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Abstract

The complexity of matrix multiplication has attracted a lot of attention in the last
forty years. In this paper, instead of considering asymptotic aspects of this problem,
we are interested in reducing the cost of multiplication for matrices of small size, say
up to 30. Following previous work in a similar vein by Probert & Fischer, Smith,
and Mezzarobba, we base our approach on previous algorithms for small matrices, due
to Strassen, Winograd, Pan, Laderman, . . . and show how to exploit these standard
algorithms in an improved way. We illustrate the use of our results by generating mul-
tiplication code over various rings, such as integers, polynomials, differential operators
or linear recurrence operators.

Keywords: matrix multiplication, small matrix, complexity.

1 Introduction

Understanding the complexity of matrix multiplication remains an outstanding problem.
Work of Strassen [32, 33, 34], Pan [22, 23, 25, 24], Schönhage [28], among many others, cul-
minated with Coppersmith and Winograd’s algorithm [11] of cost O(n2.37) for multiplication
in size (n× n× n) – in what follows, a product in size (m× n× p) means the product of a
matrix of size (m× n) by a matrix of size (n× p). However, with a few exceptions, almost
all algorithms of cost lower than O(n3) are impractical for reasonably sized matrices. As a
result, Strassen’s original algorithm, its variant by Winograd [39] and, less widely known,
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Pan’s trilinear aggregating techniques [25, 18, 16], remain essentially the only non-trivial
algorithms implemented.

In many situations (such as the multiplication of large matrices with machine float en-
tries), performance improvements result more from optimizing data access than reducing
operation count [38]. However, there are situations, usually involving small matrices with
large entries, where multiplication in the base ring remains the bottleneck: this is the case
for multiprecision integers, high-degree polynomials, etc. Such questions arise for instance
in the following contexts:

• Padé-Hermite approximation. Given power series (f1, . . . , fn), and degree bounds
(d1, . . . , dn), a Padé-Hermite approximant of (f1, . . . , fn) is a vector of polynomials
(a1, . . . , an), with deg(ai) < di, such that a1f1 + · · ·+ anfn has a large valuation (usu-
ally about d1 + · · · + dn). Beckermann and Labahn’s divide-and-conquer algorithm
for Padé-Hermite approximation [2] involves polynomial matrix multiplication in size
(n×n×n). This generalizes the products in size (2× 2× 2) used in the half-gcd algo-
rithm or the Padé approximant algorithm of [8]; often, n is small (say, a few dozens).

• Holonomic function evaluation. A function f(x) is holonomic if it satisfies a linear
differential equation with polynomial coefficients, or equivalently if the coefficients fn

of its power series expansion satisfy a linear recurrence with polynomial coefficients.
The value of f at a given rational point can be approximated at high precision using this
recurrence, using binary splitting techniques [10]. This involves matrix multiplication,
in a size which is the order of the recurrence, and with multiprecision integer entries.

• Lifting techniques for triangular sets. Triangular representations are a versatile data
structure used to solve systems of polynomial equations. A useful tool for this data
structure is the lifting algorithm of [29], which enables one to start from a representation
known modulo a prime p and deduce “better” representations with coefficients known
modulo powers of p (and eventually over Q). One of the main operations in this
algorithm is the product of matrices whose entries are multivariate polynomials. Their
size is equal to the number of variables in the system we want to solve (so it usually
ranges up to 10 or 15), but the entries’ degrees can reach hundreds or thousands.

For such situations, two main directions can be considered: using modular (Chinese Re-
maindering) methods, when possible, or reducing the number of base ring multiplications.
This paper follows the second route. Our goal is to tabulate the best possible number of
multiplications for small matrix products.

Previous work. Most results on matrix multiplication cited before were concerned with
asymptotic estimates. As it turns out, the resulting algorithms are usually more costly
than the naive one in size less than billions: techniques such as ε-algorithms induce extra
polylogarithmic factors, that do not affect the exponent but are harmful in realistic sizes.

However, there also exist a handful of simple techniques, that may not be competitive
asymptotically, but that are useful in small sizes. Table 1 reviews algorithms dedicated to
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matrices of fixed small size; the second column indicates whether the algorithm assumes
commutativity of the base ring or not. We indicate only the “number of multiplications”;
see below for a precise definition of our model of computation.

In size (2× 2× 2), Winograd’s algorithm differs from Strassen’s only by the additions it
performs: we mention both as, surprisingly, they do not yield the same results when applied
recursively for odd-sized matrices. In the table, we only give the best known results to date,
but we should also mention previous work by Schachtel [27] for the (5 × 5 × 5) case, with
103 multiplications, as well as the families of algorithms by Johnson and McLoughlin for the
(3× 3× 3) case, with 23 multiplications.

dimension commutative author base ring multiplications

(2× 2× 2) no Strassen [32], Winograd [39] 7
(3× 3× 3) no Laderman [17] 23
(5× 5× 5) no Makarov [20] 100

(3× 3× 3) yes Makarov [19] 22

Table 1: Upper bounds on the number of multiplications, fixed small size

Table 2 reviews some families of algorithms. After the naive algorithm and Sykora’s
algorithm, we mention dimensions of the form (a×2× c) for Hopcroft and Kerr’s algorithm;
duality techniques (Hopcroft and Musinski [13]) show that the number of multiplications is
the same for (2× a× c) and (a× c× 2).

The fourth block in Table 2 refers to techniques based on the simultaneous computation
of two products of sizes (a× b× c) and (b× c× a), due to Pan; these techniques can be used
to perform single products as well. Along the same lines, trilinear aggregating techniques
(fifth block) enable one to perform three products at once, and can be extended to do single
products. Pan’s original approach, and some variants were put to practice by Laderman,
Pan and Sha [18] and Kaporin [16].

Finally, we mention families of algorithms that require commutativity of the base ring.
In [40], Winograd introduced an algorithm that allows one to reduce the number of multi-
plications for (a× b× c) products almost by half. Waksman [37] subsequently improved it,
to give the result in the last entry of our table.

Building tables. All the algorithms that do not rely on commutativity of the entries can
be used recursively. For sizes that are not pure powers of the size of the base case, one
usually uses techniques such as peeling (removing rows / columns) or padding (adding zero
rows / columns): this does not affect the exponent in the asymptotic scale, but caution must
be taken when applying these techniques in small sizes.

For instance, if the base ring is non-commutative, matrices of size (6× 6) can be multi-
plied using 23× 7 = 161 base ring multiplications by combining Strassen’s and Laderman’s
algorithms, and this is the best method to date. To multiply matrices of size (7× 7), how-
ever, it is less obvious what approach should be employed. Seeing the variety of available
methods, the question we consider is thus how to combine them in an optimal way: in many
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dimension commutative author base ring multiplications

(a× b× c) no naive abc

(a× a× a) no Sykora [35] a3 − (a− 1)2

(a× 2× c) no Hopcroft-Kerr [14] (3ac+ max(a, c))/2

(a× b× c)
+(b× c× a)

no Pan [25] abc+ ab+ bc+ ac

(a× a× a),
a even

no Pan [22] (a3 + 4.5a2 − 3a)/2

(a× b× c)
+(b× c× a)
+(c× a× b),
a, b, c even

no Pan [25] abc+ 2(ab+ ac+ bc) + 4(a+ b+ c) + 15

(a× a× a),
a even

no Pan [25, 23] min

{
(a3 + 12a2 + 17a)/3,
(a3 + 11.25a2 + 32a+ 27)/3

(a× b× c),
b even

yes Waksman [37] b(ac+ a+ c− 1)/2

(a× b× c),
b odd

yes Waksman [37] (b− 1)(ac+ a+ c− 1)/2 + ac

Table 2: Upper bounds on the number of multiplications

cases, the answers are not obvious. To add to our motivation, we note that little is known
as to the actual complexity of small matrix multiplications. Except for size (2× 2× 2) and
(2× 3× 2), none of the best known lower bounds [3, 4] matches the upper ones.

We are not the first to be interested in the small cases of matrix multiplication. Probert
and Fischer [26] already tabulated upper bounds for square dimensions up to (40× 40× 40).
Pan [25, Sect. 31] gave such a table as well, for some square dimensions up to (52×52×52);
Smith [31] produced a similar table, for all rectangular dimensions up to (28×28×28), which,
most likely, he obtained using a computer search. Motivated by applications to holonomic
function evaluation, Mezzarobba [21] tabulated the commutative case for square sizes up to
(28× 28× 28).

Our contribution. The references we examined show that even for small sizes, the com-
plexity of matrix multiplication remains mysterious. Our goal in this paper is thus to revisit
the case of small matrices, and tabulate improved number of multiplications: due to the large
amount of prior work, obtaining an improvement of even a few dozens is never immediate.

We will do this mainly by finding better combinations of former techniques. We focus
on the recursive approach, when the target dimensions are not multiples of the dimensions
of the base case. The key contribution of this paper is in Section 2: for such situations, we
show how to avoid useless multiplications, by taking into account the “sparseness” of the
algorithm we wish to apply recursively. Besides, we also present a slight improvement of
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trilinear aggregating techniques, that achieves a lower operation count than former versions
in the sizes we consider.

Since these optimizations can be performed in an automated way, we used a computer
search for square sizes up to (30 × 30). We obtained lower multiplication counts, for the
non-commutative and commutative cases, for many of these sizes; the complete data is
available at http://www.csd.uwo.ca/~mislam63/. As a proof-of-concept, we developed
a code generator that automatically creates implementations of the algorithms we find as
we complete the search; however, not much attention was paid to optimize the code thus
produced.

