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Abstract

A polynomial invariant under the action of a finite group can be rewritten using gen-
erators of the invariant ring. We investigate the complexity aspects of this rewriting
process; we show that evaluation techniques enable one to reach a polynomial cost.

1 Introduction

Let X = X1, . . . , Xn be indeterminates over a field K and let G be a finite
matrix group acting on K[X]; we denote the ring of invariant polynomials for
this action by K[X]G . For simplicity, the base field K has characteristic zero;
most results can be extended to finite characteristic p, as long as p does not
divide the cardinality of the group G .

Our question. The computational aspects of invariant theory have already
been extensively studied; many algorithms are presented in e.g. [22,3]. How-
ever, several questions remain open, especially under the complexity view-
point.

We investigate one such question. We suppose that primary and minimal sec-
ondary invariants π = π1, . . . , πn and σ = σ1, . . . , σe are known for the action
of G . Then, any F ∈ K[X]G can be uniquely written as

F =
∑

σ∈σ

Fσ(π1, . . . , πn)σ, (1)

for some Fσ in K[P] = K[P1, . . . , Pn]. Our question is the cost of this rewriting
process; our main result says that working in the straight-line program model,
the coefficients Fσ can be computed efficiently.
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A straight-line program is a sequence of instructions (+,−,×) that computes
a (sequence of) polynomial(s); the cost measure is the size, i.e., the number of
instructions. It has long been known that this representation is well-adapted to
obtain complexity results for questions such as multivariate factorization [17],
GCD computation [16] and polynomial system solving [12,11,10,14,13,19]. Our
work goes in the same direction; a first result along these lines in invariant
theory was [7], which dealt with the invariants of the symmetric group.

Hence, we assume that π, σ and F are given in the straight-line representation,
and output the coefficients Fσ as straight-line programs as well. We let δ =
deg(π1) · · ·deg(πn) = e|G |, where e is the number of secondary invariants.

Theorem 1 Let F ∈ K[X] (resp. π, σ) be given by a straight-line program Γ
of size L (resp. Γ′ of size Lπ,σ). Given Γ and Γ′, one can construct a straight-
line program Γ′′ of size

O(n4δ4 + nδ6 + Lπ,σnδ4 + Lδ3) ∈ (L + Lπ,σ)(nδ)O(1)

that computes all polynomials (Fσ)σ∈σ.

The construction of Γ′′ takes time O(n5δ4 + nδ6 + Lπ,σn2δ4 + Lδ3). The con-
struction algorithm is Las Vegas; it chooses k = O(n2) points in K; choices

that lead to failure are contained in a hypersurface of K
k
.

Comments. Our statement is twofold: the first part is an existence result,
of a short straight-line representation; the second part expresses the cost of
constructing it. These aspects are described further in the next section, where
we make our computational model more precise.

Our main contribution is a complexity polynomial in n, δ, Lπ,σ, L (i.e., in
n, e, |G |, Lπ,σ,L). Of course, the questions we discuss can readily be solved us-
ing classical Gröbner bases techniques [5]. However, without using the straight-

line representation, one can probably not hope for a cost better than
(

n+δ

n

)

,
due to the size of the intermediate objects.

Still, our cost is high: our result is first of all a feasibility result. Before any
serious implementation, it should be refined, at the very least using fast poly-
nomial and matrix arithmetic. The algorithm is probabilistic to ensure its
polynomial running time; it can be made deterministic whenever π generate
the invariant ring of a group H containing G (see Proposition 2).

Finally, note that the cost estimates involve two distinct components: one
depends only on the group and its invariants π, σ through the quantities
n, δ, Lπ,σ; the other depends on F through the quantity L. If π, σ are fixed, a
large part of the algorithm becomes a precomputation, and the cost becomes
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linear in L. Surprisingly, compared to similar algorithms using the straight-line
representation, the degree of F does not appear.

Applications. Colin and Giusti [9] discuss further questions along our lines,
with a view towards effective Galois theory. This needs in particular bounds
on the complexity of evaluation of the polynomials Ai,j,k in the relations

σiσj =
∑

k≤e

Ai,j,k(π)σk.

Applying Theorem 1 with F = σiσj yields an estimate in Lπ,σ(nδ)O(1).

Our question is also motivated by applications to polynomial system solving,
using algorithms of the geometric resolution family [12,11,10,14,13,19]. Such
algorithms have a well-understood complexity, that depends on (i) geometric
quantities and (ii) the complexity of evaluation of the input system. If this
system is invariant under a group G , a standard approach is to rewrite it using
the primary and secondary invariants of G , and solve the system in these new
variables [5,2]. However, it is not obvious to quantify the gain of this approach:
the output will be more structured, but could be more costly to compute. We
bring a partial answer to this question, regarding point (ii) above: in the new
variables π, σ, the complexity of evaluation of the system, which partially
controls the cost of the resolution algorithm, grows moderately. The detailed
analysis of this approach is the subject of future work.

Outline of the paper. The first sections are preliminaries: Section 2 intro-
duces our computational model and gives a few basic properties; Section 3
recalls results about zero-dimensional ideals. A key property of Gröbner bases
associated to homogeneous systems of parameters is given in Section 4 and
is at the basis of our algorithm. The algorithm itself proceeds in two steps: a
preparation step, that involves only the group and its invariants (Section 5),
and the rewriting process (Section 6). We conclude with preliminary experi-
mental results.

