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Abstract
We present heretransalpyne, a scripting language, to be exe-
cuted on top of a computer algebra system, that is specifically con-
ceived for automatic transposition of linear functions. Its type sys-
tem is able to automatically infer all the possible linear functions
realized by a computer program. The key feature oftransalpyne
is its ability to transform a computer program computing a linear
function in another computer program computing the transposed
linear function. The time and space complexity of the resulting pro-
gram are similar to the original ones.

Categories and Subject Descriptors I.1.3 [Symbolic and Alge-
braic Manipulation]: Languages and Systems—Special-purpose
algebraic systems

General Terms Languages, Algorithms

Keywords Transposition principle, Tellegen’s principle, linear al-
gebra, programming languages

1. Introduction
Computer Algebra is devoted to developing algorithms to work
on symbolic representations of mathematical objects. Linear maps
over vector spaces or, more generally, free modules are often rep-
resented by matrices, either in dense or sparse form. The so-called
black-box model gives another way of representing a linear appli-
cationL : V → W : a computer program that on any inputv ∈ V
gives as outputL(v) is taken as a symbolic representation ofL;
this of course assumes a precise computer representation ofthe el-
ements ofV andW .

Since the seminal paper [25], computer algebraists have devel-
oped algorithms to work with black-box represented linear maps.
In the black-box model, algorithms are only allowed to querythe
black-box by feeding an input to the black-box program and read-
ing its output; no other information on the linear map can be ob-
tained, in particular the source code of the program cannot be an-
alyzed. The complexity of black-box algorithms is measuredas in
the computational model being used to describe the algorithm, plus
the number of calls to the black-box program is taken into account
as a special parameter.

In the black-box model, algorithms are known to compute the
minimal polynomial, the determinant, the inverse, the rank[17,
25] and the characteristic polynomial [5, 6, 23]. This modelis
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interesting whenever the matrix representing the linear map is too
big to allow efficient processing by a computer program, however
its information can easily be compressed in a black-box program:
sparse or Vandermonde matrices are a classical example.

On the other side, Algebraic Complexity studies the complexity
of computer programs that perform algebraic computations by ab-
stracting from the actual representation of algebraic elements. Only
arithmetic operations in the ring of interest are accountedfor. One
of the standard models used in algebraic complexity is the arith-
metic circuit: a directed acyclic graph (DAG) is used to represent
the flow of arithmetic evaluations, each node of the DAG accounts
for one arithmetic operation (usually+ or ∗).

In particular, arithmetic circuits can be used to representblack-
box programs computing linear maps. Then it is a well known
theorem, [2, Th. 13.20] that a linear map and its transpose have
similar algebraic complexities in the arithmetic circuit model; this
is often known astransposition theoremor Tellegen’s theorem.
By a well known equivalence [2, Lemma 13.17], the transposition
theorem extends to the straight-line program (SLP) model. These
results justify the fact that some extensions of the black-box model
allow black-box algorithms to query the linear form as well as its
transpose.

Besides that, extensions of the transposition theorem to the
Random Acces Machine (RAM) model have been successfully
applied in computer algebra to develop efficient algorithms[1, 4,
12, 19, 22]. The key to all these results is to realize that a certain
map is the transpose of some other well known linear mapL. Then,
an efficient algorithm in the RAM model forL is translated to
the arithmetic circuit model, the transposition theorem isapplied
and the resulting arithmetic circuit is translated back to aRAM
algorithm. All the papers usead hoctransformations to/from the
arithmetic circuit model but give no general technique to perform
such translation; the only notable exception is [1] that defines a very
restricted language –not far away from the SLP paradigm– in which
a constructive proof of the transposition principle is possible.

Here we present an extension of [1] that allows to automati-
cally treat a wider class of programs. We reserve the theoretical de-
tails of the construction for a forthcoming paper and focus instead
on its implementation. We are currently developing an extension
language for python, calledtransalpyne, for which transposition
can be automatically performed by the compiler/interpreter.

