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Goals

This module:

• basics on undirected graphs

• undirected BFS and applications (shortest paths, bipartite graphs, connected
components)

• undirected DFS and applications (cut vertices)

• basics on directed graphs

• directed DFS and applications (testing for cycles, topological sort, strongly
connected components)
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Undirected graphs

Definition, notation: a graph G is pair (V,E):

• V is a finite set, whose elements are called vertices

• E is a finite set, whose elements are unordered pairs of distinct vertices, and are
called edges.

Convention: n is the number of vertices, m is the number of edges.

Data structures:

• adjacency list: an array A[1..n] s.t. A[v] is the linked list of all edges connected
to v.
2m list cells, total size Θ(n + m), but testing if an edge exists is not O(1)

• adjacency matrix: a (0, 1) matrix M of size n× n, with M [v, w] = 1 iff {v, w} is
an edge.
size Θ(n2), but testing if an edge exists is O(1)
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Connected graphs, path, cycles, trees

Definition:

• path: a sequence v1, . . . , vk of vertices, with {vi, vi+1} in E for all i.
k = 1 is OK.

• connected graph: G = (V,E) such that for all v, w in V , there is a path v ; w

• cycle: a path v1, . . . , vk, v1 with k ≥ 3 and vi’s pairwise distinct

• tree: a connected graph without any cycle

• rooted tree: a tree with a special vertex called root
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Subgraphs, connected components

Definition:

• subgraph of G = (V,E): a graph G′ = (V ′, E′), where

• V ′ ⊂ V
• E′ ⊂ E, with all edges E′ joining vertices from V ′

• connected component of G = (V,E)

• a connected subgraph of G
• that is not contained in a larger connected subgraph of G

Let Gi = (Vi, Ei), i = 1, . . . , s be the connected components of G = (V,E).

• the Vi’s are a partition of V , with
∑

i ni = n ni = |Vi|
• the Ei’s are a partition of E, with

∑
imi = m mi = |Ei|
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Breadth-first search
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Breadth-first exploration of a graph

BFS(G, s)
G: a graph with n vertices, given by adjacency lists
s: a vertex from G
1. let Q be an empty queue
2. let visited be an array of size n, with all entries set to false
3. enqueue(s,Q)
4. visited[s]← true
5. while Q not empty do
6. v ← dequeue(Q)
7. for all w neighbours of v do
8. if visited[w] is false
9. enqueue(w,Q)
10. visited[w]← true
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Complexity

Anaysis:

• each vertex is enqueued at most once

• so each vertex is dequeued at most once O(n) for steps 5-6

• so each adjacency list is read at most once

For all v, write dv = number of neighbours of v = length of A[v] = degree of v.

Then total cost at step 7 is

O

(∑
v

dv

)
= O(m)

cf. the adjacency array A has 2m cells (handshaking lemma)

Total: O(n + m)
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Correctness

Claim

For all vertices v, if visited[v] is true at the end, there is a path s ; v in G

Proof. Let s = v0, . . . , vK be the vertices for which visited is set to true, in this
order. We prove: for all i, there is a path s ; vi, by induction.

• OK for i = 0

• suppose true for v0, . . . , vi−1.

when visited[vi] is set to true, we are examining the neighbours of a certain vj ,
j < i.

by assumption, there is a path s ; vj

because {vj , vi} is in E, there is a path s ; vi
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Correctness

Claim

For all vertices v, if there is a path s ; v in G, visited[v] is true at the end

Proof. Let v0 = s, . . . , vk = v be a path s ; v. We prove visited[vi] is true for all i,
by induction.

• visited[v0] is true

• if visited[vi] is true, we will examine all neighbours v of vi

so at the end of Step 7, all visited[v] will be true, for v neighbour of vi

in particular, visited[vi+1] will be true
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Correctness

Summary

For all vertices v, there is a path s ; v in G if and only if visited[v] is true at
the end

Applications

• testing if there is a path s ; v

• testing if G is connected

in O(n + m).