2 Computational model

Two models are used in this paper: algebraic RAMs and straight-line programs;
in that, we follow Kaltofen [16,17].

Straight-line programs. Straight-line programs are a basic model: a se-
quence of additions and multiplications, without test or branching; this is
for instance enough to describe polynomial or matrix multiplication. Pre-
cisely, a straight-line program Γ over K[X] = K[X1, . . . , Xn] is a list of triples
(◦i, ℓi, ri)1≤i≤L, where:
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• ◦i is one of the strings {add, sub, mul};

• ℓi (resp. ri) takes one of the forms (const, λ), (var, ℓ) or (g, j), with λ ∈ K,
ℓ ∈ {1, . . . , n} or j ∈ {1, . . . , i − 1}.

We assign to Γ a list of polynomials G1, . . . , GL ∈ K[X] in a straightforward
manner. Assuming that G1, . . . , Gi−1 are known, define Ri ∈ K[X] by

Ri = λ if ri = (const, λ), Ri = Xℓ if ri = (var, ℓ), Ri = Gj if ri = (g, j).

One defines Li in a similar manner, and finally obtains Gi by

Gi = Li + Ri if ◦i = add, Gi = Li −Ri if ◦i = sub, Gi = LiRi if ◦i = mul.

The polynomials Gi are given (or computed) by Γ. The complexity measure
for straight-line programs is their size, i.e., the integer L of the definition.

Obviously, some polynomials such as (X1 + 1)k have short straight-line rep-
resentation (here, logarithmic in k), even though they may have many mono-
mials (here, k + 1). The insight of Kaltofen, Heintz, Giusti, Pardo, . . . is that
this phenomenon arises in many situations, from multivariate factorization
and GCD to polynomial system solving. Our work follows their approach.

Algebraic RAMs. Straight-line programs are simple syntactic objects, that
can be represented using character strings, integers and field elements and can
be manipulated algorithmically in a higher-level computational model. For
us, this higher-level model will be algebraic RAMs, where usual constructs
(testing, branchings, etc) on integers, character strings, or elements of the
base field, are allowed. The precise definition being complex, we refer the
reader to [16] for details. The cost of an algorithm in this model is simply the
number of steps the RAM performs (to make things easier, we do not use the
logarithmic cost criterion of [16]).

Hence, our algorithms are written in the RAM model; most take straight-line
programs as input and output straight-line programs as well. One should then
distinguish between the size of the straight-line program we construct, and
the time it takes to construct it. In many cases, they will be similar (in which
case we will be brief on the time analysis), but this is not necessarily so.

Basic results. All the results in this paragraph are well-known. One of our
basic operations is linear algebra with matrices whose entries are polynomials
given by straight-line programs. Most operations are straightforward, as long
as no zero-test or division is involved.

Lemma 1 Let M and M ′ be matrices of sizes (a, b) and (b, c), with polyno-
mial entries given by a straight-line program Γ of size L. Then one can con-
struct in time L+O(abc) a straight-line program of size L+O(abc) that com-
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putes the same polynomials as Γ, plus the entries of MM ′. If (a, b) = (b, c),
one can construct in time L + O(ab) a straight-line program of size L + O(ab)
that computes the same polynomials as Γ, plus the entries of M + M ′.

Proof. For multiplication, we extend Γ by the O(abc) operations that encode
matrix product in size (a, b) × (b, c). The case of addition is similar. �

Corollary 1 Let M1, . . . , Mn be matrices of size δ, with polynomial entries
given by a straight-line program of size L. Let further F ∈ K[X1, . . . , Xn] be
given by a straight-line program of size L′. Then one can construct in time
L + O(L′δ3) a straight-line program of size L + O(L′δ3) that computes the
entries of F (M1, . . . , Mn).

Solving linear systems is more delicate, since it involves zero-tests and divi-
sions. Berkowitz’ algorithm [1] provides the following result.

Lemma 2 Let M be a matrix of size δ, with polynomial entries in given by
a straight-line program Γ of size L. One can construct in time L + O(δ4) a
straight-line program of size L + O(δ4) that computes the same polynomials
as Γ, plus the determinant of M and the entries of its adjoint matrix. If the
determinant of M is known to be in K − {0}, then the same result holds for
computing the entries of M−1.

Finally, we show how to deal with divisions using Strassen’s Vermeidung von
Divisionen [21]: divisions are replaced by truncated power series computation.
Consider some rational functions F = F1, . . . , Fr in K(X), with no denom-
inator vanishing at 0, so that we can write Fi =

∑

j≥0 Fi,j in K[[X]], with
Fi,j homogeneous of degree j. Let also G = G0, . . . , Gs be in K[Y1, . . . , Yr];
then, assuming that G0(F) does not vanish at 0, the rational functions Hi =
Gi(F)/G0(F) can be expanded in power series as well: Hi =

∑

j≥0 Hi,j in
K[[X]], with Hi,j homogeneous of degree j. What can be computed here are
only truncations of the series Hi.