One of the key features oftransalpyne is the possibility to
automatically discover all the possiblelinearizationsof a program.
In fact, many linear functions can correspond to the same computer
program: in the case of multiplication of polynomials, for example,
the same program corresponds to two linear functions, namely
left and right multiplication by a constant.transalpyne uses an
algorithm similar to the type inference of statically typedfunctional
languages [3] to discover all of these linearizations.

For each discovered linearization, the compiler/interpreter gen-
erates the correct transposition. It can be shown that the algebraic
complexity of the resulting program is similar to the one of the orig-
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inal program. In the next sections we summarize the theory and the
practice of transposition intransalpyne.

2. Arithmetic circuits
In this section we briefly present the arithmetic circuit model. For
convenience, our presentation slightly deviates from textbooks; for
a more classical and extensive treatment see [2, 24].

2.1 Basic definitions

DEFINITION 1 (Arithmetic operator, arity).Let R be a ring. An
arithmetic operator overR is a functionf : Ri → Ro for some
i, o ∈ N. We setR0 = 0, the zeroR-module. Herei is called the
in-arity of f or simplyarity, o is called theout-arityof f .

DEFINITION 2 (Arithmetic basis).Let R be a ring. An arithmetic
R-basis is a (not necessarily finite) set of arithmetic operators over
R.

The arithmetic basis we will work with is thelinear basis,
denoted byL. It is composed of

+ : R × R → R ∗a : R → R H : R → R × R

a, b 7→ a + b b 7→ ab a 7→ a, a

0 : 0 → R ω : R → 0

⊥ 7→ 0 a 7→⊥

(L)

where we denote by⊥ the unique element of0 to avoid confusion
with the0 of R. Arithmetic circuits are directed acyclic multigraphs
carrying information from an arithmetic basis; the formal definition
follows.

DEFINITION 3 (Arithmetic node).Let R be a ring andB be an
R-basis. A node over(R,B) is a tuplev = (I, O, f) such that

• I andO are finite ordered sets,
• f is either an element ofB or the special value∅.
• If f = ∅, one of the two following conditions must hold:

I is a singleton andO is empty, in this case we say thatv is
an input node;
I is empty andO is a singleton, in this case we say thatv is
anoutput node.

• If f 6= ∅, the cardinality ofI matches the in-arity off and the
cardinality ofO matches the out-arity off ; in this case we say
thatv is anevaluation node.

We call input ports the elements ofI and output portsthe
elements ofO, which we denote respectively byin(v) andout(v).
The cardinalities ofI andO are called, respectively, thein-degree
andout-degreeof v. We callf thevalueof v and writeβ(v) for it.

DEFINITION 4 (Arithmetic circuit). Let R be a ring andB be an
R-basis. An arithmetic circuit over(R,B) is a tupleC = (V, E, 6
, 6i, 6o) such that

1. V is a finite set of nodes over(R,B);
2. < is a total order onV , <i is a total order on the input nodes

in V , <o is a total order on the output nodes inV ;
3. let I =

U

v∈V
in(v) and O =

U

v∈V
out(v), then E is a

bijection fromO to I such thatE(o) = i implies thato ∈
out(v), i ∈ in(v′) andv � v′.

It is useful to seeE as a set of pairs(o, i) with i ∈ I ando ∈ O.
Then the elements ofE are called theedgesof the circuit. The
edgesincidentto v ∈ V are all the(o, i) ∈ E such thati ∈ in(v);
the edgesstemmingfrom v ∈ V are all the(i, o) ∈ E such that

o ∈ out(v). An edge stemming fromv and incident tov′ is said to
connectv tov′. We callinputsandoutputsof a circuit, respectively,
the input and output nodes inV ; which we denote byin(C) and
out(C).

DEFINITION 5 (Size, depth).Let C be a circuit over(R,B). The
size ofC, denoted bysize(C) is the number of evaluation nodes in
V ; the depth ofC, denoted bydepth(C) is the length of the longest
directed path –in a graph-theoretic sense– in(V, E).

Sometimes it is useful to only count certain nodes. LetX ⊂ B,
theX-weighted size ofC, denoted bysizeX(C) is the number of
nodesv ∈ V such thatβ(v) ∈ X.

