
Code generation for polynomial multiplication

Ling Ding1 and Éric Schost2

1 ORCCA, Computer Science Department, The University of Western Ontario,
London, Ontario, Canada

lding6@csd.uwo.ca
2 ORCCA, Computer Science Department, The University of Western Ontario,

London, Ontario, Canada
eschost@uwo.ca

Abstract. We discuss the family of “divide-and-conquer” algorithms
for polynomial multiplication, that generalize Karatsuba’s algorithm. We
give explicit versions of transposed and short products for this family of
algorithms and describe code generation techniques that result in high-
performance implementations.

1 Introduction

Polynomial multiplication is a cornerstone of higher-level algorithms: fast algo-
rithms for Euclidean division, GCD, Chinese remaindering, factorization, New-
ton iteration, etc, depend on fast (subquadratic) algorithms for polynomial mul-
tiplication [20]. This article describes implementation techniques for several as-
pects of this question; we focus on dense polynomial arithmetic, as opposed the
sparse model [12].

Variants of polynomial multiplication. To fix notation, we let R be our base
ring, and for n ∈ N>0, we let R[x]n be the set of polynomials in R[x] of degree
less than n. We will write the input polynomials as

A = a0 +a1x+ · · ·+an−1x
n−1 ∈ R[x]n, B = b0 +b1x+ · · ·+bn−1x

n−1 ∈ R[x]n;

note that the number of terms of A and B is at most n. Note also that we assume
the same degree upper bound on A and B: this needs not be a sensible assump-
tion in general, but makes sense in many applications (such as Newton iteration
or GCD). Our first objective is to compute the coefficients of the product

C = AB = c0x + c1x + · · · + c2n−2x
2n−2 ∈ R[x]2n−1.

This operation will be called plain multiplication. It turns out that two other
forms of multiplication are useful: the first is the transposed multiplication,
closely related to the middle product of [9]. The other noteworthy form is the
short product, introduced in [14] and studied in [10]. Both are detailed in Sec-
tion 3, together with mentions of their applications.

Our contribution: code generation for divide-and-conquer algorithms.

Beyond from the naive algorithm, the main classes of fast algorithms are gener-
alizations of Karatsuba’s approach [11, 18, 21], where a given pattern is used in a
divide-and-conquer fashion, and FFT-like approaches, that use or build suitable
evaluation points [7, 15, 6], usually roots of unity.

In this paper, we focus on the former family. Despite its richness, we are not
aware of a systematic treatment of algorithms for transposed or short product in
this context. First, we fill this gap, giving explicit versions of such algorithms. We
will see the algorithms of this family can be described in finite terms, by triples
of graphs. Then, we describe a code generator that turns such graphs into C
implementations, avoiding the need to reimplement everything from scratch; the
performance of these implementations is among the best known to us.

Previous work. Most algorithms for plain multiplication discussed here are
well-known: the most classical ones are due to Karatsuba [11] and Toom [18],
with improvements in [1]; some less well-known ones are due to Winograd [21].

It is well-known that any algorithm for plain multiplication can be trans-
formed into an algorithm for transposed multiplication; this is already in [21],
and is developed in [9, 3], together with applications. However, while the ex-

istence of transposed algorithms was known, our general derivation of explicit

divide-and-conquer algorithms is new, to our knowledge: the only explicit exam-
ples in [9, 3] describe Karatsuba multiplication. Similarly, the possibility of using
any divide-and-conquer algorithm to perform short products is hinted at in [10],
but no details are given; only the case of Karatsuba multiplication is developed
in great detail. Our general presentation is, to our knowledge, new.

Computational model. Our problems are bilinear; computations will thus be
done as follows: linear combinations of the inputs are computed (separately), fol-
lowed by pairwise products of the values thus obtained; the result is deduced by
a last series of linear combinations of these products. Our complexity estimates
count the linear operations and the pairwise products.

2 Preliminaries: graphs for linear maps

We address first the linear part of the computations: we recall here how to com-
pute linear maps using a graphical representation. The material in this section
is well-known [5, Ch. 13].

Definition. A linear graph G consists of

– a directed acyclic graph (V, E) with k inputs and ℓ outputs,
– a weight function λ which assigns a weight λ(e) ∈ R to each edge e,
– orderings (A0, . . . , Ak−1) and (F0, . . . , Fℓ−1) of the inputs and outputs.