Lemma 3 Notation being as above, suppose that G0, . . . , Gs are given by a
straight-line program of size L. Suppose also that all Fi,j, for j ≤ κ, can be
computed by a straight-line program of size L′. Then one can construct in time
L′+O(Lκ2) a straight-line program of size L′+O(Lκ2) that computes all Hi,j,
for j ≤ κ.

3 Preliminaries on zero-dimensional systems

We start this section with a general discussion on zero-dimensional ideals.
Let thus I be a zero-dimensional radical ideal in the ring K[X], where K is a
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perfect field and X = X1, . . . , Xn; let further ∆ = dimK K[X]/I.

A primitive element for I is a linear form u =
∑

i≤n uiXi, with u1, . . . , un in
K, such that the powers 1, u, . . . , u∆−1 are a K-basis of K[X]/I; hence K[X]/I
is isomorphic to K[U ]/〈T 〉, where T is the monic minimal polynomial of u in
K[X]/I. In particular, there exist polynomials Si ∈ K[U ], with deg(Si) < ∆,
such that Xi = Si(u) in K[X]/I.

Primitive elements always exist, assuming that |K| is large enough; we call
the data of the linear form u and of the polynomials T, S1, . . . , Sn a shape
lemma representation of I [8]. Once u1, . . . , un are fixed, these polynomials
are uniquely defined.

Suppose now that we are given a basis m of K[X]/I, which is the set of
standard monomials for a term order > on K[X]. Given a shape lemma repre-
sentation of I, we will be interested in Section 5 in finding the multiplication
matrices MXi

by X1, . . . , Xn in the basis m. The entries of these matrices are
rational functions of the coefficients of T, S1, . . . , Sn. Since we are interested in
the straight-line complexity, we compute numerators and denominators sepa-
rately.

Lemma 4 Given m, one can construct in time O(n∆4) a straight-line pro-
gram of size O(n∆4) that takes as input the coefficients of T, S1, . . . , Sn and
outputs a polynomial D and the entries of polynomial matrices M ′

X1
, . . . , M ′

Xn
,

such that MXi
= M ′

Xi
/D.

Proof. Let C be the companion matrix of T ; its entries can be computed by
a straight-line program of size O(n) that changes the sign of the coefficients of
T . In the basis 1, u, . . . , u∆−1, the multiplication matrix by Xi is NXi

= Si(C ).
Since each Si has degree less than ∆, using Horner’s evaluation scheme and
Lemma 1, we can thus construct a straight-line program of size O(n∆4) that
computes all entries of all these matrices.

Next, we compute the coefficient vectors of the elements of m in the basis
1, u, . . . , u∆−1. By assumption, for any m 6= 1 in m, there exists i ≤ n and m′

in m such that m = Xim
′. Starting from the vector [1 0 · · · 0]t corresponding

to the monomial 1 ∈ m, we obtain all other ones inductively, by multiplication
by the appropriate matrix NXi

. Using Lemma 1, this can be done by extending
our previous straight-line program with O(∆3) operations.

Let finally B be the matrix obtained as the concatenation of all these vectors.
It follows that the multiplication matrix MXi

in m is B−1NXi
B. Computing

the adjoint and determinant of B by Lemma 2 and multiplying the adjoint
by NXi

B by Lemma 1, we conclude the proof. �
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4 A property of the graph ideal

Starting from the set of primary invariants π = (π1, . . . , πn), we study in this
section the ideal of the graph of x 7→ π(x). Let thus P = P1, . . . , Pn be new
variables and consider the ideal

J = 〈π1 − P1, . . . , πn − Pn〉 ⊂ K[P,X].

We give here properties of some of the Gröbner bases of J . In our context, π

are primary invariants for the action of G , but all results in this section hold
whenever π is a homogeneous system of parameters in K[X].

In what follows, we let > be a degree-compatible monomial order on K[X]; we
put on K[P,X] a block order >′ with Xi > Pj for all i, j and which extends
the order > defined on K[X].

Theorem 2 Let G ⊂ K[P,X] be the reduced Gröbner basis of J for the or-
der >′. Then all leading terms of the polynomials in G are in K[X].

This result requires > to be a degree order: for a lexicographic order, it fails
with n = 2, for π1 = X2

1 +X2
2 and π2 = X1X2. A similar result is given in [23]

for the degree reverse lexicographic order on K[P,X].

Before the proof, we discuss a useful consequence. For p = (p1, . . . , pn) in K
n,

let Jp be the ideal 〈π1 − p1, . . . , πn − pn〉 ⊂ K[X]. In all that follows, we let m

be the standard monomials for the zero-dimensional ideal J0 = 〈π1, . . . , πn〉,
for the order >. Our main application of the previous theorem will be the
following corollary, where we recall that δ = deg(π1) · · ·deg(πn).

Corollary 2 The set m is simultaneously the set of standard monomials for
all ideals Jp, and for the ideal J · K(P)[X], for the order >. Besides, m is a
K[π]-module basis of K[X], so that |m| = δ.

