CS 341: Algorithms

University of Waterloo
Eric Schost
eschost@Quwaterloo.ca

Module 4: greedy algorithms

1/56

Goals

This module: the greedy paradigm through examples

job scheduling

interval scheduling

more scheduling

fractional knapsack (if time permits)
Dijsktra’s algorithm

minimum spanning trees

2/56

Goals

This module: the greedy paradigm through examples
® job scheduling
¢ interval scheduling
® more scheduling

e fractional knapsack (if time permits)

Dijsktra’s algorithm

® minimum spanning trees

Computational model:
e word RAM

e agsume all weights, capacities, deadlines, etc, fit in a word

2/56

Overview

3 /56

Greedy algorithms

Context: we are trying to solve a combinatorial optimization problem:
® have a large, but finite, domain S

¢ want to find an element F in S that minimizes / maximizes a cost function

4/56

Greedy algorithms

Context: we are trying to solve a combinatorial optimization problem:
® have a large, but finite, domain S

¢ want to find an element F in S that minimizes / maximizes a cost function

Greedy strategy:
® build E step-by-step

don’t think ahead, just try to improve as much as you can at every step

simple algorithms

but usually, no guarantee to get the optimal

it is often hard to prove correctness, and easy to prove incorrectness.

4/56

Example: Huffman

Review from CS240: the Huffman tree
® we are given frequencies f1,..., f, for characters ¢y, ..., c,

® we build a binary tree for the whole code

5/56

Example: Huffman

Review from CS240: the Huffman tree
® we are given frequencies f1,..., f, for characters ¢y, ..., c,

® we build a binary tree for the whole code

Greedy strategy: we build the tree bottom up.
® create many single-letter trees
® define the frequency of a tree as the sum of the frequencies of the letters in it

® build the final tree by putting together smaller trees: join the two trees with
the least frequencies

Claim: this minimizes), f; x {length of encoding of ¢;}

5/56

A job scheduling problem

6 /56

The problem

Input:
® n jobs, with processing times [t(1),...,t(n)]

7/56

The problem
Input:
® n jobs, with processing times [t(1),...,t(n)]

Output:
® an ordering of the jobs that minimizes the sum 7" of the completions times

e completion time: how long it took (since the beginning) to complete a job

7/56

The problem

Input:
® n jobs, with processing times [t(1),...,t(n)]

Output:
® an ordering of the jobs that minimizes the sum 7" of the completions times

e completion time: how long it took (since the beginning) to complete a job

Example:
® n =5, processing times [2,8,1, 10, 5]
® in this order,
T=2+ (842) + (1+8+2) + (10+1+8+2) + (5+10+1+8+2) =70
® in the order [1,2,5,8,10],
T=1+ (2+1) + 5+2+1) + 8+5+2+1) + (10+8+5+2+1)=54

7/56

Greedy algorithm
Algorithm:

® order the jobs in non-decreasing processing times

8 /56

Greedy algorithm

Algorithm:

order the jobs in non-decreasing processing times

Correctness by an exchange argument

let L = [eq,...,e,] be a permutation of [1,...,n]

suppose that L is not in non-decreasing order of processing times.
Can it be optimal?

assumption there exists i such that t(e;) > t(e;+1)

sum of the completion times of L is nt(e1) + (n — 1)t(e2) + - - - + t(en)
the contribution of e; and e;11 is (n — ¢ + 1)t(e;) + (n — ¢)t(e;+1)

now, switch ¢; and ¢;; to get a permutation L’

their contribution becomes (n — ¢ 4 1)t(e;+1) + (n — 7)t(e;)

nothing else changes so T(L’) — T'(L) = t(e;+1) — t(e;) <0

so L not optimal

8 /56

Greedy algorithm
Algorithm:

® order the jobs in non-decreasing processing times

Review from CS240
® optimal static order for linked list implementation of dictionaries

¢ same result (up to reverse), same proof

8 /56

Interval scheduling

9/56

The problem

Input:
e n intervals I1 = [s1, fi], ..., In = [Sn, [n] start time, finish time
® also write s; = start(Ij), fj = finish(I;)

10 /56

The problem

Input:
e n intervals I1 = [s1, fi], ..., In = [Sn, [n] start time, finish time
® also write s; = start(Ij), fj = finish(I;)

Output:

® a choice T of intervals that do not overlap and that has maximal cardinality

10 /56

The problem

Input:
e n intervals I1 = [s1, fi], ..., In = [Sn, [n] start time, finish time

® also write s; = start(Ij), fj = finish(I;)

Output:
® a choice T of intervals that do not overlap and that has maximal cardinality

Example: A car rental company has the following requests for a given day:
Ii: 2pm to 8pm

I5: 3pm to 4pm

I3: 5pm to 6pm

Answer is T' = [Io, I3].

