
CS 341: Algorithms

University of Waterloo

Éric Schost

eschost@uwaterloo.ca

Module 4: greedy algorithms

1 / 56

Goals

This module: the greedy paradigm through examples

• job scheduling

• interval scheduling

• more scheduling

• fractional knapsack (if time permits)

• Dijsktra’s algorithm

• minimum spanning trees

Computational model:

• word RAM

• assume all weights, capacities, deadlines, etc, fit in a word

2 / 56

Goals

This module: the greedy paradigm through examples

• job scheduling

• interval scheduling

• more scheduling

• fractional knapsack (if time permits)

• Dijsktra’s algorithm

• minimum spanning trees

Computational model:

• word RAM

• assume all weights, capacities, deadlines, etc, fit in a word

2 / 56

Overview

3 / 56

Greedy algorithms

Context: we are trying to solve a combinatorial optimization problem:

• have a large, but finite, domain S
• want to find an element E in S that minimizes / maximizes a cost function

Greedy strategy:

• build E step-by-step

• don’t think ahead, just try to improve as much as you can at every step

• simple algorithms

• but usually, no guarantee to get the optimal

• it is often hard to prove correctness, and easy to prove incorrectness.

4 / 56

Greedy algorithms

Context: we are trying to solve a combinatorial optimization problem:

• have a large, but finite, domain S
• want to find an element E in S that minimizes / maximizes a cost function

Greedy strategy:

• build E step-by-step

• don’t think ahead, just try to improve as much as you can at every step

• simple algorithms

• but usually, no guarantee to get the optimal

• it is often hard to prove correctness, and easy to prove incorrectness.

4 / 56

Example: Huffman

Review from CS240: the Huffman tree

• we are given frequencies f1, . . . , fn for characters c1, . . . , cn

• we build a binary tree for the whole code

Greedy strategy: we build the tree bottom up.

• create many single-letter trees

• define the frequency of a tree as the sum of the frequencies of the letters in it

• build the final tree by putting together smaller trees: join the two trees with
the least frequencies

Claim: this minimizes
∑

i fi × {length of encoding of ci}

5 / 56

Example: Huffman

Review from CS240: the Huffman tree

• we are given frequencies f1, . . . , fn for characters c1, . . . , cn

• we build a binary tree for the whole code

Greedy strategy: we build the tree bottom up.

• create many single-letter trees

• define the frequency of a tree as the sum of the frequencies of the letters in it

• build the final tree by putting together smaller trees: join the two trees with
the least frequencies

Claim: this minimizes
∑

i fi × {length of encoding of ci}

5 / 56

A job scheduling problem

6 / 56

The problem

Input:

• n jobs, with processing times [t(1), . . . , t(n)]

Output:

• an ordering of the jobs that minimizes the sum T of the completions times

• completion time: how long it took (since the beginning) to complete a job

Example:

• n = 5, processing times [2, 8, 1, 10, 5]

• in this order,
T = 2 + (8+ 2) + (1+ 8+ 2) + (10+ 1+ 8+ 2) + (5+ 10+ 1+ 8+ 2) = 70

• in the order [1, 2, 5, 8, 10],
T = 1 + (2+ 1) + (5 + 2+ 1) + (8 + 5+ 2+ 1) + (10 + 8+ 5+ 2+ 1) = 54

7 / 56

The problem

Input:

• n jobs, with processing times [t(1), . . . , t(n)]

Output:

• an ordering of the jobs that minimizes the sum T of the completions times

• completion time: how long it took (since the beginning) to complete a job

Example:

• n = 5, processing times [2, 8, 1, 10, 5]

• in this order,
T = 2 + (8+ 2) + (1+ 8+ 2) + (10+ 1+ 8+ 2) + (5+ 10+ 1+ 8+ 2) = 70

• in the order [1, 2, 5, 8, 10],
T = 1 + (2+ 1) + (5 + 2+ 1) + (8 + 5+ 2+ 1) + (10 + 8+ 5+ 2+ 1) = 54

7 / 56

The problem

Input:

• n jobs, with processing times [t(1), . . . , t(n)]

Output:

• an ordering of the jobs that minimizes the sum T of the completions times

• completion time: how long it took (since the beginning) to complete a job

Example:

• n = 5, processing times [2, 8, 1, 10, 5]

• in this order,
T = 2 + (8+ 2) + (1+ 8+ 2) + (10+ 1+ 8+ 2) + (5+ 10+ 1+ 8+ 2) = 70

• in the order [1, 2, 5, 8, 10],
T = 1 + (2+ 1) + (5 + 2+ 1) + (8 + 5+ 2+ 1) + (10 + 8+ 5+ 2+ 1) = 54

7 / 56

Greedy algorithm

Algorithm:

• order the jobs in non-decreasing processing times

8 / 56

Greedy algorithm

Algorithm:

• order the jobs in non-decreasing processing times

Correctness by an exchange argument

• let L = [e1, . . . , en] be a permutation of [1, . . . , n]

• suppose that L is not in non-decreasing order of processing times.
Can it be optimal?

