CS 341: Algorithms

University of Waterloo Éric Schost eschost@uwaterloo.ca

Module 4: greedy algorithms

Goals

This module: the greedy paradigm through examples

- job scheduling
- interval scheduling
- more scheduling
- fractional knapsack (if time permits)
- Dijsktra's algorithm
- minimum spanning trees

Goals

This module: the greedy paradigm through examples

- job scheduling
- interval scheduling
- more scheduling
- fractional knapsack (if time permits)
- Dijsktra's algorithm
- minimum spanning trees

Computational model:

- word RAM
- assume all weights, capacities, deadlines, etc, fit in a word

Overview

Greedy algorithms

Context: we are trying to solve a **combinatorial optimization** problem:

- have a large, but finite, domain S
- want to find an element E in S that minimizes / maximizes a cost function

Greedy algorithms

Context: we are trying to solve a **combinatorial optimization** problem:

- have a large, but finite, domain S
- want to find an element E in S that minimizes / maximizes a cost function

Greedy strategy:

- build E step-by-step
- don't think ahead, just try to improve as much as you can at every step
- simple algorithms
- but usually, no guarantee to get the optimal
- it is often hard to prove correctness, and easy to prove incorrectness.

Example: Huffman

Review from CS240: the Huffman tree

- we are given frequencies f_1, \ldots, f_n for characters c_1, \ldots, c_n
- we build a **binary tree** for the whole code

Example: Huffman

Review from CS240: the Huffman tree

- we are given frequencies f_1, \ldots, f_n for characters c_1, \ldots, c_n
- we build a **binary tree** for the whole code

Greedy strategy: we build the tree **bottom up**.

- create many single-letter trees
- define the **frequency** of a tree as the sum of the frequencies of the letters in it
- build the final tree by putting together smaller trees: join the two trees with the least frequencies

Claim: this minimizes $\sum_i f_i \times \{\text{length of encoding of } c_i\}$

A job scheduling problem

Input:

• n jobs, with processing times $[t(1), \ldots, t(n)]$

Input:

• n jobs, with processing times $[t(1), \ldots, t(n)]$

Output:

- \bullet an ordering of the jobs that minimizes the sum T of the completions times
- completion time: how long it took (since the beginning) to complete a job

Input:

• n jobs, with processing times $[t(1), \ldots, t(n)]$

Output:

- an ordering of the jobs that minimizes the sum T of the completions times
- completion time: how long it took (since the beginning) to complete a job

Example:

- n = 5, processing times [2, 8, 1, 10, 5]
- in this order,

$$T = 2 + (8+2) + (1+8+2) + (10+1+8+2) + (5+10+1+8+2) = 70$$

• in the order [1, 2, 5, 8, 10], T = 1 + (2+1) + (5+2+1) + (8+5+2+1) + (10+8+5+2+1) = 54

Greedy algorithm

Algorithm:

• order the jobs in **non-decreasing** processing times

Greedy algorithm

Algorithm:

• order the jobs in **non-decreasing** processing times

Correctness by an exchange argument

- let $L = [e_1, \ldots, e_n]$ be a permutation of $[1, \ldots, n]$
- suppose that L is **not** in non-decreasing order of processing times. Can it be optimal?
- assumption there exists i such that $t(e_i) > t(e_{i+1})$
- sum of the completion times of L is $nt(e_1) + (n-1)t(e_2) + \cdots + t(e_n)$
- the contribution of e_i and e_{i+1} is $(n-i+1)t(e_i)+(n-i)t(e_{i+1})$
- now, switch e_i and e_{i+1} to get a permutation L'
- their contribution becomes $(n-i+1)t(e_{i+1})+(n-i)t(e_i)$
- nothing else changes so $T(L') T(L) = t(e_{i+1}) t(e_i) < 0$
- \bullet so L not optimal

Greedy algorithm

Algorithm:

• order the jobs in **non-decreasing** processing times

Review from CS240

- optimal static order for linked list implementation of dictionaries
- same result (up to reverse), same proof

Interval scheduling

Input:

- n intervals $I_1 = [s_1, f_1], \dots, I_n = [s_n, f_n]$
- also write $s_j = \mathsf{start}(I_j), f_j = \mathsf{finish}(I_j)$

start time, finish time

Input:

- n intervals $I_1 = [s_1, f_1], \dots, I_n = [s_n, f_n]$ start time, finish time
- also write $s_j = \mathsf{start}(I_j), f_j = \mathsf{finish}(I_j)$

Output:

• a choice T of intervals that **do not overlap** and that has **maximal cardinality**

Input:

- n intervals $I_1 = [s_1, f_1], \dots, I_n = [s_n, f_n]$ start time, finish time
- also write $s_j = \mathsf{start}(I_j), f_j = \mathsf{finish}(I_j)$

Output:

• a choice T of intervals that do not overlap and that has maximal cardinality

Example: A car rental company has the following requests for a given day:

 I_1 : 2pm to 8pm

 I_2 : 3pm to 4pm

 I_3 : 5pm to 6pm

Answer is $T = [I_2, I_3]$.

Template for a greedy algorithm

```
\begin{aligned} & \textbf{Greedy}(\boldsymbol{I} = [I_1, \dots, I_n]) \\ & 1. & T \leftarrow [\,] \\ & 2. & \textbf{while } \boldsymbol{I} \text{ is not empty } \textbf{do} \\ & 3. & \text{choose an interval } \boldsymbol{I} \text{ from } \boldsymbol{I} \\ & 4. & \text{move } \boldsymbol{I} \text{ to } \boldsymbol{T} \\ & 5. & \text{remove from } \boldsymbol{I} \text{ all intervals that overlap with } \boldsymbol{I} \end{aligned}
```

Observation: no overlap between the intervals in T

Attempt 1:

• I is the interval in I with the earliest starting time

Attempt 1:

- I is the interval in I with the earliest starting time
- no, previous example

Attempt 1:

- I is the interval in I with the earliest starting time
- no, previous example

Attempt 2:

• I is the shortest interval in I

Attempt 1:

- *I* is the interval in *I* with the earliest starting time
- no, previous example

Attempt 2:

- I is the shortest interval in I
- no, for example

Attempt 1:

- *I* is the interval in *I* with the earliest starting time
- no, previous example

Attempt 2:

- I is the shortest interval in I
- no, for example

Attempt 3:

• I is the interval in I with the **fewest overlaps**

Attempt 1:

- *I* is the interval in *I* with the earliest starting time
- no, previous example

Attempt 2:

- I is the shortest interval in I
- no, for example

Attempt 3:

- I is the interval in I with the **fewest overlaps**
- no, for example

Attempt 1:

- *I* is the interval in *I* with the earliest starting time
- no, previous example

Attempt 2:

- I is the shortest interval in I
- no, for example

Attempt 3:

- I is the interval in I with the **fewest overlaps**
- no, for example

Attempt 4:

• I is the interval in I with the earliest finish time

An $O(n \log(n))$ implementation

```
Greedy(I = [I_1, \dots, I_n])

1. T \leftarrow []

2. sort I by non-decreasing finish time

3. for k = 1, \dots, n do

4. if I_k does not overlap the last entry in T

5. append I_k to T
```

Correctness: greedy stays ahead

Let

- $T = [x_1 < \cdots < x_p]$ be the output of the algorithm,
- $S = [y_1 < \cdots < y_q]$ be any choice of requests without overlaps,
- both sorted by increasing finish time.

Proof that $p \geq q$.

- by induction: for k = 0, ..., q, $p \ge k$ and $S_k = [x_1 < \cdots < x_k < y_{k+1} < \cdots < y_q]$ has no overlap and is sorted by increasing finish time
- OK for k = 0, so we suppose true for some k < q, and prove for k + 1
- since $[x_1, \ldots, x_k, y_{k+1}]$ is satisfiable, the algorithm didn't stop at x_k . So p > k+1.
- by definition of x_{k+1} , $finish(x_{k+1}) \leq finish(y_{k+1})$. So we can replace y_{k+1} by x_{k+1} in S_k . We get $S_{k+1} = [x_1 < \cdots < x_{k+1} < y_{k+2} < \cdots < y_q]$, which is still satisfiable and sorted by increasing finish time

Minimizing lateness

Input:

- jobs J_1, \ldots, J_n with processing times $t(1), \ldots, t(n)$ and deadlines $d(1), \ldots, d(n)$
- can only do one thing at a time