10 /56

Template for a greedy algorithm

Greedy(I = [I1,...,1,))
T]
while I is not empty do
choose an interval I from I
move I to T
remove from I all intervals that overlap with 1

o W=

Observation: no overlap between the intervals in T’

11/ 56

A few attempts

Attempt 1:

® [is the interval in I with the earliest starting time

12/ 56

A few attempts

Attempt 1:
® [is the interval in I with the earliest starting time

® no, previous example

12/ 56

A few attempts

Attempt 1:
® [is the interval in I with the earliest starting time
® no, previous example

Attempt 2:

® [is the shortest interval in I

12/ 56

A few attempts

Attempt 1:
® [is the interval in I with the earliest starting time
® no, previous example

Attempt 2:

® [is the shortest interval in I

® no, for example

12/ 56

A few attempts

Attempt 1:
® [is the interval in I with the earliest starting time

® no, previous example

Attempt 2:
®] is the shortest interval in I

® no, for example

Attempt 3:
® [is the interval in I with the fewest overlaps

12/ 56

A few attempts

Attempt 1:
® [is the interval in I with the earliest starting time

® no, previous example

Attempt 2:
®] is the shortest interval in I

® no, for example

Attempt 3:
® [is the interval in I with the fewest overlaps

® no, for example = =

12/ 56

A few attempts

Attempt 1:
® [is the interval in I with the earliest starting time
® no, previous example

Attempt 2:
® [is the shortest interval in I

® no, for example

Attempt 3:
® [is the interval in I with the fewest overlaps

® no, for example = =

Attempt 4:

® [is the interval in I with the earliest finish time

12/ 56

An O(nlog(n)) implementation

Greedy(I = [I1,...,1,])
T]
sort I by non-decreasing finish time
fork=1,...,ndo
if Iy, does not overlap the last entry in T
append I to T

Ol o=

13 /56

Correctness: greedy stays ahead

Let
® T'= [z <--- < xp| be the output of the algorithm,
® S =y <--- <yq4l be any choice of requests without overlaps,
® hoth sorted by increasing finish time.

Proof that p > q.
® by induction: for k=0,...,q, p > k and
Sk =[r1 < - <z <yg41 < -+ < Yq) has no overlap and is sorted by
increasing finish time

® OK for k =0, so we suppose true for some k < ¢, and prove for k + 1

® since [z1,..., 2, Yp+1] is satisfiable, the algorithm didn’t stop at xj. So
p>k+1.

¢ by definition of g1, finish(xgy1) < finish(yg41). So we can replace y11 by
ZTp41 in Sg. We get Spp1 = [21 < -+ < Zpg1 < Yo < -+ - < Yq), which is still
satisfiable and sorted by increasing finish time

14 /56

Minimizing lateness

15 /56

The problem

Input:

® jobs Jq,...,J, with processing times ¢(1),...,¢t(n) and deadlines
d(1),...,d(n)

® can only do one thing at a time

16 /56

The problem

Input:

® jobs Jq,...,J, with processing times ¢(1),...,¢t(n) and deadlines
d(1),...,d(n)

® can only do one thing at a time

Output:
® 3 scheduling of the jobs which minimizes maximal lateness
® job J; starts at time s(2) and finishes at f(2) = s(2) + t(2)
o if f(i) > d(i), lateness £(¢) = f(i) — d(7)

® maximal lateness = max; £(¢)

16 /56

Example: 3 jobs

® prepare my slides: need ¢(1) = 4 hours, deadline d(1) = 2 hours
¢ write solutions to assignments: need ¢(2) = 6 hours, deadline d(2) = 1 hour
e finish the midterm: need ¢(3) = 10 hours, deadline d(3) = 24 hours

17 /56

Example: 3 jobs

¢ prepare my slides: need t(1) = 4 hours, deadline d(1) = 2 hours
® write solutions to assignments: need ¢(2) = 6 hours, deadline d(2) = 1 hour
e finish the midterm: need ¢(3) = 10 hours, deadline d(3) = 24 hours