• assumption there exists i such that t(ei) > t(ei+1)

• sum of the completion times of L is nt(e1) + (n − 1)t(e2) + · · · + t(en)

• the contribution of ei and ei+1 is (n − i + 1)t(ei) + (n − i)t(ei+1)

• now, switch ei and ei+1 to get a permutation L′

• their contribution becomes (n − i + 1)t(ei+1) + (n − i)t(ei)

• nothing else changes so T (L′) − T (L) = t(ei+1) − t(ei) < 0

• so L not optimal
8 / 56

Greedy algorithm

Algorithm:

• order the jobs in non-decreasing processing times

Review from CS240

• optimal static order for linked list implementation of dictionaries

• same result (up to reverse), same proof

8 / 56

Interval scheduling

9 / 56

The problem

Input:

• n intervals I1 = [s1, f1], . . . , In = [sn, fn] start time, finish time

• also write sj = start(Ij), fj = finish(Ij)

Output:

• a choice T of intervals that do not overlap and that has maximal cardinality

Example: A car rental company has the following requests for a given day:

I1: 2pm to 8pm

I2: 3pm to 4pm

I3: 5pm to 6pm

Answer is T = [I2, I3].

10 / 56

The problem

Input:

• n intervals I1 = [s1, f1], . . . , In = [sn, fn] start time, finish time

• also write sj = start(Ij), fj = finish(Ij)

Output:

• a choice T of intervals that do not overlap and that has maximal cardinality

Example: A car rental company has the following requests for a given day:

I1: 2pm to 8pm

I2: 3pm to 4pm

I3: 5pm to 6pm

Answer is T = [I2, I3].

10 / 56

The problem

Input:

• n intervals I1 = [s1, f1], . . . , In = [sn, fn] start time, finish time

• also write sj = start(Ij), fj = finish(Ij)

Output:

• a choice T of intervals that do not overlap and that has maximal cardinality

Example: A car rental company has the following requests for a given day:

I1: 2pm to 8pm

I2: 3pm to 4pm

I3: 5pm to 6pm

Answer is T = [I2, I3].

10 / 56

Template for a greedy algorithm

Greedy(I = [I1, . . . , In])
1. T ← []
2. while I is not empty do
3. choose an interval I from I
4. move I to T
5. remove from I all intervals that overlap with I

Observation: no overlap between the intervals in T

11 / 56

A few attempts

Attempt 1:

• I is the interval in I with the earliest starting time

• no, previous example

Attempt 2:

• I is the shortest interval in I

• no, for example

Attempt 3:

• I is the interval in I with the fewest overlaps

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:

• I is the interval in I with the earliest finish time

12 / 56

A few attempts

Attempt 1:

• I is the interval in I with the earliest starting time

• no, previous example

Attempt 2:

• I is the shortest interval in I

• no, for example

Attempt 3:

• I is the interval in I with the fewest overlaps

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:

• I is the interval in I with the earliest finish time

12 / 56

A few attempts

Attempt 1:

• I is the interval in I with the earliest starting time

• no, previous example

Attempt 2:

• I is the shortest interval in I

• no, for example

Attempt 3:

• I is the interval in I with the fewest overlaps

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:

• I is the interval in I with the earliest finish time

12 / 56

A few attempts

Attempt 1:

• I is the interval in I with the earliest starting time

• no, previous example

Attempt 2:

• I is the shortest interval in I

• no, for example

Attempt 3:

• I is the interval in I with the fewest overlaps

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:

• I is the interval in I with the earliest finish time

12 / 56

A few attempts

Attempt 1:

• I is the interval in I with the earliest starting time

• no, previous example

Attempt 2:

• I is the shortest interval in I

• no, for example

Attempt 3:

• I is the interval in I with the fewest overlaps

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:

• I is the interval in I with the earliest finish time

12 / 56

A few attempts

Attempt 1:

• I is the interval in I with the earliest starting time

• no, previous example

Attempt 2:

• I is the shortest interval in I

• no, for example

Attempt 3:

• I is the interval in I with the fewest overlaps

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:

• I is the interval in I with the earliest finish time

12 / 56

A few attempts

Attempt 1:

• I is the interval in I with the earliest starting time

• no, previous example

Attempt 2:

• I is the shortest interval in I

• no, for example

Attempt 3:

• I is the interval in I with the fewest overlaps

• no, for example

 \item \red{no}, for example \includegraphics[height=0.5cm]{no2-cropped.pdf}

Attempt 4:

• I is the interval in I with the earliest finish time

12 / 56

An O(n log(n)) implementation

Greedy(I = [I1, . . . , In])
1. T ← []
2. sort I by non-decreasing finish time
3. for k = 1, . . . , n do
4. if Ik does not overlap the last entry in T
5. append Ik to T

13 / 56

Correctness: greedy stays ahead

Let
• T = [x1 < · · · < xp] be the output of the algorithm,
• S = [y1 < · · · < yq] be any choice of requests without overlaps,
• both sorted by increasing finish time.

Proof that p ≥ q.

