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Abstract

We present hereransalpyne, a scripting language, to be exe-

cuted on top of a computer algebra system, that is specjficaii-
ceived for automatic transposition of linear functions.titpe sys-
tem is able to automatically infer all the possible lineandiions
realized by a computer program. The key featurerefnsalpyne
is its ability to transform a computer program computingreedir
function in another computer program computing the trassgo
linear function. The time and space complexity of the résglpro-
gram are similar to the original ones.

Categories and Subject Descriptors 1.1.3 [Symbolic and Alge-

braic Manipulatior]: Languages and Systems—Special-purpose

algebraic systems

General Terms Languages, Algorithms

Keywords Transposition principle, Tellegen’s principle, linear al
gebra, programming languages

1. Introduction

Computer Algebra is devoted to developing algorithms tokwor

on symbolic representations of mathematical objects.drineaps
over vector spaces or, more generally, free modules ara oéfe
resented by matrices, either in dense or sparse form. Thoalku
black-box model gives another way of representing a linpafia
cationL : V. — W:a computer program that on any inpue V'

gives as outpuf(v) is taken as a symbolic representationZof
this of course assumes a precise computer representatibe ef-
ements oft” andW'.

Since the seminal paper [25], computer algebraists havel-dev

oped algorithms to work with black-box represented lineaps
In the black-box model, algorithms are only allowed to quinry
black-box by feeding an input to the black-box program aradi+e
ing its output; no other information on the linear map can be o
tained, in particular the source code of the program caneatrb
alyzed. The complexity of black-box algorithms is measusdn
the computational model being used to describe the algoriptus
the number of calls to the black-box program is taken intmant
as a special parameter.

In the black-box model, algorithms are known to compute the

minimal polynomial, the determinant, the inverse, the r@hik,
25] and the characteristic polynomial [5, 6, 23]. This model
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interesting whenever the matrix representing the linegs imaoo
big to allow efficient processing by a computer program, hawre
its information can easily be compressed in a black-box narng
sparse or Vandermonde matrices are a classical example.

On the other side, Algebraic Complexity studies the coniplex
of computer programs that perform algebraic computatignath
stracting from the actual representation of algebraic efgm Only
arithmetic operations in the ring of interest are accoufvedOne
of the standard models used in algebraic complexity is tith-ar
metic circuit: a directed acyclic graph (DAG) is used to esmnt
the flow of arithmetic evaluations, each node of the DAG ant®u
for one arithmetic operation (usualy or x).

In particular, arithmetic circuits can be used to reprebiantk-
box programs computing linear maps. Then it is a well known
theorem, [2, Th. 13.20] that a linear map and its transpose ha
similar algebraic complexities in the arithmetic circuibdel; this
is often known adransposition theorenor Tellegen’s theorem
By a well known equivalence [2, Lemma 13.17], the transjpasit
theorem extends to the straight-line program (SLP) modets€
results justify the fact that some extensions of the blazk+nodel
allow black-box algorithms to query the linear form as weallies
transpose.

Besides that, extensions of the transposition theorem éo th
Random Acces Machine (RAM) model have been successfully
applied in computer algebra to develop efficient algoritiins,
12, 19, 22]. The key to all these results is to realize thatrtace
map is the transpose of some other well known linear maphen,
an efficient algorithm in the RAM model fof. is translated to
the arithmetic circuit model, the transposition theorenapglied
and the resulting arithmetic circuit is translated back tRAM
algorithm. All the papers usad hoctransformations to/from the
arithmetic circuit model but give no general technique tdqgren
such translation; the only notable exception is [1] thatraefia very
restricted language —not far away from the SLP paradigm-hichv
a constructive proof of the transposition principle is [lolss

Here we present an extension of [1] that allows to automati-
cally treat a wider class of programs. We reserve the thieatete-
tails of the construction for a forthcoming paper and foawstead
on its implementation. We are currently developing an esitan
language for python, calletkansalpyne, for which transposition
can be automatically performed by the compiler/interprete

One of the key features afransalpyne is the possibility to
automatically discover all the possillieearizationsof a program.