Proof. By the choice of our term order, G remains a Gröbner basis in
K[P][X]. Theorem 3.1 in [15] then shows that for any field L containing K

and any p′ = (p′1, . . . , p
′
n) in L, the specialization {G(p,′ X) | G ∈ G} is the

reduced Gröbner basis of 〈π1 − p′1, . . . , πn − p′n〉 ⊂ L[X] for the order >. This
proves the first part of the corollary. The second part follows from the graded
Nakayama Lemma [3, Lemma 3.5.1]. �

The rest of this section is devoted to prove Theorem 2.

Lemma 5 The set

m′ = {mP α1

1 · · ·P αn

n | m ∈ m, α1, . . . , αn ≥ 0}
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is a basis of K[P,X]/J .

Proof. First we prove that m′ is linearly independent. A linear relation

∑

m∈m

m
∑

j

am,jP
α1,m,j

1 · · ·P αn,m,j
n = 0 mod J,

with am,j ∈ K, implies the equality

∑

m∈m

m
∑

j

am,jπ
α1,m,j

1 · · ·παn,m,j

n = 0.

By the graded Nakayama Lemma, m is a module basis of K[X] over K[π], so
all coefficients

∑

j

am,jπ
α1,m,j

1 · · ·παn,m,j

n

are zero. The algebraic independence of π implies that all am,j are zero, as
requested. We conclude by proving that m′ generates K[P,X]/J . Since m is
a K[π]-basis of K[X], any H in K[X] can be written in the form

H =
∑

m∈m

am(π)m,

with am ∈ K[P], so that in K[P,X], we have the equality

H =
∑

m∈m

amm mod J.

This in turn implies the same statement for arbitrary H in K[P,X]. �

To prove our claim on the leading terms of the polynomials in G, we actually
prove that G specializes well at P = 0. As before, we thus let J0 be the
ideal 〈π1, . . . , πn〉 ⊂ K[X], and let H be its reduced Gröbner basis for the
order > on K[X]. Then, we actually show the following: all leading terms of
the polynomials in G belong to K[X], and H = {G(0,X) | G ∈ G}. This
contains in particular the statement of Theorem 2.

The generators of J are weighted homogeneous, with w(Xi) = 1 and w(Pj) =
deg(πj). For such a weighted homogeneous polynomial G in K[P,X], G(0,X) 6=
0 is equivalent to lt(G) ∈ K[X], where lt(.) denotes the leading term. It is also
straightforward to see that G(0,X) is in J0 for all G in J .

The following statement will be crucial to the proof: for H homogeneous in
J0, there exists G in G such that lt(G) divides lt(H). Indeed, write H =
h1π1 + · · ·+hnπn. Defining H ′ = h1(π1 −P1)+ · · ·+hn(πn −Pn), the choice of
our monomial order in K[P,X] implies that H and H ′ have the same leading
term. In particular, since H ′ is in J , there exists G ∈ G such that lt(G) divides
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lt(H ′) = lt(H), as claimed. Using this point, we prove the equality

{lt(H) | H ∈ H} = {lt(G) | G ∈ G and G(0,X) 6= 0}. (2)

• Let G be in G. If G0 = G(0,X) 6= 0, then its leading term can be divided
by the leading term of some polynomial H in H. Since J0 is homogeneous,
H is homogeneous, so by the preliminary remark, there exists G′ ∈ G such
that lt(G′) divides lt(H), and thus lt(G0), which equals lt(G). Because G

is a reduced basis, we deduce that G = G′, and that in particular G and H
have the same leading term.

• Conversely, let H be in H. As before, there must exist G ∈ G such that
lt(G) divides lt(H). In particular, lt(G) is in K[X], which implies by the
previous point that lt(G) is in lt(H). Since H is a reduced Gröbner basis,
lt(G) = lt(H), as claimed.

Next, we prove that (2) implies the further equality

H = {G(0,X) | G ∈ G and G(0,X) 6= 0}.

Indeed, let G be in G, with G0 = G(0,X) 6= 0, and let H be in H, with
lt(H) = lt(G) = lt(G0) = ℓ. In view of Equality (2), since G − ℓ is reduced
with respect to G, G0 − ℓ is reduced with respect to H. Similarly, H − ℓ is
reduced with respect to H; hence G0 − H = (G0 − ℓ) − (H − ℓ) is in J0, but
reduced with respect to H. Hence, G0 = H , proving our claim.

The last thing to show is that for all G ∈ G, G(0,X) 6= 0, or equivalently
that lt(G) is in K[X]. As in Lemma 5, define

m′ = {mP α1

1 · · ·P αn

n | m ∈ m, α1, . . . , αn ≥ 0}.

Let next n ⊂ K[P,X] be the standard monomials modulo G. Since lt(H) ⊂
lt(G), we have the inclusion n ⊂ m′. Besides, Lemma 5 proves that m′ is a
basis of K[P,X]/J ; hence, n = m′. This is enough to conclude: suppose that
there is G in G with a leading term ℓ = ℓXℓP, with ℓX and ℓP in respectively
K[X] and K[P], and ℓP 6= 1. Since G is reduced, ℓX is reduced with respect
to lt(H), so ℓX is in m and ℓ is in m′. Since m′ = n, we have a contradiction.