Figure 1 shows an example of arithmetic circuit, the analogy
with multiDAGs is evident. We draw input and output nodes in
square boxes and evaluation nodes in round boxes.

x1 x2 x3

+ H

+ ∗2

y1 y2

x∗
1 x∗

2 x∗
3

H +

H ∗2

y∗
1 y∗

2

Figure 1. Two arithmetic circuits overL. The linear mapy1 =
x1 + 3x2, y2 = x3 is computed by the circuit on the left and its
transpose is computed by the circuit on the right.

Circuits are endowed with the usual semantics consisting inthe
evaluation of the arithmetic operations on their inputs. Wedenote
by evalC the functionRi → Ro computed by the circuitC. For a
circuit over(R,L) it can be shown thatevalC is a linear operator;
we skip the formal definitions and proofs for conciseness.

2.2 The transposition theorem

For a circuit over the basisL, each node can be viewed as a
linear operator and the arrows can be understood as composing
operators in a suitable way to obtainevalC . By reversing the flow
and transposing the operator computed at each node, one obtains a
circuit that computes the transposed operator.

DEFINITION 6. Dual circuit Let C = (V, E, 6, 6I , 6O) be a
circuit over (R,L), the dual circuit ofC, denoted byC∗, is the
arithmetic circuit

C
∗ = (V ∗

, E
−1

, 6
′
, 6

′
i, 6

′
o)

where for any nodev = (I, O, f) in V there is a nodev∗ =
(O, I, f∗) in V ∗ where

f
∗ =

8

>

>

>

>

>

<

>

>

>

>

>

:

f if f = ∗a,
+ if f = H,
H if f = +,
ω if f = 0,
0 if f = ω;

(1)

and for any input nodev = (∅, O, ∅) there is an output node
v∗ = (O, ∅, ∅) andvice versa.

The orderings6′, 6
′
i and6

′
o are defined as follows:

v 6 v
′ ⇔ v

′∗
6

′
v
∗, (2)

v 6o v
′ ⇔ v

∗
6

′
o v

′∗, (3)

v 6i v
′ ⇔ v

∗
6

′
i v

′∗. (4)
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In particular, this makes(V ′, E−1) the reverse graph of(V, E)
in a graph-theoretic sense. Figure 1 shows two circuits thateach
other’s dual. We now state the transposition theorem, for a proof
see [2, Th. 13.20].

THEOREM 1 (Transposition theorem).Let C be a circuit over
(R,L) that computes a linear applicationf , thenC∗ computes
the transposed linear applicationf∗.

COROLLARY 1. A linear functionf : Rn → Rm and its transpose
can be computed by arithmetic circuits of same sizes and depths. In
particular if C computesf andC∗ computesf∗,

size{+}(C) = size{H}(C
∗), size{H}(C) = size{+}(C

∗),

size{∗a}(C) = size{∗a}(C
∗) for anya ∈ R,

size{0}(C) = size{ω}(C
∗), size{ω}(C) = size{0}(C

∗).

A circuit is limited to compute one specific function with inputs
and outputs of fixed size (in term of elements ofR). However com-
plexity theory is interested in algorithms that compute on inputs of
variable size. This leads to study families of circuits.

DEFINITION 7 (Circuit family). Let R be a ring,B a basis over
R and P a set. Acircuit family over (R,B,P) is a family of
circuits over(R,B) indexed byP . P is called theparameter space
of the family. When the mapping fromP to the circuits is Turing-
computable, the family is calleduniform.

We are mainly interested in uniform circuit families since they
are equivalent to computable functions, theorem 1 easily gener-
alizes to them. We will not study uniform circuit families more
in depth, what we do instead is directly work on computer pro-
grams implicitly representing circuit families and automatically de-
duce the transposed family without actually using the circuit model.
More details on uniform circuit families can be found in [24].

3. transalpyne

transalpyne is a programming language suitable for expressing
linear algebraic programs and automatically transpose them. Its
compiler/interpreter is able to implicitly deduce which families of
circuits a given program is equivalent to and to produce a program
computing the transposed family.

3.1 Concepts

transalpyne has been conceived as a scripting language to be
used on top of computer algebra systems. We made an effort to
give syntax and semantics as close as possible to the python pro-
gramming language.