Our work should not be confused with another way of using computers to find matrix
multiplication algorithms. Indeed, using (usually numerical) optimization techniques, it is
also possible to look for an algorithm for a fixed product size, that uses a prescribed number
of base field multiplications, by solving polynomial equations: this idea originated in [7], and
has since then been reused in [15] or [31]. We do not pursue this approach here.

Notation, computational model. Informally, we wish to count only “essential” multi-
plications (that do not involve constants) in our algorithms. To formalize this, we use the
following standard computational model (see e.g. [9, Ch. 14]). Below, all indices in sums or
sequences start at 1.

We consider matrices with entries in a ring R; in general, we do not assume that R is
commutative, so the algorithms we consider are bilinear algorithms. Given integers a, b, c,
a bilinear algorithm for matrix multiplication in size (a× b× c) consists of three sequences
(U`)`≤L, (V`)`≤L and (W`)`≤L, with

U` = (u`,i,j)i≤a,j≤b, V` = (v`,i,j)i≤b,j≤c, W` = (w`,i,j)i≤a,j≤c,

such that the following holds. Let M = (mi,j)i≤a,j≤b and N = (ni,j)i≤b,j≤c be matrices whose
entries are indeterminates mi,j and ni,j over R; for ` ≤ L, define

α` =
∑

i≤a,j≤b

u`,i,jmi,j, β` =
∑

i≤b,j≤c

v`,i,jni,j, γ` = α`β`

and define finally pi,j =
∑

`≤Lw`,i,jγ` for i ≤ a and j ≤ c. Then, we ask that

pi,j =
∑
k≤b

mi,knk,j

for all i, j. This scheme can then be applied to compute any matrix product P = MN in
size (a× b× c): after performing L linear combinations of the entries of M and the entries
of N , and multiplying them pairwise, we obtain the entries of the product P by a last series
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of linear combinations. For example, Strassen’s algorithm can be represented as

(U`)`≤7 =

([
0 0
0 1

]
,

[
1 0
0 0

]
,

[
0 0
1 1

]
,

[
1 1
0 0

]
,

[
−1 0
1 0

]
,

[
0 1
0 −1

]
,

[
1 0
0 1

])
,

(V`)`≤7 =

([
−1 0
1 0

]
,

[
0 1
0 −1

]
,

[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
1 1
0 0

]
,

[
0 0
1 1

]
,

[
1 0
0 1

])
,

(W`)`≤7 =

([
1 0
1 0

]
,

[
0 1
0 1

]
,

[
0 0
1 −1

]
,

[
−1 1
0 0

]
,

[
0 0
0 1

]
,

[
1 0
0 0

]
,

[
1 0
0 1

])
.

From the first three matrices, we get the information that we should compute γ1 = m2,2(n2,1−
n1,1) and that γ1 will be used in the result matrix for entries p1,1 and p2,1, both times with
coefficient 1. Note that this model does not specify how to perform the linear combinations
(e.g., what common subexpressions can be shared).

If we assume that R is commutative, we can allow algorithms that exploit commutativity:
in this case, U` and V` have the form

U` =
(
(u`,i,j)i≤a,j≤b, (u

′
`,i,j)i≤b,j≤c

)
, V` =

(
(v`,i,j)i≤a,j≤b, (v

′
`,i,j)i≤b,j≤c

)
,

and α` and β` are now defined by

α` =
∑

i≤a,j≤b

u`,i,jmi,j +
∑

i≤a,j≤b

u′`,i,jni,j, β` =
∑

i≤a,j≤b

v`,i,jmi,j +
∑

i≤a,j≤b

v′`,i,jni,j.

The rest of the definition is unchanged; such algorithms are called quadratic algorithms.
Of course, many algorithms can be described in a higher-level manner, without explicitly

giving the coefficient sequences (U`)`≤L, (V`)`≤L and (W`)`≤L: this is for instance the case
for the trilinear aggregating techniques we will mention later on. However, we will rely on
the actual data of (U`)`≤L, (V`)`≤L and (W`)`≤L to perform our searches.

Organization of the paper. Section 2 contains our main technical contribution: we show
how to avoid useless multiplication when applying recursively a multiplication algorithm
such as Strassen’s or Winograd’s. Section 3 explains how we used this result, among other
techniques, to complete a computer search for improved multiplication algorithms for small
square matrices; Section 4 gives a few experimental results obtained using code that was
automatically generated. Finally, we give in appendix a slightly improved version of trilinear
aggregating techniques.

Acknowledgements. We thank Marc Mezzarobba for useful discussions. We acknowledge
the financial support of NSERC, MITACS and the Canada Research Chairs program.
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2 Improved padding techniques

It is well-known that we can use multiplication algorithms in a recursive way through block
matrix multiplication: this leads to divide-and-conquer techniques which are at the basis of
all asymptotically fast matrix multiplication algorithms. In what follows, to highlight the
operations we wish to perform, we will call pattern the base case algorithm that we wish
to apply recursively; the size (a × b × c) of the pattern is the size of the base case. Thus,
we will consider patterns called Strassen, Winograd, Laderman, etc, that correspond to
the algorithms in Table 1 which do not rely on commutativity of the base ring; they have
respective sizes (2× 2× 2), (2× 2× 2), (3× 3× 3), etc.

Such recursive techniques require adaptations when the target size is not a multiple of
the pattern size: typically, one pads the input matrices using extra rows or columns of zeros,
or one peels it from extra rows or columns. This is harmless as far as asymptotic estimates
are concerned, since it only induces a constant factor overhead, but this constant factor is
harmful for smaller size matrices.

In this section, we show how to control the cost incurred by padding techniques, by
taking into account the sparsity of the pattern. We start by reviewing the formulas for the
exact case, that is, when the target size is a multiple of the pattern size, so no padding
is necessary. Then, we study the non-exact case on an example, using Strassen’s pattern
to multiply square matrices of size 3. The final subsection discusses the non-exact case in
general.

2.1 The exact case

We start with the easiest situation: suppose we want to apply a pattern (U`)`≤L, (V`)`≤L,
(W`)`≤L of size (a× b× c) to compute a product P = MN of size (m× n× p), and assume
that we are in the exact case, that is, a divides m, b divides n and c divides p.

Here, no padding is necessary, and the subdivisions of M , N and P are straightforward:
we subdivide M into blocks Mi,j of size (m/a× n/b), N into blocks Ni,j of size (n/b× p/c)
and P into blocks Pi,j of size (m/a× p/c):

M =

M1,1 · · · M1,b
...

...
Ma,1 · · · Ma,b

 , N =

N1,1 · · · N1,c
...

...
Nb,1 · · · Nb,c

 , P =

P1,1 · · · P1,c
...

...
Pa,1 · · · Pa,c

 .
Then, the formulas used to obtain P are straightforward as well: for ` ≤ L, we compute

α` =
∑

i≤a,j≤b

u`,i,jMi,j, β` =
∑

i≤a,j≤b

v`,i,jNi,j, γ` = α`β`

and we obtain Pi,j =
∑

`≤Lw`,i,jγ`. These simple formulas will be useful later on.
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2.2 The non-exact case: a worked example

Most of our attention will be devoted to the non-exact case, where the dimensions of the
product we want to compute are not multiples of the dimensions of the pattern. We start
here with an example: we describe how to multiply two square matrices M,N of size (3×3),
using Strassen’s pattern.

The padding strategy consists in adding an extra row and column of zeros, to make the
matrices (4 × 4). If we forget that the matrices hold many zeros, we obtain a cost of 49
multiplications. Explicitly, after padding the input matrices M,N , we obtain

M̃ =


m1,1 m1,2 m1,3 0
m2,1 m2,2 m2,3 0
m3,1 m3,2 m3,3 0

0 0 0 0

 , Ñ =


n1,1 n1,2 n1,3 0
n2,1 n2,2 n2,3 0
n3,1 n3,2 n3,3 0
0 0 0 0

 ,
whose block decomposition is

M̃1,1 =

[
m1,1 m1,2

m2,1 m2,2

]
, M̃1,2 =

[
m1,3 0
m2,3 0

]
, M̃2,1 =

[
m3,1 m3,2

0 0

]
, M̃2,2 =

[
m3,3 0

0 0

]
,

and

Ñ1,1 =

[
n1,1 n1,2

n2,1 n2,2

]
, Ñ1,2 =

[
n1,3 0
n2,3 0

]
, Ñ2,1 =

[
n3,1 n3,2

0 0

]
, Ñ2,2 =

[
n3,3 0
0 0

]
.

Recall that the product terms in the block version of Strassen’s algorithm are, in this case

• γ1 = M̃2,2(Ñ2,1 − Ñ1,1)

• γ2 = M̃1,1(Ñ1,2 − Ñ2,2)

• γ3 = (M̃2,1 + M̃2,2)Ñ1,1

• γ4 = (M̃1,1 + M̃1,2)Ñ2,2

• γ5 = (M̃2,1 − M̃1,1)(Ñ1,1 + Ñ1,2)

• γ6 = (M̃1,2 − M̃2,2)(Ñ2,1 + Ñ2,2)

• γ7 = (M̃1,1 + M̃2,2)(Ñ1,1 + Ñ2,2).

