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Abstract

We discuss changing the variable order for a regular chain in positive dimension.
This quite general question has applications going from implicitization problems to
the symbolic resolution of some systems of differential algebraic equations.

We propose a modular method, reducing the problem to computations in dimen-
sion zero and one. The problems raised by the choice of the specialization points
and the lack of the (crucial) information of what are the free and algebraic variables
for the new order are discussed. Strong (but not unusual) hypotheses for the initial
regular chain are required; the main required subroutines are change of order in
dimension zero and a formal Newton iteration.

1 Introduction

Many operations with multivariate polynomials, such as implicitization, rely
on manipulations involving one or several lexicographic orders. These lexico-
graphic orders are also a key component to define regular chains [35,45,42]
(see definition below), so that these regular chains appear as a natural tool to
handle situations where orders on the variables matter.

Suppose that we are given a regular chain for some input order, as well as a
target order on the variables; we are interested in converting the input into a
new regular chain with respect to the target order, that describes the same
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solutions (up to a strict algebraic subset). This is required by many applica-
tions (the implicitization problem falls into this category), as in the following
example.

Example. Consider the polynomials P in Q[X1, X2] such that P (X1, X2) =
P (−X1,−X2). Invariant theory tells us that any such polynomial can be writ-
ten as a polynomial in X2

1 , X
2
2 (the primary invariants π1 and π2) and X1X2

(the secondary invariant σ); natural questions to ask are whether such a rep-
resentation is unique, and how to perform the rewriting.

This can be done by getting an expression of X1 and X2 as functions of π1

and π2, hence by changing the order of the following system from X2 < X1 <
σ < π2 < π1 to π2 < π1 < σ < X1 < X2. Given

∣∣∣∣∣∣∣∣∣∣∣

π1 = X2
1

π2 = X2
2

σ = X1X2

or equivalently

∣∣∣∣∣∣∣∣∣∣∣

π1 −X2
1 = 0

π2 −X2
2 = 0

σ −X1X2 = 0,

we wish to obtain
∣∣∣∣∣∣∣∣∣∣∣

π1X2 − σX1 = 0

X2
1 − π1 = 0

σ2 − π1π2 = 0

or equivalently

∣∣∣∣∣∣∣∣∣∣∣

X2 = σ
π1
X1

X2
1 = π1

σ2 = π1π2.

In this form, we observe the relation σ2 = π1π2 between our basic invariants,
which establishes that the representation cannot be unique. Furthermore, the
new form of the system can be used as a set of rewriting rules, so as to obtain
a canonical form for any invariant polynomial.

In this article, we present an algorithm for performing such conversions, con-
centrating on the case of varieties of positive dimension. Representing such
a variety by a regular chain involves decomposing the set of coordinates into
free / algebraic variables; for instance, in the input of the previous algorithm,
(X1, X2) are free and (π1, π2, σ) algebraic. We will then use modular techniques
(consisting in “specializing” and “lifting” the free variables) to keep the size
of intermediate expressions involving the free variables under control.

To get a hint of the way such techniques work, one can consider the over-
simplified case where the free (resp. algebraic) variables are the same for both
the input and the target order (this is not the case in the previous example),
so that only the order of the algebraic variables actually matters. In this case,
a direct approach consists in specializing the free variables at a random value
(thus reducing to dimension zero), use change of order in dimension zero to
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operate on the algebraic variables, and recover the dependence in the free
variables using a formal version of Newton iteration.

We will extend this approach to the general case, where the sets of free (resp.
algebraic) variables differ in the input and output. Of course, we do not know
a priori what the free (resp. algebraic) variables are in the output, so they
will have to be determined; using this information will enable us to design a
fully modular algorithm.

Triangular sets and regular chains. After this general introduction, we can
define more formally the objects we will compute with. To start with, let us
consider a family X = (X1, . . . , Xn) of indeterminates over a perfect field K,
and suppose that these variables are ordered. In this paragraph, our order will
simply be X1 < · · · < Xn, a situation to which one can always reduce at the
cost of renaming the variables.

To a non-constant polynomial F , one can then associate its main variable,
which is the largest variable appearing in F . The initial of F is the leading
coefficient of F , when F is seen as a univariate polynomial in its main variable.
These notions can then be used to define triangular sets and regular chains,
which are families of polynomials that display a “triangular” structure similar
to those seen in the previous example.

Let thus R = (R1, . . . , Rs) be a family of non-constant polynomials in K[X].
We say that R is a triangular set if for i < j, the main variable of Ri is smaller
than the main variable of Rj. In this case, we denote by hi the initial of Ri

and by h their product; the s main variables of the polynomials Ri are called
the algebraic variables of R; the other r variables are called the free variables
of R.

For i ≤ s, the saturated ideal of (R1, . . . , Ri) is the saturated ideal 〈R1, . . . , Ri〉 :
(h1 · · ·hi)

∞; we write Sat(R) for the saturated ideal of (R1, . . . , Rs). Follow-
ing [35], we then say that R is a regular chain if for all 2 ≤ i ≤ s the initial
hi is a non-zero divisor modulo the saturated ideal of (R1, . . . , Ri−1).

If in addition all initials of R are 1, we will actually call R a Lazard triangular
set, as a reference to [38]. In this case, we will then require that each polynomial
Ri of R is reduced with respect to R1, . . . , Ri−1 (in the sense that no monomial
in Ri can be divided by the leading term of Rj, for j < i).

The natural geometric object associated to a regular chain R is not its zero-
set V (R), but the zero-set W = V (Sat(R)) of its saturated ideal: whereas the
zero-set of R enjoys no specific property, W is equidimensional of dimension r,
and its projection on the space of the free variables of R is dense [2]. Observe
that W is the Zariski closure of V (R)− V (h).
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Representing varieties by regular chains. We now discuss a converse ques-
tion: given a variety W , what are the regular chains R such that W =
V (Sat(R))? In what follows, we let K be an algebraic closure of K andW ⊂ Kn

be an irreducible variety of dimension r, defined over K, and we let I be its
defining ideal in K[X].

Since we make a heavy use of projections, we use a special notation: if Z is

a subset of X of cardinality `, we denote by πZ : Kn → K`
the projection on

the Z-space, that forgets all coordinates not in Z. For z in K`
, we then denote

by Wz the fiber W ∩ π−1
Z (z), that is, the subset of points of W that project

onto z.

A subset Z of X is a set of free variables for W if I ∩ K[Z] = {0}, i.e. if the
image πZ(W ) is dense. If Z is a set of free variables, it is called maximal if it
is additionally maximal (for inclusion) among the sets of free variables; in this
case, for a generic choice of z, the fiber Wz has dimension zero. The following
result then relates these maximal sets of free variables to the regular chains
representing W (proofs of the results stated in the introduction are given in
the rest of the article).

Proposition 1 A subset Z of X is a maximal set of free variables for W if
and only if there exists a regular chain R in K[X] having Z as free variables
and Y = X− Z as algebraic variables, and such that I equals Sat(R).

The regular chain R of the previous proposition is not canonical, the first
reason being that we have not specified the variable order. Even if this order
is fixed, there is a priori no canonical choice, due to the possible choices of
initials. The following proposition restores canonicity, by introducing a normal
form for these initials. We denote by I ·K(Z)[Y] the extended ideal generated
by I in K(Z)[Y].

Proposition 2 Let < be an order on X. Then all regular chains R for the
order < for which I = Sat(R) have the same set of algebraic variables Y (resp.
free variables Z). Furthermore, there exists a unique Lazard triangular set T
in K(Z)[Y] for the order induced by < on Y such that 〈T〉 equals I ·K(Z)[Y].

In the situation of the previous proposition, T represents the generic points
of W . If we clear all denominators from T, we obtain a regular chain R in
K[Z][Y] = K[X], having all its initials in K[Z] and such that Sat(R) = I; such
a regular chain is called strongly normalized after [41]. We will call T and R
the canonical representations associated to the order <.

Lifting fibers. As usual in this kind of situation, one has to be careful to
avoid a combinatorial explosion due to the sheer number of monomials that
may appear in representations such as T or R above.
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A natural measure of the complexity of the problem is the degree of the variety
W (see [30], from where we take all our results on this notion). If W has
(unbounded) positive dimension, the number of monomials that can appear
in T or R is not polynomial in the degree of W . To overcome this difficulty,
we use lifting fibers [26,29,39]: an irreducible variety W of dimension r will be
represented by a specialization of the associated canonical representation T
at some point z ∈ Kr, thus describing a fiber Wz of some projection πZ(W ).

Precisely, let < be an order on the set X. Associated with this order, let
the set of free variables Z, its complement Y = X − Z, and the canonical
representation T ∈ K(Z)[Y] be as in Proposition 2. We will then put natural
non-degeneracy conditions on our specialization point z ∈ Kr.

H1. The point z ∈ Kr cancels no denominator in T.

In this case, we denote by Tz the Lazard triangular set in K[Y] obtained by
specializing Z at z in T. The following lemma shows that the roots of Tz are
then the points of W above z.

Proposition 3 Under condition H1, the fiber Wz = W ∩ π−1
Z (z) equals {z}×

V (Tz).

We also need a radicality assumption, so as to make the residue class ring
K[Y]/〈Tz〉 a product of fields.

H2. The Lazard triangular set Tz defines a radical ideal.

Finally, we need a system of equations to recover W from the fiber Wz. In our
case, we will be given a system of equations F = F1, . . . , Fs and an inequation
h in K[X] such that W is the Zariski-closure of V (F) − V (h) (later, F will
be our input regular chain, and h the product of its initials). We then require
that the conditions of the implicit function theorem are satisfied:

H3. The Jacobian determinant of F with respect to Y does not vanish on Wz.

Then, a lifting fiber for (F, h, <) is the data of z and Tz satisfying assump-
tions H1,H2,H3. Using Newton iteration, if needed, one can then recover the
canonical representation T ∈ K(Z)[Y] from such a lifting fiber, see Proposi-
tion 9 below. The main interest of this notion is thus that it enables us to
handle objects of dimension zero instead of positive dimension, avoiding the
cost of representing all monomials in positive dimension, without losing any
information.

Let us illustrate this notion on the invariant problem met before. Consider
again the system of equations F over the field K:

σ −X1X2, π2 −X2
2 , π1 −X2

1 ,
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and let W be its zero-set in K5
, so that the inequation h is here 1. In this

order, this family of polynomials is already a regular chain for the order X2 <
X1 < σ < π2 < π1, admitting Z = (X1, X2) as free variables. Then one checks
that the point z = (1, 1) satisfies assumptions H1,H2,H3; the corresponding
lifting fiber is given by z, together with

T(1,1)

∣∣∣∣∣∣∣∣∣

π1 − 1

π2 − 1

σ − 1

which is a specialization of T

∣∣∣∣∣∣∣∣∣

π1 −X2
1

π2 −X2
2

σ −X1X2.

Observe next that Z′ = (π1, π2) is also a maximal set of free variables. For
the order π2 < π1 < σ < X1 < X2, the point z′ = (1, 1) satisfies assumptions
H1,H2,H3 as well; the corresponding lifting fiber is given by z′, together with

T′
(1,1)

∣∣∣∣∣∣∣∣∣

X2 − σX1

X2
1 − 1

σ2 − 1

which is a specialization of T′

∣∣∣∣∣∣∣∣∣

X2 − σ
π1
X1

X2
1 − π1

σ2 − π1π2.

Lifting fibers are defined using variable orders. However, to have more nota-
tional flexibility in what follows, we also associate a notion of lifting fiber to
a given set of free variables Z (resp. a set of algebraic variables Y): this is a
lifting fiber for (F, h, <), where < is any order inducing Z as free variables for
W (resp. Y as algebraic variables).

Main results. In what follows, we denote by MT a function that assigns to an
irreducible variety W an upper bound on the cost of all operations (+,−,×),
invertibility testing and inversion modulo zero-dimensional Lazard triangular
sets arising as lifting fibers for W . The precise definition is given in Subsec-
tion 2.2, together with various estimates; in the meantime, we point out that
MT(W ) is polynomial in the degree (degW ) of W . We also denote by M a mul-
tiplication time function for univariate polynomials, see again Subsection 2.2.

Given an input regular chain and a target order, our main result is a polynomial-
time bound on the complexity of computing a lifting fiber for the output reg-
ular chain. Since our algorithms use Newton iteration, a natural encoding for
the input system is through a straight-line program, as this representation is
especially well adapted to such evaluation-intensive routines. The counterpart
of this representation is that it does not immediately give information such as
total or partial degrees, which are needed below; while it would be possible to
determine these quantities at some extra cost, we adopt the simpler solution
of taking them as input.

Theorem 1 Let F = (F1, . . . , Fs) be a regular chain in K[X] = K[X1, . . . , Xn]
for an input order <, and assume that the following assumptions hold:
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• K is perfect and has characteristic larger than dn, where d is an upper bound
on the degrees of the polynomials in F.

• The saturated ideal of F is prime.

Let W = V (Sat(F)) and let h be the product of the initials of F. Suppose also
that the regular chain F is given by a straight-line program of size L, that the
main variables of F are known, as well as the degree of these polynomials in
their main variables.

Given a target order <′ on X, one can compute by a probabilistic algorithm a
lifting fiber for (F, h, <′). In case of success, the algorithm uses

O
(
s(n4 + nL) MT(W ) M

(
(degW )2

)
log(degW )

)
⊂ (nL degW )O(1)

operations in K. The algorithm chooses n + s parameters in K. If these pa-
rameters are chosen uniformly at random in a finite subset S of K, writing
m = max(n, d), the probability of failure is at most

2dn(3d2n + n2n + (6 + 13m)mdn +m2)

|S| .

Let us illustrate the probabilistic aspect by the example of a system with
n = 10 unknowns, with input equations of maximal degree d = 4, solved
over a prime finite field K with approximately 1019 elements (so that the field
elements fit into a 64-bit word). Then if one chooses all random values in K,
by the previous theorem, the probability of failure is at most ' 6 · 10−7.