• by induction: for k = 0, . . . , q, p ≥ k and
Sk = [x1 < · · · < xk < yk+1 < · · · < yq] has no overlap and is sorted by
increasing finish time

• OK for k = 0, so we suppose true for some k < q, and prove for k + 1

• since [x1, . . . , xk, yk+1] is satisfiable, the algorithm didn’t stop at xk. So
p ≥ k + 1.

• by definition of xk+1, finish(xk+1) ≤ finish(yk+1). So we can replace yk+1 by
xk+1 in Sk. We get Sk+1 = [x1 < · · · < xk+1 < yk+2 < · · · < yq], which is still
satisfiable and sorted by increasing finish time

14 / 56

Minimizing lateness

15 / 56

The problem

Input:

• jobs J1, . . . , Jn with processing times t(1), . . . , t(n) and deadlines
d(1), . . . , d(n)

• can only do one thing at a time

Output:

• a scheduling of the jobs which minimizes maximal lateness

• job Ji starts at time s(i) and finishes at f(i) = s(i) + t(i)
• if f(i) ≥ d(i), lateness ℓ(i) = f(i) − d(i)

• maximal lateness = maxi ℓ(i)

16 / 56

The problem

Input:

• jobs J1, . . . , Jn with processing times t(1), . . . , t(n) and deadlines
d(1), . . . , d(n)

• can only do one thing at a time

Output:

• a scheduling of the jobs which minimizes maximal lateness

• job Ji starts at time s(i) and finishes at f(i) = s(i) + t(i)
• if f(i) ≥ d(i), lateness ℓ(i) = f(i) − d(i)

• maximal lateness = maxi ℓ(i)

16 / 56

Example: 3 jobs

• prepare my slides: need t(1) = 4 hours, deadline d(1) = 2 hours

• write solutions to assignments: need t(2) = 6 hours, deadline d(2) = 1 hour

• finish the midterm: need t(3) = 10 hours, deadline d(3) = 24 hours

• 1, then 2, then 3: latenesses [2, 9, 0]

• 2, then 1, then 3: latenesses [8, 5, 0] (optimal)

17 / 56

Example: 3 jobs

• prepare my slides: need t(1) = 4 hours, deadline d(1) = 2 hours

• write solutions to assignments: need t(2) = 6 hours, deadline d(2) = 1 hour

• finish the midterm: need t(3) = 10 hours, deadline d(3) = 24 hours

• 1, then 2, then 3: latenesses [2, 9, 0]

• 2, then 1, then 3: latenesses [8, 5, 0] (optimal)

17 / 56

No breaks

Observation:

• if a scheduling has idle time, we can improve it by removing the breaks

• so the optimal has no idle time, and is given by an ordering of the jobs

18 / 56

A few attempts

Attempt 1:

• do short jobs first

• no, last example

Attempt 2:

• do jobs with little slack first slack = d(i)− t(i)

• no

Attempt 3:

• do jobs in non-decreasing deadline order

19 / 56

A few attempts

Attempt 1:

• do short jobs first

• no, last example

Attempt 2:

• do jobs with little slack first slack = d(i)− t(i)

• no

Attempt 3:

• do jobs in non-decreasing deadline order

19 / 56

A few attempts

Attempt 1:

• do short jobs first

• no, last example

Attempt 2:

• do jobs with little slack first slack = d(i)− t(i)

• no

Attempt 3:

• do jobs in non-decreasing deadline order

19 / 56

A few attempts

Attempt 1:

• do short jobs first

• no, last example

Attempt 2:

• do jobs with little slack first slack = d(i)− t(i)

• no

Attempt 3:

• do jobs in non-decreasing deadline order

19 / 56

A few attempts

Attempt 1:

• do short jobs first

• no, last example

Attempt 2:

• do jobs with little slack first slack = d(i)− t(i)

• no

Attempt 3:

• do jobs in non-decreasing deadline order

19 / 56

Non-uniqueness

Observation:

• if d(i) = d(j), the orderings [. . . , i, j, . . .] and [. . . , j, i, . . .] have the same
max-lateness (because the second job is the latest)

• so all orderings in non-decreasing deadline order have the same max-lateness

i

i

j

j

di = dj

20 / 56

Non-uniqueness

Observation:

• if d(i) = d(j), the orderings [. . . , i, j, . . .] and [. . . , j, i, . . .] have the same
max-lateness (because the second job is the latest)

• so all orderings in non-decreasing deadline order have the same max-lateness

Definition:

• an inversion in L = [e1, . . . , en] is a pair (i, j) with i < j and d(ei) > d(ej)

• L has no inversion ⇐⇒ L in non-decreasing deadline order

20 / 56

Correctness: exchange argument

• let L = [e1, . . . , en] be a solution (as a permutation of [1, . . . , n])

• suppose that L is not in non-decreasing order of deadlines, so there exists i
such that d(ei) > d(ei+1)

• now, switch ei and ei+1 to get a permutation L′

• the lateness of ei+1 cannot increase (because we do ei+1 earlier than before),
so at most max lateness(L)

• the new lateness of ei is at most the old lateness of ei+1, so at most
max lateness(L)

d(ei+1) d(ei)

ei ei+1

ei+1 ei

21 / 56

Correctness: exchange argument

• let L = [e1, . . . , en] be a solution (as a permutation of [1, . . . , n])