The result matrix P̃ = M̃Ñ has the form

P̃ =


p1,1 p1,2 p1,3 0
p2,1 p2,2 p2,3 0
p3,1 p3,2 p3,3 0
0 0 0 0

 ;
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its block decomposition is

P̃1,1 =

[
p1,1 p1,2

p2,1 p2,2

]
, P̃1,2 =

[
p1,3 0
p2,3 0

]
, P̃2,1 =

[
p3,1 p3,2

0 0

]
, P̃2,2 =

[
p3,3 0
0 0

]
,

whose entries are given by

• P̃1,1 = γ1 + γ6 + γ7 − γ4

• P̃1,2 = γ2 + γ4

• P̃2,1 = γ1 + γ3

• P̃2,2 = γ2 − γ3 + γ5 + γ7.

Naively, each γi can be computed using 7 multiplications in size (2 × 2 × 2), each of them
done using Strassen’s algorithm recursively. However, some may visibly be done in smaller
size than (2× 2× 2):

• Some improvements are obvious, as some γi are seen to contain zero rows or columns.
Consider for instance γ1 = M̃2,2(Ñ2,1 − Ñ1,1). Since M̃2,2 has one row full of zeros, γ1

does as well; thus, we can reduce the cost of computing γ1 from 7 to 4 multiplications.
Noticing the extra column of zeros in M̃2,2 reduces the cost further to 2 multiplications.

• Less obviously, even if some γi has no zero row or column, we may not need all of it
for the end result. Consider for instance γ5 = (M̃2,1 − M̃1,1)(Ñ1,1 + Ñ1,2). There is no
zero row or column in any of the terms in this product. However, γ5 is used only to
compute P̃2,2 = γ2 − γ3 + γ5 + γ7, and we know that P̃2,2 has only one non-zero term.
Thus, we only need one term in γ5: this reduces the cost from 7 to 2 multiplications.

Doing all these optimizations, we obtain an algorithm using 25 products instead our initial
naive estimate 49 to perform multiplications in size (3 × 3 × 3): this is not as good as
Laderman’s algorithm, but better than the naive algorithm.

We conclude this subsection by a discussion of some relevant previous work. In [12],
D’Alberto and Nicolau discuss strategies for implementing Strassen’s algorithm for odd-
sized matrices, and explain how to reduce the sizes of some recursive calls. In particular,
they already exhibit the reduction of the cost of computing γ1 showed in our first example;
however, they do not obtain the same cost as us for γ5.

2.3 The non-exact case in general

The ideas underlying the former example are generalized in this subsection: we show how to
exploit sparseness properties of a pattern to avoid useless computations.

First, we need a new notation, as we will have to resize matrices by increasing or reducing
their dimensions. Given a matrix Z of size (g × h) and integers α, β, the matrix Z ′ =
R(Z, α, β) is the matrix of size (α× β) defined as follows:
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• If α ≤ g then delete the rows in Z of indices greater than α; if α > g then pad α − g
zero rows at the bottom of Z, to make the row dimension equal to α.

• If β ≤ h then delete the columns in Z of indices greater than β; if β > h then pad
β − h rightmost zero columns to make the column dimension equal to β.

Given a problem size (m×n×p) and a pattern (U`)`≤L, (V`)`≤L, (W`)`≤L of size (a×b×c),
we require compositions (that is, ordered partitions) (m1, . . . ,ma) of m, (n1, . . . , nb) of n and
(p1, . . . , pc) of p. If we are to compute a product P = MN of size (m× n× p), we use these
compositions to determine the sizes of the submatrices in the matrices M , N and P , writing

M =

M1,1 · · · M1,b
...

...
Ma,1 · · · Ma,b

 , N =

N1,1 · · · N1,c
...

...
Nb,1 · · · Nb,c

 , P =

P1,1 · · · P1,c
...

...
Pa,1 · · · Pa,c

 ,
where Mi,j has size (mi × nj), Ni,j has size (ni × pj) and Pi,j has size (mi × pj).

Our goal here is to obtain integers (µ`)`≤L, (ν`)`≤L and (π`)`≤L, such that µ`, ν` and π`

indicate in what size we perform the `th linear combination and the `th recursive product.
Assuming these integers are known, our algorithm simply follows the one in the exact case,
up to the management of the submatrices’ sizes. For ` ≤ L, we compute

• α` =
∑

i≤a,j≤b u`,i,jM̃`,i,j, with M̃`,i,j = R(Mi,j, µ`, ν`); note that α` has size (µ` × ν`)

• β` =
∑

i≤b,j≤c v`,i,jÑ`,i,j, with Ñ`,i,j = R(Ni,j, ν`, π`); note that β` has size (ν` × π`)

• γ` = α`β`; note that γ` has size (µ` × π`)

Finally, for i ≤ a and j ≤ c, we compute P̃i,j =
∑

`≤Lw`,i,jR(γ`,mi, pj) and we set

P̃ =

P̃1,1 · · · P̃1,c
...

...

P̃a,1 · · · P̃a,c

 .
There is no guarantee that this algorithm produces the correct result in all cases: if

µ`, ν`, π` are too small, the products γ` will not contain enough information. We now give a
condition sufficient to ensure validity, while maintaining µ`, ν`, π` as small as possible. We
need the following quantities, for ` ≤ L:

R1,` = max{mi for i ≤ a, j ≤ b such that u`,i,j 6= 0} (1)

C1,` = max{nj for i ≤ a, j ≤ b such that u`,i,j 6= 0} (2)

R2,` = max{ni for i ≤ b, j ≤ c such that v`,i,j 6= 0} (3)

C2,` = max{pj for i ≤ b, j ≤ c such that v`,i,j 6= 0} (4)

R3,` = max{mi for i ≤ a, j ≤ c such that w`,i,j 6= 0} (5)

C3,` = max{pj for i ≤ a, j ≤ c such that w`,i,j 6= 0}. (6)
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Remark that these quantities depend on the sparseness of the pattern: the more zeros in
(U`)`≤L, (V`)`≤L, (W`)`≤L, the smaller they are. Remark also that given (U`)`≤L, (V`)`≤L,
(W`)`≤L and the compositions of m,n, p, these quantities can be easily computed: this will
be instrumental to automatize the search process in the next section.

Proposition 1. Suppose that the following conditions hold for all ` ≤ L:

• µ` ≥ min(R1,`, R3,`),

• ν` ≥ min(C1,`, R2,`),

• π` ≥ min(C2,`, C3,`),

Then P̃ = MN .

Proof. Let us first rewrite the definition of P̃i,j explicitly as

P̃i,j =
∑
`≤L

∑
i′≤a, j′≤b

∑
i′′≤b, j′′≤c

T̃`,i,j,i′,j′,i′′,j′′

with T̃`,i,j,i′,j′,i′′,j′′ = u`,i′,j′v`,i′′,j′′w`,i,jR(M̃`,i′,j′Ñ`,i′′,j′′ ,mi, pj).

Adding the obvious conditions u`,i′,j′ 6= 0, v`,i′′,j′′ 6= 0 and w`,i,j 6= 0 in the definitions of α`,
β` and γ` gives

P̃i,j =
∑

`≤L, w`,i,j 6=0

∑
i′≤a, j′≤b, u`,i′,j′ 6=0

∑
i′′≤b, j′′≤c, v`,i′′,j′′ 6=0

T̃`,i,j,i′,j′,i′′,j′′ . (7)

On the other hand, let us also describe the classical way to multiply M,N by padding
zeros. Let

m′ = max(m1, . . . ,ma), n′ = max(n1, . . . , nb), p′ = max(p1, . . . , pc).

We pad columns and rows of zeros to the right-bottom of all submatrices Mi,j and Ni,j. This
gives blocks M ′

i,j and N ′i,j of sizes (m′ × n′) and (n′ × p′) respectively; formally, we have
M ′

i,j = R(Mi,j,m
′, n′) and N ′i,j = R(Ni,j, n

′, p′). For these larger matrices, we are in the exact
case of Subsection 2.1, so we can apply the recursive algorithm. For ` ≤ L, we define

α′` =
∑

i≤a,j≤b

u`,i,jM
′
i,j, β′` =

∑
i≤b,j≤c

v`,i,jN
′
i,j, γ′` = α′`β

′
`

and P ′i,j =
∑

`≤Lw`,i,jγ
′
`. Thus, the blocks in the result P = MN are given by Pi,j =

R(P ′i,j,mi, pj). To make the connection with the previous formulas, we rewrite Pi,j as

Pi,j = R(P ′i,j,mi, pj)

= R(
∑
`≤L

w`,i,jγ
′
`,mi, pj)

=
∑
`≤L

w`,i,jR(γ′`,mi, pj).
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As before, we add the conditions u`,i′,j′ 6= 0, v`,i′′,j′′ 6= 0 and w`,i,j 6= 0; this gives, after
expansion

Pi,j =
∑

`≤L, w`,i,j 6=0

∑
i′≤a, j′≤b, u`,i′,j′ 6=0

∑
i′′≤b, j′′≤c, v`,i′′,j′′ 6=0

T`,i,j,i′,j′,i′′,j′′ (8)

with T`,i,j,i′,j′,i′′,j′′ = u`,i′,j′v`,i′′,j′′w`,i,jR(M ′
i′,j′N ′i′′,j′′ ,mi, pj).