As was mentioned before, from our output lifting fiber, recovering the full
expansion of the target regular chain is a well-known question, that is solved
using Newton iteration: for the sake of reference, the cost of this operation is
reviewed in Proposition 9. However, one should bear in mind that in general,
using dense monomial representation, the cost of this last step may be pro-
hibitive due to the sheer number of monomials that may appear, which is not
polynomial in the degree of W .

To conclude, we mention some workarounds to this issue. First, in several situ-
ations, knowing a single lifting fiber is actually enough: for instance, it enables
one to recover any other lifting fiber efficiently (that is, in a time that remains
polynomial in the degree of W ). If the multivariate representation of the target
regular chain is really required, then it can be computed in polynomial time
using straight-line program encoding, following the ideas of [28,27,26,31,34];
however, as of now, there is no software package enabling easily such ma-
nipulations in our context (see however [24]). Finally, when using expanded
representation, a direction of future research will consist in using sparse lifting
techniques, taking into account the possible sparse nature of the output.
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Outlook of the algorithm. The algorithm is an iterative process: the input
regular chain provides us with a first lifting fiber, for the initial order. We will
then compute a finite sequence of lifting fibers, the last one being a lifting
fiber for the target order.

The algorithm works in two steps. As was said before, we do not know a priori
what are the algebraic variables in the output; the first step of the algorithm
will determine them. Since this will be required in the second stage of the algo-
rithm, we will actually compute a more precise information: a whole sequence
of sets of algebraic variables Y0, . . . ,Ys, where Y0 is the set of algebraic vari-
ables in the input regular chain, and Ys is that for the target regular chain.
Writing Yi for the set of algebraic variables at step i, we will then arrange
that Yi and Yi+1 differ by a single element. This will be done by linear alge-
bra (with algebraic number coefficients), using a characterization of Ys as the
maximal element of a suitable matroid.

The second step consists in computing an associated sequence of lifting fibers.
This is an inductive process: given a lifting fiber for Yi, we will deduce a
lifting fiber for Yi+1. Our requirements on the sequence Y0, . . . ,Ys make this
task easy, using change of order in dimension zero and Newton iteration in
one variable. Hence, all the objects that we see will be either zero- or one-
dimensional; this will allow us to keep a good control on the complexity.

Let us illustrate the behavior of this algorithm with our previous example.
The set of algebraic variables for the input regular chain is Y0 = {σ, π1, π2}.
In the first part of the algorithm, we will obtain the following sets of algebraic
variables:

Y1 = Y0 − {π2} ∪ {X2} = {σ, π1, X2}
Y2 = Y1 − {π1} ∪ {X1} = {σ,X1, X2}.

In the second phase, we obtain the associated lifting fibers:

∣∣∣∣∣∣∣∣∣

π1 − 1

π2 − 1

σ − 1

∣∣∣∣∣∣∣∣∣

X2 − σ

σ2 − 1

π2
1 − 1

∣∣∣∣∣∣∣∣∣

X2 − σX1

X2
1 − 1

σ2 − 1

with (X1 = 1, X2 = 1) with (X1 = 1, π2 = 1) with (π1 = 1, π2 = 1),

the last one being the output of our algorithm.

Applications. Change of order is an ubiquitous problem. A first vast family
of applications is coming from implicitization problems, which essentially con-
sist in finding the polynomial relations between several multivariate rational
functions. This problem fits naturally in our setting: to a system of rational
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functions of the form

ϕi =
fi(Z1, . . . , Zr)

gi(Z1, . . . , Zr)
i = 1, . . . , s

one associates the regular chain

Fi : gi(Z1, . . . , Zr)Yi − fi(Z1, . . . , Zr) i = 1, . . . , s

having Z = Z1, . . . , Zr as free variables and Y = Y1, . . . , Ys as algebraic vari-
ables. Changing to an order where the Z variables are larger than the Y
variables enables us to find the relations between the rational function ϕi, but
also to recover the parameters Z as algebraic functions of the image points Y
(when it is possible).

As was illustrated in the introductory example, several other families of prob-
lems fit into a similar setting, such as many questions coming from invariant
theory, using the above “tag variables” techniques [54]. In all these cases, our
primality assumption is indeed satisfied.

Several other application examples are coming from differential algebra: as
illustrated in [7], characteristic sets conversion in a differential ring can partly
be reduced to perform change of orders for positive-dimensional regular chains
in a polynomial ring (see the example Euler’s equations for a perfect fluid
in [7]). Again, in this context, our primality assumption is satisfied.

Previous work. As was said above, the concept of regular chain was intro-
duced in [35] (see also [59]), following previous work initiated by Ritt [49]
and Wu [58]. Other contributors were Lazard [37,38], Aubry [1] and Moreno
Maza [44,45]. Our reference for background results on regular chains will be [2];
a recent overview is also given in [33].

In this paper, we focus on the case of positive dimension. There already exist
many algorithms to perform the change of order in this context, either under
the point of view of Gröbner bases [22,14,36,56] or regular chains [7,47]. As
was said above, an important application of change of order is the impliciti-
zation problem, for which many specialized algorithms have been developed,
relying on resultant formalisms and homological algebra techniques, see for
instance [10,20,15] and the numerous references therein.

However, as far as we know, the complexity of these algorithms is not well
known (see [36] for some work in this direction), and in most cases, cannot be
expected to be polynomial in the degree of W . Our specificity is to provide a
fine algorithmic study, relying on well-identified subroutines, such as change
of order in dimension zero and Newton iteration. This enables us to offer a
clear view of the complexity of the problem: the central operation presented
in this article, computing a lifting fiber for the target regular chain, can be
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done in a time that is polynomial in the natural complexity measures of the
problem. Recovering the full monomial expansion of the target regular chain
can then be done using standard techniques.

This notion of lifting fiber (though not exactly with the same requirements
as ours) explicitly appeared in [26,29,39], following extensive previous work
of Giusti, Heintz, Pardo and collaborators [28,27], with the purpose of com-
puting geometric resolutions. A similar idea appeared again in the context of
numerical algebraic geometry, with the name of witness sets [55].

Linked with the notion of lifting fiber, other aspects of this work are following
the ideas of the references [28,27,26,29,39] cited above, as well as the recent
extensions to finite fields [12,11]. Besides the use of straight-line programs and
of Newton iteration, the approach used in the second part of our algorithm
bears some strong similarity with the above works in its iterative lifting / in-
tersection process. We obtain a sharp control on the probabilistic aspects (as
in [12,11]) and fine complexity estimates: our algorithm is polynomial in the
degree of the variety defined by the input system F, whereas none of the above
methods is known to reach this bound.

Organization of the article. Section 2 gives some basic geometric and algo-
rithmic results on regular chains that are used throughout this article. Sec-
tion 3 then introduces the language of matroids as a convenient tool to describe
independence properties: this will give a general framework for us to design
the latter algorithms. Using this language, in Section 4, we use linear algebra
to determine the set of algebraic variables that appear in the target regular
chain. Section 5 shows how to use that information to compute a sequence of
lifting fibers, and Section 6 gives the proof of the main theorem. We finish this
article with a conclusion section, and an appendix devoted to the computation
of inverses modulo a Lazard triangular set.

Conventions. All along the paper, we consider several triangular sets and
regular chains, using the following conventions.

The input regular chain has a special role. It will always be denoted by F; it is
the only explicitly known regular chain (through a straight-line program repre-
sentation); it has “low” degree d, but does not have to be strongly normalized.
We use it as a starting point, and within Newton’s operator.

The other regular chains (typically the ones considered in the intermediate
steps of the algorithm, or the output one) will be denoted by R (or Ri if we
consider a sequence thereof, R′, . . . ). They are all strongly normalized; the
associated Lazard triangular sets (with rational function coefficients) will be
written T (or Ti, T′, . . . ). We will not compute such regular chains explic-
itly, but only handle them through lifting fibers. They typically involve larger
degrees in the free variables (around d2n).
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2 Preliminaries

This section is devoted to present some basic results used in all the rest of
this article, on regular chains, their geometry and some of their algorithmic
properties. Many of those are already known; a few new facts are introduced
as well. In all that follows, K is a perfect field.

2.1 Basic results on regular chains

Special case: dimension zero. We start by discussing some properties of
regular chains and Lazard triangular sets in dimension zero.

If W is an irreducible zero-dimensional variety defined over K, then for any
order < on the variables, there exists a unique Lazard triangular set T for the
order < such that 〈T〉 equals the defining ideal I(W ) of W ; this triangular
set is the Gröbner basis of I(W ) for the lexicographic order induced by <.

When W is not irreducible, this does not have to be the case anymore: I(W )
is generated by a Lazard triangular set for the order < if and only if W is
equiprojectable for a suitable family of projections [3]. In what follows, our
zero-dimensional objects will be obtained as sections of irreducible varieties of
positive dimension. Using generic sections will ensure that equiprojectability
holds.

We continue by giving a criterion for a triangular set to be a regular chain,
in dimension zero. Let R = (R1, . . . , Rs) be a triangular set in K[X1, . . . , Xs];
then one easily proves the following result:

Lemma 1 The triangular set R is a regular chain if and only for 1 < i ≤ s,
the initial hi of Ri does not vanish on V (R1, . . . , Ri−1).

When this is the case, hi can be inverted modulo 〈R1, . . . , Ri−1〉; dividing Ri

by the inverse of hi yields the Lazard triangular set T defined above. We call
it the monic form of R.

Proof of Propositions 1, 2 and 3. We next consider situations of positive
dimension; here, W ⊂ Kn

is an irreducible variety of dimension r, defined
over K; its defining ideal is denoted by I. We first prove Proposition 1 of the
introduction: A subset Z of X is a maximal set of free variables for W if and
only if there exists a regular chain R in K[X] having Z as free variables and
Y = X− Z as algebraic variables, and such that I equals Sat(R).

Proof. Assume first that Z is a maximal set of free variables for W . Let us
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order the variables of X such that every variable of Z is smaller than every
variable of Y. Let G be the reduced lexicographic Gröbner basis of I with
respect to this order. By hypothesis, no polynomial of G lies in K[Z]. By
virtue of Theorem 3.2 in [2], one can extract from G a Ritt characteristic set
R of I. Moreover, Theorems 3.3 and 6.1 in [2] show that R is a regular chain.
Clearly, no variable in Z is the main variable of a polynomial in R. Moreover,
from Theorem 3.1 in [35] we have r = n − |R|. Hence, every element of Y is
the main variable of a polynomial in R, that is Y is the set of the algebraic
variables of R.

Conversely, let us assume that there exists a regular chain R = (R1, . . . , Rs)
with I as saturated ideal and Y as set of algebraic variables. We can order
the variables such that every variable of Z is smaller than every variable of
Y while preserving the fact that R is a regular chain for this new variable
order. Then, it follows from Theorem 1 in [8] that K[Z] ∩ I equals the trivial
ideal, which shows that Z is free. Since it has cardinality dimW = n− s, it is
maximal. ¤

We next discuss Proposition 2: Let < be an order on X. Then all regular
chains R for the order < for which I = Sat(R) have the same set of algebraic
variables Y (resp. free variables Z). Furthermore, there exists a unique Lazard
triangular set T in K(Z)[Y] for the order induced by < on Y such that 〈T〉 =
I ·K(Z)[Y].

Proof. The first point will be proved in Proposition 12, where we actually
give a more precise statement. To obtain the second part of the proposition,
we establish some more precise results, needed later on.

Lemma 2 Let Z be a maximal set of free variables for W and let Y = X−Z.
Then, K(W ) ' K(Z)[Y]/I · K(Z)[Y], and the extension K(Z) → K(W ) is
finite. If the characteristic of K is larger than (degW ), then this extension is
separable.

Proof. Since I contains no polynomial in K[Z], one checks that I ·K(Z)[Y]
is still prime, and the isomorphism K(W ) ' K(Z)[Y]/I · K(Z)[Y] follows
easily. We next show that K(Z) → K(W ) is finite and separable. Let Y thus
be in Y. Since Z + {Y } is not free, there exists a non-zero polynomial PY in
I ∩ K[Z, Y ], of degree at most (degW ). Hence Y ∈ K(W ) is algebraic over
K(Z). Furthermore, if char(K) > (degW ) ≥ degY PY , Y is separable over
K(Z), so our claim follows. ¤

Observe now that the second point in Proposition 2 is an immediate conse-
quence of this lemma, in view of the previous discussion on Lazard triangular
sets for zero-dimensional varieties. ¤
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Finally, we consider Proposition 3: Let < be an order on X, let Z (resp. Y) be
the associated sets of free (resp. algebraic) variables and let T ⊂ K(Z)[Y] be
the corresponding Lazard triangular set coming from Proposition 2. If a point
z ∈ Kr cancels no denominator in T, then the fiber Wz = W ∩ π−1

Z (z) equals
{z} × V (Tz).

Proof. By definition, every polynomial in the generating ideal I of W is
reduced to zero by T in K(Z)[Y]. Since no denominator appearing in such a
reduction vanishes at z, we can specialize this relation at z. This shows that
{z} × V (Tz) is contained in Wz.

Conversely, let R ⊂ K[Z][Y] be the regular chain obtained by cleaning de-
nominators in T. Since the ideal I is prime and Z forms a set of free variables
for W , we deduce the equality (I ·K(Z)[Y])∩K[Z][Y] = I. This implies that
all polynomials in R are actually in I. Specializing at z gives the inclusion
Wz ⊂ {z} × V (Tz), completing the proof. ¤

Quantifying degeneracies. We will need two different statements regarding
the degeneracies of specializations. The first result will be used to control the
degeneracies in the input regular chain F of our main algorithm. The second
statement will be used to control degeneracies attached to the intermediate
and output regular chains, which feature stronger properties (e.g., they are
strongly normalized), but with a looser control on the degrees.