Exercise

For a connected graph, m ≥ n− 1.
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Keeping track of parents and levels

BFS(G, s)
1. let Q be an empty queue
2. let parent be an array of size n, with all entries set to NIL
3. let level be an array of size n, with all entries set to ∞
4. enqueue(s,Q)
5. parent[s]← s
6. level[s]← 0
7. while Q not empty do
8. v ← dequeue(Q)
9. for all w neighbours of v do
10. if parent[w] is NIL
11. enqueue(w,Q)
12. parent[w]← v
13. level[w]← level[v] + 1
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BFS tree
Definition: the BFS tree T is the subgraph made of:

• all w such that parent[w] ̸= NIL.

• all edges {w, parent[w]}, for w as above (except w = s)

Claim

The BFS tree T is a tree

Proof: by induction on the vertices for which parent[v] is not NIL

• when we set parent[s]← s, only one vertex, no edge.

• suppose true before we set parent[w]← v

v was in T before, w was not, so we add one vertex w and one edge {v, w} to T

so T remains a tree

Remark: we make it a rooted tree by choosing s as root
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Shortest paths from the BFS tree

Sub-claim 1

The levels in the queue are non-decreasing

Proof: by induction, they are always as [ℓ, . . . , ℓ] or as [ℓ, . . . , ℓ, ℓ + 1, . . . , ℓ + 1]

Sub-claim 2

For all vertices u, v, if there is an edge {u, v}, then level[v] ≤ level[u] + 1.

Proof: when we dequeue u,

• either we already saw the parent of v

• or u becomes the parent of v
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Shortest paths from the BFS tree

Sub-claim 1

The levels in the queue are non-decreasing
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• but level[parent[v]] = level[v]− 1
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Shortest paths from the BFS tree

Claim

For all v in G:

• there is a path s ; v in G iff there is a path s ; v in T

• if so, the path in T is a shortest path and level[v] = dist(s, v)

Proof. First item: =⇒ was proved before, ⇐= obvious.

Second item:

• dist(s, v) ≤ level[v] (follow the path on T )

• take the shortest path s = v0 → v1 → v2 → · · · → vk = v k = dist(s, v)

level[v0] = 0

so level[v1] ≤ 1 sub-claim 2

so level[v2] ≤ 2 sub-claim 2

. . . so level[vk] ≤ k = dist(s, v) sub-claim 2
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Bipartite graphs

Definition

• a graph G = (V,E) is bipartite if there is a partition V = V1 ∪ V2 such that all
edges have one end in V1 and one end in V2.
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Using BFS to test bipartite-ness

Claim.

Suppose G connected, run BFS from any s, and set

• V1 = vertices with odd level

• V2 = vertices with even level.

Then G is bipartite if and only all edges have one end in V1 and one end in
V2 (testable in O(n + m))
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Claim.

Suppose G connected, run BFS from any s, and set

• V1 = vertices with odd level

• V2 = vertices with even level.

Then G is bipartite if and only all edges have one end in V1 and one end in
V2 (testable in O(m))

Proof. ⇐= obvious.

For =⇒ , let W1,W2 be a bipartition. Because paths alternate between W1,W2:

• V1 (= vertices with odd level) is included in W1 (say)

• V2 (= vertices with even level) is included in W2

So V1 = W1 and V2 = W2.
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Computing the connected components

Idea: add an outer loop that runs BFS on successive vertices

Exercise

Fill in the details.

Complexity:

• each pass of BFS O(ni + mi), if Gi(Vi, Ei) is the ith connected component

• total O(n + m)
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Depth-first search
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Going depth-first

The idea:

• travel as deep as possible, as long as you can

• when you can’t go further, backtrack.