F]:EE—

¢ 1, then 2, then 3: latenesses [2,9,0]
¢ 2, then 1, then 3: latenesses [8,5, 0] (optimal)

17 /56

No breaks

Observation:

e if a scheduling has idle time, we can improve it by removing the breaks

| [
I I E—

® 50 the optimal has no idle time, and is given by an ordering of the jobs

18 /56

A few attempts

Attempt 1:
® do short jobs first

19/56

A few attempts

Attempt 1:
® do short jobs first

® no, last example

19/56

A few attempts

Attempt 1:
® do short jobs first

® no, last example

Attempt 2:
¢ do jobs with little slack first slack = d(i) — t(7)

19/56

A few attempts

Attempt 1:
® do short jobs first

® no, last example

Attempt 2:
¢ do jobs with little slack first slack = d(i) — t(7)
® no
I . i
BT

19/56

A few attempts

Attempt 1:
® do short jobs first

® no, last example

Attempt 2:
® do jobs with little slack first
® no
I . i
BT
Attempt 3:

® do jobs in non-decreasing deadline order

slack = d(i) — t(7)

19/56

Non-uniqueness

Observation:

e if d(i) = d(j), the orderings [...,%,4,...] and [..., J,%,...] have the same
max-lateness (because the second job is the latest)

® 50 all orderings in non-decreasing deadline order have the same max-lateness

20 / 56

Non-uniqueness

Observation:

e if d(i) = d(j), the orderings [...,%,7,...] and [...,J,%,...] have the same
max-lateness (because the second job is the latest)

® 50 all orderings in non-decreasing deadline order have the same max-lateness

Definition:
® an inversion in L = [eq, ..., ey] is a pair (¢,7) with ¢ < j and d(e;) > d(e;)

® [has no inversion <= L in non-decreasing deadline order

20 / 56

Correctness: exchange argument

® let L =[ey,...,ey] be a solution (as a permutation of [1,...,n])

® suppose that L is not in non-decreasing order of deadlines, so there exists ¢
such that d(e;) > d(e;+1)

® now, switch ¢; and ¢;;; to get a permutation L’

¢ the lateness of e;4; cannot increase (because we do e;4; earlier than before),
so at most max_lateness(L)

® the new lateness of e; is at most the old lateness of e;1, so at most
max_lateness(L)

|

& e | |

| [€ir] Te I |
d(ei+1) d(e;)

21 /56

Correctness: exchange argument

® let L =[ey,...,ey] be a solution (as a permutation of [1,...,n])

® suppose that L is not in non-decreasing order of deadlines, so there exists ¢
such that d(e;) > d(e;+1)

® now, switch ¢; and ¢;;; to get a permutation L’

¢ the lateness of e;4; cannot increase (because we do e;4; earlier than before),
so at most max_lateness(L)

® the new lateness of e; is at most the old lateness of e;,1, so at most
max_lateness(L)

e nothing else changes, so max_lateness(L’) < max_lateness(L)
® and we have removed an inversion

® keep going: after at most n(n — 1)/2 iterations, we have L,q with no inversion
and such that max_lateness(Lorq) < max_lateness(L)

21 /56

Interval coloring

22 /56

The problem

Input:
e n intervals I1 = [s1, fi], ..., In = [Sn, [n] start time, finish time
® also write s; = start(I;), f; = finish(Z;)

23 / 56

The problem

Input:
e n intervals I1 = [s1, fi], ..., In = [Sn, [n]
® also write s; = start(I;), f; = finish(Z;)

Output:
® assignment of colors to each interval
® overlapping intervals get different colors

® minimize the number of colors used overall

Remarks:
® another version: finding classrooms for lectures
® colors <> numbers 1,2, ...

e finish(I;) = start(I}) not an overlap

start time, finish time

23 / 56

A blueprint for a greedy algorithm

GreedyColoring(I = [I1,...,1,])

1. sort I somehow
2. fork=1,...,ndo
3. color I, with the minimum color not used by any of the

previous intervals that overlap Iy

24 /56

A few attempts

Attempt 1:
® sort by non-decreasing finish times

=N W

25 / 56

A few attempts

Attempt 1:
® sort by non-decreasing finish times
® no
3
2
1
Attempt 2:
® sort from shortest to longest
® no
3
2
1

25 / 56

A few attempts

Attempt 1:
® sort by non-decreasing finish times
® no

=N W

Attempt 2:
® sort from shortest to longest
® no

=N W

A A

Attempt 3:
® sort by non-decreasing starting times

® maybe
s e I
1 25 / 56

Correctness

Claim
® we suppose the algorithm uses k colors

® we prove that we can’t use fewer.