Input:

- jobs J_1, \ldots, J_n with processing times $t(1), \ldots, t(n)$ and deadlines $d(1), \ldots, d(n)$
- can only do one thing at a time

Output:

- a scheduling of the jobs which minimizes maximal lateness
 - job J_i starts at time s(i) and finishes at f(i) = s(i) + t(i)
 - if $f(i) \ge d(i)$, lateness $\ell(i) = f(i) d(i)$
- maximal lateness = $\max_{i} \ell(i)$

Example: 3 jobs

- prepare my slides: need t(1) = 4 hours, deadline d(1) = 2 hours
- write solutions to assignments: need t(2) = 6 hours, deadline d(2) = 1 hour
- finish the midterm: need t(3) = 10 hours, deadline d(3) = 24 hours

Example: 3 jobs

- prepare my slides: need t(1) = 4 hours, deadline d(1) = 2 hours
- write solutions to assignments: need t(2) = 6 hours, deadline d(2) = 1 hour
- finish the midterm: need t(3) = 10 hours, deadline d(3) = 24 hours

- 1, then 2, then 3: latenesses [2, 9, 0]
- **2, then 1, then 3:** latenesses [8, 5, 0] (optimal)

No breaks

Observation:

• if a scheduling has **idle time**, we can improve it by removing the breaks

• so the optimal has no idle time, and is given by an **ordering** of the jobs

Attempt 1:

• do short jobs first

Attempt 1:

- do short jobs first
- no, last example

Attempt 1:

- do short jobs first
- no, last example

Attempt 2:

• do jobs with little slack first

$$slack = d(i) - t(i)$$

Attempt 1:

- do short jobs first
- no, last example

Attempt 2:

- do jobs with little slack first
- no

$$slack = d(i) - t(i)$$

Attempt 1:

- do short jobs first
- no, last example

Attempt 2:

- do jobs with little slack first
- no

slack = d(i) - t(i)

Attempt 3:

 \bullet do jobs in non-decreasing deadline order

Non-uniqueness

Observation:

- if d(i) = d(j), the orderings $[\ldots, i, j, \ldots]$ and $[\ldots, j, i, \ldots]$ have the same max-lateness (because the second job is the latest)
- so all orderings in non-decreasing deadline order have the same max-lateness

Non-uniqueness

Observation:

- if d(i) = d(j), the orderings $[\ldots, i, j, \ldots]$ and $[\ldots, j, i, \ldots]$ have the same max-lateness (because the second job is the latest)
- so all orderings in non-decreasing deadline order have the same max-lateness

Definition:

- an inversion in $L = [e_1, \ldots, e_n]$ is a pair (i, j) with i < j and $d(e_i) > d(e_j)$
- L has no inversion \iff L in non-decreasing deadline order

Correctness: exchange argument

- let $L = [e_1, \ldots, e_n]$ be a solution (as a permutation of $[1, \ldots, n]$)
- suppose that L is **not** in non-decreasing order of deadlines, so there exists i such that $d(e_i) > d(e_{i+1})$
- now, switch e_i and e_{i+1} to get a permutation L'
- the lateness of e_{i+1} cannot increase (because we do e_{i+1} earlier than before), so at most max_lateness(L)
- the **new** lateness of e_i is **at most** the **old** lateness of e_{i+1} , so at most max_lateness(L)

Correctness: exchange argument

- let $L = [e_1, \ldots, e_n]$ be a solution (as a permutation of $[1, \ldots, n]$)
- suppose that L is **not** in non-decreasing order of deadlines, so there exists i such that $d(e_i) > d(e_{i+1})$
- now, switch e_i and e_{i+1} to get a permutation L'
- the lateness of e_{i+1} cannot increase (because we do e_{i+1} earlier than before), so at most max_lateness(L)
- the **new** lateness of e_i is **at most** the **old** lateness of e_{i+1} , so at most max_lateness(L)
- nothing else changes, so max_lateness(L') \leq max_lateness(L)
- and we have removed an inversion
- keep going: after at most n(n-1)/2 iterations, we have $L_{\rm ord}$ with **no inversion** and such that $\max_{lateness}(L_{\rm ord}) \leq \max_{lateness}(L)$