Proposition 4 Let F = (F1, . . . , Fs) be a regular chain in K[X], let W be the
zero-set of Sat(F) and let r = n− s. Let Z be the free variables of F, and let
Y = X − Z be its algebraic variables, so that Yi is the main variable of Fi.
Suppose that W is irreducible and that the Jacobian determinant σ of F with
respect to Y, given by

σ =
∏

1≤i≤s

∂Fi

∂ Yi

,

does not vanish identically on W . Let finally d be a bound on the degrees of
the polynomials in F.

There exists a non-zero polynomial ∆reg ∈ K[Z] of degree at most 2sdn+1 with
the following property. For z ∈ Kr, if ∆reg(z) is not zero, then Fz = F(z,Y)
is a regular chain in K[Y] and defines a radical ideal.

Proof. Let V be the zero-set of F; for i ≤ s, let us denote by hi the initial
of Fi and let h ∈ K[X] be the product h1 · · ·hs. We start by a lemma.

Lemma 3 The projection πZ(V ∩ V (h)) has dimension less than r.

Proof. The intersection V ∩ V (h) can be rewritten as

(
V0 ∩ V (h1)

)
∪

(
V1 ∩ V (h2)

)
∪ · · · ∪

(
Vs−1 ∩ V (hs)

)
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where Vi is the Zariski closure of V − V (h1 · · ·hi). Let us denote by Wi the

Zariski-closure of V (F1, . . . , Fi) − V (h1 · · ·hi) in Kr+i
. Since F is a regular

chain, Wi∩V (hi+1) has dimension less than r, so that its projection on the Z-
space has dimension less than r as well. This implies that Vi∩V (hi+1) satisfies
the same property. ¤

Let us return to the proof of the proposition. By Bézout’s inequality [30],
V ∩ V (h) has degree at most (deg V )(deg h) ≤ dn × sd = sdn+1; by the
previous lemma, its image through πZ has dimension less than r. Hence, there
exists a non-zero polynomial ∆1 of degree at most sdn+1 such that if z ∈ Kr

does not cancel ∆1, h(z,Y) vanishes nowhere on V (Fz). For such a value of
z, Fz is a regular chain (by Lemma 1) and the fiber Wz equals {z} × V (Fz).

We then deal with the zeros of the polynomial σ. By assumption, W ∩ V (σ)
has dimension less than r; by Bézout’s inequality, its degree is at most sdn+1.
Hence, there exists a non-zero polynomial ∆2 of degree at most sdn+1 such
that if z ∈ Kr does not cancel ∆2, σ(z,Y) vanishes nowhere on V (Fz); in
this case, Fz defines a radical ideal, by the Jacobian criterion. To conclude, it
suffices to take ∆reg = ∆1∆2. ¤

We next address the degeneracies that may occur in the latter stages of the
algorithm. We thus still consider the input regular chain F in K[X], the prod-
uct h of its initials, and the variety W = V (Sat(F)) of dimension r; we assume
that Sat(F) is prime. Let next < be an order on the set X (not necessarily the
order associated with F), and let the sets of variables (Z,Y) and the canonical
representation T ∈ K(Z)[Y] be associated to the order < by Proposition 2.
The following proposition quantifies the specializations z ∈ Kr of Z that do
not yield lifting fibers for (F, h, <).

Proposition 5 Suppose that all polynomials in F have degree bounded by d,
and that the Jacobian determinant of F with respect to Y does not vanish
identically on W . Then there exists a non-zero polynomial ∆lift ∈ K[Z] of
degree at most ndn(3dn + n + d) such that for z ∈ Kr, if ∆lift(z) is not zero,
then Tz is well-defined and (z,Tz) is a lifting fiber for (F, h, <).

Proof. By Theorem 2 in [51], there exists a non-zero polynomial ∆1 ∈ K[Z]
of degree at most n degW (3 degW + n) such that if ∆1(z) is not zero, then z
satisfies assumptions H1 and H2. In particular, Wz equals {z} × V (Tz).

Let next V be the intersection W ∩V (σ), where σ is the Jacobian determinant
of F with respect to Y. By assumption, V has dimension at most r − 1 and
degree at most sdn+1, so there exists a non-zero polynomial ∆2 ∈ K[Z] of
degree at most sdn+1 such that πZ(V ) is contained in V (∆2). To conclude, we
define ∆lift = ∆1∆2. Correctness follows from the equality Wz = {z}×V (Tz).
The degree bound follows from the inequality degW ≤ dn. ¤
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2.2 Algorithmic prerequisites

We continue by recalling and introducing basic notions of cost for computa-
tions with polynomials and triangular sets.

Univariate operations. We start by recalling basic results for operations on
univariate polynomials. A multiplication time is a map M : N→ R such that:

• For any ring A, polynomials of degree less than d in A[X] can be multiplied
in at most M(d) operations (+,−,×) in A.

• For any d ≤ d′, the inequalities M(d)
d
≤ M(d′)

d′ and M(dd′) ≤ M(d)M(d′) hold.

Note that in particular that the inequalities M(d) ≥ d and M(d) + M(d′) ≤
M(d+ d′) hold for all d, d′ (the last inequality is called super-linearity). Using
the results of [50,13], we know that there exists c ∈ R such that the function
d 7→ c d logp(d) logp(logp(d)) is a multiplication time, where the function logp
denotes max(log2, 1)

Fast polynomial multiplication is the basis of many other fast algorithms for
univariate polynomials. We will use the following results, see [25, Chapters 9
and 11] for a proof.

• For a ring A and a monic degree d polynomial T ∈ A[X], the operations
(+,−,×) in A[X]/〈T 〉 can be computed in O(M(d)) operations in A.

• If K is a field, the extended greatest common divisor and least common
multiple of polynomials of degree at most d in K[X] can be computed in
O(M(d) log(d)) operations in K.

Arithmetic operations in dimension zero. We continue by discussing the
cost of operations modulo a zero-dimensional Lazard triangular set. In what
follows, we call “ring operations” the operations (+,−,×); “arithmetic opera-
tions” denote ring operations, invertibility test and, when possible, inversion.
All these costs will be denoted using a function MT : N(N) → R that we
proceed to define.

First, we require that MT enables us to describe the cost of ring operations
modulo an arbitrary zero-dimensional Lazard triangular set. In other words,
MT is such that for any n and any Lazard triangular set T = (T1, . . . , Tn)
in K[X1, . . . , Xn] for the order X1 < · · · < Xn, all operations (+,−,×)
modulo 〈T〉 can be computed in MT(d1, . . . , dn) base field operations, with
di = degXi

Ti.

Second, we ask that MT enables us to describe the cost of inversion, as-
suming that we work modulo a Lazard triangular set that generates a zero-
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dimensional radical ideal (the radicality assumption is used to derive the
bounds given below). In other words, MT is such that for any n and any
triangular set T = (T1, . . . , Tn) generating a radical ideal in K[X1, . . . , Xn],
given A ∈ K[X1, . . . , Xn] reduced with respect to T, one can test if A is a
unit modulo T and if so, compute its inverse, using MT(d1, . . . , dn) base field
operations (with di = degXi

Ti, and assuming that the variables are ordered
as above).

Finally, we request that there exists a constant c such that the inequalities

MT(d1, . . . , dn) ≤ c MT(d1, . . . , dn, dn+1, . . . , dm)

MT(d1, . . . , dn + 1) ≤ c MT(d1, . . . , dn)

MT(d1, . . . , dn)dn+1 ≤ c MT(d1, . . . , dn, dn+1)

(1)

hold for all values of the arguments. The following proposition then gives an
upper bound the complexity of all the previous operations.

Proposition 6 Let M : N → R be a multiplication time. There exists a con-
stant C such that one can take

MT(d1, . . . , dn) = Cn′ ∏

i≤n,di 6=1

M(di)logp3(di),

where n′ is the number of elements of {d1, . . . , dn} different from 1.

The proof of this proposition is given in appendix, most ingredients being
taken from [18]. Observe that for fixed n, this bound is linear in d1 · · · dn, up
to logarithmic factors. As a corollary, we also obtain the following result, that
shows that the first factor Cn′ is controlled by the second one, proving that all
these operations can be done in polynomial time.

Corollary 1 One can take MT(d1, . . . , dn) ≤ (d1 · · · dn)κ, for some constant κ.

Proof. Let us fix a multiplication time M; hence, there exists a constant λ
such that M(d)logp3(d) is upper-bounded by dλ for all d. Let next C be the
constant appearing in the previous proposition and let µ = log2(C), so that
that C = 2µ. Then, for any integer d > 1, C ≤ dµ holds. To conclude, it suffices
to take κ = λµ. ¤

To conclude on this question, we associate a similar notion of cost to operations
with an irreducible variety. Let thus W ⊂ Kn

be an irreducible variety defined
over K, let r be its dimension, and let I be the defining ideal of W in K[X].

Let next < be a variable order, and let Z, Y and T = (T1, . . . , Ts) ⊂ K(Z)[Y]
be the canonical representation defined in Proposition 2. Writing di for the
degree of Ti in its main variable, we define MT(W,<) = MT(d1, . . . , ds); this
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will be used to represent the cost of operations modulo a generic specializa-
tion of T. To give upper-bounds independent of the choice of Z, we write
MT0(W ) = max MT(W,<), for all orders <. Remarking that for any choice of
Z, the product d1 · · · ds is upper-bounded by (degW ), we derive using Corol-
lary 1 the polynomial upper bound MT0(W ) ≤ (degW )κ. To simplify some
estimates, we finally let MT(W ) = max(deg(W ),MT0(W )).

Further operations in dimension zero. Among the needed operations modulo
a zero-dimensional Lazard triangular set T, we will be led to perform matrix
inversion, assuming that T generates a radical ideal. We expect that for a
matrix of size `, this can be done with an order of `ω operations modulo T,
where ω is the exponent of linear algebra over the base field [9]. However,
managing the difficulties raised by the fact that K[X]/〈T〉 is not a field but
a product of fields is beyond the scope of this article. Hence, we will content
ourselves with the following result.

Lemma 4 Let T ⊂ K[X] be a zero-dimensional Lazard triangular set, that
generates a radical ideal, and let m be an `× ` matrix over K[X]/〈T〉. Then
one can test if m is invertible and, if so, compute its inverse, using O(`4)
arithmetic operations modulo T.

Proof. Berkowitz’s algorithm [5] gives the characteristic polynomial χ of m
in O(`4) ring operations. A single invertibility test then tells whether m is
a unit. If so, one can deduce m−1 = ψ(m) for O(`) additional ` × ` matrix
additions and multiplications, where ψ(T ) = (χ(0)− χ(T ))/(χ(0)T ). ¤

Our final subroutine is change of order in dimension zero. Given a zero-
dimensional Lazard triangular set T for an input order < and a target order
<′, we want to compute a Lazard triangular set T′ for the order <′, such that
〈T〉 = 〈T′〉 holds. As was mentioned in the previous subsection, there is no
guarantee that the requested output exists (unless T generates a prime ideal).
However, supposing that such a T′ exists, several solutions are available to
compute it [35,38,14,7,47]. Recalling that zero-dimensional Lazard triangular
sets are actually lexicographic Gröbner bases, we will use the FGLM algo-
rithm [22] to do this operation, obtaining the following complexity estimate.

Proposition 7 Let T = (T1, . . . , Tn) be a zero-dimensional Lazard triangular
set in K[X] = K[X1, . . . , Xn] for an input order < and let <′ be a target order
on X. Suppose that there exists a Lazard triangular set T′ in K[X] for the
target order, such that the equality 〈T〉 = 〈T′〉 holds. Then one can compute
T′ using O(n(d1 · · · dn)3) operations in K, where di is the degree of Ti in its
main variable.

Newton iteration for triangular sets. Newton iteration enables us to obtain
positive-dimensional information starting from a zero-dimensional input. In
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the case at hand, we start from a lifting fiber (z,Tz) for a system (F, h, <).
Then, Newton iteration, combined by rational function reconstruction, enables
us to recover the canonical representation T ⊂ K(Z)[Y] associated to<, where
Z,Y and T are as in Proposition 2.

We first give a simplified result, when only one free variable is lifted, since this
is what is needed later on. The algorithm is probabilistic (we use a probabilistic
criterion to stop the lifting); the following proposition gives the complexity of
the process and quantifies the probability of error.

Proposition 8 Let (z,Tz) be a lifting fiber for the system (F, h, <), with
z = (z1, . . . , zr). Suppose that the polynomials in F can be computed by a
straight-line program of size L. Then one can compute T(z1, . . . , zr−1, Zr,Y) ⊂
K(Zr)[Y] using

O
(
(n4 + nL) MT(W ) M

(
(degW )2

)
log(degW )

)

operations in K. The algorithm chooses a value z′r in K; all possible choices
except at most nd2n(n+ 16 log d+ 11) lead to success.

Proof. The algorithm is that of [51, Section 7.2], up to a few modifications.
A first difference is that we lift the single free variable Zr. Besides, using the
results of [19, Theorem 2], the upper bound 2(degW )2 ≤ 2d2n can be used for
the degree of the polynomials of T in Zr. Using these bounds, our notation
MT, and performing a few simplifications yields our complexity statement
(observe that in [51], a matrix inversion in size n over the ring K[Y]/〈Tz〉
was not taken into account; computing this inverse by Lemma 4 yields an
additional n4 term in the complexity).

A second difference is in the probability analysis. Since we lift a single free
variable, a first probabilistic aspect (induced when using multivariate rational
function reconstruction) disappears. Here, we also assume that the starting
point z for the Newton iteration is a lifting fiber, simplifying the analysis
further. The final difference with [51] is in the stop criterion: to test if a candi-
date Lazard triangular set U ⊂ K(Zr)[Y] is indeed the requested output, we
specialize it at the random value z′r ∈ K, and check if the resulting Lazard tri-
angular set Uz′ coincides with Tz′ , where z′ denotes the point (z1, . . . , zr−1, z

′
r).