DFS implementations are based on stacks, either implicitly (recursion) or explicitly
(as with queues for BFS).
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Recursive algorithm

DFS(G)
G: a graph with n vertices, given by adjacency lists
1. let visited be an array of size n, with all entries set to false
2. for all v in G
3. if visited[v] is false
4. explore(v)

explore(v)
1. visited[v] = true
2. for all w neighbour of v do
3. if visited[w] = false
4. explore(w)

Remark: can add parent array as in BFS
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The white path lemma

Claim

When we start exploring a vertex v, any w that can be connected to v by an
unvisited path will be visited explore(v) is finished.

Proof. Let v0 = v, . . . , vk = w be a path v ; w, with v1, . . . , vk not visited yet.
We prove: all vi’s are visited before explore(v) is finished.

True for i = 0.

Suppose true for i < k. When we visit vi, explore(v) is not finished, and vi+1 is one
of its neighbours.

• if visited[vi+1] is true when we reach Step 3

OK: it means we visited it

• else, we will visit it just now

OK: it will be done before explore(v) is finished
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Another basic property

Claim

If w is visited during explore(v), there is a path v ; w.

Proof. Same as for BFS.
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Consequences

Previous properties: after we call explore at v1, . . . , vk in DFS, we have visited
exactly the connected components containing v1, . . . , vk

Shortest paths: no

Runtime: still O(n + m)
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Iterative version?

explore(s)
1. let S be an empty stack
2. push(s, S)
3. visited[s]← true
4. while S not empty do
5. v ← pop(S)
6. for all w neighbours of v do
7. if visited[w] is false
8. push(w, S)
9. visited[w]← true

Still depth-first?

Exercise: fix this.
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Trees, forest, ancestors and descendants

Previous observation:

• DFS(G) gives a partition of G into vertex-disjoint rooted trees T1, . . . , Tk

(DFS forest)

Definition. Suppose the DFS forest is T1, . . . , Tk and let u, v be two vertices

• u is an ancestor of v if they are on the same Ti and u is on the path root ; v

• equivalent: v is a descendant of u
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Key property

Claim

All edges in G connect a vertex to one of its descendants or ancestors.

Proof. Let {v, w} be an edge, and suppose we visit v first.

Then when we visit v, (v, w) is an unvisited path between v and w, so w will
become a descendant of v (white path lemma)
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Back edges

Definition.

• a back edge is an edge in G connecting an ancestor to a descendant, which is
not a tree edge.

s

Observation

All edges are either tree edges or back edges (key property).
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Start and finish times

Set a variable t to 1 initially, create two arrays start and finish, and change explore:

explore(v)
1. visited[v] = true
2. start[v] = t
3. t++
4. for all w neighbour of v do
5. if visited[w] = false
6. explore(w)
7. finish[v] = t
8. t++
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Example

s [1, 8]

[2, 7]

[3, 4]

[5, 6]
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Example

s [1, 8]

[2, 7]

[3, 4]

[5, 6]

Observation:

• these intervals are either contained in one another, or disjoint
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Cut vertices
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Biconnectivity

Definition: G = (V,E) biconnected if

• G is connected

• G stays connected if we remove any vertex (and all edges that contain it)

Two biconnected graphs:
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Cut vertices
Definition: for G connected, a vertex v in G is a cut vertex if removing v (and all
edges that contain it) makes G disconnected.

Also called articulation points

biconnected ⇐⇒ no cut vertex
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Aside: the shape of a connected undirected graph

Call biconnected component a biconnected subgraph that is not contained in a
larger one

Then G can be seen as a tree of biconnected components connected at cut vertices

Blue edges are cut edges: removing them makes the graph disconnected
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Finding the cut vertices (G connected)

Setup: we start from a rooted DFS tree T , knowing parent and level.

Warm-up

The root s is a cut vertex if and only if it has more than one child.

Proof.

• if s has one child, removing s leaves T connected. So s not a cut vertex.

• suppose s has subtrees S1, . . . , Sk, k > 1.