Interval coloring

The problem

Input:

- *n* intervals $I_1 = [s_1, f_1], \dots, I_n = [s_n, f_n]$
- also write $s_j = \mathsf{start}(I_j), f_j = \mathsf{finish}(I_j)$

start time, finish time

The problem

Input:

- n intervals $I_1 = [s_1, f_1], \dots, I_n = [s_n, f_n]$
- also write $s_i = \text{start}(I_i), f_i = \text{finish}(I_i)$

Output:

- assignment of **colors** to each interval
- overlapping intervals get different colors
- minimize the number of colors used overall

Remarks:

- another version: finding classrooms for lectures
- colors \leftrightarrow numbers $1, 2, \dots$
- $finish(I_j) = start(I_k)$ not an overlap

start time, finish time

A blueprint for a greedy algorithm

$GreedyColoring(I = [I_1, \dots, I_n])$

- 1. sort I somehow
- 2. **for** k = 1, ..., n **do**
- 3. color I_k with the **minimum** color not used by any of the previous intervals that overlap I_k

Attempt 1:

- sort by non-decreasing finish times
- no

Attempt 1:

- sort by non-decreasing finish times
- no

Attempt 2:

- sort from shortest to longest
- no

Attempt 1:

- sort by non-decreasing finish times
- no

Attempt 2:

- sort from shortest to longest
- no

Attempt 3:

- sort by non-decreasing starting times
- maybe

Correctness

Claim

- ullet we suppose the algorithm uses ${m k}$ colors
- we prove that we can't use fewer.

Correctness

Claim

- ullet we suppose the algorithm uses ${m k}$ colors
- we prove that we can't use fewer.

Proof

- suppose we color I_t with color k
- so I_k overlaps with k-1 intervals, say $I_{\alpha_1}, \ldots, I_{\alpha_{k-1}}$ seen previously
- so for all $j, s_{\alpha_j} \leq s_t < f_{\alpha_j}$
- so there is a little interval $[s_t, s_t + \varepsilon]$ in all I_{α_i} and I_t
- so we can't do with less than k colors

Exercise

Give an $O(n \log(n))$ implementation.

Fractional knapsack

The problem

Input:

- items I_1, \ldots, I_n with weights w_1, \ldots, w_n and positive values v_1, \ldots, v_n
- a capacity W

Output:

- fractions $E = e_1, \ldots, e_n$ such that
 - $0 \le e_i \le 1$ for all j
 - $e_1w_1 + \cdots + e_nw_n \leq W$
 - $e_1v_1 + \cdots + e_nv_n$ maximal

Example:

- $w_1 = 10, v_1 = 60, w_2 = 30, v_2 = 90, w_3 = 20, v_3 = 100$
- W = 50
- optimal is $e_1 = 1$, $e_2 = 2/3$, $e_3 = 1$, total value 220

The problem

Input:

- items I_1, \ldots, I_n with weights w_1, \ldots, w_n and positive values v_1, \ldots, v_n
- \bullet a capacity W

Output:

- fractions $E = e_1, \ldots, e_n$ such that
 - $0 \le e_i \le 1$ for all j
 - $e_1w_1 + \cdots + e_nw_n \leq W$
 - $e_1v_1 + \cdots + e_nv_n$ maximal

Remark:

- 0/1-version: $e_i \in \{0,1\}$ for all j
- dynamic programming

The knapsack should be full

Remark:

- if $\sum_i w_i < W$, just take all $e_i = 1$
- so assume $\sum_{i} w_{i} \geq W$

The knapsack should be full

Remark:

- if $\sum_i w_i < W$, just take all $e_i = 1$
- so assume $\sum_{i} w_{i} \geq W$

Observation:

- suppose we have an assignment with $\sum_i e_i w_i < W$
- then some e_i must be less than 1
- so we can increase the value by non-decreasing this e_i

The knapsack should be full

Remark:

- if $\sum_i w_i < W$, just take all $e_i = 1$
- so assume $\sum_{i} w_{i} \geq W$

Observation:

- suppose we have an assignment with $\sum_i e_i w_i < W$
- then some e_i must be less than 1
- so we can increase the value by non-decreasing this e_i

Consequence:

• it is enough to consider assignments with $\sum_i e_i w_i = W$

Attempt 1:

ullet pack with items in decreasing value v_i

Attempt 1:

- pack with items in decreasing value v_i
- no, previous example (we get [0, 1, 1] with total value 190)

Attempt 1:

- pack with items in decreasing value v_i
- no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:

• pack with items in increasing weight w_i

Attempt 1:

- pack with items in **decreasing value** v_i
- no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:

- pack with items in increasing weight w_i
- no: W = 10, $w_1 = 10$, $v_1 = 1$, $w_2 = 5$, $v_2 = 100$

Attempt 1:

- pack with items in **decreasing value** v_i
- no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:

- pack with items in increasing weight w_i
- no: $W = 10, w_1 = 10, v_1 = 1, w_2 = 5, v_2 = 100$

Attempt 3:

- ullet pack with items in decreasing "value per kilo" v_i/w_i
- first example [6,3,5], second example [1/10,20]

Pseudo-code

```
GreedyKnapsack(v, w, W)
1. E \leftarrow [0, \dots, 0]
2. sort items by decreasing order of v_i/w_i
3. for k = 1, ..., n do
4. if w_k < W then
   E[k] \leftarrow 1
     W \leftarrow W - w_k
         else
         E[k] \leftarrow W/w_k
9.
              return
```

Remark: output is $S = [1, ..., 1, e_k, 0, ..., 0]$

Runtime: $O(n \log(n))$

Correctness: exchange argument

- let $E = [e_1, \dots, e_n]$ be the optimal assignment, with $\sum e_i w_i = W$
- let $S = [s_1, \ldots, s_n]$ be any assignment, with $\sum s_i w_i = W$
- suppose S different from E, and let i be the first index with $e_i \neq s_i$
- greedy strategy: $e_i > s_i$
- because their weights are the same, there is j > i with $s_j > e_j$
- set $s_i' = s_i + \alpha/w_i$ and $s_j' = s_j \alpha/w_j$, for α TBD > 0, all other $s_k' = s_k$
- in any case, $\sum s_i'w_i = W$ and $\operatorname{value}(S') \geq \operatorname{value}(S)$
- choose α such that either $s'_i = e_i$ or $s'_j = e_j$

$$\alpha = \min(w_i(e_i - s_i), w_j(s_j - e_j))$$

- so we found S' that has **one more common entry** with E, and which is at least as good as S
- keep going

Dijkstra's algorithm

Conventions

Input:

- a directed graph G = (V, E)
- with weights w(e) on the edges $w(\gamma) = \text{weight of a path } \gamma = \text{sum of the weights of its edges}$
- no loops = edges $v \to v$
- no isolated vertices, with no incoming or outgoing edge

 $m \ge n/2$

Output:

- the shortest (=minimal weight) paths between a source s and all vertices
- dynamic programming: shortest paths between all vertices

Remark: nothing faster known (to me) for single-source, single-destination

Remarks

1. shortest paths may not exist if there are negative length cycles

some algorithms can deal with negative edges (and detect negative cycles) Dijkstra's algorithm needs positive weights

Remarks

1. shortest paths may not exist if there are negative length cycles

some algorithms can deal with negative edges (and detect negative cycles) Dijkstra's algorithm needs positive weights

- 2. if there exists a shortest path $s \sim t$, write $\delta(s,t)$ for its weight
 - called the **distance** from s to t (but we may not have $\delta(s,t) = \delta(t,s)$)
 - if there is no path $s \rightsquigarrow t$, $\delta(s,t) = \infty$

Outlook

Assumption

All weights are non-negative

Outlook

Assumption

All weights are non-negative

Idea of the algorithm:

- starting from s, grow a tree (S,T) rooted at s, together with the **distances** $\delta(s,v)$ for v in S
- at every step, add to S the remaining vertex v closest to s
- no negative weight: this vertex is on an edge (u, v), u in S, v in V S
- if there is no such edge, we're done (all remaining vertices are unreachable)

greedy algorithm!