In fact, many linear functions can correspond to the samepooen
program: in the case of multiplication of polynomials, faaenple,
the same program corresponds to two linear functions, namel
left and right multiplication by a constantransalpyne uses an
algorithm similar to the type inference of statically tygedctional
languages [3] to discover all of these linearizations.

For each discovered linearization, the compiler/integargen-
erates the correct transposition. It can be shown that thebedic
complexity of the resulting program is similar to the onetwf brig-
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inal program. In the next sections we summarize the theahttzan
practice of transposition itransalpyne.

2. Arithmetic circuits

In this section we briefly present the arithmetic circuit miodror
convenience, our presentation slightly deviates fronmbiaoks; for
a more classical and extensive treatment see [2, 24].

2.1 Basic definitions

DEFINITION 1 (Arithmetic operator, arity)Let R be a ring. An
arithmetic operator overR is a functionf : R® — R° for some
i,0 € N. We setR® = 0, the zeroR-module. Here is called the
in-arity of f or simplyarity, o is called theout-arity of f.

DEFINITION 2 (Arithmetic basis)Let R be a ring. An arithmetic
R-basis is a (not necessarily finite) set of arithmetic oparsbver
R.

The arithmetic basis we will work with is thBnear basis
denoted byL. It is composed of

+:RxR—R ¥, R— R H:R— RXR
a,b—a+b b— ab a+— a,a
(£)
0:0—R w:R—0
1—0 a—1

where we denote by the unique element df to avoid confusion
with the0 of R. Arithmetic circuits are directed acyclic multigraphs
carrying information from an arithmetic basis; the formefidition
follows.

DEFINITION 3 (Arithmetic node).Let R be a ring andB be an
R-basis. A node ovelR, B) is atuplev = (1, O, f) such that

e [ and O are finite ordered sets,
¢ fis either an element df or the special valué.
e If f = (), one of the two following conditions must hold:
= ] is a singleton and is empty, in this case we say thais
aninput node
= [ is empty andD is a singleton, in this case we say thsis
anoutput node
e If f £ (), the cardinality ofl matches the in-arity of and the
cardinality of O matches the out-arity of; in this case we say
thatv is anevaluation node

We call input portsthe elements off and output portsthe
elements oD, which we denote respectively by (v) andout(v).
The cardinalities of andO are called, respectively, the-degree
andout-degreeof v. We call f thevalueof v and write3(v) for it.

DEFINITION 4 (Arithmetic circuit). Let R be a ring and5 be an
R-basis. An arithmetic circuit ove(R, ) isa tupleC = (V, E, <
, <i, <o) such that

1. V is afinite set of nodes ovéR, B);

2. < is a total order onV, <; is a total order on the input nodes
inV, <, is a total order on the output nodes 1;

3.letl = |y, in(v) and O = Y, out(v), thenE is a
bijection fromO to I such thatE(o) = 4 implies thato €
out(v), 4 € in(v') andv < v'.

Itis useful to see as a set of pairéo, i) with ¢ € I ando € O.
Then the elements of are called theedgesof the circuit. The
edgesincidentto v € V are all the(o, 7) € F such that € in(v);
the edgestemmingrom v € V are all the(i,0) € E such that

o € out(v). An edge stemming from and incident ta’ is said to
connect tov’. We callinputsandoutputsof a circuit, respectively,
the input and output nodes i; which we denote byn(C) and

out(C).

DEFINITION 5 (Size, depth)Let C be a circuit over(R, B). The
size ofC, denoted byize(C) is the number of evaluation nodes in
V; the depth of”', denoted bylepth(C) is the length of the longest
directed path —in a graph-theoretic sense<{in E).

Sometimes it is useful to only count certain nodes. X et B,
the X -weighted size of’, denoted byize x (C) is the number of
nodesv € V such thatg(v) € X.

Figure 1 shows an example of arithmetic circuit, the analogy
with multiDAGs is evident. We draw input and output nodes in
square boxes and evaluation nodes in round boxes.