One assigns a matrix to a linear graph in a straightforward way. Each vertex is
assigned a value, obtained by following the “flow” from inputs to outputs: going
from a vertex v to a vertex v′ along an edge e, the value at v is multiplied by

the weight λ(e); the value at v′ is obtained by summing the contributions of
all incoming edges. The values obtained at each vertex are linear combinations
of the values a0, . . . , ak−1 given at the inputs A0, . . . , Ak−1. In particular, let
f0, . . . , fℓ−1 be the values computed by the output nodes F0, . . . , Fℓ−1; fi can
thus be written fi = Li,0a0 + · · · + Li,k−1ak−1, for some constants Li,j , so that




f0

...
fℓ−1


 = L




a0

...
ak−1


 , with L =




L0,0 · · · L0,k−1

...
...

Lℓ−1,0 · · · Lℓ−1,k−1


 .

Thus, we say that the linear graph G computes the matrix L.

Cost. To measure the number of operations attached to a linear graph, we first
make our computational model more precise: we count at unit cost multiplica-
tions by constants, as well as operations of the form α = ±β±γ. Then, we define
the cost of G as the number

c(G) := |{e ∈ E | λ(e) 6= ±1}| + |E| − |V | + k.

We claim that, with a = [a0 · · · ak−1]
t, the matrix-vector product a 7→ La can

be computed using c(G) operations. Indeed, along the edges, each multiplication
by a constant different from ±1 costs one operation, which add up to |{e ∈
E | λ(e) 6= ±1}|. Then, if the input of a vertex v consists of s edges, computing
the value at v uses another s − 1 operations of the form ±β ± γ; summing over
all v gives an extra |E| − |V | + k operations.

Transposition. The transposition principle asserts that an algorithm perform-
ing a matrix-vector product can be transposed, producing an algorithm that
computes the transposed matrix-vector product, in almost the same complexity
as the original one. In our model, the transposition principle is easy to prove.
If G is a linear graph with k inputs and ℓ outputs, that computes a matrix
L, we define the transposed graph Gt exchanging inputs and outputs and re-
versing the edges, without changing the weights. Theorem 13.10 in [5] proves
that Gt computes the transposed matrix of L; besides the cost c(Gt) is given by
c(Gt) = c(G) − k + ℓ.

3 Polynomial multiplication and its variants

In this section, we describe three variants of polynomial multiplication (plain,
transposed and short product), and give algorithms for all of them. The al-
gorithms we consider will be called “divide-and-conquer”, following the termi-
nology of [19]. The most well-known representatives of this class are due to
Karatsuba and Toom, though many more exist.

3.1 Divide-and-conquer algorithms

A divide-and-conquer algorithm of parameters (k, ℓ), with k < ℓ, is a triple
G = (GA,GB,GC) of linear graphs such that GA and GB have k inputs and ℓ
outputs, and GC has ℓ inputs and 2k − 1 outputs (other conditions follow).

Let A = (A0, . . . , Ak−1) and B = (B0, . . . , Bk−1) be indeterminates and let
L0(A), . . . , Lℓ−1(A) and M0(B), . . . , Mℓ−1(B) be the linear forms computed by
respectively GA and GB. Let further Ni = LiMi and let P0, . . . , P2k−2 be the
linear forms computed by GC . Then, the last conditions for GA, GB and GC to
form a divide-and-conquer algorithm is that for i = 0, . . . , 2k − 2,

Pi(N) =
∑

0≤j<k, 0≤j′<k, j+j′=i AjBj′ ,

where Pi(N) stands for the evaluation of the linear form Pi at N0, . . . , Nℓ−1. For
instance, Karatsuba’s algorithm has k = 2, ℓ = 3 and

– L0 = A0, L1 = A0 + A1, L2 = A1

– M0 = B0, M1 = B0 + B1, M2 = B1

– P0(N) = N0, P1(N) = N1 − N0 − N2, P2(N) = N2.

Other examples due to Toom [18] and Winograd [21] are in the last section; note
that in these examples, GA = GB.

3.2 Plain multiplication

Let G = (GA,GB,GC) be a divide-and-conquer algorithm of parameters (k, ℓ).
We now recall the well-known derivation of an algorithm for plain multiplication
using G; note that this formalism does not cover evaluations at points in R(x),
which are useful e.g. over GF(2) [22].

