . . , n − p + 1}), Theorem 2 in [31] establishes that the
output returned in Step 7 will contain one point in each connected component of V ∩ Rn.
(The claim made in Subsection 5.2 relied on an assertion that has since been proved, in
Corollary 8.2.)

9.2 Bit operation cost

The following lists the costs for each step of Algorithm 1, assuming that the input polynomials
have degree d and integer coefficients of height at most b.
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Algorithm 1: Main Algorithm

Input: F = (f1, . . . , fp) ∈ Z[X1, . . . , Xn]
p with deg(fi) ≤ d and ht(fi) ≤ b, and

0 < ǫ < 1. Assume that d ≥ 2.
Output: n− p+ 1 zero-dimensional parameterizations, the union of whose zeros

includes at least one point in each connected component of V (F ) ∩ Rn,
with probability at least 1− ǫ.

1 Construct
S := {1, 2, . . . , ⌈4ǫ−15n3(2d)5n⌉},
T := {1, 2, . . . , ⌈4ǫ−1nd4n⌉},
R := {1, 2, . . . , ⌈4ǫ−1nd2n⌉},

and choose A ∈ Sn2

, σ ∈ T n−1 and u ∈ Rp uniformly at random;
2 for i← 1 to n− p+ 1 do

3 Build a straight-line program Γi that computes the equations

X1−σ1, . . . , Xi−1−σi−1, F
A, [L1 · · · Lp]·jac(FA, i), u1L1+· · ·+upLp−1; (14)

4 Run [34, Algorithm 2] k ≥ log2(4n/ǫ) times with input Γi;
5 Let Qi = ((qi, vi,1, . . . , vi,n+p), λi) be the highest cardinality zero-dimensional

parameterization returned in Step 4;

6 Denote by Q
′

i = ((qi, vi,1, . . . , vi,n), λi) the parameterization of the projection of
Qi onto the X1, . . . , Xn-space;

7 return [Q
′

1, . . . ,Q
′

n−p+1].

(1) We defined S := {1, 2, . . . , ⌈4ǫ−15n3(2d)5n⌉} and therefore the height of any ai,j ∈ S is
at most

log(4/ǫ) + log(5n3(2d)5n) ∈ O∼(log(1/ǫ) + n log d).

Since |R|, |T | ≤ |S|, we also have that the height of any σk ∈ T and uℓ ∈ R admits the same
upper bound.

(3) After computing the partial derivatives in the Jacobian matrix, the height grows by at
most another factor of log d. Thus, all polynomials in the system considered at Step 3 have
height

O∼(b+ d(log(1/ǫ) + n log(d))) = O∼(b+ d log(1/ǫ) + dn).

All integer coefficients appearing in the straight-line program Γi satisfy the same bound.

(4) As a result, after applying [34, Algorithm 2] k times for each index i, with k = O(log(n)+
log(1/ǫ)), the total boolean cost of the algorithm is

O∼(d3n+2p+1 log(1/ǫ)(b+ log(1/ǫ)))

where the polynomials in the output have degree at most dn+p, and height at most

O∼(dn+p+1(b+ log(1/ǫ))).
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This proves the runtime estimate, as well as our bounds on the height of the output.

9.3 Probability of success

Let ∆i,1 and ∆i,2 ∈ C[(Aj,k)1≤j,k≤n] be the polynomials from Propositions 6.1 and 7.1. Denote
by ∆ :=

∏n−p+1
i=1 ∆i,1∆i,2, and note that

deg(∆) =

n−p+1
∑

i=1

deg(∆i,1) + deg(∆i,2) ≤ 5n3(2d)5n. (15)

IfA ∈ Cn×n does not cancel ∆, thenA is invertible and FA satisfiesHi for all i in {1, . . . , n−
p+ 1}. Now, assuming that A is such a matrix, let Ξi ∈ C[S1, . . . , Si−1] be the polynomials
from Proposition 8.1 applied to FA. Denote by Ξ :=

∏n−p+1
i=1 Ξi, and note that

deg(Ξ) =

n−p+1
∑

i=1

deg(Ξi) ≤ nd4n. (16)

If σ ∈ Ci−1 does not cancel Ξ, then it satisfies H
′

i for all i ∈ {1, . . . , n−p+1}. Assume that
this is the case.