Figure 1. Two arithmetic circuits ovel’. The linear mapy;, =
x1 + 3z2,y2 = x3 is computed by the circuit on the left and its
transpose is computed by the circuit on the right.

Circuits are endowed with the usual semantics consistitigan
evaluation of the arithmetic operations on their inputs. d&aote
by evalc the functionR? — R° computed by the circuif’. For a
circuit over (R, £) it can be shown thatvalc is a linear operator;
we skip the formal definitions and proofs for conciseness.

2.2 The transposition theorem

For a circuit over the basi€, each node can be viewed as a
linear operator and the arrows can be understood as congposin
operators in a suitable way to obtainal-. By reversing the flow
and transposing the operator computed at each node, orieata
circuit that computes the transposed operator.

DEFINITION 6. Dual circuit LetC' = (V, E,<,<7,<0) be a
circuit over (R, £), the dual circuit ofC', denoted byC*, is the
arithmetic circuit

=" E <, <€)

where for any node = (1,0, f) in V there is a nodev™ =
(O,I, f*)in V* where

[iff=x,
+ if f=H,
ff=<H iff=+, 1)
w iff=0,
0 if f=uw;

and for any input nodey = (0,0, 0) there is an output node
= (0, 0,0) andvice versa
The orderings<’, <} and </, are defined as follows:

v<v e V< v, @)
1<, v & vt v, ?3)
v v e vt G (4)
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In particular, this make&V’, E~') the reverse graph ¢V, F)
in a graph-theoretic sense. Figure 1 shows two circuits ¢hah
other’'s dual. We now state the transposition theorem, foroafp
see [2, Th. 13.20].

THEOREM1 (Transposition theorem)et C' be a circuit over
(R, £) that computes a linear applicatiofi, then C* computes
the transposed linear applicatiofi".

COROLLARY 1. Alinear functionf : R™ — R™ and its transpose
can be computed by arithmetic circuits of same sizes andhsejot
particular if C computesf and C* computesf™,

size(41(C) = sizequy (C™), sizeqny (C) = sizeg43(C”),

sizefs,} (C) = size(,,3(C*) foranya € R,

size(o} (C) = size,,1 (C), size(,}(C) = sizefoy (C*).

A circuit is limited to compute one specific function with imng
and outputs of fixed size (in term of elementsi)f However com-
plexity theory is interested in algorithms that compute muuits of
variable size. This leads to study families of circuits.

DEFINITION 7 (Circuit family). Let R be a ring, B a basis over
R and P a set. Acircuit family over (R, B,P) is a family of
circuits over(R, B) indexed byP. P is called theparameter space
of the family. When the mapping frafto the circuits is Turing-
computable, the family is callaghiform.

We are mainly interested in uniform circuit families sinbey
are equivalent to computable functions, theorem 1 easiheige
alizes to them. We will not study uniform circuit families neo
in depth, what we do instead is directly work on computer pro-
grams implicitly representing circuit families and autdivally de-
duce the transposed family without actually using the diroodel.
More details on uniform circuit families can be found in [24]

3. transalpyne

transalpyne iS a programming language suitable for expressing
linear algebraic programs and automatically transposen.thts
compiler/interpreter is able to implicitly deduce whichnfidies of
circuits a given program is equivalent to and to produce graim
computing the transposed family.

3.1 Concepts

transalpyne has been conceived as a scripting language to be

transalpyne must know at transpose time which variables con-
tain algebraic elements and which variables contain otla d
(such as booleans, strings, ints, etc.); this can be donzgicidly
specifying the type of the input and output parameters ohatfan,
while all the other variables can be left untypedtansalpyne
supports two sorts of algebraic types: ring elements anduieod
elements; we plan to support more complex algebraic types s
as algebras, in the futureransalpyne relies on python’s operator
overloading to represent ring operations.