Since of course Tz′ is unknown, to do this check, we use a slight modification
of the criterion given in [52, Section 5.1], testing if:

• the Lazard triangular set Uz′ defines a radical ideal;

• the lifting system F(z′,Y) reduces to zero modulo Uz′ ;

• the polynomial h(z′,Y) is a unit modulo Uz′ .

Assuming that z′ is a lifting fiber for (F, h, <) and that z′ is not in the pro-
jection πZ(W ∩V (h)), the previous conditions imply that Uz′ = Tz′ , which is
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the property we want to test.

Taking this modification into account, in the analysis of [51, Section 7.2.2],
only the second and third items have to be taken care of. Taking into account
the upper bound 2d2n on the degrees of the polynomials in T yields the result
reported here, after a few simplifications. ¤

While this is not the main purpose of this article, we also mention (without
proof) the complexity and probability analysis for lifting all free variables
starting from the output lifting fiber of our algorithm. The result is essentially
that of [51, Section 7.2], up to the minor modifications already reported in the
proof of the previous proposition.

In the complexity estimate, we denote by MS : N2 → R a function that bounds
the cost of multivariate power series arithmetic, that is, such that all oper-
ations (+,−,×) in K[Z1, . . . , Zr]/〈Z1, . . . , Zr〉d can be computed in MS(r, d)
base field operations. We refer to [40,32] for estimates on this question.

Proposition 9 Let assumptions and notation be as in Proposition 8. Then
one can compute T ⊂ K(Z)[Y] using

O˜
(
(n4 + nL) MT(W ) M

(
(degW )2

)
MS

(
(m− 1, 8(degW )2

))

operations in K, where O˜ denotes the omission of logarithmic factors. The
algorithm chooses 2r − 1 values in K. If these values are chosen uniformly
at random in a finite subset S of K, then the algorithm fails for at most
130 d6n|S|2r−2 choices.

3 Matroids

A substantial part of what follows relies on discussion of independence proper-
ties. All the required notions are conveniently described through the concept
of matroid [57,48]. We give here the basic definitions and introduce a few fun-
damental examples. We also discuss a greedy algorithm for finding a maximal
element among the bases of a matroid, which will be used in the next section.

3.1 Definition and examples

A matroid M is given by a finite set V(M) and a non-empty family Ind(M)
of subsets of V(M) satisfying the properties below:

Heredity: for all Z in Ind(M), every subset of Z belongs to Ind(M).
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Augmentation: for all Z,Z′ in Ind(M) with |Z| < |Z′|, there exists Z in Z′−Z
such that Z ∪ {Z} is in Ind(M).

The members of V(M) and Ind(M) are the elements and the independents of
the matroid M (in most of our applications, V(M) will be the set of variables
X on the ambient space Kn

). The independents of M that are maximal for
inclusion form a non-empty family B(M), called the set of bases of M. They
satisfy the following properties:

Equicardinality: for all Z,Z′ in B(M) we have |Z| = |Z′|,
Exchange: for all Z,Z′ in B(M), for every Z in Z−Z′ there exists Z ′ in Z′−Z

such that Z− {Z} ∪ {Z ′} is in B(M).

The common cardinality of the bases of M is called the rank of M. Remark
that a matroid is uniquely determined by its bases.

Example 1: Vectorial matroids. A first example of a matroid is given by sets
of independent vectors. Precisely, let X be a finite set of cardinality n, let K
be a field, and let m be an s × n matrix over K, with s ≤ n; we suppose
that the columns of m are indexed by the elements of X. Then, we say that
a subset Y ⊂ X is independent if the corresponding s × |Y| submatrix of m
has rank |Y|. These sets are indeed the independents of a matroid M over X,
which we call the vectorial matroid generated by the columns of m. The bases
of M are the subsets Y corresponding to invertible s× s submatrices of m.

Example 2: Coordinate matroids. Let K be a field and let us consider an irre-
ducible variety W ⊂ Kn

of dimension r, defined over K. Let X = (X1, . . . , Xn)
be our usual set of n variables and let I be the prime ideal of K[X] defining
W ; we also write s = n − r. Let finally Ind be the family of subsets Z ⊂ X
such that I ∩K[Z] is the trivial ideal {0}.

Proposition 10 The family Ind is the collection of independent sets of a ma-
troid on X of rank r.

Proof. Let ` be the natural homomorphism K[X] → K(W ) and let Z be a
non-empty subset of X. By definition, we have Z 6∈ Ind if and only there exists
a non-constant polynomial P ∈ K[Z] such that `(P ) = 0, that is, the elements
`(Z), for all Z ∈ Z, are algebraically dependent over K. We conclude with
Theorem 1 p. 183 in [57]. ¤

In what follows, we denote this matroid by Mcoord(W ) and we call it the
coordinate matroid of the variety W . We can then restate Proposition 1 in
this language: let Z be a subset of X with cardinal r. Then, Z is a basis of
Mcoord(W ) if and only if there exists a regular chain R in K[X] having I as
saturated ideal and Z as free variables.
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Dual matroids. We continue by introducing the notion of a dual matroid.
Assume that M is a matroid over X, of rank r < n. Denote by B∗(M) the
set of all sets X − Z for Z ∈ B(M). Then, the set B∗(M) is the set of bases
of a matroid M∗ of rank s = n − r, called the dual matroid of M. A subset
Y of X is an independent of M∗ if and only if there exists a basis Z ∈ B(M)
such that Z ∩Y is empty.

In particular, we will use this notion with M = Mcoord(W ), the coordinate
matroid of an irreducible variety W as above. Let then M∗ = M∗

coord(W ) be
its dual. By Proposition 1, a subset of Y of X is a basis of M∗ if and only
if there exists a regular chain R in K[X] having I = I(W ) as saturated ideal
and Y as algebraic variables.

Restriction of a matroid. The final needed concept is that of restriction of
matroids. Let M be a matroid over X and let X′ be a subset of X. Then, the
collection of the independent sets of M that are contained in X′ is the family
of the independent sets of a matroid on X′, called the restriction of M to X′.

3.2 A greedy optimization algorithm

Let M be a matroid of rank s over X = (X1, . . . , Xn); later on, M will
be the dual of the coordinate matroid of an irreducible variety W , so we
denote its independent sets by Y. Suppose that X is endowed with the order
X1 < · · · < Xn (one can always suppose that this is the case, up to renaming
the variables). In this paragraph, we show how to extend the order < given on
X to the bases of M, and give a greedy algorithm to find the maximal basis.

First, observe that any basis Y ofM can be ordered as Y = (Xi1 < · · · < Xis).
Let Y′ 6= Y be another basis of M, which we similarly write Y′ = (Xj1 <
· · · < Xjs). Let κ ≤ s be the largest index such that

Xis = Xjs , Xis−1 = Xjs−1 , . . . , Xiκ 6= Xjκ .

Then if Xiκ > Xjκ , we say that Y > Y′, and if Xiκ < Xjκ, we say that
Y < Y′.

In the next section, we will need to compute the maximal basis Ymax of M
for this order, in the particular case where M is the dual of the coordinate
matroid of an irreducible variety. We give here a general algorithm for finding
this maximum basis.

To do so, we will assume that a basis Y0 of M is known. Using only indepen-
dence tests, we will construct a sequence Y0,Y1, . . . ,Ys of bases of M, such
that Ys = Ymax and for i < s, Yi and Yi+1 differ by at most one element. In
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other words, for all i, either Yi+1 = Yi, or there exists Bi and Ai in X such
that the following holds:

Bi ∈ Yi, Ai /∈ Yi, Yi+1 = Yi − {Bi} ∪ {Ai} ∈ M. (2)

Our algorithm starts by finding the last entry of Ymax, then the last two ones,
and so on. The basis of this algorithm is the following lemma.

Lemma 5 Let Ymax be written as (X`1 < · · · < X`s) and let Y = (X`′1 <· · · < X`′s) be another basis of M, such that

`′s = `s, . . . , `′j+1 = `j+1

holds. Then `j equals max{` ∈ {`′j, . . . , `j+1 − 1} | (X`, X`j+1
, . . . , X`s) ∈

Ind(M)}.

Proof. Let S be the set

{` ∈ {`′j, . . . , `j+1 − 1} | (X`, X`j+1
, . . . , X`s) ∈ Ind(M)}.

We start by showing that `j is in S. Observe first that `j ≤ `j+1 − 1. Next,
by definition, we have the inequality Ymax > Y. Since the entries of indices
j + 1, . . . , s of Ymax and Y coincide, we deduce that `j ≥ `′j. Furthermore,
since Ymax = (X`1 , . . . , X`s) is in Ind(M), (X`j

, . . . , X`s) is in Ind(M) as well,
by the heredity property. This shows that `j is in S.

We next prove that `j is the maximal element of S. Suppose thus that there
exist ` ∈ S with ` > `j. Since ` is in S, Y′ = (X`, X`j+1

, . . . , X`s) is in Ind(M).
Applying the augmentation property as many times as necessary to Y′ and
Ymax, we can complete Y′ into a basis Y′′ of M. Since all elements added to
Y′ are taken from Ymax, they are all less than X`. This implies the inequality
Y′′ > Ymax, a contradiction. ¤

The previous lemma yields the following algorithm to compute Ymax. Given
a basis Y0 of M, letting `s+1 = n+ 1, we do the following for j = s, . . . , 1.

(1) Let k = s− j and write Yk as (X`k,1
< · · · < X`k,s

).

(2) Let `j be the maximum element of the set

{` ∈ {`k,j, . . . , `k,j+1 − 1} | (X`, X`k,j+1
, . . . , X`k,s

) ∈ Ind(M)}.

(3) If `j = `k,j, let Yk+1 = Yk.

(4) If `j > `k,j, let Ak = X`j
, and find Bk < Ak in Yk such that Yk−{Bk}∪

{Ak} is a basis of M. Define Yk+1 = Yk − {Bk} ∪ {Ak}.

Lemma 6 The previous algorithm correctly computes Ys = Ymax.
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Proof. We prove by induction that the last k entries of Yk and Ymax coincide.
This is indeed the case for j = s (and hence k = 0), so we do the induction
step. If we go through Line (3), our claim holds; suppose then that we go
through Line (4).

The previous lemma shows that the index `j is indeed the jth index of Ymax.
Observe now that it is indeed possible to find Bk < Ak such that Yk −
{Bk}∪{Ak} is a basis of M. This is done by augmenting the independent set
(X`j

, Xk,`j+1
, . . . , Xk,`s) by elements of Yk into a basis of M. An element Bk

will be left out, and by construction, Bk < Ak. This concludes the proof. ¤

4 Computing the exchange data

Getting back to the context of regular chains, this section describes the first
part of our main algorithm: given the input regular chain F in K[X], with
Sat(F) prime, and given the target order <′, we compute a sequence of subsets
Y0, . . . ,Ys of X with the following properties, where we writeW = V (Sat(F)):

• each intermediate Yi is a basis of M∗
coord(W ) (equivalently, it forms the set

of algebraic variables for some regular chain describing W );

• Y0 is the set of algebraic variables in F;

• Ys is the set of algebraic variables in the target regular chain;

• for i = 0, . . . , s − 1, either Yi+1 = Yi, or there exists Ai ∈ X −Yi and Bi

in Yi such that the following equation holds:

Yi+1 = Yi − {Bi} ∪ {Ai}

The sequence Y0, . . . ,Ys will be called the exchange data. The main result in
this section is an estimate on the cost of computing this sequence.

Proposition 11 Suppose that the input regular chain F = (F1, . . . , Fs) is
given by a straight-line program of size L. Let d be an upper bound on the
total degree of the polynomials (F1, . . . , Fs).

Suppose that for i ≤ s, the main variable of Fi is known, as well as its degree
di in this main variable. Suppose also that char K is larger than dn. Then one
can compute the exchange data by a probabilistic algorithm, that uses

O((n4 + nL) MT(W ))

operations in K in case of success. The algorithm uses a random point z ∈ Kr;
there exists a non-zero polynomial ∆lin in K[Z] of degree at most n(2d)n+1 such
that if ∆lin(z) is not zero, the algorithm succeeds.
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We start this section by characterizing the algebraic variables for the target
order as maximal bases in a suitable matroid (the dual of the coordinate ma-
troid of W ). Since testing independence in such a matroid is a difficult problem
in general, we will then present a workaround relying on a linearization of the
problem, that reduces to linear algebra operations in a product of fields.

4.1 Characterization of the target set of algebraic variables

Let R = (R1, . . . , Rs) be a regular chain for the target order <′, such that
W = V (Sat(R)), with W irreducible. Recall from Subsection 3.2 that the
order <′ induces an order <′ on the bases of M∗

coord(W ) (that is, the sets of
algebraic variables for regular chains having I(W ) as saturated ideal). Using
this order leads us to a characterization of the algebraic variables in the regular
chain R.

Proposition 12 The set of the algebraic variables of R is the maximum basis
of M∗

coord(W ) for the order <′.

Proof. We start by a lemma, using the notion of restriction of a matroid.

Lemma 7 Let m be an index less than n, and let Z be the set of the first
m variables of X for the target order <′. Let also W ′ be the Zariski closure
of πZ(W ).

Then, the matroid Mcoord(W
′) is the restriction of Mcoord(W ) to Z. Moreover,

it has rank r − t, where t is the number of variables in X − Z that are not
algebraic variables of R.

Proof. First, since W ′ is irreducible [16, Theorem 3 p. 122], Mcoord(W
′) is

well-defined. In addition, that results shows that a subset of Z is a an inde-
pendent set of Mcoord(W

′) if and only if it is an independent set of Mcoord(W )
contained in Z. This proves the first claim.