Key property: no edge connecting Si to Sj for i ̸= j. So removing s creates k
connected components.
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Finding the cut vertices (G connected)

Definition: for a vertex v, let

• a(v) = min{level[w], {v, w} edge}

• m(v) = min{a(w), w descendant of v}
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Using the values m(v)

Claim

For any v (except the root), v is a cut vertex if and only if it has a child w
with m(w) ≥ level[v].

Proof

• Take a child w of v, let Tw be the subtree at w. Let also Tv be the subtree at v.

• If m(w) < level[v], then there is an edge from Tw to a vertex above v. After
removing v, Tw remains connected to the root.

• If m(w) ≥ level[v], then all edges originating from Tw end in Tv.

Proof: any edge originating from a vertex x in Tw ends at a level at least
level[v], and connects x to one of its ancestors or descendants (key property)

So after removing v, Tw is disconnected from the root (except if v is the root)
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Computing the values m(v)

Observation:

• if v has children w1, . . . , wk, then m(v) = min{a(v),m(w1), . . . ,m(wk)}

Consequence:

• computing a(v) is O(dv) dv = degree of v

• knowing all m(w1), . . . ,m(wk), we get m(v) in O(dv)

• so all values m(v) can be computed in O(m)
(remember O(n+m) = O(m) when G connected)

testing the cut-vertex condition at v is O(dv), total O(m)

Exercise

write the pseudo-code
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Directed graphs
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Directed graphs basics

Definition:

• G = (V,E) as in the undirected case, with the difference that edges are
(directed) pairs (v, w)

• edges also called arcs
• usually, we allow loops, with v = w
• v is the source node, w is the target

• a path is a sequence v1, . . . , vk of vertices, with (vi, vi+1) in E for all i. k = 1 is
OK.

• a cycle is a path v1, . . . , vk, v1, k ≥ 1

• a directed acyclic graph (DAG) is a directed graph with no cycle
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Directed graphs basics

Data structures

• adjacency lists

• adjacency matrix (not symmetric anymore)
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BFS and DFS for directed graphs

The algorithms work without any change. We will focus on DFS. Still true:

• we obtain a partition of V into vertex-disjoint trees T1, . . . , Tk

• when we start exploring a vertex v, any w with an unvisited path v ; w
becomes a descendant of v (white path lemma)

• properties of start and finish times

• but there can exist edges connecting the trees Ti

T1

T1 T2
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Classification of edges

Suppose we have a DFS forest. Edges of G are one of the following:
• tree edges
• back edges: from descendant to ancestor
• forward edges: from ancestor to descendant (but not tree edge)
• cross edges: all others

back
forward
cross

(depends on the order of vertices we chose in the main DFS loop) 43 / 56



Classification of edges

explore(v)
1. visited[v] = true
2. start[v] = t, t++
3. for all w neighbour of v do
4. if visited[w] = false
5. explore(w) (v, w) tree edge
6. finish[v] = t, t++

If w was visited:

• if w not finished, (v, w) back edge

• else if start[v] < start[w] < finish[w], (v, w) forward edge

• else, start[w] < finish[w] < start[v], (v, w) cross edge
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Testing acyclicity

Claim

G has a cycle if and only if there is a back edge in the DFS forest

Proof

• Suppose there is a back edge (v, w). Then v is a descendant of w, so there is a
path w ; v, and a cycle w ; v → w

• Suppose there is a cycle v1, . . . , vk−1, vk = v1. Up to renumbering, assume
we find v1 first in the DFS.

Starting from v1, we will reach vk−1 (white path lemma). We check the edge
(vk−1, v1), and v1 is not finished. So back edge.

Consequence: acyclicity test in O(n + m)
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Strong connectivity

Definition. A directed graph G is strongly connected if for all v, w in G, there is a
path v ; w (and thus a path w ; v).