Before transposing a functioaransalpyne mustprovethat it
is indeed a linear function in its arguments. The techniquesés
is tolinearizethe function, that is to make certain input and output
parameters constant until it can be shown that the remamitygut
parameters are linear in the remaining input parametersli¥dass
this in Section 4.

3.2 Syntax

We only describeransalpyne syntax informally. Indentation has
a syntactic value (it delimits blocks) and keywords aretgnetuch
the same. Acransalpyne file contains aype declaratiorsection
followed by aname definitiorsection.

3.2.1 Type declarations

transalpyne Supports two type constructors: a ring constructor
and a free module constructor.

type Ring R
type Module(R) M

This example declare® as a ring type andl as a free module
type over the ringR. The typechecker ensures that modules are
consistently declared.

3.2.2 Name declarations

Name declarations take three fornistports function definitions
andaliases Imports are declared as in python and have the same
semantics. Note however that the linearization algoritmsers
any imported function as a constant function.

There is nareturn statement irtransalpyne, function defi-

nitions are declared as follows
d): j

def (a, b)my-function(c,

used on top of computer algebra systems. We made an effort towhere input arguments are given on the right and output aegtsn

give syntax and semantics as close as possible to the pytioen p
gramming language.

on the left.
Inside function definitions, there are four types of statetsie

In transalpyne there is no such concept as an executable pass statements assignments (including augmented assignments),

program: only functions can be definedtinansalpyne. We call
target languagehe language to whickransalpyne programs are
compiled; the output of compilation is a library file whosedtions
can be imported by programs written in the target languaggy O
compilation to python is supported for the moment.

transalpyne can also be interpreted via the python interpreter.
A transalpyne library contained in a filay-1ibrary.yp can be
imported in a python program via the statement

[ import my-library ]

The python interpreter recognizes thgp extension and launches
thetransalpyne interpreter on the file; the functions of the library
are interpreted and transposed by tlkensalpyne interpreter and
their names are exported to the python namespace.
transalpyne is mostly dynamically typed, with the only
exception ofalgebraic typesIn order to transpose a function,

for loops andifs. The syntax is identical to python’s.

On the left hand side of assignments, may only appear variabl
names and subscripts. On the right hand side of assignntbats,
following types of expressions may appeatr:

e String, numeric and boolean constants;

e Binary and unary operatoss -, *, /, %, div, mod, <, >, <=, <=,
==, =, and, or, not, in;

e Parenthesized expressions;

e Subscripts and slices;

e List constructors, including comprehensions;
e Variable evaluations;

e Function calls.

1The statement that does nothing.
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The syntax for all of these is identical to python’s. The ombyable
exception are function calls where a keywatthns is added to let
the user call a transposition of a function. In case a functias
more than one linearization (and thus more than one traitspgs
signature specifierenclosed in brace§ } permit to specify which
linearization/transposition is wanted.

Finally, aliases permit to export specific linearizatioarispo-
sitions of functions with hames that can be used inside agpyth
program.

Figure 2 gives a completeransalpyne example. It defines a
product function and two aliases (with transposition and signature
specifiers).

type Ring R

def (R c)product(R a,
c =a=xbo

R b):

trans \
R}product{linear R,
trans \
R}product{const R,

1_product =
{linear
r_product =
{linear

const R}

linear R}

Figure 2. A transalpyne program

3.3 Semantics

We only give here the points weteansalpyne semantics differ
from python’s.

3.3.1 Types

transalpyne is statically typed for algebraic types. The type of
each input and output parameter of a function must be specifie
in the definition as in figure 2. When the type of an argument
is omitted, it is assumed to have non-algebraic type. Véab
inside the body of a function cannot be explicitly typed, pety
inference algorithm deduces their types from the typesefriput
parameters.

3.3.2 Side effects

There is no side effect ifransalpyne. In particular, there is no
global variable and assignment itself is more akin to théieting

of a functional language. After having transposed the fonst the
transalpyne compiler/interpreter leaves to the target language the
task of executing them, thus it cannot enforce the no-sifiete
policy at runtime. It is the responsibility of the user touns that

no side effect happens insidesansalpyne function.