26 / 56

Correctness
Claim
® we suppose the algorithm uses k colors

® we prove that we can’t use fewer.

Proof
® suppose we color I; with color k
® so Ij overlaps with k — 1 intervals, say In,,..., o, , seen previously
® so for all j, sq; < 8t < fo
® 5o there is a little interval [s;, s; + €] in all Io, and Iy

® 50 we can’t do with less than k& colors
Exercise

Give an O(nlog(n)) implementation.

26 / 56

Fractional knapsack

27 /56

The problem

Input:

® items I1,..., I, with weights w1, ..., w, and positive values vq, ..

® a capacity W

Output:

e fractions E = eq,...,e, such that
e 0<ej<1forally
® cqwy + - +eyw, < W
® ¢yv1 + - + e,v, maximal

Example:
® wy = 10,’01 = 60, wo = 30, Vo = 90, w3 = 20,’03 = 100
e W =50

® optimal is e; = 1, e = 2/3, es = 1, total value 220

<9 Un

28 / 56

The problem

Input:
® items Iy, ..

® a capacity W

Output:
e fractions E = eq,...,e, such that
e 0<ej<1forally
® cqwy + - +eyw, < W
® ¢yv1 + - + e,v, maximal

Remark:
® (/l-version: e; € {0,1} for all j

® dynamic programming

., I, with weights wq, .

.., Wy, and positive values v1,..., v,

28 / 56

The knapsack should be full

Remark:
o if Y . w; < W, just take all e; =1

® so assume » ,w; > W

29 / 56

The knapsack should be full

Remark:
o if Y . w; < W, just take all e; =1

® so assume » ,w; > W

Observation:
® suppose we have an assignment with) . e;w; < W
® then some e; must be less than 1

® 5o we can increase the value by non-decreasing this e;

29 / 56

The knapsack should be full

Remark:
o if Y . w; < W, just take all e; =1

® so assume » ,w; > W

Observation:
® suppose we have an assignment with) . e;w; < W
® then some e; must be less than 1

® 5o we can increase the value by non-decreasing this e;

Consequence:

® it is enough to consider assignments with Ez e,w; =W

29 / 56

A few attempts

Attempt 1:

® pack with items in decreasing value v;

30 /56

A few attempts

Attempt 1:
® pack with items in decreasing value v;

® no, previous example (we get [0, 1, 1] with total value 190)

30 /56

A few attempts

Attempt 1:
® pack with items in decreasing value v;

® no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:

® pack with items in increasing weight w;

30 /56

A few attempts

Attempt 1:
® pack with items in decreasing value v;

® no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:
® pack with items in increasing weight w;
®* noo W =10, w; = 10,v; = 1, wa = 5,v2 = 100

30 /56

A few attempts

Attempt 1:
® pack with items in decreasing value v;

® no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:
® pack with items in increasing weight w;
®* noo W =10, w; = 10,v; = 1, wa = 5,v2 = 100

Attempt 3:
¢ pack with items in decreasing “value per kilo” v;/w;
e first example [6, 3, 5], second example [1/10, 20]

30 /56

Pseudo-code

GreedyKnapsack (v, w, W)
1 E +0,...,0]

2 sort items by decreasing order of v; /w;
3 fork=1,...,ndo

4. if wp < W then

5. E[k] + 1

6 W+ W —wy

7 else

8 E[k] + W/wy

9 return

Remark: output is S =[1,...,1,¢e,0,...,0]
Runtime: O(nlog(n))

31/56

Correctness: exchange argument

® let £ =[eq,...,ey] be the optimal assignment, with > e;w; = W

® let S =s1,...,8,] be any assignment, with > s;w; = W

® suppose S different from FE, and let ¢ be the first index with e; # s;

® greedy strategy: e; > s;

® because their weights are the same, there is j > 7 with s; > e;