In transalpyne there is no such concept as an executable
program: only functions can be defined intransalpyne. We call
target languagethe language to whichtransalpyne programs are
compiled; the output of compilation is a library file whose functions
can be imported by programs written in the target language. Only
compilation to python is supported for the moment.

transalpyne can also be interpreted via the python interpreter.
A transalpyne library contained in a filemy-library.yp can be
imported in a python program via the statement

� �

import my -library
� �

The python interpreter recognizes the.yp extension and launches
thetransalpyne interpreter on the file; the functions of the library
are interpreted and transposed by thetransalpyne interpreter and
their names are exported to the python namespace.

transalpyne is mostly dynamically typed, with the only
exception ofalgebraic types. In order to transpose a function,

transalpyne must know at transpose time which variables con-
tain algebraic elements and which variables contain other data
(such as booleans, strings, ints, etc.); this can be done by explicitly
specifying the type of the input and output parameters of a function,
while all the other variables can be left untyped.transalpyne
supports two sorts of algebraic types: ring elements and module
elements; we plan to support more complex algebraic types, such
as algebras, in the future.transalpyne relies on python’s operator
overloading to represent ring operations.

Before transposing a function,transalpyne mustprovethat it
is indeed a linear function in its arguments. The technique it uses
is to linearizethe function, that is to make certain input and output
parameters constant until it can be shown that the remainingoutput
parameters are linear in the remaining input parameters. Wediscuss
this in Section 4.

3.2 Syntax

We only describetransalpyne syntax informally. Indentation has
a syntactic value (it delimits blocks) and keywords are pretty much
the same. Atransalpyne file contains atype declarationsection
followed by aname definitionsection.

3.2.1 Type declarations

transalpyne supports two type constructors: a ring constructor
and a free module constructor.

� �

type Ring R
type Module(R) M

� �

This example declaresR as a ring type andM as a free module
type over the ringR. The typechecker ensures that modules are
consistently declared.

3.2.2 Name declarations

Name declarations take three forms:imports, function definitions
andaliases. Imports are declared as in python and have the same
semantics. Note however that the linearization algorithm considers
any imported function as a constant function.

There is noreturn statement intransalpyne, function defi-
nitions are declared as follows

� �

def (a, b)my -function (c, d):
� �

where input arguments are given on the right and output arguments
on the left.

Inside function definitions, there are four types of statements:
pass statements1, assignments (including augmented assignments),
for loops andifs. The syntax is identical to python’s.

On the left hand side of assignments, may only appear variable
names and subscripts. On the right hand side of assignments,the
following types of expressions may appear:

• String, numeric and boolean constants;

• Binary and unary operators+, -, *, /, %, div, mod, <, >, <=, <=,
==, !=, and, or, not, in;

• Parenthesized expressions;

• Subscripts and slices;

• List constructors, including comprehensions;

• Variable evaluations;

• Function calls.

1 The statement that does nothing.
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The syntax for all of these is identical to python’s. The onlynotable
exception are function calls where a keywordtrans is added to let
the user call a transposition of a function. In case a function has
more than one linearization (and thus more than one transposition),
signature specifiersenclosed in braces{, } permit to specify which
linearization/transposition is wanted.

Finally, aliases permit to export specific linearization/transpo-
sitions of functions with names that can be used inside a python
program.

Figure 2 gives a completetransalpyne example. It defines a
product function and two aliases (with transposition and signature
specifiers).

� �

type Ring R

def (R c)product(R a, R b):
c = a * b

l_product = trans \
{linear R}product{linear R, const R}

r_product = trans \
{linear R}product{const R, linear R}

� �

Figure 2. A transalpyne program

3.3 Semantics

We only give here the points weretransalpyne semantics differ
from python’s.

3.3.1 Types

transalpyne is statically typed for algebraic types. The type of
each input and output parameter of a function must be specified
in the definition as in figure 2. When the type of an argument
is omitted, it is assumed to have non-algebraic type. Variables
inside the body of a function cannot be explicitly typed, a type-
inference algorithm deduces their types from the types of the input
parameters.