3.3.3 Algebraic variables

Type declarations merely say that some variables belondyjpea
but do not specify any particular implementation of the typee
implementation of rings and modules is left to the user andtmu
be given in an external module written in the target language
user is only required to implement them as objects and tosexpo
few methods.

Ring objects must:

o Overload+ and* with the obvious semantic;

¢ Implement a methodero that returns the zero of the ring;

e Optionally, implement a methoshe that returns the one of the
ring;

e Optionally, implement a method that takes an integer and
returns the element - 1 of the ring;

e Optionally, implement method&iv andmod that perform Eu-
clidean division with remainder;

e Optionally, overload’ thus making the ring into a field.
Module objects must:

e Overload+ and* with the obvious semantic;

¢ Implement a methodero that returns the zero of the module;

e Overload the subscript operatfl so that it implements some
arbitrary projections on the underlying ring. Most oftemad-
ule will be implemented as an array of ring objects &gl will
just be projection onto the-th coordinate.

e Overload the assignment to subscript operator in the obviou
way.

Algebraic output parameters of a function are implicitlitiad-
ized to zero via theizero method. This insures that non-assigned
algebraic output parameters are always linear in the inpiutse
function.

Algebraic elements cannot be combined through the usetsf lis
lists of algebraic objects are non-algebraic objects archetion
from a list always yields a non-algebraic object.

3.3.4 Function calls

transalpyne does not have tuples; the return type of a function
with many output parameters is not a tuple, as a consequéce i
return value cannot be assigned to a variable: it must bgraesi
to as many variables as there are output parameters. Anmiher
sequence of this is that functions with many outputs caneaeised
inside expressions: their outputs can only be assignedriables.
Function nhames not declared in the library are simply reggrd
as external functions. They are assumed to have one rettampa
ter, thus a multi-assignment will return an error. Extefoaktions
have no algebraic input or output parameters. This is usefcell
builtin python function$ from inside atransalpyne program.

3.3.5 Recursion and Higher order

transalpyne allows recursion and even calling its own transpose.
It does not allow to pass functions as arguments to a functibn
though the transposition algorithm internally uses thititéque to
transpose for loops. A higher order transposable langusatieo-
retically possible and we plan to add this featuretensalpyne

in the future.

4. Linearization
The function

def (R c)product(R a,
c =a=xbo

R b):

is not linear ina andb, but it can be made linear by fixing one of
the two arguments, for example by considering it as the faofil
mappingsa — ab for any givenb. We call constthe arguments
that are fixed antinear the others; clearly const outputs must only
depend on const inputs, while linear outputs must lineaglyethd
on linear inputs for any given values of the const inputs sTiki
equivalent to model the function as a family of circuits wéos
parameter space is the domain of the const arguments.

transalpyne allows the user to annotate the types of the ar-
guments in order to specify whether they are const or linean
algebraic arguments are by default const).

20ne common example is the functieange, needed to iterate over mod-
ule elements.
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def (linear R c)product(linear R a,
const R b):

c a * b

Fortunately, the user need not specify all the modifiersesthey
can be inferred algorithmically.

We callsignaturea list of linear/const modifiers attached to the
arguments of a function. A function can, of course, have niwaa
one signature. The idea behind the signature inferenceitigois
simple.transalpyne starts from a few axioms on the signature of
elementary operators, here is some of them:

* : (linear, comst) -> linear
(const, linear) -> linear

(const, const) -> const

+ (linear, linear) -> linear
(const, const) -> const
zero : linear
const
one : const

Then transalpyne applies an algorithm similar to the type
inference of functional languages [3] to deduce all the ibess
signatures of a function. If more than one linearizationsesi
transalpyne Will generate one transposition for each of them.
The user is also allowed to only specify partial informatitime
compiler/interpreter will restrict to the signatures thaatch such
information or issue an error if no signature matches.