Given n and A, B in R[x]n, we let h = ⌊(n+ k− 1)/k⌋ and h′ = n− (k− 1)h,
so that h′ ≤ h. To make the algorithm simpler, we also want h′ > 0; this will be
the case as soon as n > (k − 1)2. Then, we write

A = A0 + A1x
h + · · · + Ak−1x

(k−1)h, B = B0 + B1x
h + · · · + Bk−1x

(k−1)h,

C = C0 + C1x
h + · · · + C2k−2x

(2k−2)h.

In Algorithm 1 below, we use the notation slice(A, p, q) to denote the “slice”
of A of length q starting at index p, that is, (A div xp) mod xq. Note that
A0, . . . , Ak−2 are in R[x]h and Ak−1 in R[x]h′ ; the same holds for the Bi; similarly,
C0, . . . , C2k−4 are in R[x]2h−1, C2k−3 in R[x]h+h′−1 and C2k−2 in R[x]2h′−1.

To obtain C, we compute the linear combinations Li of A0, . . . , Ak−1 and
Mi of B0, . . . , Bk−1, the products Ni = LiMi, and the polynomials Ci as the
linear combinations Pi(N). To handle the recursive calls, we need bounds ei and
fi such that deg(Li) < ei and deg(Mi) < fi holds: we simply take ei = h if
Li 6= Ak−1, and ei = h′ if Li = Ak−1; the same construction holds for fi. For
simplicity, we assume that ei = fi for all i: this is e.g. the case when GA = GB . If
ei 6= fi, the recursive calls need to be slightly modified, by e.g. doing a recursive
call in length min(ei, fi) and an extra O(n) operations to complete the product.

The cost T (n) of this algorithm is O(nlogk(ℓ)); one cannot easily give a more
precise statement, since the ratio T (n)/nlogk(ℓ) does not have a limit as n → ∞.
We give here closed form expressions for n of the form ki; in this case, we can
go down the recursion until n = 1, which simplifies the estimates.

Algorithm 1 Mul(A, B, n)

Require: A, B, n, with deg(A) < n and deg(B) < n
Ensure: C = AB
1: if n ≤ (k − 1)2 then

2: return AB naive multiplication
3: h = ⌊(n + k − 1)/k⌋, h′ = n − (k − 1)h
4: for i = 0 to k − 2 do

5: Ai = slice(A, ih, h)
6: Bi = slice(B, ih, h)
7: Ak−1 = slice(A, (k − 1)h, h′)
8: Bk−1 = slice(B, (k − 1)h, h′)
9: compute the linear combinations L0, . . . , Lℓ−1 of A0, . . . , Ak−1

10: compute the linear combinations M0, . . . , Mℓ−1 of B0, . . . , Bk−1

11: for i = 0 to ℓ − 1 do

12: Ni = Mul(Li, Mi, ei)
13: recover C0, . . . , C2k−2 as linear combinations of N0, . . . , Nℓ−1

14: return C = C0 + C1x
h + · · · + C2k−2x

(2k−2)h.

The number of bilinear multiplications is ℓi. As to the linear operations, let
cA, cB, cC be the costs of GA,GB,GC . On inputs of length n, a quick inspection
shows that we do cAn/k+cBn/k+cC(2n/k−1) operations at steps 9, 10 and 13
and 2(k − 1)(n/k − 1) additions at step 14, for a total of (cA + cB + 2cC + 2k −
2)n/k − (cC + 2k − 2). For n = ki, summing over all recursive calls gives an
overall estimate of

t(i) = (cA +cB +2cC +2k−2)(ℓi−ki)/(ℓ−k)−(cC +2k−2)(ℓi−1)/(ℓ−1). (1)

3.3 Transposed product

If A is fixed, the map A, B 7→ AB becomes linear in B. The transposed product

is the transposed map; applications include Newton iteration [9], evaluation and
interpolation [3], etc.

If A is in R[x]n, multiplication-by-A maps B ∈ R[x]n to C = AB ∈ R[x]2n−1.
For k ∈ N, we identify R[x]k with its dual; then, the transposed product A, C 7→
B = CAt maps C ∈ R[x]2n−1 to B ∈ R[x]n. Writing down the matrix of this
map, we deduce the explicit formula [9, 3]

B = (CÃ div xn−1) mod xn,

where Ã = xn−1A(1/x) is the reverse of A. This formula gives a quadratic algo-
rithm for the transposed product; actually, any algorithm for the plain product
can be used, by computing CÃ and discarding the unnecessary terms.