We have to prove that under the assumptions of the proposition, the output P̃i,j obtained
in our algorithm agrees with the correct result Pi,j we just obtained. Since the summation
indices are the same in eqs. (7) and (8), it is enough to prove that for all terms that appear,
we have

R(M̃`,i′,j′Ñ`,i′′,j′′ ,mi, pj) = R(M ′
i′,j′N ′i′′,j′′ ,mi, pj). (9)

We first consider the right-hand side of (9). The definitions of the matrices M ′
i′,j′

and N ′i′′,j′′ give R(M ′
i′,j′N ′i′′,j′′ ,mi, pj) = R(R(Mi′,j′ ,m′, n′)R(Ni′′,j′′ , n′, p′),mi, pj). Let nj′,i′′ =

min(nj′ , ni′′). Since we have m′ ≥ mi, n
′ ≥ nj′,i′′ and p′ ≥ pj, by Lemma 3 (stated and

proved below), we deduce

R(M ′
i′,j′N ′i′′,j′′ ,mi, pj) = R(Mi′,j′ ,mi, nj′,i′′)R(Ni′′,j′′ , nj′,i′′ , pj). (10)

As to the the left-hand side of (9), the definitions of the matrices M̃`,i′,j′ and Ñ`,i′′,j′′ now
give R(M̃`,i′,j′Ñ`,i′′,j′′ ,mi, pj) = R(R(Mi′,j′ , µ`, ν`)R(Ni′′,j′′ , ν`, π`),mi, pj). Observe now that
by assumption, we have µ` ≥ min(mi,mi′), ν` ≥ nj′,i′′ = min(nj′ , ni′′) and π` ≥ min(pj, pj′′).
Thus, Lemma 3 now implies

R(M̃`,i′,j′Ñ`,i′′,j′′ ,mi, pj) = R(Mi′,j′ ,mi, nj′,i′′)R(Ni′′,j′′ , nj′,i′′ , pj). (11)

Combining (10) and (11) finishes the proof.

We continue with a series of lemmas, that leads to Lemma 3 used in the former proof.

Lemma 1. Let A and B be matrices of respective sizes (r × s) and (s × t) and let r′, t′ be
integers. Then R(AB, r′, t′) = R(A, r′, s) R(B, s, t′).

Proof. This lemma simply says that one can add / remove rows to A or columns to B either
before or after computing the product AB, and get the same result in both cases.

Lemma 2. Let A and B be matrices of respective sizes (r×s) and (s′×t) and let r′, t′, ρ, σ, τ
be integers, with ρ ≥ min(r, r′) and τ ≥ min(t, t′). Then, the following holds:

• R(R(A, ρ, σ), r′, σ) = R(A, r′, σ)

• R(R(B, σ, τ), σ, t′) = R(B, σ, t′).
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Proof. We prove only the first item; the second one is the exact analogue for column oper-
ations. If r′ ≥ r, we deduce that ρ ≥ r, so resizing A in row-size ρ introduces new rows of
zeros; after resizing in row-size r′, we thus obtain exactly R(A, r′, σ). If r ≥ r′, we deduce
that ρ ≥ r′; independently of whether ρ ≥ r or not, R(R(A, ρ, σ), r′, σ) is thus obtained by
resizing A is row-size r′, by removing r − r′ rows.

Lemma 3. Let A and B be matrices of respective sizes (r×s) and (s′×t) and let r′, t′, ρ, σ, τ be
integers, with ρ ≥ min(r, r′), σ ≥ min(s, s′) and τ ≥ min(t, t′). Then, letting s′′ = min(s, s′),
the following equality holds:

R(R(A, ρ, σ) R(B, σ, τ), r′, t′) = R(A, r′, s′′) R(B, s′′, t′).

Proof. Lemma 1 shows that the left-hand side equals R(R(A, ρ, σ), r′, σ) R(R(B, σ, τ), σ, t′).
Applying Lemma 2 shows that it is equal to

R(A, r′, σ) R(B, σ, t′).

It remains to prove that this product equals R(A, r′, s′′) R(B, s′′, t′), with s′′ = min(s, s′).
Suppose indeed that s ≤ s′ (the argument is the same if s ≥ s′, using B instead of A). Then,
we have by assumption s′′ = s and σ ≥ s, so R(A, r′, σ) is obtained by adding some zero
columns to A, and changing the number of rows to r′. The zero columns do not participate
in the product, which thus equals R(A, r′, s) R(B, s, t′), as requested.

To conclude this section, we revisit the example of Subsection 2.2. There, we had m =
3, n = 3, p = 3 and we used the compositions (m1 = 2,m2 = 1), (n1 = 2, n2 = 1) and
(p1 = 2, p2 = 1). Taking ` = 5 in Strassen’s pattern, we get

R1,5 = 2, C1,5 = 2, R2,5 = 2, C2,5 = 2, R3,5 = 1, C3,5 = 1,

so that we can take µ5 = 1, ν5 = 2, π5 = 1, and the 5th product γ5 can be computed in size
(1× 2× 1). We have thus recovered the result obtained in Subsection 2.2.

3 Filling the tables

We will now describe an automated search for new upper bounds for square sizes from 2 to 30.
We build recursively a 3-dimensional table T , indexed by integers (m,n, p), where T [m,n, p]
gives an upper bound on the number of multiplications for a product of size (m × n × p).
While our main target is square matrix multiplication, we have to compute information for
rectangular matrix products along the way.

Our search is based on the application of the former section’s construction to a fixed list
of patterns, based on those in Table 1; other ingredients are used as well. We describe first
our list of patterns, then the process we used to build the table T ; some possible further
optimizations are described next, and we conclude this section with a discussion of our
results.
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Initial list of patterns. First, we discuss the patterns we used. Some are straightforward:
Strassen, Winograd, Laderman, Hopcroft323, Hopcroft332, Hopcroft233, Makarov just
follow the algorithms mentioned in Tables 1 and 2. We also use three other patterns, called
mul211, mul121 and mul112:

• mul211 has length 2 and size (2× 1× 1); it describes the product of a (2× 1) matrix
by a (1× 1) matrix:

(U`)`≤2 =

([
1
0

]
,

[
0
1

])
, (V`)`≤2 =

([
1
]
,
[
1
])

, (W`)`≤2 =

([
1
0

]
,

[
0
1

])
• mul121 has length 2 and size (1× 2× 1); it describes the product of a (1× 2) matrix

by a (2× 1) matrix.

(U`)`≤2 =

([
1 0

]
,
[
0 1

])
, (V`)`≤2 =

([
1
0

]
,

[
0
1

])
, (W`)`≤2 =

([
1
]
,
[
1
])

• mul112 has length 2 and size (1× 1× 2); it describes the product of a (1× 1) matrix
by a (1× 2) matrix.

(U`)`≤2 =

([
1
]
,
[
1
])

, (V`)`≤2 =

([
1 0

]
,
[
0 1

])
, (W`)`≤2 =

([
1 0

]
,
[
0 1

])
.

Using these three patterns allows us to split a product (m × n × p) along respectively the
first, second or third dimension. For instance, after fixing (m,n, p) and choosing the pattern
mul211, we have to split m as m = m1 + m2 (n and p are not split); then, in this case,
Proposition 1 simply returns (µ1, ν1, `1) = (m1, n, p) and (µ2, ν2, `2) = (m2, n, p). Taking
(on the above example) a composition of the form m1 = m − 1,m2 = 1 thus enables us to
automatically incorporate classical peeling strategies into our search.

Using symmetries to create new patterns. A further series of patterns was obtained
using symmetries. Indeed, if one starts from a pattern (U`)`≤L, (V`)`≤L, (W`)`≤L of size
(a × b × c) and chooses invertible matrices X, Y, Z, of respective sizes (a × a), (b × b) and
(c× c), one can define, for ` ≤ L:

U ′` = XU`Y
−1, V ′` = Y V`W

−1, W ′
` = WU`X

−1. (12)

Then it is known that (U ′`)`≤L, (V ′` )`≤L, (W ′
`)`≤L is a valid pattern as well. In the following

paragraphs, we denote this new pattern SX,Y,Z(U, V,W ).
We started from the list of patterns Strassen, Winograd, Laderman, Hopcroft233,

Hopcroft323, Hopcroft332 and Makarov; there was no point in applying such transforms
to mul211, mul121 and mul112. For each pattern (U`)`≤L, (V`)`≤L, (W`)`≤L in this list, we
created a sequence of matrices (Xi, Yi, Zi) as follows: for each i, two of (Xi, Yi, Zi) were set
to the identity, and the last one was a permutation matrix (all possible permutations were
used). Then, we created all transforms SXi,Yi,Zi

(U, V,W ), and added them to our pool.
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Recursive completion of the table. The table T is built as follows. Let (m,n, p) be the
given target size. If one of m,n, p is equal to 1, T [m,n, p] receives the product mnp. Else,
to obtain the entry T [m,n, p], we apply the following process.

We loop over all patterns in the list obtained previously. For a given pattern (U`)`≤L,
(V`)`≤L, (W`)`≤L of size (a × b × c), we do the following. We start by determining com-
positions m = (m1, . . . ,ma) of m, n = (n1, . . . , nb) of n and p = (p1, . . . , pc) of p (details
follow). For each such composition, we determine integers (µ`)`≤L, (ν`)`≤L and (π`)`≤L using
Proposition 1: these integers tell us what are the sizes of the products to do recursively.