Define Rm = R∩K[Z]. It follows from the definition of a regular chain that Rm

is a regular chain. Moreover, it follows from Proposition 5.1 and Theorem 6.1
in [2] that the saturated ideal of Rm in K[Z] is I ∩K[Z]. Then, Proposition 1
implies that the rank ofMcoord(W

′) ism−|Rm|. Observe now that the number
of elements in Rm is |R| − (n − m) + t. Hence, the rank of Mcoord(W

′) is
n− |R| − t, that is, r − t. ¤

We can now prove the proposition. Let Y be the set of the algebraic variables
of R and recall first that Y is indeed in M∗

coord(W ). Assuming that there
exists a basis Y′ of M∗

coord(W ) such that Y < Y′ holds, we will derive a
contradiction. To this effect, let Xmax be the largest element (for the order <′)
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that belongs to Y′ and not to Y; let m be such that Xmax is the (m + 1)th
element of X, and let Z and W ′ be as in Lemma 7. By Lemma 7, Mcoord(W

′)
is the restriction of Mcoord(W ) to Z. As in the lemma, we let t be the number
of variables in X− Z that are not algebraic variables of R.

Let us prove that the intersection of X − Y′ with Z is an independent set
of Mcoord(W

′) of cardinality r − t + 1. We have |Y′| = s = n − r, since Y′

is a basis of M∗
coord(W ). Now, the definitions of m and t imply the equality

|Y′∩ (X−Z)| = n−m− t+1, which leads to |Y′∩Z| = m+ t−1− r, proving
our claim. We have reached a contradiction, since Lemma 7 states that the
rank of Mcoord(W

′) is r − t. ¤

4.2 Linearization

In what follows, we use all the notation of Proposition 11. The previous sub-
section showed that the set of algebraic variables in the target regular chain is
the maximum basis of M∗

coord(W ). In order to apply the algorithm of Subsec-
tion 3.2 to find this maximum, we need to perform the required independence
tests. To do so, we will use that fact that for a random point x on W , the sets
of free variables for W and TxW coincide, where TxW is the tangent space of
W at x; in other words, the coordinate matroidsMcoord(W ) andMcoord(TxW )
are equal. This will enable us to perform the required independence tests by
linear algebra.

We will assume that the characteristic of K is larger than dn, where d is
an upper bound on the degrees of the polynomials is F; hence, by Bézout’s
inequality, char K is larger than (degW ), so in particular Lemma 2 applies.

Let Z (resp. Y) be the free (resp. algebraic) variables in F, and let jac be
the s × n Jacobian matrix of F. In what follows, if Y′ is a subset of X of
cardinality s and m a matrix with s rows and with columns indexed by X, we
denote by m(Y′) the submatrix of m corresponding to the columns indexed
by Y′.

Given z in Kr, we denote by Fz the family of polynomials F(z,Y) in K[Y],
by Qz the residue class ring K[Y]/〈Fz〉 and by jacz the Jacobian matrix of F,
seen as a matrix with entries in Qz. We then denote by Bz(F) the set

{Y′ ⊂ X such that |Y′| = s and jacz(Y
′) is invertible}.

In general, Qz is not a field, so that Bz(F) is not evidently the set of bases
of a vectorial matroid over X. The following proposition shows that for most
choices of z, however, there is such a matroid structure.
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Proposition 13 There exists a non-zero polynomial ∆lin ∈ K[Z] of degree at
most n(2d)n+1 such that if ∆lin(z) is not zero, Fz is a regular chain in K[Y]
that defines a radical ideal, and Bz(F) is the set of bases of Mcoord(W )∗.

Hence, this proposition says that for most choices of z, Qz is a product of
finite field extensions of K, and the maximal minors of the Jacobian matrix
jacz over Qz correspond to the sets of algebraic variables for W . The rest of
this subsection is devoted to prove this proposition.

To start with, let TM(F) ⊂ X be the vectorial matroid generated by the
columns of jac over K(W ), having for independents the sets of columns in-
dexing full-rank submatrices of jac. Then, we have the following linearization
property, which is a rewording of the implicit function theorem adapted to our
context.

Lemma 8 The matroid TM(F) equals Mcoord(W )∗.

In other words, a set Z′ of r variables is a maximal set of free variables for W
if and only if the s× s minor of jac with columns index by X−Z′ is non-zero
in K(W ).

Proof. Let Y′ be a subset of X and let Z′ = X−Y′. We have to prove that
Z′ is a maximal set of free variables for W if and only if the determinant of
jac(Y′) is a unit in K(W ), that is, if it does not vanish identically on W .

Suppose that det(jac(Y′)) does not vanish identically on W , and let M be the
sequence (det(jac(Y′))i)i≥0. Our assumption implies that the multiplicative
set M does not intersect 〈F〉. Then, Proposition 3.2.a in [46] (as well as [8,
Theorem 1.6]) shows that each prime component J of 〈F〉 : M∞ admits Z′ as
a maximal set of free variables, and Y′ as algebraic variables. Writing h for
the product of the initials in F, the ideal I = 〈F〉 : h∞ appears as one of these
components, proving the first direction of our equivalence.

Suppose next that Z′ is a maximal set of free variables. Using Lemma 2,
Lemma 16.15 in [21] implies that the module of differentials ΩK(W )/K(Z) = 0.
Letting G be a set of generators of Sat(F), this means that the Jacobian matrix
of G with respect to Y′ has maximal rank over K(W ). Then, the definition of
G implies that jac(Y′) has full rank over K(W ) as well. ¤

We continue the proof by discussing specialization properties. For any x ∈ W ,
let us denote by TMx(F) the vectorial matroid generated over K by the
columns of the Jacobian matrix of F evaluated at x.

Lemma 9 There exists a non-zero polynomial ∆1 ∈ K[Z] of degree at most

sdn+1
(

s
n

)
with the following property. Let z be in Kr such that ∆1(z) 6= 0; then,

for any x in the fiber Wz, the equality TMx(F) = TM(F) holds.
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In other words, if ∆1(z) 6= 0, then for x in Wz, and for any subset Y′ of X of
cardinality s, the s× s minor of jac with columns indexed by Y′ vanishes at
x if and only if it is identically zero on W .

Proof. Let Y′ be a subset of X of cardinality s. If Y′ is not a basis of
TM(W ), then det(jac(Y′)) vanishes identically on W , so for any x in W , Y′

is not in TMx(F).

Conversely, suppose that Y′ is a basis of TMx(F), so that det(jac(Y′)) does
not vanish in K(W ), and let VY′ be the projection of V (det(jac(Y′))) ∩W
on the Z-space. Since W is irreducible, VY′ has dimension at most m − 1
and degree at most (d degW ) ≤ sdn+1. Thus, there exists a non-zero poly-
nomial ∆Y′ ∈ K[Z] of degree at most sdn+1, such that if ∆Y′(z) 6= 0, then
det(jac(Y′)) vanishes on none of the points x ∈ W above z.

It suffices to take for ∆1 the product of all ∆Y′ , for Y′ in TM(W ). Since the

rank of TM(F) is at most
(

s
n

)
, the conclusion follows. ¤

We can now conclude the proof of Proposition 13. Observe first that the as-
sumption of Proposition 4 is satisfied: by Proposition 1, the set of algebraic
variables Y of F is in M∗

coord(W ); Lemma 8 then implies that the Jacobian
determinant σ of F with respect to Y does not vanish identically on W , as re-
quested. We then let ∆reg be the polynomial defined in Proposition 4. Observe
that if ∆reg(z) is not zero, the fiber Wz equals {z}×V (Fz), and Fz is a regular
chain that generates a radical ideal. Then, for a polynomial G ∈ K[X], G(z,Y)
is a unit in Qz if and only if G is non-zero at every point in the fiber Wz.

If we suppose additionally that ∆1(z) is not zero, then by Lemma 9, for any
x in Wz, TMx(F) = TM(F). In particular, for any Y′ ⊂ X of cardinality
s, Y′ is a basis of TM(F) if and only if Y′ is a basis of TMx(F) for all x
above z, that is, if and only if the determinant of jacz(Y

′) vanishes on none
of these points x. By the preceding remarks, this is the case exactly when
this determinant is a unit in Qz. Hence, it suffices to take ∆lin = ∆1∆reg; the
degree estimates comes from a straightforward simplification.

4.3 Computing the initial specialization

The previous subsection gives the theoretical foundation of our algorithm for
computing the exchange data; this paragraph is devoted to study a preliminary
subroutine for this algorithm. As before, given the input regular chain F,
having Z as free variables (resp. Y as algebraic variables), and a point z ∈ Kr,
we denote by Fz the set of polynomials of K[Y] obtained by specializing Z at
z in F.
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We will assume here that z satisfies the assumption of Proposition 13; hence
Fz is a regular chain and defines a radical ideal. Let Gz ⊂ K[Y] be the monic
form of Fz, that is, the Lazard triangular set obtained by inverting all initials
of Fz. We estimate here the cost of computing Gz from the input regular
chain F, showing that this can be done in time polynomial in the degree of
the variety W = V (Sat(F)), and the complexity of evaluation of F.

Proposition 14 Suppose that the input regular chain F = (F1, . . . , Fs) is
given by a straight-line program of size L, and assume that the main variable
of Fi and the degree di of Fi in this main variable are known for all i. Let z
be in Kr that does not cancel the polynomial ∆lin of Proposition 13. Then the
monic form Gz of Fz can be computed in O(sLMT(W )) operations in K.

Proof. We compute inductively the polynomials G1, . . . , Gs of Gz. Supposing
that G1, . . . , Gi are known, we deduce the cost of computing Gi+1. We write
the entries of Y as (Y1, . . . , Ys), where Yi is the main variable of Fi. We also let
Γ be the straight-line program computing F; in particular, Γ computes Fi+1.
By replacing all indeterminates Yi+2, . . . , Ys by 0, we may assume without loss
of generality that Γ involves only the variables Z, Y1, . . . , Yi+1.

The main idea is then to evaluate Γ modulo 〈G1, . . . , Gi〉, after specializing
Z at z. However, we need to control the degree in Yi+1 as well; hence the
evaluation will be done in

Q = K[Y1, . . . , Yi+1]/〈G1, . . . , Gi, Y
di+1+1
i+1 〉,

as this is enough to recover Fi+1(z, Y1, . . . , Yi+1) modulo 〈G1, . . . , Gi〉. In view
of the discussion in Subsection 2.2, and in particular of Equations (1), the cost
of a single operation in Q is MT(d1, . . . , di, di+1 +1) ∈ O(MT(W )). Hence, the
whole cost of this step is in O(LMT(W )).

By assumption on z, the initial hi+1 is a unit modulo 〈G1, . . . , Gi〉; computing
its inverse gi+1 can then be done in time MT(d1, . . . , di). Once this inverse
is known, we multiply all coefficients of Fi+1 by gi+1 modulo 〈G1, . . . , Gi〉 to
conclude. The cost is MT(d1, . . . , di)di+1 which is in O(MT(W )), again by
Equations (1). Putting all estimates together and summing over i finishes the
proof. ¤

4.4 Computing the exchange data

We conclude this section by proving Proposition 11. The exchange data will
be computed by applying the algorithm of Subsection 3.2 in our particular
case, using the previous linearization results to perform independence tests.
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We let Z0 (resp. Y0) be the free (resp. algebraic) variables of F. Recall that
given the initial basis Y0 of M∗

coord(W ), the algorithm of Subsection 3.2 com-
putes a sequence of bases Y1, . . . ,Ys of M∗

coord(W ). By the discussion in
Subsection 3.1, for each i, Yi is the set of algebraic variables of a regular
chain having I(W ) as saturated ideal. The last one Ys = Ymax will be the set
of algebraic variables in the output regular chain of our algorithm.

Let z be in Kr, such that z does not cancel the polynomial ∆lin of Proposi-
tion 13, let Gz ⊂ K[Y] be the Lazard triangular set obtained by inverting all
initials of Fz, and let Qz be the residue class ring K[Y]/〈Gz〉 = K[Y]/〈Fz〉.
Then, Qz is is a product of finite field extensions of K. Let jacz be the Ja-
cobian matrix of F, seen as a matrix with entries in Qz. Then, in addition,
Proposition 13 shows that a subset Y′ of size s of X is a basis of M∗

coord(W )
if and only if the submatrix jacz(Y

′) is invertible.

To prove Proposition 11, it will be enough to give the cost of deducing Yk+1

from Yk. We will actually assume that at step k, in addition to Yk, the
inverse of the matrix jacz(Yk) is known, and we will deduce simultaneously
the new basis Yk+1 and the inverse of the matrix jacz(Yk+1). Below, we write
Ymax = (X`1 < · · · < X`s).

Proposition 15 Given the matrix jacz, the basis Yk and the inverse of the
matrix jacz(Yk), one can compute the basis Yk+1 and the inverse of jacz(Yk+1)
using O(n2(`k+1 − `k)) arithmetic operations in Qz.

Proof. Following the description in Subsection 2.2, we let j = s− k and we
write

Yk = (X`k,1
< · · · < X`k,s

),

so that `k,j+1 = `j+1, . . . , `k,s = `s holds. Recall then that from Lemma 5, `j
is the maximal element of

S = {` ∈ {`k,j, . . . , `j+1 − 1} | (X`, X`j+1
, . . . , X`s) ∈ Ind(M∗

coord(W ))}.

It is then easy to describe the set S. Let m be the matrix
(
jacz(Yk)

)−1
jacz.

Our basic remark is that the matrix m has the following shape:




? · · · ? 1 ? · · · ? 0 ? · · · ? 0 ? · · · ?
? · · · ? 0 ? · · · ? 1 ? · · · ? 0 ? · · · ?
? · · · ? ... ? · · · ? ... ? · · · ? ... ? · · · ?
? · · · ? 0 ? · · · ? 0 ? · · · ? 1 ? · · · ?