5 Computing the multiplication matrices

The first component of our algorithm is introduced now: the computation of
the K[π]-module basis m of K[X], together with the multiplication matrices
in this basis. Precisely, we let MX1

, . . . , MXn
be matrices in K[P] such that

MXi
(π) is the multiplication matrix by Xi in the K[π]-module K[X]. Since

we are interested in the cost of this process, we have to pay attention to the
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algorithms and data structures. Indeed, the entries of these multiplication
matrices are multivariate polynomials of (weighed) degree O(δ) in n variables

P1, . . . , Pn, so they may involve up to
(

n+δ

n

)

monomials.

Hence, there is no hope to obtain a cost in (nδ)O(1) using the dense polynomial
representation: there are too many monomials. The straight-line representa-
tion becomes useful here, as we will use straight-line programs to represent
the coefficients of the multiplication matrices. The main result of this section
shows that one can construct such straight-line programs of size (nδ)O(1).

Theorem 3 Suppose that the polynomials π are given by a straight-line pro-
gram of size Lπ. There exists a Las Vegas probabilistic algorithm that performs
the following tasks in time O(n5δ4 + nδ6 + Lπn2δ4):

• determine the basis m;

• construct a straight-line program of size O(n4δ4+nδ6+Lπnδ4) that computes
all entries of all matrices MXi

.

The algorithm chooses k = O(n2) points in K; choices that lead to failure are

contained in a hypersurface of K
k
.

As before, J is the ideal 〈π1 − P1, . . . , πn − Pn〉 of K[P,X] and for p ∈ K
n,

Jp is the ideal 〈π1 − p1, . . . , πn − pn〉 of K[X]. To obtain the matrices MXi
,

we use lifting techniques: starting from a description of V (Jp), for a generic
enough p, we obtain an approximation of a description of V (J · K(P)[X]).
These descriptions are shape lemma representations, which are convenient for
computations. Using the results of the previous section, we conclude with a
change of basis as in [4]. The same techniques could give the Gröbner basis G

of the last section for a similar cost, but G is not required below.

5.1 Lifting fibers

We say that a point p ∈ K
n is a lifting point if V (Jp) has cardinality δ. For

p a lifting point, we call lifting fiber the data of p, together with a shape
lemma representation of V (Jp) [13]. In this subsection, we discuss the cost
of computing a lifting fiber. For such zero-dimensional situations, there is no
need for us to use a straight-line program representation, since a lifting fiber
only involves O(nδ) monomials.

First, let D be the Jacobian determinant of (π1−P1, . . . , πn−Pn) with respect
to X. The Jacobian criterion gives us a criterion for p to be a lifting point.

Lemma 6 The point p is a lifting point if and only if D(p,X) vanishes
nowhere on V (Jp).
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Proof. By Corollary 2, the dimension of the quotient K[X]/Jp is δ for all
p. Hence, V (Jp) has cardinality δ if and only if Jp is radical, and the result
follows from the Jacobian criterion. �

As a consequence, the points p that are not lifting points are contained in

the projection of V (D) ∩ V (J) ⊂ K
2n

on the P-space; by Bézout’s theorem,
this projection is contained in a hypersurface of K

n
of degree at most δη, with

η = deg(π1) + · · · + deg(πn).

Even in this dimension zero case, we know no deterministic algorithm with a
cost in δO(1) for computing a lifting fiber. The following proposition reaches
the required complexity, at the cost however of becoming probabilistic.

Proposition 1 Suppose that the polynomials π are given by a straight-line
program of size Lπ. There exists a Las Vegas probabilistic algorithm that com-
putes a lifting fiber in time O(n5δ4+Lπn2δ4). The algorithm chooses k = O(n2)

points in K; choices that lead to failure are contained in a hypersurface of K
k
.

Proof. We simply pick p at random (the previous remark shows that a
generic p is a lifting point). If p is a lifting point, the system (π1−p1, . . . , πn−
pn) defines a regular reduced sequence; hence, it satisfies the assumptions of
Theorem 1 in [13], which gives our complexity estimate (and yields another
source of probabilistic behavior). �

To conclude this subsection, we discuss the special case where the polynomials
π generate the invariant ring of a group H containing G . In this case, a
straightforward deterministic algorithm is available (as a consequence, our
main algorithm becomes deterministic as well). We start with a lemma on the
deterministic avoidance of hyperplanes.

Lemma 7 Let ℓ1, . . . , ℓk be non-zero linear forms K
n → K, and let α1, . . . , αk

be in K
k. One can find x ∈ K

n with ℓi(x) 6= αi for all i in time O(nk).

Proof. We determine one coordinate of x at a time. To find xn, we first
inspect whether there are some linear forms ℓi of the form ℓi = λixn. In this
case, we need to choose a value xn different from all corresponding αi/λi. This
is done in time O(k): we scan the sequence of values αi/λi and mark all integers
in 0, . . . , k that appear in it; one such integer i0 will be left unmarked, and we
let xn = i0. We update all remaining linear forms and continue recursively. �

Proposition 2 Suppose that K[π] = K[X]H , for some finite matrix group
H . Then one can find a lifting fiber for J in time O(nδ2 + n2δ).