Then, we determine the cost associated to ((U`), (V`), (W`),m,n,p). A first estimate is
obviously the sum of T [µ`, ν`, π`], for ` ≤ L. However, better may be done by matching
products and using Pan’s simultaneous products techniques [25] (this idea was suggested
in [31]). For any pair ` < `′ ≤ L, Pan’s technique is applicable if either (µ`, ν`, π`) =
(ν`′ , π`′ , µ`′) or (µ`′ , ν`′ , π`′) = (ν`, π`, µ`). In this case, we can compute both products using
µ`ν`π`+µ`ν`+µ`π`+ν`π` base ring multiplications. If this is lower than the sum T [µ`, ν`, π`]+
T [µ`′ , ν`′ , π`′ ], we tag the pair {`, `′}. Then, we need to determine what pairs of products
should be matched and computed using Pan’s technique, and what products should be looked
up in the table T . Ideally, a matching algorithm would tell us the optimal choice; however,
in our situations, the number of tagged products was so small that an exhaustive search was
always fast enough.

At this point, we have obtained an estimate for T [m,n, p] using the pattern (U`)`≤L,
(V`)`≤L, (W`)`≤L and the composition m,n,p. We loop over all patterns and all compositions
and keep the minimum.

Other cost estimates are considered. For all sizes (m,n, p), if one of m,n, p is equal to
2, we take into account the cost of Hopcroft and Kerr’s algorithm [14]. For square matrices,
we also determine the cost provided by trilinear aggregating techniques. We use a slightly
better cost estimate than previously published results:

• if n is even, one can compute (n× n× n) matrix products using (n3 + 12n2 + 11n)/3
multiplications

• if n is odd, one can compute (n×n×n) matrix products using (n3 +15n2 +14n−6)/3
multiplications.

Recall that Table 2 (in the introduction) reported a cost that is the minimum of (n3 +12n2 +
17n)/3 and (n3 + 11.25n2 + 32n+ 27)/3, for n even. Our result improves on the former for
all n, and on the latter for n in our range of interest. The proof of our result follows closely
previous work by Pan [25, 23] and Laderman, Pan and Sha [18], and differs considerably
from the rest of this article: formulas are given that allow to almost divide by 3 the number
of multiplications, without using any recursive algorithm. For these reasons, the proof is
given in the appendix of this paper (see Proposition 2).

Finally, if the base ring is commutative, we also take into account Makarov’s commutative
algorithm for the (3× 3× 3) case, as well as Waksman’s algorithm in general.
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Composition strategies For the patterns mul211, mul121 and mul112, we use all possible
compositions for (m,n, p). For larger patterns, two strategies were used. The first one is
a brute-force approach, where all compositions were tried: this is used for integers up to
6. The second approach is more balanced: given an integer m ≥ 7 to divide into a parts,
we take m = (m0, . . . ,m0,m1, . . . ,m1) and all its permutations, with m0 = m div a and
m1 = m0 + 1, where m0 is repeated (m mod a) times.

Further optimizations. Further attempts were made to obtain better results; while they
were not successful, we list them here for completeness.

Symmetries. Instead of a single application of the symmetry transformations, we also gen-
erated further transforms of the form

SXi1
,Yi1

,Zi1
(U, V,W ), SXi2

,Yi2
,Zi2

(SXi1
,Yi1

,Zi1
(U, V,W )), . . .

We applied up to three transforms, and used other matrices than just permutations
(namely, upper or lower triangular matrices with entries in {0,±1,±2}).

Patterns. We used patterns from Johnson and McLoughlin’s list [15] for the (3×3×3) case;
these patterns involve free parameters, which we set to ±1.

Compositions. To partition an integerm into a parts, we also tried taking m = (m0, . . . ,m0,m1),
with m0 = m div a and m1 = m− (a− 1)m0, as well as all its permutations.

Simultaneous pairs of products. We relaxed the conditions of applicability of Pan’s algorithm
for two simultaneous products: padding with a zero row or column if necessary, we
allowed up to one unit difference between the products’ sizes (and accounted for it in
the cost estimate), to try to generate more matches.

Simultaneous triples of products. Finally, it would have been possible to use Pan’s trilinear
aggregating techniques for three simultaneous products; however, the sizes we consid-
ered were too small for it to be fruitful.

Results. The results of our search are given for square multiplication problems sizes up to
(30 × 30 × 30) in Tables 3 and 4, for respectively non-commutative and commutative base
rings. The tables give the number of multiplications we obtained, the technique (either the
pattern name, TA (for Trilinear Aggregating) or Waksman), and a comparison to previous
work: new results are in bold face.

The tables do not give the details of what compositions were used, and what products were
paired; also, we do not mention the various rectangular sizes that are needed as subproducts.
All these details are given at the address http://www.csd.uwo.ca/~mislam63/, together
with a toy code generator.

Before commenting on these results, we mention that using the “basic” search parameters
described first, it takes about 1h to complete the searches for both the non-commutative
and commutative cases on a recent PC, using a Magma [5] implementation. Adding all
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extra options described in the last paragraph, the time rises to 5h. The search in the non-
commutative case is faster, as we can exploit the fact that T [m,n, p] is invariant under
permutations of {m,n, p}.

Table 3. Let us first comment on the non-commutative case, in Table 3. For small powers
of 2, as could be expected, no combination outperforms Strassen’s algorithm. The
algorithms of Laderman and Makarov are used only for the base cases (resp. 3 and 5);
their relatively high exponents seem to make them useless for larger sizes. For sizes
from 20 on, trilinear aggregating takes a clear lead (this was already the case in the
tables of [26, 31]). In most other cases, our approach improves the previous results, by
up to 10%.

An important observation is that even though Strassen’s and Winograd’s patterns
both perform 7 multiplications, the difference in sparseness makes them nonequivalent
for our purposes: the quantities (µ`, ν`, π`) obtained with these two patterns from
Proposition 1 will in general not coincide. Both are useful: the results given here
require Strassen’s and Winograd’s patterns, as well as a symmetry transform of the
latter, called Winograd2 in the table. This pattern is obtained by taking for X the
(2 × 2) transposition matrix, and for Y, Z the (2 × 2) identity matrix in Eq. (12).
Without putting all these three patterns in our list, we obtain inferior results (e.g., we
would obtain 2116 in size 15 using only Strassen and Winograd).

Finally, we mention that the technique of pairing two simultaneous subproducts is
found to be useful from size 13 on.

Table 4. Next, we comment on the commutative case, in Table 4. Our results are com-
pared to Mezzarobba’s [21], who gave a similar table. Mezzarobba’s conclusion was
that a combination of Strassen’s and Waksman’s algorithm was sufficient in almost
all situations. In our table, it appears that our composition techniques allow to find
significantly better estimates in many cases, using more complex compositions.

Besides, it is also worthwhile to mention that in many cases, commutativity does not
help much. While the results in Table 4 are always better than, or equal to, those in
Table 3, the gaps are not very large (up to about 10%).
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Dimension Muls Algorithm Probert-Fischer (1980) Smith (2002)

2 2 2 7 Strassen 7 7
3 3 3 23 Laderman 23 23
4 4 4 49 Strassen 49 49
5 5 5 100 Makarov 103 100
6 6 6 161 Strassen 161 161
7 7 7 258 Winograd 276 273
8 8 8 343 Strassen 343 343
9 9 9 522 mul121 529 527

10 10 10 700 Strassen 710 700
11 11 11 923 Strassen 996 992
12 12 12 1125 mul121 1125 1125
13 13 13 1450 Strassen 1594 1580
14 14 14 1728 Strassen 1792 1743
15 15 15 2108 Winograd2 2369 2300
16 16 16 2401 Strassen 2401 2401
17 17 17 2972 Strassen 3218 3218
18 18 18 3306 TA 3375 3342
19 19 19 4073 Strassen 4402 4369
20 20 20 4340 TA 4870 4380
21 21 21 5365 Strassen 6131 5610
22 22 22 5566 TA 6380 5610
23 23 23 6806 TA 7875 7048
24 24 24 7000 TA 7875 7048
25 25 25 8448 TA 9676 8710
26 26 26 8658 TA 9880 8710
27 27 27 10330 TA 11984 10612
28 28 28 10556 TA 11984 10612
29 29 29 12468 TA 14360 not listed
30 30 30 12710 TA 14360 not listed

Table 3: Upper bounds on the number of multiplications, non-commutative case
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Dimension Muls Algorithm Mezzarobba (2007)

2 2 2 7 Strassen 7
3 3 3 22 Makarov333 23
4 4 4 46 Waksman 46
5 5 5 93 Waksman 93
6 6 6 141 Waksman 141
7 7 7 235 Waksman 235
8 8 8 316 Waksman 316
9 9 9 472 mul121 473

10 10 10 595 Waksman 595
11 11 11 825 mul121 831
12 12 12 987 Strassen 987
13 13 13 1318 mul121 1333
14 14 14 1525 mul121 1561
15 15 15 1941 mul121 2003
16 16 16 2212 Strassen 2212
17 17 17 2762 Hopcroft332 2865
18 18 18 3060 Hopcroft332 3231
19 19 19 3757 mul121 3943
20 20 20 4158 Strassen 4165
21 21 21 4938 Strassen 5261
22 22 22 5440 mul121 5610
23 23 23 6382 Hopcroft332 6843
24 24 24 6900 Hopcroft332 6909
25 25 25 8083 mul121 8710
26 26 26 8658 TA 8710
27 27 27 9994 mul121 10612
28 28 28 10556 TA 10612
29 29 29 12109 mul121 not listed
30 30 30 12710 TA not listed

Table 4: Upper bounds on the number of multiplications, commutative case

4 Experiments

Along with the computer search, we developed a proof-of-concept code generator that pro-
duces multiplication functions for various kinds of entries. Using predefined functions for base
ring arithmetic, the code generator produces a series of functions mul111, . . . , mul303030
and auxiliary functions for the required rectangular cases; these functions contain as hard-
coded information what compositions are done, what products are done recursively, and
how.
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4.1 Setup

Our experiments used entries of the following kinds: multiprecision integers, univariate poly-
nomials over Fp, differential operator with coefficients in Fp[x] and linear recurrence operators
with coefficients in Fp[n]. The last two types are examples of non-commutative rings over
which one is interested in linear algebra algorithms.