Function calls and aliases use the same principle. Thetsigna
specifiers{. ..} let the user specify which of the linearizations
of a given function has to be called or saved under a new name.
Thus, in the example we gave in figurel2product is an alias for
the transposed left-linear product, whileproduct is an alias for
the transposed right-linear one. Aliases are extremelfulisice
they permit to export to the namespace of the target langtiege
transposed functions that could not be accessed otherwise.

5. A word about automatic differentiation

Before discussing the wayransalpyne transposes programs, we
recall some concepts from the theory of Automatic Diffeleitin
(AD).

The transposition principle has often been viewed as a apeci
case of the reverse mode in automatic differentiation [1,18}.
This is somewhat ironic as the whole idea of automatic diffiér
ation can elegantly be derived in the arithmetic circuit icahd
reverse mode in particular is just an application of thegpasition
principle [7]. It is probable that the need for efficient ADots in
many scientific areas other than mathematics and compuésicec
is responsible for such reversal of roles.

Here we show how AD can be expressed in the arithmetic
circuit model and then discuss the main differences betwieen
AD tools and our approach. A much more complete study on the
differentiation of circuits and on how the transpositionnpiple
relates the gradient to the differential can be found in (i, 2

To simplify, we consider a basi8 over R made exclusively
of everywhere continuously derivable functions (w.r.t ghendard
metric of the Euclidean spad®™). What we give here is a tech-
nique to approximate a circuit ové€R, B) by a “linear” circuit.

DEFINITION 8 (Derivative of a circuit).Let C be a circuit over
(R, B) with n inputs and letc € R™. For any functionf € B, we
denote byJ; its Jacobian. Then thderivativeof C' at x, denoted
by d. C is the arithmetic circuit where any € V with 5(v) = f

and incident edges, . . ., e, has been substituted by awith

B(v') = Js (evale, (z),...,evale,, () . (5)

[da1 ] [daa] [das]

Figure 3. A circuit and its derivative at the point = (a,b,¢).
We have replaced multiplication nodes with linear appiarat
represented by x 2 matrices.

Taking the derivative of a circuit at amounts to chose for each
node a linear approximation at the point where it is evallidtas
clear that this yields a linear approximation for the cit@iiz.

PROPOSITIONL. evalg, ¢ = Jeval ().

It is also clear thatl, C' is defined over a basis that is exclu-
sively made of matrices with coefficients ®a These circuits are
slightly more general than those over the basjdut it is easy to
generalize theorem 1 to them. In other words we have defined a
transformation from circuits computing derivable funasao lin-
ear circuits.

Now d, C' can be queried by black-box algorithms to obtain
information about the JacobiaR,.i (). The simplest application
is to compute the directional derivativeiralong a direction.: for
this task it suffices to evaluate the circuit once, siaegly, ¢ (u)
is the desired value. Computing the derivative alondinearly
independent directions yields the whole Jacobian and thighty
corresponds to the direct mode in automatic differentigtio

When the circuit has many inputs but only one output, there is
a more convenient way to get the whole gradient with only one
black-box queryd. C computes a linear form whose coefficients
are exactly the coefficients of the gradient, thus the dualiti
(dz C)* computes the transposed form, or column vector. The
single queryeval 4, ¢y~ (1) yields this vector. This is exactly what
is called “reverse mode” in automatic differentiation.

Note however that one is not limited to direct or reverse mode
any black-box algorithm can be combined with the derivative
cuit to obtain information on the original function. For exgle
Wiedemann'’s algorithm [25] can be used to determine if thme-fu
tion is invertible aroundr, and the directional derivatives of the
inverse can be computed.

Of course, direct and reverse automatic differentiatiom lce
defined by the more classical chain rule, and then the traitipo
theorem can be derived as a special case of the reverse mode by
observing that, when all the nodes of the circuit are lineaps
C = d, C for anyz. After all, the code transformation techniques
given in [1] and developed in the next section were alreadgrited
by researchers in AD [10], though not often implemented.

So, why inventtransalpyne when there is already plenty of
AD tools out there? The answer is manifold and we only liseher
some key points.