• suppose that L is not in non-decreasing order of deadlines, so there exists i
such that d(ei) > d(ei+1)

• now, switch ei and ei+1 to get a permutation L′

• the lateness of ei+1 cannot increase (because we do ei+1 earlier than before),
so at most max lateness(L)

• the new lateness of ei is at most the old lateness of ei+1, so at most
max lateness(L)

• nothing else changes, so max lateness(L′) ≤ max lateness(L)

• and we have removed an inversion

• keep going: after at most n(n− 1)/2 iterations, we have Lord with no inversion

and such that max lateness(Lord) ≤ max lateness(L)

21 / 56

Interval coloring

22 / 56

The problem

Input:

• n intervals I1 = [s1, f1], . . . , In = [sn, fn] start time, finish time

• also write sj = start(Ij), fj = finish(Ij)

Output:

• assignment of colors to each interval

• overlapping intervals get different colors

• minimize the number of colors used overall

Remarks:

• another version: finding classrooms for lectures

• colors ↔ numbers 1, 2, . . .

• finish(Ij) = start(Ik) not an overlap

23 / 56

The problem

Input:

• n intervals I1 = [s1, f1], . . . , In = [sn, fn] start time, finish time

• also write sj = start(Ij), fj = finish(Ij)

Output:

• assignment of colors to each interval

• overlapping intervals get different colors

• minimize the number of colors used overall

Remarks:

• another version: finding classrooms for lectures

• colors ↔ numbers 1, 2, . . .

• finish(Ij) = start(Ik) not an overlap

23 / 56

A blueprint for a greedy algorithm

GreedyColoring(I = [I1, . . . , In])
1. sort I somehow
2. for k = 1, . . . , n do
3. color Ik with the minimum color not used by any of the

previous intervals that overlap Ik

24 / 56

A few attempts

Attempt 1:
• sort by non-decreasing finish times
• no

3
2
1

Attempt 2:
• sort from shortest to longest
• no

3
2
1

Attempt 3:
• sort by non-decreasing starting times
• maybe

2
1

25 / 56

A few attempts

Attempt 1:
• sort by non-decreasing finish times
• no

3
2
1

Attempt 2:
• sort from shortest to longest
• no

3
2
1

Attempt 3:
• sort by non-decreasing starting times
• maybe

2
1

25 / 56

A few attempts

Attempt 1:
• sort by non-decreasing finish times
• no

3
2
1

Attempt 2:
• sort from shortest to longest
• no

3
2
1

Attempt 3:
• sort by non-decreasing starting times
• maybe

2
1 25 / 56

Correctness

Claim

• we suppose the algorithm uses k colors

• we prove that we can’t use fewer.

Proof

• suppose we color It with color k

• so Ik overlaps with k − 1 intervals, say Iα1 , . . . , Iαk−1
seen previously

• so for all j, sαj ≤ st < fαj

• so there is a little interval [st, st + ε] in all Iαj and It

• so we can’t do with less than k colors

Exercise

Give an O(n log(n)) implementation.

26 / 56

Correctness

Claim

• we suppose the algorithm uses k colors

• we prove that we can’t use fewer.

Proof

• suppose we color It with color k

• so Ik overlaps with k − 1 intervals, say Iα1 , . . . , Iαk−1
seen previously

• so for all j, sαj ≤ st < fαj

• so there is a little interval [st, st + ε] in all Iαj and It

• so we can’t do with less than k colors

Exercise

Give an O(n log(n)) implementation.

26 / 56

Fractional knapsack

27 / 56

The problem

Input:

• items I1, . . . , In with weights w1, . . . , wn and positive values v1, . . . , vn

• a capacity W

Output:

• fractions E = e1, . . . , en such that

• 0 ≤ ej ≤ 1 for all j
• e1w1 + · · ·+ enwn ≤W
• e1v1 + · · ·+ envn maximal

Example:

• w1 = 10, v1 = 60, w2 = 30, v2 = 90, w3 = 20, v3 = 100

• W = 50

• optimal is e1 = 1, e2 = 2/3, e3 = 1, total value 220

28 / 56

The problem

Input:

• items I1, . . . , In with weights w1, . . . , wn and positive values v1, . . . , vn

• a capacity W

Output:

• fractions E = e1, . . . , en such that

• 0 ≤ ej ≤ 1 for all j
• e1w1 + · · ·+ enwn ≤W
• e1v1 + · · ·+ envn maximal

Remark:

• 0/1-version: ej ∈ {0, 1} for all j
• dynamic programming

28 / 56

The knapsack should be full

Remark:

• if
∑

iwi < W , just take all ei = 1

• so assume
∑

i wi ≥ W

Observation:

• suppose we have an assignment with
∑

i eiwi < W

• then some ei must be less than 1

• so we can increase the value by non-decreasing this ei

Consequence:

• it is enough to consider assignments with
∑

i eiwi = W

29 / 56

The knapsack should be full

Remark:

• if
∑

iwi < W , just take all ei = 1

• so assume
∑

i wi ≥ W

Observation:

• suppose we have an assignment with
∑

i eiwi < W

• then some ei must be less than 1

• so we can increase the value by non-decreasing this ei

Consequence:

• it is enough to consider assignments with
∑

i eiwi = W

29 / 56

The knapsack should be full

Remark:

• if
∑

iwi < W , just take all ei = 1

• so assume
∑

i wi ≥ W

Observation:

• suppose we have an assignment with
∑

i eiwi < W

• then some ei must be less than 1

• so we can increase the value by non-decreasing this ei

Consequence:

• it is enough to consider assignments with
∑

i eiwi = W

29 / 56

A few attempts

Attempt 1:

• pack with items in decreasing value vi

• no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:

• pack with items in increasing weight wi

• no: W = 10, w1 = 10, v1 = 1, w2 = 5, v2 = 100

Attempt 3:

• pack with items in decreasing “value per kilo” vi/wi

• first example [6,3,5], second example [1/10,20]

30 / 56

A few attempts

Attempt 1:

• pack with items in decreasing value vi

• no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:

• pack with items in increasing weight wi

• no: W = 10, w1 = 10, v1 = 1, w2 = 5, v2 = 100

Attempt 3:

• pack with items in decreasing “value per kilo” vi/wi

• first example [6,3,5], second example [1/10,20]

30 / 56

A few attempts

Attempt 1:

• pack with items in decreasing value vi

• no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:

• pack with items in increasing weight wi

• no: W = 10, w1 = 10, v1 = 1, w2 = 5, v2 = 100

Attempt 3:

• pack with items in decreasing “value per kilo” vi/wi

• first example [6,3,5], second example [1/10,20]

30 / 56

A few attempts

Attempt 1:

• pack with items in decreasing value vi

• no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:

• pack with items in increasing weight wi

• no: W = 10, w1 = 10, v1 = 1, w2 = 5, v2 = 100

Attempt 3:

• pack with items in decreasing “value per kilo” vi/wi

• first example [6,3,5], second example [1/10,20]

30 / 56

A few attempts

Attempt 1:

• pack with items in decreasing value vi

• no, previous example (we get [0, 1, 1] with total value 190)

Attempt 2:

• pack with items in increasing weight wi

• no: W = 10, w1 = 10, v1 = 1, w2 = 5, v2 = 100

Attempt 3:

• pack with items in decreasing “value per kilo” vi/wi

• first example [6,3,5], second example [1/10,20]

30 / 56

Pseudo-code

GreedyKnapsack(v,w,W)
1. E ← [0, . . . , 0]
2. sort items by decreasing order of vi/wi

3. for k = 1, . . . , n do
4. if wk < W then
5. E[k]← 1
6. W ←W − wk

7. else
8. E[k]←W/wk

9. return

Remark: output is S = [1, . . . , 1, ek, 0, . . . , 0]

Runtime: O(n log(n))

31 / 56

Correctness: exchange argument

• let E = [e1, . . . , en] be the optimal assignment, with
∑

eiwi = W

• let S = [s1, . . . , sn] be any assignment, with
∑

siwi = W

• suppose S different from E, and let i be the first index with ei ̸= si
• greedy strategy: ei > si
• because their weights are the same, there is j > i with sj > ej
• set s′i = si + α/wi and s′j = sj − α/wj , for α TBD > 0, all other s′k = sk
• in any case,

∑
s′iwi = W and value(S′) ≥ value(S)

• choose α such that either s′i = ei or s′j = ej

α = min(wi(ei − si), wj(sj − ej))

• so we found S′ that has one more common entry with E, and which is at least
as good as S

• keep going

32 / 56

Dijkstra’s algorithm

33 / 56

Conventions

Input:

• a directed graph G = (V,E)

• with weights w(e) on the edges

w(γ) = weight of a path γ = sum of the weights of its edges

• no loops = edges v → v

• no isolated vertices, with no incoming or outgoing edge m ≥ n/2

Output:

• the shortest (=minimal weight) paths between a source s and all vertices

• dynamic programming: shortest paths between all vertices

Remark: nothing faster known (to me) for single-source, single-destination

34 / 56

Remarks

1. shortest paths may not exist if there are negative length cycles

3 3

12

−5

some algorithms can deal with negative edges (and detect negative cycles)

Dijkstra’s algorithm needs positive weights

2. if there exists a shortest path s ; t, write δ(s, t) for its weight

• called the distance from s to t (but we may not have δ(s, t) = δ(t, s))

• if there is no path s ; t, δ(s, t) =∞

35 / 56

Remarks

1. shortest paths may not exist if there are negative length cycles

3 3

12

−5

some algorithms can deal with negative edges (and detect negative cycles)

Dijkstra’s algorithm needs positive weights

2. if there exists a shortest path s ; t, write δ(s, t) for its weight

• called the distance from s to t (but we may not have δ(s, t) = δ(t, s))

• if there is no path s ; t, δ(s, t) =∞

35 / 56

Outlook

Assumption

All weights are non-negative

Idea of the algorithm:

• starting from s, grow a tree (S, T) rooted at s, together with the distances

δ(s, v) for v in S

• at every step, add to S the remaining vertex v closest to s

• no negative weight: this vertex is on an edge (u, v), u in S, v in V − S

• if there is no such edge, we’re done (all remaining vertices are unreachable)

greedy algorithm!