,

having an identity submatrix at the columns indexed by Yk.

Lemma 10 Let ` be in {`k,j, . . . , `j+1 − 1}. Then ` is in S if and only if the
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(j, `)-entry mj,` of m is a unit.

Proof. Let us write Y′ = (X`k,1
, . . . , X`k,j−1

, X`, X`j+1
, . . . , X`s), and observe

that the submatrix m(Y′) is diagonal with 1’s on the diagonal, except for its
`-column. If the entry mj,` is a unit, m(Y′) is invertible, which implies that
jacz(Y

′) is invertible too, and thus that ` is in S.

Conversely, suppose that ` is in S, so that (X`, X`j+1
, . . . , X`s) is an indepen-

dent set in M∗
coord(W ). This independent set can be augmented into a basis

Y′ of M∗
coord(W ). The submatrix m(Y′) is then a unit; in view of the shape

of the matrix m, this implies that the entry mj,` is a unit. ¤

We can then conclude the proof of Proposition 15. Assuming that `j is known,
let us define Yk+1 = Yk−{X`k,j

}∪{X`j
}. Since by construction the submatrix

m(Yk+1) is a unit, Yk+1 is indeed a basis of M∗
coord(W ).

It remains to estimate the complexity of this process. First, observe that we
do not need the full matrix m, but only its submatrix m(X`k,j

, . . . , X`j+1−1),
since this is where the search takes place. Furthermore, its columns can be
computed one at a time, starting from the ones of highest indices, until an
invertible entry is found: the cost for computing the requested part of m is
thus O(n2(`j+1 − `j)) operations (+,−,×) in Qz.

Finding `j requires at most `j+1 − `k,j invertibility tests in Qz, starting from
index `j+1 − 1. To conclude, we need to compute the inverse of jacz(Yk+1).
Since Yk and Yk+1 differ by a single entry, the inverse of jacz(Yk+1) can be
obtained in O(n2) operations (+,−,×) in Qz, together with the inversion of
the (j, `j)-entry of m. Putting all costs together gives the bound of Proposi-
tion 15. ¤

We can then finish the proof of Proposition 11. Correctness of the previous
algorithm follows from Lemma 6, so it remains to deal with the complexity
analysis. As a preliminary, we need to compute the Lazard triangular set Gz:
the cost is estimated in Proposition 14.

Using forward or backward derivation [4], the Jacobian matrix of F can be
evaluated in O(nL) operations, so that its modular image jacz can be evalu-
ated in O(nL) operations in Qz. Using Lemma 4, one can compute the inverse
of the submatrix jacz(Y0) in O(n4) operations in Qz, involving only the in-
version of its determinant. Finally, summing the complexity estimate of the
previous proposition for all values k = 0, . . . , s− 1, the total cost of the final
part of the algorithm is O(n3) operations in Qz, so that the total number
of operations in Qz for finding the maximal basis is O(n4 + nL). Using the
definition of the function MT, this concludes the proof of Proposition 11.
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5 Changing the lifting fiber

In this section, we describe the operations in the second phase of our algorithm.
Given the input regular chain F, we suppose at this stage that the exchange
data has been computed previously. This means that we know a sequence
Y0, . . . ,Ys in M∗

coord(W ), for W = V (Sat(F)), where Yi and Yi+1 differ by
at most one element for all i. As was said before, for each i, Yi is the set of
algebraic variables of a regular chain having I(W ) as saturated ideal.

Starting from a lifting fiber associated to the choice of algebraic variables Y0

(which are the algebraic variables of F), we will now compute a sequence of
lifting fibers associated to the algebraic variables Y1, . . . and finally output a
lifting fiber associated to the set of algebraic variables Ys.

The ith step goes as follows. Suppose that Yi and Yi+1 are such that Yi+1 =
Yi − {Bi} ∪ {Ai}, with Yi+1 6= Yi (if they coincide, there is nothing to
do). Hence, Ai is a free variable at step i that becomes algebraic, and Bi is
algebraic at step i and becomes free. Suppose also that we know a lifting fiber
for Yi. First, we change the order in this lifting fiber, so that Bi becomes the
smallest algebraic variable: this is done using a routine for change of order in
dimension zero. Then, we lift the free variable Ai using Newton iteration, clean
all denominators (if needed), and specialize Bi at a random value. Making all
polynomials monic in the resulting regular chain yields the next lifting fiber.

As an illustration, consider the variety W given in the introduction, defined
over the field K by the equations

π1 −X2
1 = 0, π2 −X2

2 = 0, σ −X1X2 = 0.

The initial set of free variables is (X1, X2), with algebraic variables (σ, π1, π2);
the first lifting fiber is (X1 = 1, X2 = 1), together with the zero-dimensional
Lazard triangular set ∣∣∣∣∣∣∣∣∣

π1 − 1

π2 − 1

σ − 1.

The second set of free variables is (X1, π2), with algebraic variables (σ, π1, X2).
To obtain the corresponding lifting fiber, the first operation consists in putting
π2 as last free variable in the previous lifting fiber. Here, this is a trivial
computation, yielding ∣∣∣∣∣∣∣∣∣

π1 − 1

σ − 1

π2 − 1.

We then lift X2, using Newton’s iteration. Here again, the computation is
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trivial; we obtain ∣∣∣∣∣∣∣∣∣

π1 − 1

σ −X2

π2 −X2
2 .

Finally, we specialize π2 at a “random” value, here 1, and rearrange the equa-
tions (making every equation monic again), to obtain a lifting fiber corre-
sponding to the set of algebraic variables (σ, π1, X2).

∣∣∣∣∣∣∣∣∣

π1 − 1

σ −X2

1−X2
2

;

∣∣∣∣∣∣∣∣∣

π1 − 1

σ −X2

X2
2 − 1.

This section describes this process, gives a complexity analysis and quantifies
the bad specialization choices. Since the whole second step of our main algo-
rithm essentially amounts to perform at most s times the variable exchange
process just described, we concentrate on proving the following proposition.

Proposition 16 Let Y and Y′ be in M∗
coord(W ), such that Y′ = Y−{B} ∪

{A} holds. Suppose that a lifting fiber (z,Tz) for the set of algebraic variables
Y is known, and write z = (z1, . . . , zr−1, a).

Then one can compute a lifting fiber (z′,Uz′) for the set of algebraic variables
Y′ by a probabilistic algorithm, using

O
(
(n4 + nL) MT(W ) M

(
(degW )2

)
log(degW )

)

operations in K in case of success. The algorithm chooses two values (a′, b) in
K, letting in particular z′ = (z1, . . . , zr−1, b).

There exists a non-zero polynomial ∆exchange ∈ K[Z1, . . . , Zr−1, A
′, B] of degree

at most 2dn(3d2n + (6m + 13m2)dn + m2), with m = max(n, d), such that if
∆exchange(z1, . . . , zr−1, a

′, b) is not zero, the algorithm succeeds.

Given the exchange data Y0, . . . ,Ys, applying successively this proposition
to (Y0,Y1), . . . , (Ys−1,Ys) will easily yield the proof of our main theorem.
Hence, the rest of this section is devoted to prove this proposition.

5.1 Setup and preliminaries

We first detail some preparatory steps for our algorithm, using the notation
of Proposition 16. Let thus Y and Y′ be two bases of M∗

coord(W ), and let
Z = X −Y and Z′ = X −Y′. We suppose that Y and Y′ differ by a single
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variable, so that we will write

Y = (B, Y2, . . . , Ys) and Y′ = (A, Y2, . . . , Ys),

with A 6= B, or equivalently

Z = (Z1, . . . , Zr−1, A) and Z′ = (Z1, . . . , Zr−1, B).

Suppose finally that we know a lifting fiber in K[Y] for the input set of alge-
braic variables Y. First, we perform a change of order in dimension zero on
this lifting fiber, to make it comply to the order given by

Z1 < · · · < Zr−1 < A < B < Y2 < · · · < Ys,

which we will call the input order. The cost of this operation is given in Subsec-
tion 2.2: using the FGLM algorithm, it is at most n(degW )3 operations in K.
Without loss of generality, we suppose from now on that the input lifting fiber
(z,Tz) supports this order. Accordingly, we let T = (T1, . . . , Ts) ⊂ K(Z)[Y]
and R = (R1, . . . , Rs) ∈ K[Z][Y] = K[X] be the canonical representations
associated to this order, coming from Proposition 2.

Let us write z as (z1, . . . , zr) ∈ Kr and let us define Z? = (Z1, . . . , Zr−1).
In the computation to follow, all variables in Z? will be specialized at the
value z? = (z1, . . . , zr−1) ∈ Kr−1. Hence, we write Tz? for the triangular set in
K(A)[Y] obtained by specializing Z? at z? in all coefficients of T; we also define
Rz? as the family of polynomials in K[A,Y] = K[A,B, Y2, . . . , Ys] obtained by
cleaning all denominators in Tz? . Observe that due to possible simplifications,
Rz? does not have to coincide with the specialization of R at (z1, . . . , zr−1),
see Lemma 12 below.

Since (z,Tz) is a lifting fiber for the input order, Newton iteration enables
us to use it to recover Tz? . Proposition 8 shows that the complexity of this
operation is

O
(
(n4 + nL) MT(W ) M

(
(degW )2

)
log(degW )

)
;

the algorithm chooses one random value a′ in the base field, and all choices
except at most nd2n(n+ 16 log d+ 11) lead to success.

Knowing Tz? , we deduce Rz? by a least common multiple computation and
some polynomial multiplications. To be precise, we write

Tz? = (Tz?,1, . . . , Tz?,s) and Rz? = (Rz?,1, . . . , Rz?,s),

with Tz?,i in K(A)[B, Y2, . . . , Yi] and Rz?,i in K[A,B, Y2, . . . , Yi]. For i ≤ s, we
then let `i ∈ K[A] be the least common multiple of the denominators of the
coefficients of Tz?,i; hence, Rz?,i = `iTz?,i and `i is the initial of Rz?,i for the
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input order. The following lemma gives degree bounds for the polynomials in
Tz? and Rz? ; the cost of deducing Rz? from Tz? is given next.

Lemma 11 The polynomial `i and all coefficients of Rz?,i have degree bounded
by (degW ) for i = 1, and 2(degW )2 for i = 2, . . . , s.

Proof. This is Theorem 2 in [19]. ¤

Corollary 2 Suppose that Tz? is known. Then one can recover Rz? using

O(n(degW )M
(
(degW )2

)
log(degW ))

operations in K.

Proof. Let us fix i ≤ s. Since the least common multiple of two polynomials
of degree d can be computed in O(M(d) log(d)) base field operations, in view
of the previous lemma, the cost for computing `i is in

O
(
di M

(
(degW )2

)
log(degW )

)
.

Then, deducing Rz?,i requires d1 · · · di−1 multiplications in K[A] in degree at
most 2(degW )2. Using the upper bounds d1 · · · di−1 ≤ degW and di ≤ degW ,
this shows that Rz?,i can be obtained in

O
(
(degW )M

(
(degW )2

)
log(degW )

)

base field operations. Summing over all i gives the result. ¤

To conclude this paragraph, the next lemma makes the relation between the
families R = (R1, . . . , Rs) ⊂ K[Z][Y] and Rz? = (Rz?,1, . . . , Rz?,s) ⊂ K[A][Y]
more precise.

Lemma 12 For i = 1, . . . , s, there exists mi ∈ K[A] such that the equality
Ri(z1, . . . , zr−1, A,B, Y2, . . . , Ys) = miRz?,i holds.

Proof. Let Li ∈ K[Z1, . . . , Zr−1, A] be the least common multiple of the
denominators of the coefficients of Ti. Then `i divides Li(z1, . . . , zr−1, A), and
the requested equality comes by letting mi be their quotient. ¤

Corollary 3 Let x = (z1, . . . , zr−1, a, b, y2, . . . , ys) be in Kn
. Then if the point

(a, b, y2, . . . , ys) is a root of Rz?, x is a root of R.

Proof. This is a direct consequence of Lemma 12. ¤

Corollary 4 Let a be in K, such that no denominator of T vanishes at
(z1, . . . , zr−1, a). Then the triangular set Tz? is well-defined, and x is a root
of R if and only if (a, b, y2, . . . , ys) is a root of Rz?.
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Proof. The first point is immediate. The second follows by using Lemma 12,
and observing that for i = 1, . . . , s, mi does not vanish at a, since it would im-
ply that the denominator Li of Ti (using the notation of the proof of Lemma 12)
vanishes at (z1, . . . , zr−1, a). ¤

5.2 Finding the new lifting fiber

We now detail the main operations needed to obtain the lifting fiber for the
new set of algebraic variables Y′. As input, we take z? = (z1, . . . , zr−1) ∈ Kr−1

as well as the polynomials Rz? ∈ K[A,B, Y2, . . . , Ys] obtained in the previous
subsection.

Recall that we write Z′ = (Z1, . . . , Zr−1, B). Given a value b ∈ K and writing
z′ = (z1, . . . , zr−1, b), we let R′

z′ be the polynomials in K[Y′] obtained by
specializing B at b in Rz? ; the prime symbol indicates that the variables in
R′

z′ are Y′. Hence, we have Rz? = (Rz?,1, . . . , Rz?,s) ⊂ K[A,B, Y2, . . . , Ys] and
R′

z′ = (R′z′,1, . . . , R
′
z′,s) ⊂ K[A, Y2, . . . , Ys], with

R′z′,i(A, Y2, . . . , Yi) = Rz?,i(A, b, Y2, . . . , Yi) (3)

for all i. Defining the target order <′ by

Z1 < · · · < Zr−1 < B < A < Y2 < · · · < Ys,

we will now show that for most values b of B, R′
z′ defines a lifting fiber for

(F, h, <′), where F denotes our initial regular chain, and h is the product of
its initials.