3.3.2 Side effects

There is no side effect intransalpyne. In particular, there is no
global variable and assignment itself is more akin to the let-binding
of a functional language. After having transposed the functions, the
transalpyne compiler/interpreter leaves to the target language the
task of executing them, thus it cannot enforce the no-side-effect
policy at runtime. It is the responsibility of the user to insure that
no side effect happens inside atransalpyne function.

3.3.3 Algebraic variables

Type declarations merely say that some variables belong to atype,
but do not specify any particular implementation of the type. The
implementation of rings and modules is left to the user and must
be given in an external module written in the target language. The
user is only required to implement them as objects and to expose a
few methods.

Ring objects must:

• Overload+ and* with the obvious semantic;

• Implement a methodzero that returns the zero of the ring;

• Optionally, implement a methodone that returns the one of the
ring;

• Optionally, implement a methodZ that takes an integern and
returns the elementn · 1 of the ring;

• Optionally, implement methodsdiv andmod that perform Eu-
clidean division with remainder;

• Optionally, overload/ thus making the ring into a field.

Module objects must:

• Overload+ and* with the obvious semantic;

• Implement a methodzero that returns the zero of the module;

• Overload the subscript operator[] so that it implements some
arbitrary projections on the underlying ring. Most often, amod-
ule will be implemented as an array of ring objects and[i] will
just be projection onto thei-th coordinate.

• Overload the assignment to subscript operator in the obvious
way.

Algebraic output parameters of a function are implicitly initial-
ized to zero via theirzero method. This insures that non-assigned
algebraic output parameters are always linear in the inputsof the
function.

Algebraic elements cannot be combined through the use of lists:
lists of algebraic objects are non-algebraic objects and extraction
from a list always yields a non-algebraic object.

3.3.4 Function calls

transalpyne does not have tuples; the return type of a function
with many output parameters is not a tuple, as a consequence its
return value cannot be assigned to a variable: it must be assigned
to as many variables as there are output parameters. Anothercon-
sequence of this is that functions with many outputs cannot be used
inside expressions: their outputs can only be assigned to variables.

Function names not declared in the library are simply regarded
as external functions. They are assumed to have one return parame-
ter, thus a multi-assignment will return an error. Externalfunctions
have no algebraic input or output parameters. This is usefulto call
builtin python functions2 from inside atransalpyne program.

3.3.5 Recursion and Higher order

transalpyne allows recursion and even calling its own transpose.
It does not allow to pass functions as arguments to a function, al-
though the transposition algorithm internally uses this technique to
transpose for loops. A higher order transposable language is theo-
retically possible and we plan to add this feature totransalpyne
in the future.

4. Linearization
The function

� �

def (R c)product (R a, R b):
c = a * b

� �

is not linear ina andb, but it can be made linear by fixing one of
the two arguments, for example by considering it as the family of
mappingsa 7→ ab for any givenb. We call const the arguments
that are fixed andlinear the others; clearly const outputs must only
depend on const inputs, while linear outputs must linearly depend
on linear inputs for any given values of the const inputs. This is
equivalent to model the function as a family of circuits whose
parameter space is the domain of the const arguments.

transalpyne allows the user to annotate the types of the ar-
guments in order to specify whether they are const or linear (non-
algebraic arguments are by default const).

2 One common example is the functionrange, needed to iterate over mod-
ule elements.
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� �

def (linear R c)product (linear R a,
const R b):

c = a * b
� �

Fortunately, the user need not specify all the modifiers since they
can be inferred algorithmically.

We callsignaturea list of linear/const modifiers attached to the
arguments of a function. A function can, of course, have morethan
one signature. The idea behind the signature inference algorithm is
simple.transalpyne starts from a few axioms on the signature of
elementary operators, here is some of them:

* : (linear, const) -> linear
(const, linear) -> linear
(const, const) -> const

+ : (linear, linear) -> linear
(const, const) -> const

zero : linear
const

one : const

Then transalpyne applies an algorithm similar to the type
inference of functional languages [3] to deduce all the possible
signatures of a function. If more than one linearization exists,
transalpyne will generate one transposition for each of them.
The user is also allowed to only specify partial information, the
compiler/interpreter will restrict to the signatures thatmatch such
information or issue an error if no signature matches.