Proof. For x0 ∈ K
n and p = π(x0), the variety V (Jp) is precisely the orbit

of x0 under the action of H . Hence, by Lemma 6, p is a lifting point if and
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only x0 is fixed under none of the elements h ∈ H . For any h in H , the
fixed points of h (i.e., the eigenspace for the eigenvalue 1) are contained in a
hyperplane whose equation can be determined in time O(n2). Since δ = |H |,
the total cost is O(n2δ). Then, by Lemma 7, one can find a point x0 such that
the associated p is a lifting point in time O(nδ).

Knowing x0, one can then determine its orbit using the matrices in H , in
time O(n2δ). Next, we determine a linear form u such that u(α) 6= u(α′) for
α 6= α′ in V (Jp); such a linear form is then a primitive element for Jp. To do
so, remark that the inequalities u(α) 6= u(α′) impose O(δ2) constraints on the
coefficients of u; by Lemma 7, we can find a suitable u in time O(nδ2). Once
u is known, T, S1, . . . , Sn are obtained by Lagrange interpolation. �

5.2 Finding the matrices by lifting techniques

The algorithm now follows the ideas initiated in [10,11,14], even though our
output (multiplication matrices in the basis m) is different; proofs of the next
few statements can be found there as well.

Let p, u =
∑

i≤n uiXi and Tp, S1,p, . . . , Sn,p ∈ K[U ] be the lifting fiber ob-
tained in the previous subsection. Then, u is also a primitive element for the
maximal ideal J · K(P)[X], and we let T, S1, . . . , Sn ∈ K(P)[U ] be the corre-
sponding shape lemma representation. No denominator in the coefficients of
these polynomials vanishes at p, and they satisfy the specialization property

T (p, U) = Tp(U), S1(p, U) = S1,p(U), . . . , Sn(p, U) = Sn,p(U).

Hence, all coefficients in T, S1, . . . , Sn admit power series expansions at p.
Decomposing these power series in their homogeneous components, we have

T = U δ +
δ−1
∑

j=0

∑

κ≥0

Tj,κU
j , Si =

δ−1
∑

j=0

∑

κ≥0

Si,j,κU
j ,

with Tj,κ and Si,j,κ in K[P1 − p1, . . . , Pn − pn], homogeneous of degree κ. The
following proposition gives a cost estimate for computing truncations of these
expansions modulo arbitrary powers of 〈P1 − p1, . . . , Pn − pn〉.

Proposition 3 Suppose that the polynomials π are given by a straight-line
program of size Lπ. Given a lifting fiber for J and an integer k ≥ 0, one
can construct in time O(n4k2δ2 + Lπnk2δ2) a straight-line program of size
O(n4k2δ2 + Lπnk2δ2) that evaluates all coefficients Tj,κ and Si,j,κ, for κ < k.

Proof. This is a classical application of lifting techniques as in [10,11,14].
However, these references give worse complexity estimates, so we briefly in-
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dicate here how to obtain the requested cost. We recall first the results of
Section 4.3 in [13]; this describes a situation similar to ours, but with only one
free variable Z to lift.

Let F be a field and let F = (F1, . . . , Fn) be in F[Z, X1, . . . , Xn]. As above,
let u =

∑

uiXi and let τ, ζ1, . . . , ζn be polynomials in F(Z)[U ], with τ monic
of degree d, such that Fi(Z, ζ1, . . . , ζn) = 0 mod τ for all i. Suppose also that
ι(0, ζ1, . . . , ζn) is invertible modulo τ , where ι is the Jacobian determinant of F
in X. Finally, assume that no denominator in τ, ζ1, . . . , ζn vanishes at Z = 0,
so all coefficients of these polynomials admit series expansions at Z = 0:

τ = Ud +
d−1
∑

j=0

∑

κ≥0

τj,κZ
κU j , ζi =

d−1
∑

j=0

∑

κ≥0

ζi,j,κZ
κU j .

Then, if the polynomials F are given by a straight-line program ΓF of size
LF, Lemma 2 in [13] shows that all coefficients τj,κ and ζi,j,κ, for κ < k, can
be computed by a straight-line program of size O(n4k2δ2 + LFnk2δ2), taking
as input ΓF, u and τ(0, U), ζ1(0, U), . . . , ζn(0, U). The construction of this
straight-line program can be done in the same cost.

Let us apply this result to our problem. Let Z be a new variable, let F be
K(P) and let P ′

i = pi + Z(Pi − pi), for i ≤ n. The polynomials Fi given by
Fi(Z,X) = πi − P ′

i satisfy the assumptions of the previous paragraph, with
τ(Z, U) = T (P ′

1, . . . , P
′
n, U) and ζi(Z, U) = Si(P

′
1, . . . , P

′
n, U). For j ≤ δ and

i ≤ n, we have by construction τj,κ = Tj,κ and ζi,j,κ = Si,j,κ. Hence, the
statement of the previous paragraph concludes the proof. �

We finally show how to compute the multiplication matrices MXi
, starting

from the power series expansions obtained in the previous proposition.

Proposition 4 Given a straight-line program Γ of size L that computes the
coefficients Tj,κ and Si,j,κ for κ ≤ 2δ, one can perform the following tasks in
time L + O(nδ6):

• determine the basis m;

• construct a straight-line program of size L+O(nδ6) that evaluates all entries
of all matrices MXi

.