® set s = 8; + a/w; and s} = s; — a/wj, for a TBD > 0, all other s} = sy,
® in any case, y_ siw; = W and value(S’) > value(S)

® choose a such that either s} =e; or s’ =¢;
a = min(w;(e; — s;), w;(s; — €;))

® 50 we found S’ that has one more common entry with E, and which is at least
as good as S

® keep going
32 /56

Dijkstra’s algorithm

33 /56

Conventions
Input:
® a directed graph G = (V, E)
e with weights w(e) on the edges
w(7y) = weight of a path v = sum of the weights of its edges

® 1o loops = edges v — v

® no isolated vertices, with no incoming or outgoing edge m>n/2

Output:

¢ the shortest (=minimal weight) paths between a source s and all vertices

® dynamic programming: shortest paths between all vertices

Remark: nothing faster known (to me) for single-source, single-destination

34 /56

Remarks

1. shortest paths may not exist if there are negative length cycles

-5

2 1

0—>0—>0

3 3

some algorithms can deal with negative edges (and detect negative cycles)

Dijkstra’s algorithm needs positive weights

35 / 56

Remarks

1. shortest paths may not exist if there are negative length cycles

-5

2 1

0—>0—>0

3 3

some algorithms can deal with negative edges (and detect negative cycles)

Dijkstra’s algorithm needs positive weights

2. if there exists a shortest path s~ ¢, write d(s,t) for its weight
e called the distance from s to t (but we may not have d(s,t) = (¢, s))

e if there is no path s~ t, §(s,t) = 00

35 / 56

Outlook

All weights are non-negative

36 /56

Outlook

Assumption

All weights are non-negative

Idea of the algorithm:
¢ starting from s, grow a tree (S,T) rooted at s, together with the distances
d(s,v) for vin S

® at every step, add to S the remaining vertex v closest to s
® no negative weight: this vertex is on an edge (u,v), uin S, vin V — S

e if there is no such edge, we're done (all remaining vertices are unreachable)

greedy algorithm!

36 / 56

Key property

Let (S,T) be a tree rooted at s and take an edge (u,v) such that
® yisin S,visin V-8
® §(s,u) + w(u,v) minimal among these edges

Then (s, u) + w(u,v) = §(s,v)

37 /56

Key property
Claim

Let (S,T) be a tree rooted at s and take an edge (u,v) such that
® yisin S,visin V — 8§
® §(s,u) + w(u,v) minimal among these edges

Then (s, u) + w(u,v) = d(s,v)

Proof:

e take a path v : s~ v and let (z,y) be its first edge S -V — S

e wiy) =w(s~ x)+w(z,y) +wly~ v)>d(s,x) +w(x,y)+0
so w(y) > d(s,u) + w(u,v) choice of u,v
but also d(s,u) + w(u,v) > (s, v) def of distance s — v
take shortest v: w(y) = d(s,v) so §(s,v) > d(s,u) + w(u,v) > §(s,v)

37 /56

High-level view of the algorithm

Dijkstra(G, s)
1. S« {s}
2. while S # V do
3. choose (u,v) with u in S, v not in S and d(s, u) + w(u,v) minimal
(the min value gives d(s,v))
. add v to S
5. if not such (u,v), stop

38 /56

High-level view of the algorithm

Dijkstra(G, s)
1. S« {s}
2. while S # V do
3. choose (u,v) with u in S, v not in S and d(s, u) + w(u,v) minimal
(the min value gives d(s,v))
. add v to S
5. if not such (u,v), stop
Correctness:

¢ we find §(s,v) for all v in S
e if S =V at the end, OK
¢ if not, when we stop, the remaining vertices are unreachable

38 /56

High-level view of the algorithm

Dijkstra(G, s)
1. S« {s}
2. while S # V do
3. choose (u,v) with u in S, v not in S and d(s, u) + w(u,v) minimal
(the min value gives d(s,v))
. add v to S
5. if not such (u,v), stop
Correctness:

¢ we find §(s,v) for all v in S
e if S =V at the end, OK
¢ if not, when we stop, the remaining vertices are unreachable

Questions:
® how to find (u,v) efficiently
® probably need a priority queue (heap) of some kind
® good choice: a priority queue of vertices

38 /56

The min-priority queue

Building P
® contains all vertices in V' — S (initially, all V)
® set priority[s] =0

e for v # s, we will maintain priority[v] = min,eg, (u,v)cE(0(s,u) +w(u,v))
with min(0) = oo