Proposition 17 There exists a non-zero polynomial Γ1 ∈ K[Z′] of degree at
most dn(6d2n + (9dn + 2)m2), with m = max(n, d), such that, if Γ1(z

′) 6= 0,
the following holds:

• R′
z′ is a regular chain for the target order <′, and defines a radical ideal.

• Let T′
z′ be the Lazard triangular set obtained by inverting all leading coeffi-

cients in R′
z′. Then (z′,T′

z′) is a lifting fiber for (F, h, <′).

Furthermore, if the previous properties hold, T′
z′ can be deduced from Rz?

using
O

(
nM

(
(degW )2

)
log(degW )

)

operations in K.

Proof. By Proposition 5, there exists a non-zero polynomial ∆lift ∈ K[Z] of
degree at most ndn(3dn + n + d), such that, for z = (z1, . . . , zr−1, a) ∈ Kr

, if
∆lift(z) is not zero, then z is a lifting fiber for (F, h, <).

35



Lemma 13 If z′ does not belong to πZ′(V (R) ∩ V (∆lift)), then we have the
equivalence (a, y2, . . . , ys) ∈ V (R′

z′) ⇐⇒ (z1, . . . , zr−1, a, b, y2, . . . , ys) ∈ W.

Proof. Let x = (z1, . . . , zr−1, a, b, y2, . . . , ys) be in W , and thus in V (R). By
assumption on z′, z = (z1, . . . , zr−1, a) does not cancel ∆lift. Hence, z satisfies
conditions H1 for the input order <: no denominator in T vanishes at z. By
Corollary 4, (a, b, y2, . . . , ys) is then a root of Rz? . In other words, (a, y2, . . . , ys)
is a root of R′

z′

Conversely, let (a, y2, . . . , ys) ∈ Ks
be a root of R′

z′ and let us define the point
x = (z1, . . . , zr−1, a, b, y2, . . . , ys). By definition, (a, b, y2, . . . , ys) is a root of
Rz? , so by Corollary 3, x is a root of R. As above, writing z = (z1, . . . , zr−1, a),
we deduce that z does not cancel ∆lift. Hence, z satisfies conditions H1 for the
input order <. This shows that (b, y2, . . . , ys) is a root of Tz; Proposition 3
then implies that x is in W . ¤

Lemma 14 If z′ does not belong to πZ′(V (R)∩V (∆lift)), then R′
z′ is a regular

chain in K[Y′].

Proof. Recall that Rz? = (Rz?,1, . . . , Rz?,s), where Rz?,1 is in K[A,B] and
Rz?,i is in K[A,B, Y2, . . . , Yi] for i > 1. Recall also that the initial `i of Rz?,i is
in K[A]. By Equation (3), the ith polynomial in R′

z′ is Rz?,i(A, b, Y2, . . . , Ys),
so for i > 1, its initial is `i as well.

Let (a, y2, . . . , ys) ∈ Ks
be a root of R′

z′ , and let z = (z1, . . . , zr−1, a). As in the
proof of the previous lemma, we deduce that no denominator in T vanishes
at z, so that no polynomial `i vanishes at a. Hence, no initial of R′

z′ vanishes
on V (R′

z′), so R′
z′ is a regular chain by Lemma 1. ¤

Lemma 15 Let D ∈ K[Z′] be the resultant of R1 and ∂R1/∂A with respect to
A. If z′ does not belong to πZ′(V (R) ∩ V (D∆lift)), then R′

z′ defines a radical
ideal in K[Y′].

Proof. Let (a, y2, . . . , ys) ∈ Ks
be a root of R′

z′ . We will prove that under the
above assumptions, none of the partial derivatives ∂R′z′,1/∂A and ∂R′z′,i/∂Yi,
for i > 2, vanishes at (a, y2, . . . , ys), which is enough to conclude by the Jaco-
bian criterion.

Let us define z = (z1, . . . , zr−1, a) and consider the triangular set Tz ⊂
K[B, Y2, . . . , Ys]. By assumption on z′, Tz is well-defined and generates a rad-
ical ideal in K[Y]. In other words, none of the partial derivatives ∂Tz,i/∂Yi

vanishes on the zero-set of Tz.

Now, the point y = (b, y2, . . . , ys) ∈ Ks
is in the zero-set of Tz and for i > 2,

36



the definition of R′
z′ implies the equality

R′z′,i(A, Y2, . . . , Ys) = `i(A) Ti(z1, . . . , zr−1, A, b, Y2, . . . , Ys),

so that

∂R′z′,i
∂Yi

(a, y2, . . . , ys) = `i(a)
∂Ti

∂Yi

(z1, . . . , zr−1, a, b, y2, . . . , ys)

= `i(a)
∂Tz,i

∂Yi

(b, y2, . . . , ys).

Hence, since `i(a) is not zero, none of the partial derivatives ∂R′z′,i/∂Yi is zero
at (a, y2, . . . , ys) for i > 2.

It remains to deal with the partial derivative ∂R′z′,1/∂A of the first polynomial
R′z′,1. Since z? = (z1, . . . , zr−1) does not cancel the leading coefficient of R1,
if D(z′) is not zero, then Lemma 12 shows that Rz?,1(z1, . . . , zr−1, A, b) =
R′z′,1(A) has no multiple root, which is what we wanted to prove. ¤

We can now prove Proposition 17. Remark that the first polynomial R1 in R
belongs to K[Z, B]. By the definition of R, it admits no factor in K[Z], and
has total degree at most (degW ). In particular, its resultant with ∆lift with
respect to A is a non-zero polynomial C in K[Z1, . . . , Zr−1, B] = K[Z′]. All
points z′ = (z1, . . . , zr−1, b) which belong to πZ′(V (R) ∩ V (∆lift)) cancel this
resultant C, whose degree is at most (2 degW deg ∆lift).

We continue by considering the resultant D appearing in the last lemma.
Recall that the polynomial R1 ∈ K[Z1, . . . , Zr−1, A,B] defines the closure of
πZ1,...,Zr−1,A,B(W ). Then, R1 has non-zero degree in A, since otherwise Z′ =
(Z1, . . . , Zr−1, B) would not be a set of free variables for W . Furthermore, R1

is irreducible in K[Z1, . . . , Zr−1, A,B]; hence, its discriminant D is non-zero,
of degree at most 2(degR1)

2. Using again Theorem 2 in [19], we get that the
degree of R1 is upper-bounded by (degW ), so that the degree of D is at most
2(degW )2.

To conclude the probability analysis, let ∆′
lift ∈ K[Z′] be the polynomial as-

sociated by Proposition 5 to the projection πZ′ , so that if ∆′
lift(z

′) is not zero,
then z′ satisfies the lifting conditions H1,H2,H3 for the system (F, h, <′). We
then take Γ1 = CD∆′

lift, which is non-zero and of the requested degree. Then,
if z′ does not cancel Γ1, z′ satisfies the lifting conditions. Besides, by the pre-
vious lemmas, the monic form T′

z′ of R′
z′ is a Lazard triangular set, defining a

radical ideal, and having for zero-set {z′} ×Wz′ ; this is implies that (z′,T′
z′)

is a lifting fiber for (F, h, <′).

The final part of the proof is the complexity analysis. As input, recall that
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we receive the polynomials Rz? in K[A,B, Y2, . . . , Ys] obtained in the previous
subsection. The first step consists in specializing B at b in these polynomials:
this can be done in time O(degW ). Next, we invert all initials `i ∈ K[A]
modulo the univariate polynomial R′z′,1 ∈ K[A]. All initials `i have degree
at most 2(degW )2 and can be inverted modulo R′z′,1, so this operation takes
O(nM((degW )2) log(degW )) operations in the base field. This finishes the
proof of Proposition 17. ¤

5.3 Proof of Proposition 16

We conclude this section with the proof of Proposition 16 announced in the
introduction of this section. The complexity estimate follows from taking the
sum of all contributions seen previously in this section: using the fact that
MT(W ) is at least linear in degW , the dominant term comes from the lifting
step of Subsection 5.1.

The probability analysis comes easily too. A first source of error is in the choice
of a value a′ used to stop Newton’s iteration; since the values a′ that provoke
error are in finite number, there is a non-zero polynomial Γ2 ∈ K[A′] having
these values as roots. The second source of error comes from the possibility that
(z1, . . . , zr−1, b) cancels the polynomial Γ1 ∈ K[Z1, . . . , Zr−1, B] of the previous
proposition. It then suffices to let ∆exchange = Γ1Γ2 ∈ K[Z1, . . . , Zr−1, A

′, B];
the degree bound comes easily after a few simplifications.

6 Proof of Theorem 1

We finally turn to the proof of Theorem 1. Our analysis will use the so-called
Zippel-Schwartz lemma [53,60]: if P is a non-zero polynomial in K[V1, . . . , Vt]
and if S is a finite subset of K, then P has at most (degP )|S|t−1 roots in St.

The algorithm first chooses a specialization value z = (z1, . . . , zr) for the
free variables Z0 of the input regular chain F; using those, we determine the
exchange data Y0, . . . ,Ys. The cost and probability analysis of this first step
are given in Proposition 11.

In the second step of the algorithm, we use the exchange data to compute a
sequence of lifting fibers, calling at most s times the subroutine described in
Proposition 16; we then use a last change of order in dimension zero to order
the algebraic variables Ys in the final lifting fiber according to the target order
<′. The complexity analysis of Proposition 16 dominates all other ones and
establishes the cost reported in Theorem 1. We conclude with the probability
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analysis.

Without loss of generality, we can suppose that for all i, Yi and Yi+1 do
actually differ, so that we need to perform exactly s times the operations
described in the last section (if Yi and Yi+1 coincide, there is nothing to
do). Hence, the algorithm will chose 2s values in the base field: s of them,
written b1, . . . , bs to match the notation of Proposition 16, will be used as the
specialization values in the sequence of lifting fibers, and the s remaining ones,
written a′1, . . . , a

′
s, are used in the stop criterion used in the successive Newton

lifting processes.

Suppose thus that z1, . . . , zr, b1, . . . , bs and a′1, . . . , a
′
s are chosen uniformly

at random in a finite subset S of K; observe that the size of the sample
set is then |S|n+s. To ensure success, we first require that z1, . . . , zr do not
cancel the polynomial ∆lin of Proposition 11: by Zippel-Schwartz’s lemma,
this discriminates at most n(2d)n+1|S|n+s−1 elements in Sn+s; for all remaining
points, we obtain the correct exchange data.

In the second step, we do s calls to the algorithm presented in Proposition 16.
For i ≤ s, let (Zi,1, . . . , Zi,r−1, Zi,r) ⊂ (Z1, . . . , Zr, B1, . . . , Bi−1) be the inde-
terminates that give the coordinates of the specialization value (zi,1, . . . , zi,r)
used in the ith lifting fiber. The ith call to Proposition 16 involves replacing
one of these indeterminates, say Zi,r for definiteness, by Bi, and do the anal-
ogous replacement in the specialization value; we use the value a′i along the
way to stop Newton’s iteration.

Hence, by Proposition 16, there exists a non-zero polynomial ∆exchange,i such
that if (zi,1, . . . , zi,r−1, bi, a

′
i) is non zero, the ith step succeeds. Using Zippel-

Schwartz’s lemma, the degree bound given in that proposition shows that this
discriminates at most 2dn(3d2n +m((6+13m)dn +m))|S|n+s−1 points in Sn+s,
writing m = max(n, d).

Summing all previous estimates concludes the proof of Theorem 1.

7 Conclusions and future work

We have presented an algorithm to perform change of order on regular chains
in positive dimension, that reduces mostly to a well-identified set of basic
operations: lifting techniques and change of order in dimension zero. As out-
put, we compute a lifting fiber for the target regular chain, which enables
us to maintain a polynomial complexity, while allowing for the recovery of
the full “expanded” representation of the target if needed. The algorithm is
probabilistic, and we provide a fine control on the probability of failure.
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We have implemented our algorithm in Maple; it is now part of the Regular-

Chains library [42]. As of now, not all of the techniques presented here are
implemented: for instance, we still use classical arithmetic to perform opera-
tions modulo a Lazard triangular set. We expect to improve on this situation
in the near future. More work is also planned to obtain an efficient lower-
level implementation, following the experiments reported in [23,43]; in such
an environment, we expect to make full use of the algorithms described here.

At the conceptual level, our next objective is to lift the primality assump-
tion. Moving to the more general situation of equidimensional varieties al-
ready raises several difficulty, since we will then have to split our object into
its equiprojectable components [17]. Then, the study of the possible degenera-
cies promises to become much more involved, but should still follow the mains
ideas presented here.

As was mentioned in the introduction, another of our projects consists in
improving the multivariate Newton iteration that takes place if one wants to
recover the full multivariate representation of the target regular chain. At the
moment, multivariate power series multiplication remains a difficult problem,
with no quasi-linear solution known in general. As a workaround, sparse lifting
and interpolation techniques are expected to improve on the current generalist
approach, inherited from [52].
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[2] P. Aubry, D. Lazard, and M. Moreno Maza. On the theories of triangular sets.
J. Symbolic Comput., 28(1–2):45–124, 1999.

[3] P. Aubry and A. Valibouze. Using Galois ideals for computing relative
resolvents. J. Symbolic Comput., 30(6):635–651, 2000.

[4] W. Baur and B. Strassen. The complexity of partial derivatives. Theoret.
Comput. Sci., 22(3):317–330, 1983.

[5] S. J. Berkowitz. On computing the determinant in small parallel time using a
small number of processors. Inform. Process. Lett., 18(3):147–150, 1984.

[6] D. Bernstein. Fast multiplication and its applications. Preprint, 2003. To appear
in Algorithmic number theory, Joe Buhler, Peter Stevenhagen eds.