However, one can do better. As a consequence of the transposition principle,
algorithms for the plain product yield algorithms for the transposed one, with
only O(n) cost difference: this was mentioned in [21], and developed further in [9]
and [3]. However, none of the previous references gave an explicit form for the
transposed version of divide-and-conquer algorithms, except for Karatsuba.

In Algorithm 2, we provide such an explicit form, on the basis of a divide-
and-conquer algorithm G of parameters (k, ℓ). The polynomial A is subdivided
as before, and the linear operations applied to the slices Ai are unchanged. The
other input is now C; we apply to it the transposes of the operations seen in Al-
gorithm 1, in the reverse order. Summing C0, . . . , C2k−2 in Algorithm 1 becomes
here the subdivision of C into C0, . . . , C2k−2, using the degree information ob-
tained in the previous section. Then, we follow the transposed graph Gt

C to obtain
N0, . . . , Nℓ−1; we enforce the degree constraints deg(Ni) < 2ei −1 by truncation
(these truncations are the transposes of injections between some R[x]2ei−1 and
R[x]2ej−1 that were implicit at step 13 of Algorithm 1). After this, we apply the
algorithm recursively, follow the transposed graph Gt

B to obtain B0, . . . , Bk−1,
and obtain B as the sum B0 + · · · + Bk−1x

(k−1)h.

Algorithm 2 TranMul(A, C, n)

Require: A, C, n, with deg(A) < n and deg(C) < 2n − 1
Ensure: B = CAt

1: if n ≤ (k − 1)2 then

2: return CAt naive transposed multiplication
3: h = ⌊(n + k − 1)/k⌋, h′ = n − (k − 1)h
4: for i = 0 to k − 2 do

5: Ai = slice(A, ih, h)
6: Ak−1 = slice(A, (k − 1)h, h′)
7: for i = 0 to 2k − 4 do

8: Ci = slice(C, ih, 2h − 1)
9: C2k−3 = slice(C, (2k − 3)h, h + h′ − 1)

10: C2k−2 = slice(C, (2k − 2)h, 2h′ − 1)
11: compute the linear combinations L0, . . . , Lℓ−1 of A0, . . . , Ak−1

12: compute the transposed linear combinations N0, . . . , Nℓ−1 of C0, . . . , C2k−2, with
Ni truncated modulo x2ei−1

13: for i = 0 to ℓ − 1 do

14: Mi = TranMul(Li, Ni, ei)
15: compute the transposed linear combinations B0, . . . , Bk−1 of M0, . . . , Mℓ−1, with

Bk−1 truncated modulo xh′

16: return B0 + · · · + Bk−1x
(k−1)h

The cost T ′(n) of this algorithm is still O(nlogk(ℓ)). Precisely, let cA, cB, cC

be the costs of GA,GB,GC , and consider the case where n = ki. The number of
bilinear multiplications does not change compared to the direct version. As to
linear operations, the cost of step 12 is (cC − ℓ + 2k − 1)(2n/k − 1) and that of
step 15 is (cB − k + ℓ)n/k. After simplification and summation, we obtain that
for n = ki, the overall number of linear operations is now

t′(i) = (cA+cB +2cC +3k−ℓ−2)(ℓi−ki)/(ℓ−k)−(cC +2k−ℓ−1)(ℓi−1)/(ℓ−1).

With t(i) given in Eq. (1), we obtain t′(i)− t(i) = ki − 1 = n− 1, as implied by
the transposition principle: the transposed algorithm uses n−1 more operations.

3.4 Short product

The short product is a truncated product: to A, B in R[x]n, it associates C =
AB mod xn ∈ R[x]n; it was introduced and described in [14, 10], and finds a
natural role in many algorithms involving power series operations, such as those
relying on Newton iteration [4]. The situation is similar to that of the trans-
posed product: the previous references describe Karatsuba’s version in detail,
but hardly mention other algorithms in the divide-and-conquer family. Thus, as
for transposed product, we give here an explicit version of the short product
algorithm, starting from a divide-and-conquer algorithm G of parameters (k, ℓ).