Key property

Claim

Let (S,T) be a tree rooted at s and take an edge (u,v) such that

- u is in S, v is in V-S
- $\delta(s,u) + w(u,v)$ minimal among these edges

Then $\delta(s,u) + w(u,v) = \delta(s,v)$

Key property

Claim

Let (S,T) be a tree rooted at s and take an edge (u,v) such that

- u is in S, v is in V-S
- $\delta(s,u) + w(u,v)$ minimal among these edges

Then $\delta(s,u) + w(u,v) = \delta(s,v)$

Proof:

- take a path $\gamma: s \leadsto v$ and let (x,y) be its first edge $S \to V S$
- $w(\gamma) = w(s \rightsquigarrow x) + w(x, y) + w(y \rightsquigarrow v) \ge \delta(s, x) + w(x, y) + 0$
- so $w(\gamma) > \delta(s, u) + w(u, v)$ choice of u, v
- but also $\delta(s,u) + w(u,v) > \delta(s,v)$ def of distance $s \to v$
- take shortest γ : $w(\gamma) = \delta(s, v)$ so $\delta(s, v) \geq \delta(s, u) + w(u, v) \geq \delta(s, v)$

High-level view of the algorithm

```
\begin{array}{ll} \textbf{Dijkstra}(G,s) \\ 1. & S \leftarrow \{s\} \\ 2. & \textbf{while } S \neq V \textbf{ do} \\ 3. & \text{choose } (u,v) \text{ with } u \text{ in } S, v \text{ not in } S \text{ and } \delta(s,u) + w(u,v) \text{ minimal } \\ & \text{(the min value gives } \delta(s,v)) \\ 4. & \text{add } v \text{ to } S \\ 5. & \textbf{if not such } (u,v), \textbf{stop} \end{array}
```

High-level view of the algorithm

```
\begin{array}{ll} \textbf{Dijkstra}(G,s) \\ 1. & S \leftarrow \{s\} \\ 2. & \textbf{while } S \neq V \textbf{ do} \\ 3. & \text{choose } (u,v) \text{ with } u \text{ in } S, v \text{ not in } S \text{ and } \delta(s,u) + w(u,v) \text{ minimal } \\ & \text{(the min value gives } \delta(s,v)) \\ 4. & \text{add } v \text{ to } S \\ 5. & \textbf{if not such } (u,v), \textbf{stop} \end{array}
```

Correctness:

- we find $\delta(s, v)$ for all v in S
- if S = V at the end, OK
- if not, when we stop, the remaining vertices are unreachable

High-level view of the algorithm

```
\begin{array}{ll} \textbf{Dijkstra}(G,s) \\ 1. & S \leftarrow \{s\} \\ 2. & \textbf{while } S \neq V \textbf{ do} \\ 3. & \text{choose } (u,v) \text{ with } u \text{ in } S, v \text{ not in } S \text{ and } \delta(s,u) + w(u,v) \text{ minimal } \\ & \text{(the min value gives } \delta(s,v)) \\ 4. & \text{add } v \text{ to } S \\ 5. & \textbf{if not such } (u,v), \textbf{stop} \end{array}
```

Correctness:

- we find $\delta(s, v)$ for all v in S
- if S = V at the end, OK
- if not, when we stop, the remaining vertices are unreachable

Questions:

- how to find (u, v) efficiently
- probably need a priority queue (heap) of some kind
- good choice: a priority queue of vertices

The min-priority queue

Building P

- contains all vertices in V S (initially, all V)
- set priority[s] = 0
- for $v \neq s$, we will maintain priority $[v] = \min_{u \in S, (u,v) \in E} (\delta(s,u) + w(u,v))$ with $\min(\emptyset) = \infty$

- initially priority $[v] = \infty$ for $v \neq s$
- also store the vertex u that gives the min

The min-priority queue

Updating P

• if v is the vertex with minimal priority, then

$$\begin{aligned} \mathsf{priority}[v] &= \min_{\boldsymbol{v'} \in \boldsymbol{V} - \boldsymbol{S}} \; \mathsf{priority}[v'] \\ &= \min_{\boldsymbol{v'} \in \boldsymbol{V} - \boldsymbol{S}} \; \min_{\boldsymbol{u} \in \boldsymbol{S}, (\boldsymbol{u}, \boldsymbol{v'}) \in \boldsymbol{E}} (\delta(s, u) + w(u, v')) \\ &= \delta(s, v) \qquad \text{(key property)} \end{aligned}$$