[7] F. Boulier, F. Lemaire, and M. Moreno Maza. PARDI! In ISSAC’01, pages
38–47. ACM Press, 2001.

40



[8] F. Boulier, F. Lemaire, and M. Moreno Maza. Well known theorems on
triangular systems and the D5 principle. In Transgressive Computing 2006,
2006.

[9] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory,
volume 315 of Grundlehren der mathematischen Wissenschaften. Springer-
Verlag, 1997.
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Université Lille I, LIFL, 2002.

[42] F. Lemaire, M. Moreno Maza, and Y. Xie. The RegularChains library. In
Maple Conference, pages 355–368, 2005.
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Appendix: arithmetic modulo a Lazard triangular set

This appendix is devoted to prove a complexity result for operations modulo
a Lazard triangular set, claimed in Proposition 6 of Subsection 2.2: Let M :
N→ R be a multiplication time. There exists a constant C such that one can
take

MT(d1, . . . , dn) = Cn′ ∏

i≤n,di 6=1

M(di)logp3(di),

where n′ is the number of elements of {d1, . . . , dn} different from 1. Recall
that logp(x) denotes the maximum of 1 and log2(x), so that logp(x) ≥ 1 for
all x ≥ 1.

Suppose that T = (T1, . . . , Tn) ⊂ K[X] is a Lazard triangular set for the order
X1 < · · · < Xn, such that di = degXi

Ti is 1. Then Ti is linear in Xi, so that
Xi appears in no other polynomial Tj, j 6= i, and the quotient K[X]/〈T〉 is
naturally isomorphic to K[X′]/〈T′〉, where X′ = X−{Xi} and T′ = T−{Ti}.

Hence, if degXi
Ti = 1, we do not need to take Ti into account in the com-

plexity analysis. Thus, it will be enough to prove the following weaker form
of the previous result: Let M : N→ R be a multiplication time. There exists a
constant C such that one can take

MT(d1, . . . , dn) = Cn
∏

i≤n

M(di)logp3(di).

Ring operations modulo 〈T〉 raise no difficulty, but invertibility test and inver-
sion are less straightforward. These problems were solved in [18], at the cost
of possibly splitting the initial triangular set T into several components. In
what follows, we will give all the necessary tools to recombine the triangular
set T after the possible splitting, by means of effective Chinese remaindering.
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We recall some of the main results of [18]. These results require introducing
a notion of non-critical decomposition of a Lazard triangular set, which we
define first.

• Let T be a Lazard triangular set in K[X] = K[X1, . . . , Xn], and let Q be
the quotient K[X]/〈T〉. Two polynomials A,B ∈ Q[Y ] are coprime if the
ideal 〈A,B〉 ⊂ Q[Y ] equals 〈1〉.

• Let T 6= T′ be two Lazard triangular sets, with T = (T1, . . . , Tn) and
T′ = (T ′1, . . . , T

′
n). The least integer ` such that T` 6= T ′` is called the level

of the pair {T, T ′}. The pair {T, T ′} is critical if T` and T ′` are not coprime
in K[X1, . . . , X`−1]/〈T1, . . . , T`−1〉[X`]. A family of triangular sets is non-
critical if it has no critical pairs, otherwise it is said to be critical.

• A family of Lazard triangular sets U(1), . . . ,U(L) is a non-critical decompo-
sition of T if it is non-critical, and if the ideals 〈T〉 is the intersection of
the ideals 〈U(i)〉, for i ≤ N .

The main interest of this notion of non-criticality is that it enables us to obtain
a fast algorithm for the reduction map

K[X]/〈T〉 → ∏

1≤i≤L

K[X]/〈U(i)〉,

which is needed in all algorithms mentioned below.

In all that follows, referring to a triangular set T = (T1, . . . , Tn), di denotes
the degree of the polynomial Ti in its main variable Xi. Then, from [18], there
exists a constant C1 such that the following holds for any triangular set T:

D51 One can do all operations (+,×) modulo T in time Cn ∏
i≤n M(di).

D52 If U(1), . . . ,U(L) is a non-critical decomposition of T, then the reduction
map

K[X]/T → ∏

U∈U(1),...,U(L)

K[X]/U

can be computed in time Cn ∏
i≤n M(di)logp(di).

D53 Let A ∈ K[X] be reduced modulo T. Then one can test if A is a unit
modulo T in time

Cn
∏

i≤n

M(di)logp3(di).

If so, one can compute a non-critical decomposition U(1), . . . ,U(L) of T, as
well as a set of polynomials

{BU ∈ K[X] | U ∈ U(1), . . . ,U(L)},

with BU reduced modulo U and such that BU = A−1 mod U, in the same
time.
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D54 Let Q be the quotient K[X]/〈T〉. If A,B are polynomials of degrees
at most d in Q[Y ], with B monic, such that 〈A,B〉 = 1, then one can
compute a non-critical decomposition U(1), . . . ,U(L) of T, as well as as a
set of polynomials

{CU ∈ K[X][Y ] | U ∈ U(1), . . . ,U(L)},

with CU reduced modulo U and such that ACU = 1 mod (U, B), in time

Cn+1
∏

i≤n

M(di)logp3(di) M(d)logp(d).

This answers most of our requirements on a cost function MT (the required
inequalities (1) of Subsection 2.2 raise no difficulty). All that is missing to prove
our main assertion is inversion: even if A is a unit modulo 〈T〉, computing its
inverse will induce a decomposition of T.

To fill this gap, we will give an algorithm for recombination, based on Chinese
remaindering. Recall thus (see for instance [6, Section 23]) that there exists a
constant C2 with the following property.

CRT1 Let A be a ring, let A1, . . . , AL be monic squarefree polynomials in A[Y ],
such that 〈Ai, Aj〉 = 1 for all i < j ≤ L. Let A = A1 · · ·AL, and suppose
that (A′)−1 modulo A is known. Let finally d =

∑
`≤L deg(A`).

Given B1, . . . , BL in A[Y ], with degB` < degA` for all `, one can compute
the unique B ∈ A[Y ] of degree less than d such that B = B` mod A` holds
for all `, in time C2M(d)logp(d).

We now present an algorithm for inversion modulo a Lazard triangular set
T, assuming that T generates a radical ideal: To invert A modulo 〈T〉, we
will first apply point D53 above, inducing a splitting of T. We will then use
recursively the previous result CRT1 to recombine the results. Without loss of
generality, in what follows, we assume that C1 = C2.

Step 1: One level of Chinese remaindering modulo a triangular set. We
start by a simple version of Chinese remaindering, where the triangular set T
has been split only once. Let thus T = (T1, . . . , Tn) be a Lazard triangular set
in K[X1, . . . , Xn] that generates a radical ideal. Let then i be an index ≤ n,

and let T
(1)
i , . . . , T

(L)
i in K[X1, . . . , Xi] be such that Ti = T

(1)
i · · ·T (L)

i holds
modulo 〈T1, . . . , Ti−1〉. Then, since T generates a radical ideal, the family of
Lazard triangular sets

U(1) =
(
T1, . . . , Ti−1, T

(1)
i , Ti+1 mod 〈T1, . . . , T

(1)
i 〉, . . . , Tn mod 〈T1, . . . , T

(1)
i 〉

)

...

U(L) =
(
T1, . . . , Ti−1, T

(L)
i , Ti+1 mod 〈T1, . . . , T

(L)
i 〉, . . . , Tn mod 〈T1, . . . , T

(L)
i 〉

)
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is a non-critical decomposition of T.

Lemma 16 Suppose that (T ′i )
−1 mod 〈T1, . . . , Ti〉 is known. Given B1, . . . , BL

in K[X1, . . . , Xn] with B` reduced modulo U(`) for all `, one can compute the
unique B ∈ K[X1, . . . , Xn] reduced modulo T and such that B = B` mod U(`)

holds for all ` in

C`
1M(d1) · · ·M(di−1)M(di)logp(di)di+1 · · · dn

operations in K.

Proof. We apply point CRT1 to all coefficients of the polynomials B`, seen
in Q[Xi][Xi+1, . . . , Xn], with Q = K[X1, . . . , Xi−1]/〈T1, . . . , Ti−1〉. ¤

Step 2: More complex Chinese remaindering. We continue with a slightly
more complex version of the question, where we perform several instances of
Chinese remaindering at the various branches of a triangular decomposition,
but always at the same level.

Let thus T = (T1, . . . , Tn) be a Lazard triangular set in K[X1, . . . , Xn] that
generates a radical ideal. Let i be an index ≤ n and let U(1), . . . ,U(L) be
a non-critical triangular decomposition of (T1, . . . , Ti) in K[X1, . . . , Xi], with

U(`) = (U
(`)
1 , . . . , U

(`)
i ). Associated with this decomposition of (T1, . . . , Ti), we

have the corresponding non-critical decomposition of T itself as

A(1) =
(
U

(1)
1 , . . . , U

(1)
i , Ti+1 mod U(1), . . . , Tn mod U(1)

)

...

A(L) =
(
U

(L)
1 , . . . , U

(L)
i , Ti+1 mod U(L), . . . , Tn mod U(L)

)
.

(4)

We will also be interested in another non-critical decomposition of T, de-
fined by regrouping some of the A(L) together at level i. For ` ≤ L, let thus
V(`) be defined by V(`) = (U

(`)
1 , . . . , U

(`)
i−1), so that V(`) is a triangular set in

K[X1, . . . , Xi−1]. Up to renumbering, we may assume that there exists integers

M1 = 1 < · · · < MS < MS+1 = L+ 1

such that the equalities

V(M1) = · · · = V(M2−1)

...

V(Ms) = · · · = V(MS+1−1)

hold, with furthermore V(Mi) and V(Mj) pairwise distinct for i 6= j. Then,
V(M1), . . . ,V(MS) form a non-critical triangular decomposition of (T1, . . . , Ti−1),
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so that

B(1) =
(
V(M1), Ti mod V(M1), . . . , Tn mod V(M1)

)

...

B(S) =
(
V(MS), Ti mod V(MS), . . . , Tn mod V(MS)

)
(5)

is a non-critical decomposition of T that refines the decomposition (4). Indeed,
for s ≤ S, A(Ms), . . . ,A(Ms+1−1) is a non-critical decomposition of B(s).

Let B1, . . . , BL be in K[X1, . . . , Xn], with B` reduced modulo A(`) for all `.
In view of the previous point, there exist unique C1, . . . , CS in K[X1, . . . , Xn],
with Cs reduced modulo B(s), such that B` = Cs mod A(`), for Ms ≤ ` <
Ms+1.

Lemma 17 Assume that the inverse Ki of T ′i modulo 〈T1, . . . , Ti〉 is known.
The polynomials C1, . . . , CS can be computed in time

2Ci
1M(d1)logp(d1) · · ·M(di)logp(di)di+1 · · · dn.

Proof. We first reduce Ki modulo V(M1), . . . ,V(MS). This is done coefficient
by coefficient; using point D52, this can be done in time

Ci−1
1 M(d1)logp(d1) · · ·M(di−1)logp(di−1)di.

Then, Lemma 16 shows that the cost of computing Cs is

Ci
1M(d1,s) · · ·M(di−1,s)M(di)logp(di)di+1 · · · dn,

where dj,s is the Xj-degree of U
(Ms)
j . Summing over all s gives the requested

upper bound, since the super-additivity of M implies that

∑

s≤S

M(d1,s) · · ·M(di−1,s) ≤ M(d1) · · ·M(di−1)

holds. ¤

Conclusion. We prove our main result; we start by giving the cost for Chinese
remaindering, assuming that some inverses are known.

Proposition 18 Let T = (T1, . . . , Tn) be a Lazard triangular set in K[X]
that generates a radical ideal, and suppose that for j = 1, . . . , n, the inverse
Kj of T ′j modulo 〈T1, . . . , Tj〉 is known. Let U(1), . . . ,U(L) be a non-critical
triangular decomposition of T, and consider a family of polynomials {BU |U ∈
U(1), . . . ,U(L)}, where BU is reduced modulo U.

Then one can compute the unique polynomial B reduced modulo T such that
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B = BU mod U holds for all U in time

2nCn
1M(d1)logp(d1) · · ·M(dn)logp(dn).

Proof. It suffices to apply Lemma 17 for i = n, . . . , 1. ¤

We continue by working out the complexity of computing the required inverses.

Proposition 19 Let assumptions be as in the previous proposition, and let
Ki be the inverse of T ′i modulo 〈T1, . . . , Ti〉. Then K1, . . . , Kn can be computed
in time

(3n2 + n)Cn
1

∏

i≤n

M(di)logp3(di).

Proof. Supposing that K1, . . . , Ki−1 are known, we work out the complex-
ity of computing Ki. Applying point D54 to Ti and T ′i , we can compute a
non-critical decomposition U(1), . . . ,U(L) of (T1, . . . , Ti−1) as well as {Ki mod
U | U ∈ U(1), . . . ,U(L)}, in time

Ci
1

∏

j≤i−1

M(dj)logp3(dj)M(di)logp(di).

Then, it suffices to apply Proposition 18 to recover Ki, in time

2iCi
1M(d1)logp(d1) · · ·M(di)logp(di).

Summing over all i gives the result. ¤

We can then conclude the proof of our main assertion. All notation being as
above, let A be a unit modulo T, and let B = A−1. We first precompute the
needed inverses K1, . . . , Kn using the previous proposition. Applying point
D53, we next compute a non-critical decomposition U(1), . . . ,U(L) of T as well
as {B mod U | U ∈ U(1), . . . ,U(L)}, in time

Cn
1

∏

j≤n

M(dj)logp3(dj).

Since the required inverses are known, applying Proposition 18, we can recover
B. Putting all costs together yields a complexity for computing A−1 of

(3n2 + 3n+ 1)Cn
1

∏

i≤n

M(di)logp3(di),

which is bounded by
Cn

∏

i≤n

M(di)logp3(di)

for C large enough.
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