Proof. We first determine the basis m. We use a slight variant of the FGLM
algorithm given in [18]: the shape lemma representation Tp, S1,p, . . . , Sn,p ∈
K[U ] of V (Jp) is sufficient to recover the Gröbner basis of Jp for the order >.
By Corollary 2, this gives us the monomial basis m. The cost is O(nδ3).

In view of Corollary 2 again, one sees that the matrices MXi
are also the mul-

tiplication matrices in K(P)[X]/J in the basis m. Now, knowing m, Lemma 4
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shows how to construct in time O(nδ4) a straight-line program of size O(nδ4)
that takes as input the coefficients of T, S1, . . . , Sn and outputs a denominator
D and the entries of matrices M ′

Xi
, with MXi

= M ′
Xi

/D .

Remark now that the entries of MXi
are polynomials of degree at most 2δ.

Besides, the coefficients of T, S1, . . . , Sn are rational functions, that are given
through truncated power series expansions. Applying Lemma 3 (to power se-
ries expanded at p), we can construct in time L + O(nδ6) a new straight-line
program of size L + O(nδ6), that computes all homogeneous components of
all entries of the matrices MXi

up to degree 2δ. Since the entries of these
matrices are polynomials of that degree, it suffices to add their homogeneous
components to conclude. �

The proof of Theorem 3 follows by putting together the results of Proposi-
tions 1, 3 and 4.

6 Rewriting in the invariant basis

We finally conclude the proof of our main theorem, proceeding in two steps:

• A polynomial F in K[X] can be uniquely written as

F =
∑

m∈m

ϕm(π)m,

where all ϕm are in K[P]. Using the multiplication matrices computed be-
fore, one can readily obtain the polynomials ϕm from F .

• If F is invariant under G , the vector of its coefficients (ϕm)m∈m is a linear
combination of the coefficient vectors giving the secondary invariants; linear
system solving will conclude the proof.

This process is of course quite natural; what requires care is the control of
its cost. We let Γσ be a straight-line program of size Lσ that computes the
secondary invariants σ (this is part of our input) and we write, for σ ∈ σ,

σ =
∑

m∈m

am,σ(π) m, (3)

with am,σ ∈ K[P]. We let Γ0 be the straight-line program of Theorem 3 that
computes the entries of MX1

, . . . , MXn
, and let L0 be its size. Finally, in all

that follows, F ∈ K[X] is given by a straight-line program Γ of size L.

Proposition 5 With notation as above, given Γ0, Γσ and Γ, one can con-
struct in time L0 +O(Lδ3 +Lσδ3) a straight-line program of size L0 +O(Lδ3 +
Lσδ3) that computes all ϕm and all am,σ.
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Proof. The coefficients ϕm form the column indexed by the monomial 1 ∈ m

in the matrix F (MX1
, . . . , MXn

). The reasoning is the same for the polyno-
mials am,σ, and the result is a direct consequence of Corollary 1. �

Suppose now that F is in K[X]G , and let (Fσ)σ∈σ be the unique polynomials
in K[P] such that F =

∑

σ∈σ
Fσ(π)σ. The following proposition will conclude

the proof of our main theorem.

Proposition 6 With notation as above, given Γ0, Γσ and Γ, one can con-
struct in time L0 + O(Lδ3 + Lσδ3 + δ4) a straight-line program of size L0 +
O(Lδ3 + Lσδ3 + δ4) that computes all Fσ.

Proof. For definiteness, let us order m and σ by increasing degree and let
M be the δ × e matrix with entries am,σ. This matrix represents the map
K[P]e → K[P]δ given by (Gσ)σ∈σ 7→ (

∑

σ∈σ
am,σGσ)m∈m. Since F is in K[X]G ,

the coefficient vector (ϕm)m∈m is in the image of M ; the coefficients (Fσ)σ∈σ

are its (unique, by the following lemma) preimage.

Lemma 8 One can determine in time O(δe2) an invertible e × e submatrix
M ′ of M with determinant in K.

Proof. For σ in σ and m in m, the coefficient am,σ is either 0 or weighted
homogeneous of degree deg(σ)−deg(m), with Pi of weight deg(πi). For d ≥ 0,
we let md be the subset of m consisting of elements of degree d; similarly σd

is the subset of all elements of degree d in σ. For σ in σd, we can then rewrite
Equation (3) as

σ =
∑

m∈md′ , d′<d

am,σ(π) m +
∑

m∈md

am,σ m, (4)

where in the second sum, the coefficients am,σ are in K. Remark that for a
fixed d ≥ 0, the homogeneous polynomials

{

∑

m∈md

am,σ m | σ ∈ σd

}

are linearly independent. Indeed, reducing Equation (4) modulo 〈π〉, we find
the relations, for σ ∈ σd:

σ =
∑

m∈md

am,σ m mod 〈π〉.