The target implementation language was either C (for integers) or C++ (for other base
rings). For the integer case, we used the GMP library [1] to provide base ring arithmetic;
for other base rings, we used the NTL C++ package [30] to provide polynomial arithmetic
in Fp[x]. To handle the non-commutative cases, extra work was needed. Recall that a

differential operator has the form a =
∑d

i=0 ai∂
i, where the ai are in Fp[x], and ∂ represents

the differentiation operator ∂/∂x. The multiplication of such operators is given by

d∑
i=0

ai∂
i ×

e∑
j=0

bj∂
j =

d∑
i=0

ai

e∑
j=0

i∑
k=0

(
i

k

)
b
(k)
j ∂i+j−k,

where b
(k)
j is the kth derivative of bj. In a similar manner, a linear recurrence has the form

a =
∑d

i=0 aiE
i, where ai are in Fp[n], and E stands for the shift operator. The multiplication

formula becomes

d∑
i=0

aiE
i ×

e∑
j=0

bjE
j =

d∑
i=0

ai

e∑
j=0

bj(n+ i)Ei+j.

No quasi-linear time algorithm is known for multiplication of differential operators or re-
currences: for operators of order n with coefficients of degree n, the formulas above induce
O(n2) multiplications of polynomials of degree n. Better can be done in the case of differ-
ential operators [36, 6], but we do not use these techniques here.

4.2 Results

We describe here timings obtained by our implementation. The purpose of these experiments
is to understand what practical gain can be expected from results such as ours compared
to a naive implementation. Remark that for this goal, comparing to existing systems offers
little insight, since we would not be able to separate the gain, or loss, induced by the matrix
algorithms, to that induced by the differences in base ring arithmetic.

We also stress the fact that we do not attempt to achieve optimal performance. Indeed,
for entries such as above, optimizing the implementation would require implementing other
strategies, typically Chinese Remaindering, combining them to our approach, and performing
many optimizations, such as saving additions or memory: this is out of the scope of this
paper. On the contrary, our point of view here is to describe what is achievable by taking
the base ring arithmetic, as well as memory allocation, as given (this is typically the case
when developing in a high-level environment).
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In the graphs below, we give a slightly more complete information than the one in the
tables of the previous section. We give timings for families of algorithms (trilinear aggre-
gating, and Waksman’s algorithm, when applicable) for all sizes; the corresponding curves
in the graphs are called TA and Waksman, respectively. Besides, to show what can be done
using our table look-up techniques, we give timings for these techniques for all sizes, even
for the few dimensions between 20 and 30 where trilinear aggregating was the best solution
in terms of number of multiplications.

Commutative entries The following graphs give timings for integers and polynomials.
All timings are averaged over 150 runs, and were obtained on an Intel Core 2 Duo, CPU
speed 2.4 GHz, with 3 GB of RAM.

In the integer case (Figure 1), we use integers of size 1000 bit. This figure illustrates
that a low multiplication count does not imply a faster running time. Indeed, for 1000
bit integers, a GMP multiplication is only about 8 times slower than an addition. As a
consequence, trilinear aggregating techniques (which are in theory quite competitive with
the other solutions, and much better than the naive algorithm) are significantly slower in
practice, due to the large amount of additions (and also memory allocation) they require.
The jump at size 26 for our table look-up techniques is seemingly due to the fact that for
this size, the recursion tree is deeper than for nearby sizes.

For polynomials of degree 100 over F9001 (Figure 2), the curve for our table approach
is much smoother, and the results reflect much more closely the number of multiplications.
This comes as no surprise: for such degrees, in NTL, a polynomial multiplication is about
65 times slower than an addition, so the number of multiplication becomes a key factor.
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Figure 1: Timings for integer entries (length 1000 bits)
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Figure 2: Timings for polynomial entries (degree 100)

Non-commutative entries In the next examples, the entries of the matrices are differen-
tial operators (resp. linear recurrences) of order 10, with polynomial coefficients of degree 10
over F9001; here, the timings are averaged over 10 runs. Remark that Waksman’s algorithm
cannot be employed here, since multiplication is not commutative.

For such cases, the cost of multiplication is much higher than that of other operations
(more than a thousand times more than addition, for instance), so that saving multiplications
pays off very quickly. Still, in the examples below, only 87% to 94% of the running time
is spent on multiplication, so that the other operations and memory management are not
completely negligible.

This partially explains why trilinear aggregating techniques do not perform quite as well
as expected. For the degrees close to 30, these techniques are the best in terms of number of
multiplications, by up to 15% compared to the table look-up approach, but as we can see,
the graphs do not quite reflect this dominance.
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Figure 4: Timings for linear recurrence entries

5 Conclusion

The complexity of multiplying small matrices remains imperfectly understood. In this paper,
our interest was first of all theoretical: we wanted to tabulate the best that can be done for
a suitable range of small product sizes.

We showed how an appropriate combination of formerly known techniques results in
improved upper bounds in many cases, and how the search for such combinations can be
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automatized. As reported in Section 3, many optimizations were attempted to go further,
but without success; it is possible that we have reached the limits of what this approach can
offer without a significant new ingredient.
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[35] O. Sýkora. A fast non-commutative algorithm for matrix multiplication. In Mathemat-
ical Foundations of Computer Science, number 53 in LNCS, pages 504–512, 1977.

[36] J. van der Hoeven. FFT-like multiplication of linear differential operators. J. Symb.
Comput., 33(1):123–127, 2002.

[37] A. Waksman. On Winograd’s algorithm for inner products. IEEE Transactions On
Computers, C-19:360–361, 1970.

[38] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimization of
software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.

[39] S. Winograd. On multiplication of 2× 2 matrices. Linear Algebra and its Applications,
4:381–388, 1971.

[40] S. Winograd. On the algebraic complexity of inner product. Linear Algebra and Appl.,
4:377–379, 1971.

Appendix: Trilinear aggregating techniques

Trilinear aggregating is an idea due to Pan [25, 23], that enables one to perform three matrix
products simultaneously, and can be adapted to perform a single product. In this appendix,
we recall the main idea behind this algorithm and present a new version that improves some
former ones (previous costs are reported in Table 2). Our improvements are summarized in
the following proposition.

Proposition 2. If n is even, one can compute (n×n×n) matrix products using (n3 +12n2 +
11n)/3 multiplications. If n is odd and greater than 3, one can compute (n× n× n) matrix
products using (n3 + 15n2 + 14n− 6)/3 multiplications.

This appendix establishes these claims. Contrary to the rest of this paper, we will
present here the algorithm under a compact form (essentially, a decomposition of the matrix
multiplication tensor, that we choose to write simply under a polynomial form); besides, we
will use without proof some key results that are in the literature (the main ideas are due

26

http://www.math.temple.edu/~wds/prospector.pdf
http://www.math.temple.edu/~wds/prospector.pdf


to Pan [25, 23], and Laderman, Pan and Sha [18]). We start with the even case, giving a
review of the general approach to trilinear aggregating. Then, we give our modifications for
the case of odd n (which is usually left out in previous work on this question).

As for the results in Section 3, an implementation in Magma that validates the claims in
this appendix is available at the address http://www.csd.uwo.ca/~mislam63/

A.1 The even case

Preamble: polynomial notation. The following classical representation provides an
alternative way to encode matrix multiplication algorithms. It amounts to write down a
decomposition of the tensor of matrix multiplication; however, we choose to avoid the intro-
duction of tensors, using simply commutative polynomials. This formalism will allow us to
describe trilinear aggregating algorithms in a compact manner (although writing an actual
implementation requires unfolding these formulas).

Consider matrices A = [ai,j] and B = [bi,j] of sizes (m×n) and (n× p), and let C = [ci,j]
be an (m× p) matrix with indeterminate entries. Define the polynomial

T(A,B,C) =
∑

1≤i≤m, 1≤j≤n, 1≤k≤p

ai,jbj,kck,i,

and remark that for all i, k, the coefficient of ck,i is the (i, k)-entry of the product C = AB;
the fact that ck,i appears in the sum instead of ci,k is only meant to comply to the standard
practice. Thus, computing T solves our matrix multiplication problem.