Function calls and aliases use the same principle. The signature
specifiers{...} let the user specify which of the linearizations
of a given function has to be called or saved under a new name.
Thus, in the example we gave in figure 2,l_product is an alias for
the transposed left-linear product, whiler_product is an alias for
the transposed right-linear one. Aliases are extremely useful since
they permit to export to the namespace of the target languagethe
transposed functions that could not be accessed otherwise.

5. A word about automatic differentiation
Before discussing the waytransalpyne transposes programs, we
recall some concepts from the theory of Automatic Differentiation
(AD).

The transposition principle has often been viewed as a special
case of the reverse mode in automatic differentiation [1, 14, 18].
This is somewhat ironic as the whole idea of automatic differenti-
ation can elegantly be derived in the arithmetic circuit model and
reverse mode in particular is just an application of the transposition
principle [7]. It is probable that the need for efficient AD tools in
many scientific areas other than mathematics and computer science
is responsible for such reversal of roles.

Here we show how AD can be expressed in the arithmetic
circuit model and then discuss the main differences betweenthe
AD tools and our approach. A much more complete study on the
differentiation of circuits and on how the transposition principle
relates the gradient to the differential can be found in [7, 20].

To simplify, we consider a basisB over R made exclusively
of everywhere continuously derivable functions (w.r.t thestandard
metric of the Euclidean spaceRn). What we give here is a tech-
nique to approximate a circuit over(R,B) by a “linear” circuit.

DEFINITION 8 (Derivative of a circuit).Let C be a circuit over
(R,B) with n inputs and letx ∈ Rn. For any functionf ∈ B, we
denote byJf its Jacobian. Then thederivativeof C at x, denoted
by dx C is the arithmetic circuit where anyv ∈ V with β(v) = f
and incident edgese1, . . . , em has been substituted by av′ with

β(v′) = Jf (evale1(x), . . . , evalem(x)) . (5)

x1 x2 x3

∗

∗

y1

dx1 dx2 dx3

(b, a)

(c, ab)

d y1

Figure 3. A circuit and its derivative at the pointx = (a, b, c).
We have replaced multiplication nodes with linear applications
represented by1 × 2 matrices.

Taking the derivative of a circuit atx amounts to chose for each
node a linear approximation at the point where it is evaluated. It is
clear that this yields a linear approximation for the circuit atx.

PROPOSITION1. evaldx C = JevalC (x).

It is also clear thatdx C is defined over a basis that is exclu-
sively made of matrices with coefficients inR. These circuits are
slightly more general than those over the basisL, but it is easy to
generalize theorem 1 to them. In other words we have defined a
transformation from circuits computing derivable functions to lin-
ear circuits.

Now dx C can be queried by black-box algorithms to obtain
information about the JacobianJevalC (x). The simplest application
is to compute the directional derivative inx along a directionu: for
this task it suffices to evaluate the circuit once, sinceevaldx C(u)
is the desired value. Computing the derivative alongn linearly
independent directions yields the whole Jacobian and this roughly
corresponds to the direct mode in automatic differentiation3.

When the circuit has many inputs but only one output, there is
a more convenient way to get the whole gradient with only one
black-box query:dx C computes a linear form whose coefficients
are exactly the coefficients of the gradient, thus the dual circuit
(dx C)∗ computes the transposed form, or column vector. The
single queryeval(dx C)∗(1) yields this vector. This is exactly what
is called “reverse mode” in automatic differentiation.

Note however that one is not limited to direct or reverse mode:
any black-box algorithm can be combined with the derivativecir-
cuit to obtain information on the original function. For example
Wiedemann’s algorithm [25] can be used to determine if the func-
tion is invertible aroundx, and the directional derivatives of the
inverse can be computed.

Of course, direct and reverse automatic differentiation can be
defined by the more classical chain rule, and then the transposition
theorem can be derived as a special case of the reverse mode by
observing that, when all the nodes of the circuit are linear maps,
C = dx C for anyx. After all, the code transformation techniques
given in [1] and developed in the next section were already invented
by researchers in AD [10], though not often implemented.