36 / 56

Outlook

Assumption

All weights are non-negative

Idea of the algorithm:

• starting from s, grow a tree (S, T) rooted at s, together with the distances

δ(s, v) for v in S

• at every step, add to S the remaining vertex v closest to s

• no negative weight: this vertex is on an edge (u, v), u in S, v in V − S

• if there is no such edge, we’re done (all remaining vertices are unreachable)

greedy algorithm!

36 / 56

Key property

Claim

Let (S, T) be a tree rooted at s and take an edge (u, v) such that

• u is in S, v is in V − S

• δ(s, u) + w(u, v) minimal among these edges

Then δ(s, u) +w(u, v) = δ(s, v)

Proof:

• take a path γ : s ; v and let (x, y) be its first edge S → V − S

• w(γ) = w(s ; x) + w(x, y) + w(y ; v) ≥ δ(s, x) + w(x, y)+0

• so w(γ) ≥ δ(s, u) + w(u, v) choice of u, v

• but also δ(s, u) + w(u, v) ≥ δ(s, v) def of distance s→ v

• take shortest γ: w(γ) = δ(s, v) so δ(s, v) ≥ δ(s, u) + w(u, v) ≥ δ(s, v)

37 / 56

Key property

Claim

Let (S, T) be a tree rooted at s and take an edge (u, v) such that

• u is in S, v is in V − S

• δ(s, u) + w(u, v) minimal among these edges

Then δ(s, u) +w(u, v) = δ(s, v)

Proof:

• take a path γ : s ; v and let (x, y) be its first edge S → V − S

• w(γ) = w(s ; x) + w(x, y) + w(y ; v) ≥ δ(s, x) + w(x, y)+0

• so w(γ) ≥ δ(s, u) + w(u, v) choice of u, v

• but also δ(s, u) + w(u, v) ≥ δ(s, v) def of distance s→ v

• take shortest γ: w(γ) = δ(s, v) so δ(s, v) ≥ δ(s, u) + w(u, v) ≥ δ(s, v)

37 / 56

High-level view of the algorithm

Dijkstra(G, s)
1. S ← {s}
2. while S ̸= V do
3. choose (u, v) with u in S, v not in S and δ(s, u) + w(u, v) minimal

(the min value gives δ(s, v))
4. add v to S
5. if not such (u, v), stop

Correctness:
• we find δ(s, v) for all v in S
• if S = V at the end, OK
• if not, when we stop, the remaining vertices are unreachable

Questions:
• how to find (u, v) efficiently
• probably need a priority queue (heap) of some kind
• good choice: a priority queue of vertices

38 / 56

High-level view of the algorithm

Dijkstra(G, s)
1. S ← {s}
2. while S ̸= V do
3. choose (u, v) with u in S, v not in S and δ(s, u) + w(u, v) minimal

(the min value gives δ(s, v))
4. add v to S
5. if not such (u, v), stop

Correctness:
• we find δ(s, v) for all v in S
• if S = V at the end, OK
• if not, when we stop, the remaining vertices are unreachable

Questions:
• how to find (u, v) efficiently
• probably need a priority queue (heap) of some kind
• good choice: a priority queue of vertices

38 / 56

High-level view of the algorithm

Dijkstra(G, s)
1. S ← {s}
2. while S ̸= V do
3. choose (u, v) with u in S, v not in S and δ(s, u) + w(u, v) minimal

(the min value gives δ(s, v))
4. add v to S
5. if not such (u, v), stop

Correctness:
• we find δ(s, v) for all v in S
• if S = V at the end, OK
• if not, when we stop, the remaining vertices are unreachable

Questions:
• how to find (u, v) efficiently
• probably need a priority queue (heap) of some kind
• good choice: a priority queue of vertices

38 / 56

The min-priority queue

Building P

• contains all vertices in V − S (initially, all V)

• set priority[s] = 0

• for v ̸= s, we will maintain priority[v] = minu∈S,(u,v)∈E(δ(s, u) +w(u, v))
with min(∅) =∞

• initially priority[v] =∞ for v ̸= s

• also store the vertex u that gives the min

39 / 56

The min-priority queue

Updating P

• if v is the vertex with minimal priority, then

priority[v] = min
v′∈V −S

priority[v′]

= min
v′∈V −S

min
u∈S,(u,v′)∈E

(δ(s, u) + w(u, v′))

= δ(s, v) (key property)

we store it in an array d

• then for all v′ remaining in P , we must set

priority[v′] = min
u∈S+v,(u,v′)∈E

(δ(s, u) +w(u, v′))

• if there is no edge (v, v′), priority[v′] unchanged

• else, the new priority is min(priority[v′], d[v] + w(v, v′))

40 / 56

The min-priority queue

Updating P

• if v is the vertex with minimal priority, then

priority[v] = min
v′∈V −S

priority[v′]