Algorithm:

• call explore twice, starting from a same vertex s

• edges reversed the second time

Correctness:

• first run tells whether for all v, there is a path s ; v

• second one tells whether for all v, there is a path s ; v in the reverse graph
(which is a path v ; s in G)

Consequence: test in O(n + m)
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Structure of directed graphs

Definition: a strongly connected component of G is

• a subgraph of G

• which is strongly connected

• but not contained in a larger strongly connected subgraph of G.

Exercise

The vertices of strongly connected components form a partition of V .

Exercise

v and w are in the same strongly connected component if and only if there
are paths v ; w and w ; v.
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Structure of directed graphs

A directed graph G can be seen as a DAG of disjoint strongly connected components.
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Kosaraju’s algorithm for strongly connected components

Definition: for a directed graph G = (V,E), the reverse (or transpose) graph
GT = (V,ET ) is the graph with same vertices, and reversed edges.

SCC(G)
1. run a DFS on G and record finish times
2. run a DFS on GT , with vertices ordered in decreasing finish time
3. return the trees in the DFS forest of GT

Complexity: O(n + m) (don’t forget the time to reverse G)

Exercise

check that the strongly connected components of G and GT are the same
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Topological ordering

Definition: Suppose G = (V,E) is a DAG. A topological order is an ordering < of V
such that for any edge (v, w), we have v < w.

No such order if there are cycles.
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From a DFS forest

[1, 2]

[3, 4] [1, 4]

[2, 3]

Observation:

• start times do not help

• finish times do, but we have to reverse their order
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From a DFS forest

Claim

Suppose that V is ordered using the reverse of the finishing order:
v < w ⇐⇒ finish[w] < finish[v].

This is a topological order.

Proof. Have to prove: for any edge (v, w), finish[w] < finish[v].

• if we discover v before w, w will become a descendant of v (white path
lemma), and we finish exploring it before we finish v.

• if we discover w before v, because there is no path w ; v (G is a DAG), we
will finish w before we start v.

Consequence: topological order in O(n + m).
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Kosaraju’s algorithm: proof of
correctness

(bonus material)
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Correctness 1/3

Want to prove: for any vertices v, w, the following are equivalent.

(1) v and w and in the same strongly connected component of G

(2) v and w and in the same tree in the DFS forest of GT (with vertices ordered
in decreasing finish time)

Proof of 1 =⇒ 2 (order of the vertices does not matter here)
Let C be the strongly connected component of G that contains v and w

Let s be the first vertex of C that we visit in the DFS of GT

• there is a path s ; v in GT

• all vertices on this path are in C (easy)

• so they are all unvisited when we arrive at s

• so v becomes a descendant of s white path lemma

• same for w
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Correctness 2/3

Proof of 2 =⇒ 1.

Let T be the tree in the DFS forest of GT that contains v and w, with root s

We prove that for every vertex t in T , s and t are in the same strongly connected

component of G.

(1) for all t in T , there is a path s ; t in GT , so there is a path t ; s in G

(2) now we prove: for all t in T , t is a descendant of s in the DFS forest of G (this
gives a path s ; t in G)
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Correctness 3/3

Want to prove: for all t in T , t is a descendant of s in the DFS forest of G.

By induction: suppose it is true for some t in T , and prove it is true for its children.
So let u be a child of t in T .

• start[s] ≤ start[t] < finish[t] ≤ finish[s] induction assumption

• by definition of s, finish[u] < finish[s], so our options are

(1) start[s] < start[u] < finish[u] < finish[s] [ ( ) ]
(2) start[u] < finish[u] < start[s] < finish[s] ( ) [ ]

• if (2), with our induction assumption, we get start[u] < start[t]

• since (t, u) is in T , (u, t) is in G. With previous item, we get: t is a descendant
of u in the DFS of G (white path)

• this gives start[u] < start[t] < finish[t] < finish[u]

• but also finish[u] < start[s] < start[t] from (2) and induction assumption

• so (2) impossible, and we must have (1)

• shows that u is a descendant of s in the DFS forest of G
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