Since the family σ is linearly independent modulo 〈π〉, the claim follows.
Thus, there exists m′

d ⊂ md of cardinality |σd| such that the scalar matrix
M ′

d = [am,σ], for m ∈ m′
d and σ ∈ σd, is invertible. For a given d, m′

d can
be found by Gaussian elimination in time O(|md||σd|

2); the total cost is in
O(δe2).
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Let m′ be the union of all m′
d, and let M ′ be the e × e square submatrix of

M consisting of rows indexed by m′. By construction, this matrix is block
lower-triangular; the blocks on the diagonal are precisely the scalar matrices
M ′

d introduced previously. Hence, the determinant of M ′ is in K − {0}. �

We conclude by Lemma 2: since M ′ has constant determinant, the overhead
over the cost of Proposition 5 induced by computing the inverse of M ′ and
deducing the coefficients (Fσ)σ∈σ is O(δ4). Adjoining to this result the estimate
on L0 given in Theorem 3, this finishes the proof of our main theorem.

7 Experiments

We describe here the potential applications of our approach on a toy example
of polynomial system solving. Consider the group G = {i, j}, with

i =





1 0

0 1



 , j =





−1 0

0 −1



 .

Hence, j acts on the polynomial ring K[X1, X2] through (X1, X2) 7→ (−X1,−X2)
and we can take π = (X2

1 , X2
2 ) and σ = (1, X1X2).

Steps of the algorithm. Recall that our algorithm has two main steps: a
computation depending only on π, σ (Section 5) followed by the rewriting of an
invariant polynomial F (Section 6). In this case, the first computation can be
done by hand (and the straight-line representation is not really required, since
the result is so simple): the basis m is {1, X1, X2, X1X2} and the multiplication
matrices by X1 and X2 are respectively

MX1
=













0 1 0 0
P1 0 0 0
0 0 0 1
0 0 P1 0













, MX2
=













0 0 P2 0
0 0 0 P2

1 0 0 0
0 1 0 0













.

Any F in K[X1, X2] can be uniquely written F = ϕ1(π) + ϕX1
(π)X1 +

ϕX2
(π)X2 + ϕX1X2

(π)X1X2. Then, the coordinates [ϕ1, ϕX1
, ϕX2

, ϕX1X2
]t are

given by the first column of the matrix F (M1, M2).

If F is given through a sequence of additions and multiplications of length L,
we can construct a sequence of kL additions and multiplications that computes
the entries of F (MX1

, MX2
), and thus ϕ1, ϕX1

, ϕX2
, ϕX1X2

; here, k is a constant
such that 4× 4 matrices can be added or multiplied in k operations (actually,
in this simple case, the constant k can even be reduced by exploiting the
structure of the matrices).
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Finally, the secondary invariants are respectively the first and last elements
of the monomial basis 1, X1, X2, X1X2. Then, if F is in K[X1, X2]

G , ϕX1
=

ϕX2
= 0, and ϕ1 and ϕX1X2

are the output we are looking for.

Solving symmetric systems. As said in the introduction, evaluation proper-
ties partially control the cost of polynomial system solving, for the algorithms
of the geometric resolution family [12,11,10,14,13,19]. We conclude with a pre-
liminary study of the applications of these techniques to systems with sym-
metries. For varying d, we consider as an example the invariant system

F1 = (x1 + x2 − 1)4 + (x1 + x2 + 1)4 + 2, F2 = (x1 + x2 + x3
2)

2d + 1.

This is a very favorable situation for us: these polynomials can be evaluated
fast, in L = O(log(d)) operations. Remark that such situations are not entirely
artificial: some symmetric systems (for the symmetric group S2) with a similar
low complexity of evaluation arose in hyperelliptic point-counting problems [6].

The system (F1, F2) has 12d solutions. To exploit the symmetries, we fol-
low [5,2]: we rewrite (F1, F2) in the variables P1, P2, S, obtaining equations
(F ′

1, F
′
2) in K[P1, P2, S], and adjoin the relation F ′

3 = S2 − P1P2. The system
(F ′

1, F
′
2, F

′
3) has 6d solutions: the change of variables makes for a better output,

but it remains to examine the impact on the computation time.

We compare two approaches. As said above, we focus on the geometric resolu-
tion algorithm, whose running time depends linearly on the number of opera-
tions it takes to evaluate the system. The rewriting process we described in the
previous sections gives an evaluation scheme for (F ′

1, F
′
2, F

′
3) using O(log(d))

operations. On the contrary, a plain rewriting process will expand the equa-
tions: the system loses its structure, and it takes O(d2) operations to evaluate
(F ′

1, F
′
2, F

′
3) in their expanded form. We stress the fact that the only difference

between these approaches is the way the system (F ′
1, F

′
2, F

′
3) is represented.

In the following table, we give the timings in seconds for solving the sys-
tem (F1, F2) in its original variables, and for the system in the new variables
(F ′

1, F
′
2, F

′
3) using the two approaches above; our code is based on Lecerf’s

Kronecker package [20]. All results are obtained using Magma 2.14-8 on a
2.80 Ghz Pentium 4 (for completeness, we mention that for d ≥ 32, the tim-
ings in the first two columns outperform Gröbner basis computation).

d Original system Our approach Plain rewriting

8 2.1 3.0 4.9

16 6.3 8.4 53.2

32 27.4 36.8 874

64 137 191 19867
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The results are promising: our approach allows for much better computation
time than the naive rewriting strategy; the timings are very close to those for
the initial system. However, it is clear that this is still a very first experiment
on a very favorable example. More work is required to estimate precisely the
running time for solving invariant systems following this strategy.
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