For Karatsuba’s algorithm, two strategies exist in the literature; the latter
one, due to [10], extends directly to the general case. Instead of slicing the input
polynomials, we “decimate” them: for A ∈ R[x]n, we write A =

∑
i<k Ai(x

k)xi

(the same holds for B). Here, the polynomial Ai belongs to R[x]hi
, with hi =

⌊(n + k − 1 − i)/k⌋; we denote it by Ai = decimation(A, i, hi). Then, with
Ci =

∑
j+j′=i AjBj′ , we deduce

C =
∑

i<2k−1 Ci(x
k)xi =

∑
i<k−1(Ci + xCi+k)(xk)xi + Ck−1(x

k)xk−1.

We compute the linear combinations Li of A0, . . . , Ak−1 and Mi of B0, . . . , Bk−1,
the products Ni = LiMi, and finally Ci using the linear forms P0, . . . , P2k−2. We
need to compute Ci modulo xhi . For i < ℓ, let thus i′ be the largest index such
that the product LiMi appears with a non-zero coefficient in the linear form Pi′

(this depends on the divide-and-conquer algorithm), and let gi = hi′ Since the
hi form a decreasing sequence, it suffices to compute LiMi mod xgi .

These steps are summarized in Algorithm 3, where we reuse the notation
introduced above. Here, it suffices that n ≥ k to ensure that all hi, and thus all
gi, are positive, since smallest is hk−1 = ⌊n/k⌋. As for the previous algorithms,
the cost is O(nlogk(ℓ)); however, the precise analysis is much more delicate [10],
so we do not give any closed-form estimate here, even for n of the form ki.

4 Code generation

The algorithms given in the previous section all share the same shape; they
only depend on the datum of a divide-and-conquer algorithm G, that is, three
linear graphs. We wrote a java program that inputs such graphs and generates
C implementations; we describe it here.

Coefficient arithmetic. We focus on coefficient types that can be represented
using machine data types: polynomials with double coefficients and polynomials
with coefficients in Z/pZ, where p is an integer (typically a prime) that fits in a
machine word; p is not known in advance (the mpfq library [8] is able to exploit
possible prior knowledge of p).

In the first case, due to cancellations, operations on doubles do not satisfy
the ring axioms. Nevertheless, we support this type, since we want to compare
the running times between double and modular coefficients, and to measure to
what extent divide-and-conquer algorithms suffer from precision loss.

Algorithm 3 ShortMul(A, B, n)

Require: A, B, n, with deg(A) < n, deg(B) < n
Ensure: C = AB mod xn

1: if n = 1 then

2: return AB
3: for i = 0 to k − 1 do

4: Ai = decimation(A, i, hi)
5: Bi = decimation(B, i, hi)
6: compute the linear combinations L0, . . . , Lℓ−1 of A0, . . . , Ak−1

7: compute the linear combinations M0, . . . , Mℓ−1 of B0, . . . , Bk−1

8: for i = 0 to ℓ − 1 do

9: Ni = ShortMul(Li mod xgi , Mi mod xgi , gi)
10: compute the linear combinations C0, . . . , C2k−2 of N0, . . . , Nℓ−1, truncating Ci

modulo xhi

11: return C =
Pk−2

i=0 (Ci + xCi+k)(xk) xi + Ck−1(x
k)xk−1

In the second case, we use unsigned longs. Since our implementations are all
done on 64 bit platforms (Intel Core2 or AMD 64), long machine words can hold
up to 64 bits (we will actually slightly reduce this bound, for reasons explained
later). The implementation of operations modulo p follows well-known recipes;
we recall some of them here.

– The addition c = a + b mod p is done by computing c′ = a + b − p; if it is
negative, we add p to it. This is done by using the sign bit of c′ as a mask [17],
using shifts, ands and additions. The same trick is used for subtraction and
multiplication by small constants (used in the linear combination steps).

– Multiplications are done using Montgomery’s algorithm [13].
– The algorithms may do divisions by constants in the linear combination

steps; division by α is done by computing β = 1/α modulo p and multiplying
by β modulo p. Division by 2 receives a special treatment: writing p = 2q+1,
we obtain that p − q = 1/2 mod p. Thus, for an integer a = 2u + v, with
v ∈ {0, 1}, a/2 mod p is given by u + v(p − q) mod p.

– Some algorithms use roots of unity of low order (e.g.,
√
−1) when p allows it.