Reduction to zero-sum rows and columns. In this paragraph, we are to multiply two
matrices A,B of size (2n×2n). The following construction is inspired by [18] and follows [16].
We subdivide A,B into blocks of size (n× n) as

A =

[
A1,1 A1,2

A2,1 A2,2

]
and B =

[
B1,1 B1,2

B2,1 B2,2

]
;

here, block indices are given as superscripts, as we will need subscripts later on. Then, we
define the matrices of respective sizes ((n+ 1)× n) and (n× (n+ 1))

L =

[
I
−u

]
, R =

[
I − 1

n+1
utu − 1

n+1
ut
]
,

where u is the row vector of length n with all entries equal to 1; if needed, we will write Ln

and Rn to indicate the dependency in n.
We can then define Ãi,j = LAi,j R and B̃i,j = LBi,j Lt; these are matrices of size

((n + 1) × (n + 1)). These matrices have zero-sum rows and columns, and this property
underlies Lemma 4 below. Finally, we define the matrices Ã and B̃ of size ((2n+2)×(2n+2))
by

Ã =

[
Ã1,1 Ã1,2

Ã2,1 Ã2,2

]
and B̃ =

[
B̃1,1 B̃1,2

B̃2,1 B̃2,2

]
,
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and let C̃ = ÃB̃. Knowing C̃, we can recover the result C = AB: we decompose C̃ into
blocks of size ((n + 1) × (n + 1)) and obtain Ci,j by discarding the last row and column
of C̃i,j.

Computing C. To simplify notation, let m = n + 1; for i, j ∈ {1, 2}, let then C̃i,j be a
matrix of indeterminates ci,j

a,b of size (m×m). Following the description in the first paragraph,

computing T(Ã, B̃, C̃) gives us C̃, and thus C.
However, we are not interested in all of T(Ã, B̃, C̃), since we are only interested in four

blocks of size (n × n) in C̃. Hence, we can reduce the index sets used in our sums, using
the following rule: any term of the form ci,j

a,b, with either a = m or b = m, can be discarded.

Thus, we let t(Ã, B̃, C̃) be obtained from T(Ã, B̃, C̃) by setting any such ci,j
a,b to zero, and

we note that computing t(Ã, B̃, C̃) is enough to compute C.

Decomposing the sum. Still following Pan’s ideas, we introduce here a decomposition
of the sum t̃(Ã, B̃, C̃). In the following definition, R, S, T, U, V,W,X, Y, Z denote matrices
of size (m×m). Consider the sets

S1 = {(i, j, k), 1 ≤ i ≤ j < k ≤ m or 1 ≤ k < j ≤ i ≤ m},
S2 = {(i, j, k), 1 ≤ i, j, k ≤ m} − {(i, i, i), 1 ≤ i ≤ m}
s1 = {(i, j, k), (i, j, k) ∈ S1 and (i, j, k) contains at most one index equal to m}
s2 = {(i, j, k), (i, j, k) ∈ S2 and (i, j, k) contains at most one index equal to m}

and

s0(U, V,W ) =
∑

1≤i<m

9ui,ivi,iwi,i

s1(U, V,W ) =
∑

(i,j,k)∈s1

(ui,j + uj,k + uk,i)(vj,k + vk,i + vi,j)(wk,i + wi,j + wj,k)

s2(R, S, T, U, V,W, X, Y, Z) =
∑

(i,j,k)∈s2

(ri,j + uj,k + xk,i)(sj,k + vk,i + yi,j)(tk,i + wi,j + zj,k)

u1(R, Y, T,W,Z) =
∑

1≤i,j<m,i6=j

ri,jyi,j

∑
1≤k≤m

wi,j + tk,i + zj,k

u2(R, Y, T,W,Z) =
∑

1≤i<m

ri,iyi,i

∑
1≤k≤m

wi,i + tk,i + zi,k

u3(R, Y, T ) =
∑

1≤i<m

ri,myi,m

∑
1≤k<m

tk,i

u4(R, Y, Z) =
∑

1≤j<m

rm,jym,j

∑
1≤k<m

zj,k

u(R, Y, T,W,Z) = u1(R, Y, T,W,Z) + u2(R, Y, T,W,Z)

+u3(R, Y, T ) + u4(R, Y, Z).
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The following lemma shows how to compute the product C = AB from such expressions. The
proof follows e.g. [18] in a straightforward manner, up to a few modifications: previous work
gave expressions for the full sum T(Ã, B̃, C̃) instead of t(Ã, B̃, C̃), and the decomposition
of u used above is new.

Lemma 4. The following equality holds:

t(Ã, B̃, C̃) = s0(Ã
1,1, B̃1,1, C̃1,1) + s0(Ã

2,2, B̃2,2, C̃2,2)

+ s0(Ã
1,2 − Ã1,1 + Ã2,1, B̃2,1 + B̃1,2 + B̃1,1, C̃1,1 − C̃1,2 + C̃2,1)

+ s0(Ã
1,2 + Ã2,1 − Ã2,2, B̃2,2 + B̃1,2 + B̃2,1, C̃1,2 + C̃2,2 − C̃2,1)

+ s1(Ã
1,1, B̃1,1, C̃1,1) + s1(Ã

2,2, B̃2,2, C̃2,2)

+ s2(Ã
1,2,−B̃2,1,−C̃1,1, −Ã1,1,−B̃1,2,−C̃1,2, −Ã2,1,−B̃1,1,−C̃2,1)

+ s2(Ã
1,2,−B̃2,2,−C̃1,2, −Ã2,1,−B̃1,2,−C̃2,2, −Ã2,2,−B̃2,1,−C̃2,1)

− u(−Ã1,1, B̃1,1, −C̃1,1,−C̃1,1,−C̃1,1)− u(−Ã1,2, B̃1,1, −C̃1,1,−C̃1,2,−C̃2,1)

− u(−Ã1,1, B̃2,1, −C̃1,2,−C̃2,1,−C̃1,1)− u(−Ã2,1, B̃1,2, −C̃2,1,−C̃1,1,−C̃1,2)

− u(−Ã1,2, B̃2,1, −C̃1,2,−C̃2,2,−C̃2,1)− u(−Ã2,1, B̃2,2, −C̃2,2,−C̃2,1,−C̃1,2)

− u(−Ã2,2, B̃1,2, −C̃2,1,−C̃1,2,−C̃2,2)− u(−Ã2,2, B̃2,2, −C̃2,2,−C̃2,2,−C̃2,2).

Our improvements. We are going to simplify some terms of the form u2,u3,u4. Decom-
pose u2(Ã

1,1, B̃1,1, C̃1,1, C̃1,1, C̃1,1) as

u2(Ã
1,1, B̃1,1, C̃1,1, C̃1,1, C̃1,1) =

∑
1≤i<m

a1,1
i,i b

1,1
i,i

∑
1≤k≤m

c1,1
i,i + c1,1

k,i + c1,1
i,k

=
∑

1≤i<m

a1,1
i,i b

1,1
i,i

(
mc1,1

i,i +
∑

1≤k≤m

c1,1
k,i + c1,1

i,k

)

and remark that, unfolding the expression of u, the following sub-expression appears in
Lemma 4:

s0(Ã
1,1, B̃1,1, C̃1,1)− u2(Ã

1,1, B̃1,1, C̃1,1, C̃1,1, C̃1,1).

We can rewrite this sum as −u′2(Ã
1,1, B̃1,1, C̃1,1), with

u′2(Ã
1,1, B̃1,1, C̃1,1) =

∑
1≤i<m

a1,1
i,i b

1,1
i,i

(
(m− 9)c1,1

i,i +
∑

1≤k≤m

c1,1
k,i + c1,1

i,k

)
.

The same remark holds for Ã2,2, B̃2,2, C̃2,2, and shows that we can compute

s0(Ã
2,2, B̃2,2, C̃2,2)− u2(Ã

2,2, B̃2,2, C̃2,2, C̃2,2, C̃2,2)
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as −u′2(Ã
2,2, B̃2,2, C̃2,2). The other simplification comes from terms of the form u3 and u4. A

quick verification shows that we can compute the sum of all u3 terms appearing in Lemma 4
as

u3(Ã
1,1 + Ã1,2, B̃1,1, C̃1,1) + u3(Ã

1,1 + Ã1,2, B̃2,1, C̃1,2)

+u3(Ã
2,1 + Ã2,2, B̃1,2, C̃2,1) + u3(Ã

2,1 + Ã2,2, B̃2,2, C̃2,2),

and similarly, all u4 terms can be grouped as

u4(Ã
1,1, B̃1,1 − B̃2,1, C̃1,1) + u4(Ã

1,2, B̃1,1 − B̃2,1, C̃2,1)

+u4(Ã
2,1, B̃2,2 − B̃2,1, C̃1,2) + u4(Ã

2,2, B̃2,2 − B̃1,2, C̃2,2).

Operation count. We have now obtained the final version of the multiplication algorithm.
We review all components that appear, and count the number of summands in each term, as
each summand can be computed in one base field multiplication (recall that multiplications
by constants are not taken into account).

• s0(Ã
1,2 − Ã1,1 + Ã2,1, B̃2,1 + B̃1,2 + B̃1,1, C̃1,1 − C̃1,2 + C̃2,1)

s0(Ã
1,2 + Ã2,1 − Ã2,2, B̃2,2 + B̃1,2 + B̃2,1, C̃1,2 + C̃2,2 − C̃2,1)

each term uses m− 1 multiplications.

• s1(Ã
1,1, B̃1,1, C̃1,1), s1(Ã

2,2, B̃2,2, C̃2,2)
each term uses |s1| multiplications, with |s1| = (m3−m)/3−(m−1) = (m3−4m+3)/3.