S

e initially priority[v] = oo for v # s

® also store the vertex u that gives the min

39 /56

The min-priority queue

Updating P
e if v is the vertex with minimal priority, then
riority|v] = min riority[v’
priority[v] = min _priority[v]
= min min (§(s,u) +w(u,v"))

v'EV-S ueS,(u,w’)EE
= d(s,v) (key property)

we store it in an array d

40 / 56

The min-priority queue

Updating P
e if v is the vertex with minimal priority, then
riority|v] = min riority[v’
priority[v] = min _priority[v]
= min min (§(s,u) +w(u,v"))

v'EV-S ueS,(u,w’)EE
= d(s,v) (key property)
we store it in an array d

e then for all v’ remaining in P, we must set

priority[v'] = (6(3 u) + w(u,v’))

min
u€S+v,(u,v’)EE

e if there is no edge (v,v"), priority[v’] unchanged

® else, the new priority is min(priority[v'], d[v] + w(v,v"))

40 / 56

Pseudo-code

Dijkstra(G, s)
P < heapify(]s, 0, s], [v, 00, ®],5)
while P not empty do

[v,£4,u] < remove_min(P)

dv] + ¢

parent[v] < u

for all edges (v,v’) do

if d[v] +w(v,v") < priority[v’] then
replace [v/, _,] by [v/,d[v] + w(v,v"),v] in P

® N oW

41 /56

Example

42 / 56

Example

42 / 56

Example

42 / 56

Example

42 / 56

Example

42 / 56

Example

42 / 56

Example

42 / 56

Example

42 / 56

Example

42 / 56

Example

42 / 56

Runtime

Enhanced priority queue
® we need to be able to change the priority of a key

® binary heap implementation: O(log (n)) for remove-min and change priority

Total
® n remove min, m change priority m>mn/2
e gives O(m log(m)) log(m) € O(log(n))
Remark

® Fibonacci heaps: constant amortized time for change priority

e total becomes O(m + nlog(m))

43 / 56

Kruskal’s algorithm

44 / 56

Spanning trees

Definition:
e G =(V,E) is a connected graph
® a spanning tree in G is a tree of the form (V,T'), with T a subset of F
® in other words: a tree with edges from E that covers all vertices
e examples: BFS tree, DFS tree

Now, suppose the edges have weights w(e;)

Goal:

® a spanning tree with minimal weight

45 / 56

Example

46 / 56

Example

46 / 56

Example

46 / 56

Example

46 / 56

Example

46 / 56

Example

46 / 56

Example

46 / 56

Example

46 / 56

Kruskal’s algorithm

GreedyMST(G)

1. A+T]

2. sort edges by non-decreasing weight

3. fork=1,...,m do

4. if ¢, does not create a cycle in A then
5. append e to A

A7 / 56

Properties of the output

Claim

If the output is A = [ey,...,e,], then (V, A) is a spanning tree
(and sor =n —1)

Proof:

e of course, (V, A) has no cycle: it is a union of trees

e suppose (V, A) is not connected. Then, there exists an edge e not in A, such
that (V, AU {e}) still has no cycle (joining two connected components)

® when we checked e, we did not include it

® means that it created a loop with some edges already in A: impossible.

48 / 56

Adding edges to spanning trees

Claim

Let (V, A) be a spanning tree, and let e be an edge not in A.

Then adding e to A creates a unique cycle

Proof (bonus)
¢ let e = {v,w}.
e from 239: in (V, A), there is a unique simple path v : v ~ w
® adding e creates a cycle

e if it created two different cycles, there would be two paths in (V, A)

49 / 56

Exchanging edges

Claim

Let (V,A) and (V,T) be two spanning trees, and let e be an edge in T' but
not in A.

e there exists an edge €’ in A but not in 7" such that (VT + ¢’ — e) is still
a spanning tree

e ¢/ is on the cycle that e creates in A.