Input and output. On input a triple of matrices, the code generator produces C
code for plain, transposed, short multiplication, as well as two related operations,
square (where both inputs are the same, so some savings are possible) and short
square (similar, but with the same truncation as in the short product). Suppose
for instance that we consider the Karatsuba algorithm; the code generator takes
as input the following matrices:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 -1 1 -1 0 0 0 0

0 0 1 0 0 0 0

For a given multiplication type (plain, transposed or short) and a given data
type, we produce several functions: a top-level function, which allocates some
workspace and does some precomputations (e.g., the modular inverses or roots
of unity needed for the linear combinations), the main recursive function, and
functions for the linear combinations.

Memory management. Intermediate results are stored in temporary memory,
in successive slots of length either ⌈n/k⌉ or 2⌈n/k⌉. At code generation, when we
determine that a memory area can be reused, we reuse it. We can thus determine
how much workspace will be needed in a single call to the main recursive function
in length n. In general, if the call in length n uses rn+ s space, the total amount
will be rn + rn/k + · · · + s logk(n) ≤ rkn/(k − 1) + s logk(n). This memory is
allocated by the top-level function. Efforts are made to avoid using too much
memory, similarly to what one would do when writing the code by hand. When
an output of the linear combinations aliases an input, we reuse the input in all
other operations (e.g., for Karatsuba, the linear combinations are L0 = a0, L1 =
a0 + a1, L2 = a1: no copy is made and only an addition takes place).

Naive product. We implemented naive algorithms (for plain, transposed and
short products), for degrees up to 16. Our code for this case is generated auto-
matically as well, so as to unroll loops, since the compiler was not doing a very
good job by itself. We do not perform modular reduction after each step: we first
compute the whole result without any reduction, and apply the reduction in the
end. In degree < n, this reduces the number of reductions from n2 to n. However,
this slightly reduces the possible size of the modulus: only 60-bit modulus can
now be used. No assembly code was used: using gcc’s custom uint128 t type,
we obtained code of satisfying quality after compilation.

5 Experiments

We finally give the results of experiments an Intel Core2 Duo CPU T7300 with
4Gb RAM, set to 800Mhz clock speed. The timings are in seconds, for 500 rep-
etitions of the same computation. Our experiments use Karatsuba’s algorithm
and its generalizations by Toom, of parameters (k, 2k − 1): for the standard
evaluation points (0,±1,±2,±1/2, . . . ,∞), we use linear graphs from [1]. Com-
puting modulo p, with p = 4r+1, we wrote a version of Toom’s algorithm (called
i-Toom below) that evaluates at (0,±1,±

√
−1, 2,∞) using FFT techniques in

size 4. We also use a less known algorithm of parameters (3, 6) due to Winograd,
with only additions and subtractions in its linear combinations [21, Ch. IVc].
Complexity predicts that it should be slower than Karatsuba, but the simple
structure of the linear combinations made it worthwhile to experiment with.

Comparison between divide-and-conquer algorithms. Figure 1 compares
the algorithms of Karatsuba, Toom (k = 3) and Winograd, for plain product,
using unsigned longs (transposed and short products behave similarly). As
predicted, Winograd’s algorithm does not perform very well. More surprisingly,
Toom’s algorithm appears useful for most degrees (examples using other divide-
and-conquer algorithm are given below). Jumps appear for all algorithms; these

are due to crossing degree thresholds determined by both the parameter k of
the graphs, and the threshold for the switch to the naive algorithm: increasing
the latter smooths the curves noticeably. Finally, profiling using Valgrind shows
that in all cases, 65% to 70% is the time is spent in the naive algorithm.

ti
m

e
(s

.)

degree

Karatsuba
Toom

Winograd

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 200 400 600 800 1000 1200

Fig. 1. Comparison between divide-and-conquer algorithms

Comparison between multiplication types. Figure 2 compares plain, trans-
posed and short product, square and short square, with unsigned longs and
Toom’s algorithm (k = 3); the results for other divide-and-conquer algorithms
are similar. The transposed product is faster than its plain counterpart, even if
operation count predicts it should be slightly slower. Indeed, in the naive trans-
posed product, fewer modular reduction are needed than in the plain one (since
the output is twice as short); this is not accounted for in our model and seems
to explain the savings. The time for a short product is about 60% to 70% that
of a plain product, as in [10] for Karatsuba. The square product and the short
square are faster than their non-square counterparts, but not by much.

ti
m

e
(s

.)