• s2(Ã
1,2, B̃2,1, C̃1,1, −Ã1,1, B̃1,2,−C̃1,2, −Ã2,1, B̃1,1,−C̃2,1)

s2(Ã
1,2, B̃2,2, C̃1,2, −Ã2,1, B̃1,2,−C̃2,2, −Ã2,2, B̃2,1,−C̃2,1)

each term uses |s2| multiplications, with |s2| = 3|s1| = m3 − 4m+ 3.

• −u1(−Ã1,1, B̃1,1, −C̃1,1,−C̃1,1,−C̃1,1), − u1(−Ã1,2, B̃1,1, −C̃1,1,−C̃1,2,−C̃2,1)
−u1(−Ã1,1, B̃2,1, −C̃1,2,−C̃2,1,−C̃1,1), − u1(−Ã2,1, B̃1,2, −C̃2,1,−C̃1,1,−C̃1,2)
−u1(−Ã1,2, B̃2,1, −C̃1,2,−C̃2,2,−C̃2,1), − u1(−Ã2,1, B̃2,2, −C̃2,2,−C̃2,1,−C̃1,2)
−u1(−Ã2,2, B̃1,2, −C̃2,1,−C̃1,2,−C̃2,2), − u1(−Ã2,2, B̃2,2, −C̃2,2,−C̃2,2,−C̃2,2)
each term uses (m− 1)2 − (m− 1) multiplications.

• −u′2(−Ã1,1, B̃1,1, −C̃1,1), − u2(−Ã1,2, B̃1,1, −C̃1,1,−C̃1,2,−C̃2,1)
−u2(−Ã1,1, B̃2,1, −C̃1,2,−C̃2,1,−C̃1,1), − u2(−Ã2,1, B̃1,2, −C̃2,1,−C̃1,1,−C̃1,2)
−u2(−Ã1,2, B̃2,1, −C̃1,2,−C̃2,2,−C̃2,1), − u2(−Ã2,1, B̃2,2, −C̃2,2,−C̃2,1,−C̃1,2)
−u2(−Ã2,2, B̃1,2, −C̃2,1,−C̃1,2,−C̃2,2), − u′2(−Ã2,2, B̃2,2, −C̃2,2)
each term uses m− 1 multiplications.

• −u3(Ã
1,1 + Ã1,2, B̃1,1, C̃1,1), − u3(Ã

1,1 + Ã1,2, B̃2,1, C̃1,2)
−u3(Ã

2,1 + Ã2,2, B̃1,2, C̃2,1), − u3(Ã
2,1 + Ã2,2, B̃2,2, C̃2,2)

each term uses m− 1 multiplications.
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• −u4(Ã
1,1, B̃1,1 − B̃2,1, C̃1,1), − u4(Ã

1,2, B̃1,1 − B̃2,1, C̃2,1)
−u4(Ã

2,1, B̃2,2 − B̃2,1, C̃1,2), − u4(Ã
2,2, B̃2,2 − B̃2,1, C̃2,2)

each term uses m− 1 multiplications.

Summing, we obtain (8m3 + 24m2 − 50m + 18)/3 multiplications. Remember that m =
n + 1, and that we are multiplying matrices A,B of size 2n. Thus, to obtain the cost for
multiplication in size n, with n even, we replace m by n/2 + 1 in the previous sum, and we
finally obtain a cost of (n3 + 12n2 + 11n)/3 multiplications.

A.2 The odd case

Finally, we discuss the extension of the previous construction to the case where the matrix
size is odd, of the form 2n+ 1. To our knowledge, no previous mention of the optimizations
arising in this case appeared before. We still split the input matrices A and B into four
blocks, which are now

A1,1 of size ((n+1)×(n+1)), A1,2 of size ((n+1)×n), A2,1 of size (n×(n+1)), A2,2 of size (n×n),

and similarly for B. The matrices Ãi,j and B̃i,j are defined as before, with now

Ãi,j = L(i)A
i,j R(j) and B̃i,j = L(i)B

i,j Lt
(j)

and L(1) = Ln+1, L(2) = Ln, R(1) = Ln+1 and R(2) = Ln. Let m = n + 2; then the sizes of
these matrices are as follows:

• Ã1,1 and B̃1,1 have size (m×m) and Ã1,2 and B̃1,2 have size (m× (m− 1))

• Ã2,1 and B̃2,1 have size ((m− 1)×m) and Ã2,2 and B̃2,2 have size ((m− 1)× (m− 1)).

As before, we let C̃ = ÃB̃, which we decompose into blocks

C̃ =

[
C̃1,1 C̃1,2

C̃2,1 C̃2,2

]
;

again, C = AB is given by

C =

[
C1,1 C1,2

C2,1 C2,2

]
,

where we discard the last row and column of all blocks C̃i,j.
To use the strategy given before in this case, we pad all blocks Ãi,j and B̃i,j with zeros as

needed, to give them size (m×m). Thus, we add one zero column to Ã1,2 and Ã2,2, and one
zero row to Ã2,1 and Ã2,2; we do the same to B̃. As it turns out, it is most efficient to insert
this extra row/column, not at the last entry, but at the last-but-one: previous optimizations
already reduced the number of operations involving the last row and column, so zeroing it
would not be optimal.

With this choice, we review the various sums introduced in the previous subsection and
indicate the possible savings:
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• s1(Ã
1,1, B̃1,1, C̃1,1), s1(Ã

2,2, B̃2,2, C̃2,2)
no savings are apparent in the first sum. In the second one, one can dismiss all terms
where two indices are equal to m− 1; there are m− 1 such terms.

• s0(Ã
1,2 − Ã1,1 + Ã2,1, B̃2,1 + B̃1,2 + B̃1,1, C̃1,1 − C̃1,2 + C̃2,1)

s0(Ã
1,2 + Ã2,1 − Ã2,2, B̃2,2 + B̃1,2 + B̃2,1, C̃1,2 + C̃2,2 − C̃2,1)

no savings are apparent in the first sum. In the second one, one can dismiss the term
of index m− 1.

• s2(Ã
1,2, B̃2,1, C̃1,1, −Ã1,1, B̃1,2,−C̃1,2, −Ã2,1, B̃1,1,−C̃2,1)

s2(Ã
1,2, B̃2,2, C̃1,2, −Ã2,1, B̃1,2,−C̃2,2, −Ã2,2, B̃2,1,−C̃2,1)

no savings are apparent in the first sum. In the second one, one can dismiss terms
where two indices are equal to m− 1; there are 3(m− 1) such terms.

• −u1(−Ã1,1, B̃1,1, −C̃1,1,−C̃1,1,−C̃1,1), − u1(−Ã1,2, B̃1,1, −C̃1,1,−C̃1,2,−C̃2,1)
−u1(−Ã1,1, B̃2,1, −C̃1,2,−C̃2,1,−C̃1,1), − u1(−Ã2,1, B̃1,2, −C̃2,1,−C̃1,1,−C̃1,2)
−u1(−Ã1,2, B̃2,1, −C̃1,2,−C̃2,2,−C̃2,1), − u1(−Ã2,1, B̃2,2, −C̃2,2,−C̃2,1,−C̃1,2)
−u1(−Ã2,2, B̃1,2, −C̃2,1,−C̃1,2,−C̃2,2), − u1(−Ã2,2, B̃2,2, −C̃2,2,−C̃2,2,−C̃2,2)
the presence of extra rows and columns of zeros reduces the cost of the second and
third lines by m− 2, and by 2(m− 2) for all lines from the fourth on. In total, we save
12(m− 2) multiplications.

• −u′2(−Ã1,1, B̃1,1, −C̃1,1), − u2(−Ã1,2, B̃1,1, −C̃1,1,−C̃1,2,−C̃2,1)
−u2(−Ã1,1, B̃2,1, −C̃1,2,−C̃2,1,−C̃1,1), − u2(−Ã2,1, B̃1,2, −C̃2,1,−C̃1,1,−C̃1,2)
−u2(−Ã1,2, B̃2,1, −C̃1,2,−C̃2,2,−C̃2,1), − u2(−Ã2,1, B̃2,2, −C̃2,2,−C̃2,1,−C̃1,2)
−u2(−Ã2,2, B̃1,2, −C̃2,1,−C̃1,2,−C̃2,2), − u′2(−Ã2,2, B̃2,2, −C̃2,2)
the presence of zeros saves one multiplication at each line, except the first one, for a
total of 7.

• −u3(Ã
1,1 + Ã1,2, B̃1,1, C̃1,1), − u3(Ã

1,1 + Ã1,2, B̃2,1, C̃1,2)
−u3(Ã

2,1 + Ã2,2, B̃1,2, C̃2,1), − u3(Ã
2,1 + Ã2,2, B̃2,2, C̃2,2)

the presence of zeros saves one multiplication at each line, except the first one, for a
total of 3.

• −u4(Ã
1,1, B̃1,1 − B̃2,1, C̃1,1), − u4(Ã

1,2, B̃1,1 − B̃2,1, C̃2,1)
−u4(Ã

2,1, B̃2,2 − B̃2,1, C̃1,2), − u4(Ã
2,2, B̃2,2 − B̃2,1, C̃2,2)

we save 3 multiplications, as in the previous case.

Without savings, the cost reported in the previous section was (8m3+24m2−50m+18)/3
multiplications. The savings add up to 16m−14, whence a total of (8m3+24m2−98m+60)/3
multiplications. To multiply matrices of odd size n, we actually have m = (n − 1)/2 + 2,
whence a total cost of (n3 + 15n2 + 14n− 6)/3.
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