So, why inventtransalpyne when there is already plenty of
AD tools out there? The answer is manifold and we only list here
some key points.

• AD is often interested in recovering the full Jacobian, instead of
just having a black-box for it. For ann×m matrix, this requires
n queries in direct mode orm queries in reverse mode. In both
cases, AD tools do more work than what we would like to.

3 To be more precise, direct mode automatic differentiation constructsdx C

and evaluates then directions in parallel, thus reducing the amount of
storage needed.
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• Many AD tools do not optimize the computation ofdx C for the
case where nodes are linear and still compute the whole circuit.
In particular, many AD tools generate a graph representation
of an arithmetic circuit from a program instead of directly
transposing the code. This adds a constant overhead to the case
of transposition where simplydx C = C.

• If the circuit dx C is computed, it must be fully stored in
memory for reverse mode. This may seem innocuous asdx C
has the same size asC, but consider programs that compute
evalC by means of for loops or other iterative constructs: while
the evaluation ofC is compact and cheap, the evaluation of
dx C possibly requires to introduce a new variable for each
iteration of the loop. Depending on the implementation, this
may lead to code or storage bloat. In the case of transposition,
this never happens since for loops are directly reversed (at
least when all the variables are linear). Griewank [11] gives a
time/memory compromise that permits to keep both storage and
time in a factor oflog n from the original program, but this is
still not as good as transposition.

• Our approach is more general in that it permits to automatically
treat functions that depend both on linear and non-linear argu-
ments without any help from the user. Thanks to this, we are
able to treat recursive functions, while only few AD tools can.

• Our approach is algebraic and permits to prove bounds on
the algebraic complexity of the generated programs, while AD
tools usually only deal with floating point numbers. More gen-
erally, AD languages are usually less rich thantransalpyne.

6. Transpostion
After the linearization phase,transalpyne generates the trans-
posed functions. Linear in- and out- arguments are swapped,while
const arguments do not move. The body itself of the function is
transformed: formally, it is translated to a family of arithmetic cir-
cuits, the circuits are reversed and the result is translated back to
a program; in practice we never compute the circuit representation
and work directly on the source code.

The key ideas relevant to the transposition of linear programs
are in [2, Chap. 13] and [1], but they have their roots in the method
of the adjoint codefor automatic differentiation, a survey can be
found in [10]. We first discuss transposition of functions with no
const arguments, then go to the general case.

Consider the program in figure 4 and assume thath andg have
an unique signature where any argument is linear. The transpo-
sition is obtained by reversing the flow and transposing the code
line by line. When transposing function calls, one simply replaces
the function by its transpose. Also, following definition 6,addi-
tions become duplications of variables and double uses of variables
(such asc) become additions. It is interesting to notice that opti-
mizing the transposed program by sharing the double assignment to
trans h(a) and transposing again yields an equivalent improve-
ment to the original program.

Handling const variables permits to treatif statements and
products. Inif statements each branch is transposed as above;
this ultimately permits to treat recursive functions: in fact they are
treated no differently than normal functions, as in figure 5.

Observe however that this reversal of code may lead to the
situation where a function needs a const argument that has not
been computed yet. In automatic differentiation, the same problem
appears when applying the reverse mode: in this case aforward
sweepis needed to precompute the jacobians of all the functions
at the point of differentiation, then areverse sweepruns through
the code in reverse order applying the transpose of the Jacobian to
the input vector; see [10, 11]. In our case all the function calls are

� �

def (R a)f(R b, R c):
x, y = g(b, c)
a = h(x) + h(c) + y

� �
� �

def (R b, R c)fT(R a):
y, x, c = a, trans h(a), trans h(a)
b, tmp = trans g(x, y)
c += tmp

� �

Figure 4. A program with no const variables and its transpose.

� �

def (M a)f(linear M b, n):
if n > 0:

a = f(b, n - 1)
a[n] += R.Z(n) * b[n]

� �
� �

def (linear M b)fT(M a, n):
if n > 0:

b[n] += R.Z(n) * a[n]
b += trans f(a, n - 1)

� �

Figure 5. A recursive program and its transpose.

linear, thus we do not need to compute the jacobians; but we apply
the same technique to predict the values of const variables.