= min
v′∈V −S

min
u∈S,(u,v′)∈E

(δ(s, u) + w(u, v′))

= δ(s, v) (key property)

we store it in an array d

• then for all v′ remaining in P , we must set

priority[v′] = min
u∈S+v,(u,v′)∈E

(δ(s, u) +w(u, v′))

• if there is no edge (v, v′), priority[v′] unchanged

• else, the new priority is min(priority[v′], d[v] + w(v, v′))

40 / 56

Pseudo-code

Dijkstra(G, s)
1. P ← heapify([s, 0, s], [v,∞, •]v ̸=s)
2. while P not empty do
3. [v, ℓ, u]← remove min(P)
4. d[v]← ℓ
5. parent[v]← u
6. for all edges (v, v′) do
7. if d[v] + w(v, v′) < priority[v′] then
8. replace [v′, ,] by [v′, d[v] + w(v, v′), v] in P

41 / 56

Example

12

5
7

9

15

6

14

3

5

∞

∞

∞

∞
∞

∞

0 ∞

∞

∞

2

20

42 / 56

Example

12

5
7

9

15

6

14

3

5

∞

∞

∞

∞
∞

∞

0 ∞
2

20
3

6

42 / 56

Example

12

5
7

9

15

6

14

3

5

∞

∞

∞

∞
∞

∞

0 ∞
2

20
3

6

42 / 56

Example

12

5
7

9

15

6

14

3

5

∞

∞

∞

∞
∞

∞

0

2

20
3

5

23

42 / 56

Example

12

5
7

9

15

6

14

3

5

∞

∞

∞

∞

0

2

20
3

5 10

∞

23

42 / 56

Example

12

5
7

9

15

6

14

3

5

∞

∞

∞

∞

0

2

20
3

5 10

17

22

42 / 56

Example

12

5
7

9

15

6

14

3

5
∞

∞

∞

0

2

20
3

5 10

17

22

32

42 / 56

Example

12

5
7

9

15

6

14

3

5
∞

∞

∞

0

2

20
3

5 10

17

22

32

42 / 56

Example

12

5
7

9

15

6

14

3

5
∞

∞

∞

0

2

20
3

5 10

17

22

32

42 / 56

Example

12

5
7

9

15

6

14

3

5
∞

∞

∞

0

2

20
3

5 10

17

22

32

42 / 56

Runtime

Enhanced priority queue

• we need to be able to change the priority of a key

• binary heap implementation: O(log (n)) for remove-min and change priority

Total

• n remove min, m change priority m ≥ n/2

• gives O(m log(m)) log(m) ∈ Θ(log(n))

Remark

• Fibonacci heaps: constant amortized time for change priority

• total becomes O(m + n log(m))

43 / 56

Kruskal’s algorithm

44 / 56

Spanning trees

Definition:

• G = (V,E) is a connected graph

• a spanning tree in G is a tree of the form (V, T), with T a subset of E

• in other words: a tree with edges from E that covers all vertices

• examples: BFS tree, DFS tree

Now, suppose the edges have weights w(ei)

Goal:

• a spanning tree with minimal weight

45 / 56

Example

12

5

3

8
7

9

15
4

6

14

46 / 56

Example

12

5

3

8
7

9

15
4

6

14

46 / 56

Example

12

5

3

8
7

9

15
4

6

14

46 / 56

Example

12

5

3

8
7

9

15
4

6

14

46 / 56

Example

12

5

3

8
7

9

15
4

6

14

46 / 56

Example

12

5

3

8
7

9

15
4

6

14

46 / 56

Example

12

5

3

8
7

9

15
4

6

14

46 / 56

Example

12

5

3

8
7

9

15
4

6

14

46 / 56

Kruskal’s algorithm

GreedyMST(G)
1. A← []
2. sort edges by non-decreasing weight
3. for k = 1, . . . ,m do
4. if ek does not create a cycle in A then
5. append ek to A

47 / 56

Properties of the output

Claim

If the output is A = [e1, . . . , er], then (V,A) is a spanning tree

(and so r = n− 1)

Proof:

• of course, (V,A) has no cycle: it is a union of trees

• suppose (V,A) is not connected. Then, there exists an edge e not in A, such
that (V,A ∪ {e}) still has no cycle (joining two connected components)

• when we checked e, we did not include it

• means that it created a loop with some edges already in A: impossible.

48 / 56

Adding edges to spanning trees

Claim

Let (V,A) be a spanning tree, and let e be an edge not in A.

Then adding e to A creates a unique cycle

Proof (bonus)

• let e = {v, w}.
• from 239: in (V,A), there is a unique simple path γ : v ; w

• adding e creates a cycle

• if it created two different cycles, there would be two paths in (V,A)

49 / 56

Exchanging edges

Claim

Let (V,A) and (V, T) be two spanning trees, and let e be an edge in T but
not in A.

• there exists an edge e′ in A but not in T such that (V, T + e′ − e) is still
a spanning tree

• e′ is on the cycle that e creates in A.