Proof (bonus):
® write e = {v,w}
® (V,A+ e) contains a cycle ¢ = v, w,...,v
¢ removing e from 7 splits (V,T — e) into two connected components 771, T
e ¢ starts in T}, crosses over to Tb, so it contains another edge ¢’ between T5
and T}
e isin A, but not in T’
e (V,T + ¢ —e) is a spanning tree (covers V, n — 1 edges, connected) 50/ 56

Correctness: exchange argument

® let A be the output of the algorithm
e let (V,T) be any spanning tree
e if T'#£ A, let e be an edge in T but not in A

® 50 there is an edge €’ in A but not in T such that (V,T + e’ — e) is a
spanning tree, and ¢’ is on the cycle that e creates in A

® during the algorithm, we considered e but rejected it, because it created a
cycle in A

e all other elements in this cycle have smaller (or equal) weight
¢ so w(e') < wl(e)
® 50T =T+ € — e has weight < w(T), and one more common element with A
® keep going
51 /56

Merging connected sets of vertices

52 / 56

Merging connected sets of vertices

52 / 56

Merging connected sets of vertices

52 / 56

Merging connected sets of vertices

52 / 56

Merging connected sets of vertices

52 / 56

Merging connected sets of vertices

52 / 56

Merging connected sets of vertices

52 / 56

Merging connected sets of vertices

52 / 56

Data structures

Operations on disjoint sets of vertices:
® Find: identify which set contains a given vertex

® Union: replace two sets by their union

GreedyMST _UnionFind(G)

T[]

U<+ {{vi},..., {on}}

sort edges by non-decreasing weight

fork=1,...,m do

if U.Find(ex.1) # U.Find(ey.2) then

U.Union(U.Find(eg.1), U.Find(ex.2))
append e to T

NSOt WD

53 / 56

An OK solution

e [J is an array of linked lists

/LN

54 / 56

An OK solution

e [J is an array of linked lists

/AN

2

54 / 56

An OK solution

e [J is an array of linked lists

54 / 56

An OK solution

e [J is an array of linked lists

54 / 56

An OK solution

e [J is an array of linked lists

FEFEE €

54 / 56

An OK solution

e [J is an array of linked lists

¢ to do find, add an array of indices, X [i] = set that contains i

I
/PN
nfialolala

X =[1,2,3,4, 5]

54 / 56

An OK solution

e [J is an array of linked lists

¢ to do find, add an array of indices, X [i] = set that contains i

/AN

2

X =11,1,3,4, 5]

54 / 56

An OK solution

e [J is an array of linked lists

¢ to do find, add an array of indices, X [i] = set that contains i

AENERN

AN

X =[1,1,3,3,5]

<]

54 / 56

An OK solution

e [J is an array of linked lists

¢ to do find, add an array of indices, X [i] = set that contains i

HENEN

H 5 |
4] 1]
2]
X =[5,5,3,3,5]

54 / 56

An OK solution

e [J is an array of linked lists

¢ to do find, add an array of indices, X [i] = set that contains i

HENEE

FEFEE €

X =[3,3,3,3,3

54 / 56

Analysis

Worst case:
® Find is O(1)
® Union traverses one of the linked lists, updates corresponding entries of X,
concatenates two linked lists. Worst case ©(n)

55 / 56

Analysis

Worst case:
® Find is O(1)
® Union traverses one of the linked lists, updates corresponding entries of X,
concatenates two linked lists. Worst case ©(n)

Kruskal’s algorithm:
¢ sorting edges O(m log(m))
e O(m) Find
¢ O(n) Union

Worst case O(m log(m) + n?)

55 / 56

A simple heuristics for Union

Modified Union
® cach set in U keeps track of its size
® only traverse the smaller list

¢ also add a pointer to the tail of the lists to concatenate in O(1)

56 / 56

A simple heuristics for Union

Modified Union
® cach set in U keeps track of its size
® only traverse the smaller list

¢ also add a pointer to the tail of the lists to concatenate in O(1)

Key observation: worst case for one union still O(n), but better total time.

e for any given vertex v, the size of the set containing V' at least doubles when
we update X [v]

¢ so X|[v] updated at most log(n) times

® 50 the total cost of union per vertex is O(log(n))

56 / 56

A simple heuristics for Union

Modified Union
® cach set in U keeps track of its size
® only traverse the smaller list

¢ also add a pointer to the tail of the lists to concatenate in O(1)

Key observation: worst case for one union still O(n), but better total time.

e for any given vertex v, the size of the set containing V' at least doubles when
we update X [v]

¢ so X|[v] updated at most log(n) times

® 50 the total cost of union per vertex is O(log(n))

Conclusion: O(nlog(n)) for all unions and O(m log(m)) total

56 / 56