As argued in Subsection 5.2, the last condition on our parameters is that u satisfy H ′′
i for

all i. For a given index i, Proposition 3.1 shows the existence of a non-zero polynomial Υi in
C[U1, . . . , Up] such that if Υi(u1, . . . , up) is non-zero, H

′′
i holds; in addition, that proposition

and Corollary 3.2 give an upper bound of dn+p for the degree of Υi. We denote by Υ :=
∏n−p+1

i=1 Υi, and note that

deg(Υ) =

n−p+1
∑

i=1

deg(Υi) ≤ nd2n. (17)

If u ∈ Cp does not cancel Υ, then u satisfies H
′′

i for all i ∈ {1, . . . , n− p+ 1}.
Then, the algorithm is guaranteed to succeed, as long as our calls to Algorithm 2 in [34]

succeed in solving the equations at Step 3. That reference establishes that by repeating the
calculation k times, and keeping the output of highest degree among those k results, we
succeed with probability at least 1 − (1/2)k. When Algorithm 2 does not succeed, it either
returns a proper subset of the solutions, or FAIL. Note that Algorithm 2 is shown to succeed
in a single run with probability at least 1− 11/32, and we bound the probability of success
with 1 − 1/2 for simplicity. Now, recall that we choose A in Sn2

, σ in T n−1 and u in Rp

uniformly at random, with

S = {1, 2, . . . , ⌈4ǫ−15n3(2d)5n⌉},
T = {1, 2, . . . , ⌈4ǫ−1nd4n⌉},
R = {1, 2, . . . , ⌈4ǫ−1nd2n⌉}.
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Using the DeMillo-Lipton-Schwartz-Zippel lemma, we obtain

P[∆(A) = 0] ≤ deg∆

|S| = ǫ/4.

If this is the case, then

P[Ξ(σ) = 0] ≤ deg Ξ

|T | = ǫ/4,

and if this is the case, then

P[Υ(u) = 0] ≤ degΥ

|R| = ǫ/4.

When all this holds, for a given index i, Step 4 succeeds with probability at least 1−1/2k, so
the probability that all indices i succeed is at least (1− 1/2k)n; our choice of the parameter
k at Step 4 ensures that this probability is at least ǫ/4 as well. Therefore, the overall
probability of success is at least

(1− ǫ/4)4 ≥ 1− ǫ.
This finishes the proof of Theorem 1.1.
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[18] M. Giusti, K. Hägele, J. Heintz, J.-E. Morais, J.-L. Montaña, and L.-M. Pardo. Lower
bounds for diophantine approximation. J. of Pure and Applied Algebra, 117/118:277–
317, 1997.

[19] M. Giusti, J. Heintz, J.-E. Morais, J. Morgenstern, and L.-M. Pardo. Straight-line pro-
grams in geometric elimination theory. Journal of Pure and Applied Algebra, 124:101–
146, 1998.

[20] M. Giusti, J. Heintz, J.-E. Morais, and L.-M. Pardo. When polynomial equation systems
can be solved fast? In AAECC-11, volume 948 of LNCS, pages 205–231. Springer, 1995.

31



[21] D. Grigoriev and N. Vorobjov. Solving systems of polynomial inequalities in subexpo-
nential time. J. Symbolic Comput., 5:37–64, 1988.

[22] J. Heintz. Definability and fast quantifier elimination in algebraically closed fields.
Theoretical Computer Science, 24(3):239–277, May 1983.

[23] J. Heintz and C.P. Schnorr. Testing polynomials which are easy to compute. STOC
’80: Proceedings of the twelfth annual ACM symposium on Theory of computing, 1980.

[24] G. Jeronimo and J. Sabia. Effective equidimensional decomposition of affine varieties.
Journal of Pure and Applied Algebra, 169:229–248, 2002.

[25] T. Krick, L.-M. Pardo, and M. Sombra. Sharp estimates for the arithmetic nullstellen-
satz. Duke Mathematical Journal, 109(3):521–598, 2001.
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