Proof (bonus):
• write e = {v, w}
• (V,A+ e) contains a cycle c = v, w, . . . , v
• removing e from T splits (V, T − e) into two connected components T1, T2

• c starts in T1, crosses over to T2, so it contains another edge e′ between T2

and T1

• e′ is in A, but not in T
• (V, T + e′ − e) is a spanning tree (covers V , n− 1 edges, connected) 50 / 56

Correctness: exchange argument

• let A be the output of the algorithm

• let (V, T) be any spanning tree

• if T ̸= A, let e be an edge in T but not in A

• so there is an edge e′ in A but not in T such that (V, T + e′ − e) is a
spanning tree, and e′ is on the cycle that e creates in A

• during the algorithm, we considered e but rejected it, because it created a
cycle in A

• all other elements in this cycle have smaller (or equal) weight

• so w(e′) ≤ w(e)

• so T ′ = T + e′ − e has weight ≤ w(T), and one more common element with A

• keep going

51 / 56

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

52 / 56

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

52 / 56

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

52 / 56

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

52 / 56

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

52 / 56

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

52 / 56

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

52 / 56

Merging connected sets of vertices

12

5

3

8
7

9

15
4

6

14

52 / 56

Data structures

Operations on disjoint sets of vertices:

• Find: identify which set contains a given vertex

• Union: replace two sets by their union

GreedyMST UnionFind(G)
1. T ← []
2. U ← {{v1}, . . . , {vn}}
3. sort edges by non-decreasing weight
4. for k = 1, . . . ,m do
5. if U.Find(ek.1) ̸= U.Find(ek.2) then
6. U.Union(U.Find(ek.1), U.Find(ek.2))
7. append ek to T

53 / 56

An OK solution

• U is an array of linked lists

1 2 3 4 5

54 / 56

An OK solution

• U is an array of linked lists

1

2

3 4 5

54 / 56

An OK solution

• U is an array of linked lists

1

2

3

4

5

54 / 56

An OK solution

• U is an array of linked lists

1

2

3

4

5

54 / 56

An OK solution

• U is an array of linked lists

1

2

3

4

5

54 / 56

An OK solution

• U is an array of linked lists

• to do find, add an array of indices, X[i] = set that contains i

1 2 3 4 5

X = [1, 2, 3, 4, 5]

54 / 56

An OK solution

• U is an array of linked lists

• to do find, add an array of indices, X[i] = set that contains i

1

2

3 4 5

X = [1, 1, 3, 4, 5]

54 / 56

An OK solution

• U is an array of linked lists

• to do find, add an array of indices, X[i] = set that contains i

1

2

3

4

5

X = [1, 1, 3, 3, 5]

54 / 56

An OK solution

• U is an array of linked lists

• to do find, add an array of indices, X[i] = set that contains i

1

2

3

4

5

X = [5, 5, 3, 3, 5]

54 / 56

An OK solution

• U is an array of linked lists

• to do find, add an array of indices, X[i] = set that contains i

1

2

3

4

5

X = [3, 3, 3, 3, 3]

54 / 56

Analysis

Worst case:

• Find is O(1)

• Union traverses one of the linked lists, updates corresponding entries of X,
concatenates two linked lists. Worst case Θ(n)

Kruskal’s algorithm:

• sorting edges O(m log(m))

• O(m) Find

• O(n) Union

Worst case O(m log(m) + n2)

55 / 56

Analysis

Worst case:

• Find is O(1)

• Union traverses one of the linked lists, updates corresponding entries of X,
concatenates two linked lists. Worst case Θ(n)

Kruskal’s algorithm:

• sorting edges O(m log(m))

• O(m) Find

• O(n) Union

Worst case O(m log(m) + n2)

55 / 56

A simple heuristics for Union

Modified Union

• each set in U keeps track of its size

• only traverse the smaller list

• also add a pointer to the tail of the lists to concatenate in O(1)

Key observation: worst case for one union still Θ(n), but better total time.

• for any given vertex v, the size of the set containing V at least doubles when
we update X[v]

• so X[v] updated at most log(n) times

• so the total cost of union per vertex is O(log(n))

Conclusion: O(n log(n)) for all unions and O(m log(m)) total

56 / 56

A simple heuristics for Union

Modified Union

• each set in U keeps track of its size

• only traverse the smaller list

• also add a pointer to the tail of the lists to concatenate in O(1)

Key observation: worst case for one union still Θ(n), but better total time.

• for any given vertex v, the size of the set containing V at least doubles when
we update X[v]

• so X[v] updated at most log(n) times

• so the total cost of union per vertex is O(log(n))

Conclusion: O(n log(n)) for all unions and O(m log(m)) total

56 / 56

A simple heuristics for Union

Modified Union

• each set in U keeps track of its size

• only traverse the smaller list

• also add a pointer to the tail of the lists to concatenate in O(1)

Key observation: worst case for one union still Θ(n), but better total time.

• for any given vertex v, the size of the set containing V at least doubles when
we update X[v]

• so X[v] updated at most log(n) times

• so the total cost of union per vertex is O(log(n))

Conclusion: O(n log(n)) for all unions and O(m log(m)) total

56 / 56