we store it in an array d

The min-priority queue

Updating P

• if v is the vertex with minimal priority, then

$$\begin{aligned} \mathsf{priority}[v] &= \min_{\boldsymbol{v'} \in \boldsymbol{V} - \boldsymbol{S}} \; \mathsf{priority}[v'] \\ &= \min_{\boldsymbol{v'} \in \boldsymbol{V} - \boldsymbol{S}} \; \min_{\boldsymbol{u} \in \boldsymbol{S}, (\boldsymbol{u}, \boldsymbol{v'}) \in \boldsymbol{E}} (\delta(s, u) + w(u, v')) \\ &= \delta(s, v) \qquad \text{(key property)} \end{aligned}$$

we store it in an array d

• then for all v' remaining in P, we must set

$$ext{priority}[v'] = \min_{u \in S+v, (u,v') \in E} (\delta(s,u) + w(u,v'))$$

- if there is no edge (v, v'), priority [v'] unchanged
- else, the new priority is $\min(\text{priority}[v'], d[v] + w(v, v'))$

Pseudo-code

```
\begin{array}{ll} \textbf{Dijkstra}(G,s) \\ 1. & P \leftarrow \textbf{heapify}([s,0,s],[v,\infty,\bullet]_{v\neq s}) \\ 2. & \textbf{while } P \text{ not empty } \textbf{do} \\ 3. & [v,\ell,u] \leftarrow \textbf{remove\_min}(P) \\ 4. & d[v] \leftarrow \ell \\ 5. & \text{parent}[v] \leftarrow u \\ 6. & \textbf{for all edges } (v,v') \textbf{ do} \\ 7. & \textbf{if } d[v] + w(v,v') < \text{priority}[v'] \textbf{ then} \\ 8. & \text{replace } [v',\_,\_] \text{ by } [v',d[v]+w(v,v'),v] \text{ in } P \end{array}
```


Runtime

Enhanced priority queue

- we need to be able to change the priority of a key
- binary heap implementation: $O(\log(n))$ for remove-min and change priority

Total

• n remove min, m change priority

 $m \ge n/2$

• gives $O(m \log(m))$

$$\log(m) \in \Theta(\log(n))$$

Remark

- Fibonacci heaps: constant amortized time for change priority
- total becomes $O(m + n \log(m))$

Kruskal's algorithm

Spanning trees

Definition:

- G = (V, E) is a connected graph
- a spanning tree in G is a tree of the form (V,T), with T a subset of E
- in other words: a tree with edges from E that covers all vertices
- examples: BFS tree, DFS tree

Now, suppose the edges have weights $w(e_i)$

Goal:

• a spanning tree with minimal weight

Kruskal's algorithm

```
 \begin{aligned} & \textbf{GreedyMST}(G) \\ & 1. & A \leftarrow [ \ ] \\ & 2. & \text{sort edges by non-decreasing weight} \\ & 3. & \textbf{for } k = 1, \ldots, m \textbf{ do} \\ & 4. & \textbf{if } e_k \text{ does not create a cycle in } A \textbf{ then} \\ & 5. & \text{append } e_k \text{ to } A \end{aligned}
```

Properties of the output

Claim

If the output is $A = [e_1, \dots, e_r]$, then (V, A) is a spanning tree (and so r = n - 1)

Proof:

- of course, (V, A) has no cycle: it is a union of trees
- suppose (V, A) is **not connected**. Then, there exists an edge e not in A, such that $(V, A \cup \{e\})$ still has no cycle (joining two connected components)
- when we checked e, we did not include it
- means that it created a loop with some edges already in A: impossible.

Adding edges to spanning trees

Claim

Let (V, A) be a spanning tree, and let e be an edge not in A.

Then adding e to A creates a unique cycle

Proof (bonus)

- let $e = \{v, w\}$.
- from 239: in (V,A), there is a unique simple path $\gamma: v \leadsto w$
- \bullet adding e creates a cycle
- if it created two different cycles, there would be two paths in (V, A)

Exchanging edges

Claim

Let (V, A) and (V, T) be two spanning trees, and let e be an edge in T but not in A.

- there exists an edge e' in A but not in T such that (V, T + e' e) is still a spanning tree
- e' is on the cycle that e creates in A.