degree

plain
transposed

square
short

short square

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200

Fig. 2. Comparison between multiplication types

Comparison with other systems. For primes of size 60 bit, the library NTL
v5.5 [16] and the computer algebra system Magma v2.15-6 [2] are the fastest
implementations known to us. We use the two available representations for NTL,
lzz p and ZZ p (our 60 bit primes are too large for the former, so we used 52

bit primes in that case). Figure 3 gives running times, where our code uses
“standard” Toom multiplication for k = 3 or k = 4 or i-Toom for p = 4r + 1.
Even though some other implementations use asymptotically faster algorithms
(the staircases indicate FFT multiplication), our code performs better in these
degree ranges. From degree 10000 on, Toom’s algorithm with k = 5 is the best
of our divide-and-conquer algorithms, but does no better than NTL’s FFT.

ti
m

e
(s

.)

degree

ntl lzz p
ntl ZZ p
magma
Toom 3

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000 1200

ti
m

e
(s

.)

degree

ntl lzz p
magma
Toom 4
i-Toom

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1000 2000 3000 4000 5000

Fig. 3. Comparison with other systems

Comparison between data types. Operations with double coefficients are
faster than with unsigned longs, but only by a factor of about 1.7 to 1.9 (for all
variants, and for all divide-and-conquer algorithms). Divide-and-conquer algo-
rithms do poorly in terms of precision with double coefficients: for useful kinds
of inputs (such as solutions of ODE’s), the cancellation errors make results un-
usable for degrees from 50 on.

6 Conclusion

Our approach offers several advantages: after paying the small price of writing
the code generator, it becomes straightforward to experiment various divide-and-
conquer algorithms, test optimizations, etc. Also, we now have general versions of
transposed and short product. For plain products, performance is comparable to,

and actually better than, that of software using FFT multiplication in significant
degree ranges. For short products, our advantage is actually higher, since it is
rather difficult to obtain an efficient short product using FFT multiplication.

Acknowledgments. We acknowledge the support of the Canada Research Chairs
Program, of the MITACS MOCAA project and of NSERC, and thank the ref-
erees for their helpful comments.

References

1. M. Bodrato and A. Zanoni. Integer and polynomial multiplication: towards optimal
Toom-Cook matrices. In ISSAC’07, pages 17–24. ACM, 2007.

2. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997.

3. A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In ISSAC’03,
pages 37–44. ACM, 2003.

4. R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series.
J. ACM, 25(4):581–595, 1978.

5. P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory,
volume 315 of Grund. Math. Wissen. Springer-Verlag, 1997.

6. D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica, 28(7):693–701, 1991.

7. J. Cooley and J. Tukey. An algorithm for the machine calculation of complex
Fourier series. Mathematics of computation, 19, 1965.

8. P. Gaudry and E. Thomé. The mpFq library and implementing curve-based key
exchanges. In SPEED, pages 49–64, 2007.

9. G. Hanrot, M. Quercia, and P. Zimmermann. The middle product algorithm. I.
Appl. Algebra Engrg. Comm. Comput., 14(6):415–438, 2004.

10. G. Hanrot and P. Zimmermann. A long note on Mulders’ short product. J. Symb.

Comput., 37(3):391–401, 2004.
11. A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.

Soviet Math. Dokl., 7:595–596, 1963.
12. M. Monagan and R. Pearce. Parallel sparse polynomial multiplication using heaps.

In ISSAC’09. ACM, to appear.
13. P. L. Montgomery. Modular multiplication without trial division. Mathematics of

Computation, 44(170):519–521, 1985.
14. T. Mulders. On short multiplications and divisions. Appl. Algebra Engrg. Comm.

Comput., 11(1):69–88, 2000.
15. A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing,

7:281–292, 1971.
16. V. Shoup. A library for doing number theory. http://www.shoup.net/ntl/.
17. V. Shoup. A new polynomial factorization algorithm and its implementation. J.

Symb. Comp., 20(4):363–397, 1995.
18. A. Toom. The complexity of a scheme of functional elements realizing the multi-

plication of integers. Doklady Akad. Nauk USSR, 150(3):496–498, 1963.
19. J. van der Hoeven. Relax, but don’t be too lazy. J. Symbolic Comput., 34(6):479–

542, 2002.
20. J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University

Press, Cambridge, second edition, 2003.
21. S. Winograd. Arithmetic complexity of computations, volume 33 of CBMS-NSF

Regional Conference Series in Applied Mathematics. SIAM, 1980.
22. P. Zimmermann. irred-ntl patch. http://www.loria.fr/zimmerma/irred/.