¢ AD s often interested in recovering the full Jacobian, éast of
just having a black-box for it. For amx m matrix, this requires
n queries in direct mode on queries in reverse mode. In both
cases, AD tools do more work than what we would like to.

3To be more precise, direct mode automatic differentiatiamstructsd,, C
and evaluates the directions in parallel, thus reducing the amount of
storage needed.
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e Many AD tools do not optimize the computationdf C for the
case where nodes are linear and still compute the wholeitircu
In particular, many AD tools generate a graph represemtatio
of an arithmetic circuit from a program instead of directly
transposing the code. This adds a constant overhead togbe ca
of transposition where simply, C = C.

If the circuit d, C' is computed, it must be fully stored in
memory for reverse mode. This may seem innocuous.as
has the same size &3, but consider programs that compute
evalc by means of for loops or other iterative constructs: while
the evaluation ofC' is compact and cheap, the evaluation of
d. C possibly requires to introduce a new variable for each
iteration of the loop. Depending on the implementations thi
may lead to code or storage bloat. In the case of transpesitio
this never happens since for loops are directly reversed (ai
least when all the variables are linear). Griewank [11] gige
time/memory compromise that permits to keep both storade an
time in a factor oflog n from the original program, but this is
still not as good as transposition.

Our approach is more general in that it permits to automiatica
treat functions that depend both on linear and non-linegu-ar
ments without any help from the user. Thanks to this, we are
able to treat recursive functions, while only few AD toolsica

Our approach is algebraic and permits to prove bounds on
the algebraic complexity of the generated programs, whide A
tools usually only deal with floating point numbers. More gen
erally, AD languages are usually less rich thafansalpyne.

6. Transpostion

After the linearization phasesransalpyne generates the trans-
posed functions. Linear in- and out- arguments are swapplaite
const arguments do not move. The body itself of the funct®n i
transformed: formally, it is translated to a family of arntbtic cir-
cuits, the circuits are reversed and the result is trarslbéek to
a program; in practice we never compute the circuit reptesen
and work directly on the source code.

The key ideas relevant to the transposition of linear pnogra
are in [2, Chap. 13] and [1], but they have their roots in théhoe
of the adjoint codefor automatic differentiation, a survey can be
found in [10]. We first discuss transposition of functionghwno
const arguments, then go to the general case.

Consider the program in figure 4 and assume thandg have
an unique signature where any argument is linear. The toansp
sition is obtained by reversing the flow and transposing tigec
line by line. When transposing function calls, one simplglaees
the function by its transpose. Also, following definition &jdi-
tions become duplications of variables and double usesrizthias
(such asc) become additions. It is interesting to notice that opti-
mizing the transposed program by sharing the double assigtim
trans h(a) and transposing again yields an equivalent improve-
ment to the original program.

Handling const variables permits to treat statements and

products. Inif statements each branch is transposed as above;

this ultimately permits to treat recursive functions: ictf¢hey are

treated no differently than normal functions, as in figure 5.
Observe however that this reversal of code may lead to the

situation where a function needs a const argument that hias no

been computed yet. In automatic differentiation, the sarablpm

appears when applying the reverse mode: in this caeevaard

sweepis needed to precompute the jacobians of all the functions

at the point of differentiation, then @verse sweepuns through

the code in reverse order applying the transpose of the itactb

the input vector; see [10, 11]. In our case all the functidiscre

def (R a)f(R b, R c):

X, Jy g(b, c)
a = h(x) + h(c) + y

def (R b,
y, X, C
b, tmp
c += tmp

R c)fT(R a):
a, trans h(a),
trans g(x, y)

trans h(a)

Figure 4. A program with no const variables and its transpose.

def (M a)f(linear M b, n):
if n > O:
a = f(b, n - 1)
al[n] += R.Z(n) * b[n]

def (linear M b)fT(M a, n):
if n > O:
b[n] += R.Z(n) * al[n]
b += trans f(a, n - 1)

Figure 5. A recursive program and its transpose.

linear, thus we do not need to compute the jacobians; but iy ap
the same technique to predict the values of const variables.