A pathological example is shown in figure 6. Herey is a const
variable and its value is needed in order to computex in the reverse
sweep; but the value is only computed by a call tof or its transpose,
thus it can only be known too late in the reverse sweep. The forward
sweep permits to compute the value ofy before it is needed.

� �

def (R a, R b)f(R c, R d):
if d > R.zero ():

x, y = f(c, d - R.one ())
a, b = x * y, y + R.one ()

else :
a, b = c, d

� �
� �

def (R c, R b)fT(R a, R d):
# Forward sweep
if (d > R.zero ()):

_, y = f(a, d - R.one ())
b = y + R.one()

else :
b = d

# Reverse sweep
if (d > R.zero ()):

x = a * y
c, y = trans f(x, d - R.one ())

else :
c = a

� �

Figure 6. A pathological example and its transpose (relative to
the signature{linear R, const R}f{linear R, const R})
using a forward sweep.

Notice however that combining forward sweeps and recursion
has a disruptive effect: the transposed algorithm containsnow two
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recursive calls and its complexity is much worse than the original
algorithm. The solution is to compute in the forward sweep only the
values that are needed; and to compute them only once througha
lazy approach. In practice, based on the fact that const outputs only
depend on const inputs,transalpyne generates aconstification
for each signature of each function by stripping out all the linear
variables and by replacing function calls with constified function
calls. Each time a constified function is evaluated, its output is
stored in a memoization table and any future call on the same
input values will use the values stored in the table. This technique
permits to guarantee that the time complexity of the transposed
function obeys the transposition theorem, but the space complexity
is potentially increased to be as large as time complexity. This
is analogous to what happens in the reverse mode of automatic
differentiation; also notice that a technique similar to [11] could
be applied in order to obtain a tradeoff between the increases in
time and space complexities.

In practice, well written programs will contain few assignments
to const variables and pathological functions, such as the one of fig-
ure 6, will be rare. For this reasontransalpyne only implements
the lazy approach in the interpreter, while the compiler produces
classical code with a forward and a reverse sweep. For the same
reason, we did not implement the technique of [11].

Finally, transalpyne handlesfor loops by translating them
into a tail-recursive function and then transposing it. Theresulting
transposed function is head-recursive and can be transformed back
to afor loop, unless it contains a forward sweep, which happens
whenever the loop contains assignments of const variables.This is
more powerful than the setting of [1] wherefor loops can always
be transposed tofor loops.

7. Conclusion
We presentedtransalpyne a scripting language that is well suited
to implement linear algebra algorithms.transalpyne has no exe-
cution capabilities, but permits to define libraries of (multi-)linear
transformations that can be used by a target language, this makes it
very useful as a scripting language on top of computer algebra sys-
tems.transalpyne can be easily integrated in any python-based
system: all the user has to do is to make sure its ring elementsim-
plement the interface given in Section 3.3.3, then any function writ-
ten intransalpyne is transposed on the fly by the interpreter and
can be called by other functions written in python. As more output
languages will be added totransalpyne’s compiler, integration
will be possible with other computer algebra systems or generic
user written code, although this requires some more effort by the
user.

The main features oftransalpyne are its ability to discover
linearizationsof computer programs and totransposelinear pro-
grams. The result of the transposition is almost as time and space
efficient as the original program, this permits to quickly and auto-
matically implement pairs of algorithms related by dualitythat are
found in the literature and that required a lot of hard man-work to be
derived. Some examples we have in mind are thepower projection
and themiddle productthat so often recur in algebraic algorithms
[12, 19, 22]. Having ourselves spent a few weeks deriving andim-
plementing transposed algorithms for [4], we can testify onhow
usefultransalpyne would have been at that time!

Hence, we believe thattransalpyne will prove itself as a use-
ful tool to any computer algebraist.transalpyne is open source
software released under the CeCILL licencse4. We are planning to
release the first stable version in the next few months, it will be
available athttp://transalpyne.gforge.inria.fr/.

4http://www.cecill.info/
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