Proof (bonus):

- write $e = \{v, w\}$
- (V, A + e) contains a cycle $c = v, w, \ldots, v$
- removing e from T splits (V, T e) into two connected components T_1, T_2
- c starts in T_1 , crosses over to T_2 , so it contains another edge e' between T_2 and T_1
- e' is in A, but not in T
- (V, T + e' e) is a spanning tree (covers V, n 1 edges, connected)

Correctness: exchange argument

- ullet let A be the output of the algorithm
- let (V,T) be any spanning tree
- if $T \neq A$, let e be an edge in T but not in A
- so there is an edge e' in A but not in T such that (V, T + e' e) is a spanning tree, and e' is on the cycle that e creates in A
- during the algorithm, we considered e but rejected it, because it created a cycle in A
- all other elements in this cycle have smaller (or equal) weight
- so $w(e') \leq w(e)$
- so T' = T + e' e has weight $\leq w(T)$, and one more common element with A
- keep going

Merging connected sets of vertices

Data structures

Operations on disjoint sets of vertices:

- Find: identify which set contains a given vertex
- Union: replace two sets by their union

```
 \begin{aligned} & \textbf{GreedyMST\_UnionFind}(G) \\ & 1. & T \leftarrow [ \ ] \\ & 2. & U \leftarrow \{\{v_1\}, \dots, \{v_n\}\} \\ & 3. & \text{sort edges by non-decreasing weight} \\ & 4. & \textbf{for } k = 1, \dots, m \textbf{ do} \\ & 5. & \textbf{if } U.\mathsf{Find}(e_k.1) \neq U.\mathsf{Find}(e_k.2) \textbf{ then} \\ & 6. & U.\mathsf{Union}(U.\mathsf{Find}(e_k.1), U.\mathsf{Find}(e_k.2)) \\ & 7. & \text{append } e_k \text{ to } T \end{aligned}
```


- ullet U is an array of linked lists
- to do find, add an array of indices, X[i] = set that contains i

$$X = [1, 2, 3, 4, 5]$$

- ullet U is an array of linked lists
- to do find, add an array of indices, X[i] = set that contains i

$$X = [1, 1, 3, 4, 5]$$

- ullet U is an array of linked lists
- to do find, add an array of indices, X[i] = set that contains i

$$X = [1, 1, 3, 3, 5]$$

- ullet U is an array of linked lists
- to do find, add an array of indices, X[i] = set that contains i

$$X = [5, 5, 3, 3, 5]$$

- ullet U is an array of linked lists
- to do find, add an array of indices, X[i] = set that contains i

$$X = [3, 3, 3, 3, 3]$$

Analysis

Worst case:

- Find is O(1)
- Union traverses one of the linked lists, updates corresponding entries of X, concatenates two linked lists. Worst case $\Theta(n)$

Analysis

Worst case:

- Find is O(1)
- Union traverses one of the linked lists, updates corresponding entries of X, concatenates two linked lists. Worst case $\Theta(n)$

Kruskal's algorithm:

- sorting edges $O(m \log(m))$
- ullet O(m) Find
- O(n) Union

Worst case $O(m \log(m) + n^2)$

A simple heuristics for Union

Modified Union

- \bullet each set in U keeps track of its size
- only traverse the smaller list
- also add a pointer to the **tail** of the lists to concatenate in O(1)

A simple heuristics for Union

Modified Union

- \bullet each set in U keeps track of its size
- only traverse the smaller list
- also add a pointer to the **tail** of the lists to concatenate in O(1)

Key observation: worst case for **one** union **still** $\Theta(n)$, but better total time.

- for any given vertex v, the size of the set containing V at least doubles when we update X[v]
- so X[v] updated at most $\log(n)$ times
- so the **total** cost of union per vertex is $O(\log(n))$

A simple heuristics for Union

Modified Union

- each set in *U* keeps track of its size
- only traverse the smaller list
- also add a pointer to the **tail** of the lists to concatenate in O(1)

Key observation: worst case for **one** union **still** $\Theta(n)$, but better total time.

- for any given vertex v, the size of the set containing V at least doubles when we update X[v]
- so X[v] updated at most $\log(n)$ times
- so the **total** cost of union per vertex is $O(\log(n))$

Conclusion: $O(n \log(n))$ for all unions and $O(m \log(m))$ total