A pathological example is shown in figure 6. Herés a const
variable and its value is needed in order to compuitethe reverse
sweep; but the value is only computed by a call tar its transpose,
thus it can only be known too late in the reverse sweep. Thesiat
sweep permits to compute the valueydfefore it is needed.

def (R a, R b)f(R ¢, R d):
if 4 > R.zero():
X, y = 1f(c, 4d - R.one())
a, b =x %y, y + R.one()
else:
a, b ==c¢c, d
def (R c, R b)ET(R a, R d):

if (d > R.zero()):

_, y = f(a, d - R.one())
b =y + R.one()

else:
b =4d

if (d > R.zero()):
X a *x y
c, trans f(x,
else:
c

y d - R.one())

a

Figure 6. A pathological example and its transpose (relative to
the signature{linear R, const R}f{linear R, const R})
using a forward sweep.

Notice however that combining forward sweeps and recursion
has a disruptive effect: the transposed algorithm contaias two
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recursive calls and its complexity is much worse than thgioai
algorithm. The solution is to compute in the forward sweely tme
values that are needed; and to compute them only once th@ugh
lazy approach. In practice, based on the fact that constimitmly
depend on const inputsransalpyne generates @onstification

for each signature of each function by stripping out all tihedr
variables and by replacing function calls with constifieddtion
calls. Each time a constified function is evaluated, its ouip
stored in a memoization table and any future call on the same
input values will use the values stored in the table. Thibneue
permits to guarantee that the time complexity of the trasegdo
function obeys the transposition theorem, but the spaceleity

is potentially increased to be as large as time complexibys T

is analogous to what happens in the reverse mode of automatic
differentiation; also notice that a technique similar td][tould

be applied in order to obtain a tradeoff between the incee@rse
time and space complexities.

In practice, well written programs will contain few assigemts
to const variables and pathological functions, such asrieabfig-
ure 6, will be rare. For this reasatransalpyne only implements
the lazy approach in the interpreter, while the compilerdpo®zs
classical code with a forward and a reverse sweep. For the sam
reason, we did not implement the technique of [11].

Finally, transalpyne handlesfor loops by translating them
into a tail-recursive function and then transposing it. Tésulting
transposed function is head-recursive and can be transtbback
to afor loop, unless it contains a forward sweep, which happens
whenever the loop contains assignments of const variables.is
more powerful than the setting of [1] whefer loops can always
be transposed toor loops.

7. Conclusion

We presentedransalpyne a scripting language that is well suited
to implement linear algebra algorithmscansalpyne has no exe-
cution capabilities, but permits to define libraries of (tidlinear
transformations that can be used by a target language, #kiesnit
very useful as a scripting language on top of computer aigsis-
tems.transalpyne can be easily integrated in any python-based
system: all the user has to do is to make sure its ring elenirants
plement the interface given in Section 3.3.3, then any fanatrit-
ten intransalpyne is transposed on the fly by the interpreter and
can be called by other functions written in python. As morgpati
languages will be added teransalpyne’s compiler, integration
will be possible with other computer algebra systems or gene
user written code, although this requires some more effpthb
user.

The main features ofransalpyne are its ability to discover
linearizationsof computer programs and teansposelinear pro-
grams. The result of the transposition is almost as time pades
efficient as the original program, this permits to quicklylauto-
matically implement pairs of algorithms related by duathgt are
found in the literature and that required a lot of hard mamkwo be
derived. Some examples we have in mind arepibwer projection
and themiddle producthat so often recur in algebraic algorithms
[12, 19, 22]. Having ourselves spent a few weeks derivingiamd
plementing transposed algorithms for [4], we can testifyhow
usefultransalpyne would have been at that time!

Hence, we believe thatransalpyne will prove itself as a use-
ful tool to any computer algebraistransalpyne iS open source
software released under the CeCILL licerfca#fe are planning to
release the first stable version in the next few months, it lval
available ahttp://transalpyne.gforge.inria.fr/.

4http://www.cecill.info/
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