CS 341: Algorithms

University of Waterloo
Eric Schost

eschost@Quwaterloo.ca

Module 2: recurrences - master theorem -
divide-and-conquer

1/40

An example: merge sort

2 /40

Merge sort

Goal: sort an array of size n.

Idea: divide-and-conquer

® gsplit the array in halves
® sort both halves

® merge

Call ¢(n) the maximum number of comparisons done for inputs of length n

Remarks (from CS240)
® merging two sorted arrays of size n/2 uses at most n — 1 comparisons

® should not allocate new arrays, work in place

3/40

Intro: a useful divide-and-conquer recurrence

The function t(n) satisfies
t(1) =0, t(n)=2t(n/2)+n—1 (n apower of 2)
Remark: < is easy, = needs a little care
Let T'(n) be such that
T(1)=0, T(n)=2T(n/2)+n (n a power of 2)

Observation: t(n) < T'(n), by induction

4/40

Unrolling the recurrence

T(n)=2T(n/2)+n
=2(2T(n/4) +n/2)+n
=4T(n/4)+n+n
=4T(n/4) + 2n
= 8T(n/8) + 3n
=nT(n/n)+ logy(n)n
=nT (1) + nlogy(n) = nlogy(n)

(n a power of two)

5/40

Alternative: the recursion tree

n n

-+

!‘ ’,’}l 282: n

7 n n o

7 7 q g W37
A VA A A :
VAR \ | LN s H
{4 a4 b é » [] » (@)

Overall, T'(n) = nlogy(n), n a power of 2

Remark: expression for ¢(n) a bit less nice: t(n) = n(logy(n) — 1)

903 L(h)

+ 1.

6/40

Alternative: guess and prove

Guess: T'(n) =n
B
n=2(n/2)+n

7/40

Alternative: guess and prove

Guess: T'(n) =n
o
n=2(n/2)+n
Guess: T'(n) = kn, k TBD?

o
kn=2(kn/2)+n=kn+n

7/40

Alternative: guess and prove

Guess: T'(n) =n
o
n=2(n/2)+n
Guess: T'(n) = kn, k TBD?

o
kn=2(kn/2)+n=kn+n

Guess: T'(n) = knlogy(n), k TBD?

knlogy(n) z 2(k(n/2)logy(n/2)) +n

RHS is knlogy(n/2) +n = knlogy(n) — kn +n, so OK if k = 1.

7/40

The master theorem

8/40

Master theorem

Consider two integers a,b > 1, a real number ¢ > 0 and a function T'(n) s.t.

(ﬁ

T(n) =aT b)—i—@(nc), T(1)=C

for n a power of b.

Note: for the analysis of a recursive algorithm,
®) is the factor by which we reduce the problem size
® ¢ is the number of recursive calls
® O(n°) is the cost to prepare the recursive calls and combine their results

9/40

Master theorem
Consider two integers a,b > 1, a real number ¢ > 0 and a function T'(n) s.t.

T(n) = aT(%) +Oems), T()=C

for n a power of b.

O((b*)°) if a <b® < ¢ > logy(a)
TR =< O((bF)°log(d*)) if a =b° <= c = log,(a)
O((bF)loze(@)) if a >b° < c<logy(a)

9/40

Master theorem
Consider two integers a,b > 1, a real number ¢ > 0 and a function T'(n) s.t.

zmn:aT€0+@mm T(1)=C

for n a power of b.

O(n°) if a <b® < ¢ > logy(a)
T(n) =4 ©(n‘log(n)) ifa=">b" <= c=Ilog,(a)
O(nloes(2) if a >b¢ <= c<logy(a)

9/40

Master theorem
Consider two integers a,b > 1, a real number ¢ > 0 and a function T'(n) s.t.

zmn:aT€q+@mm T(1)=C

for n a power of b.

O(n°) root-heavy

T(n)=<¢ O(n‘log(n)) a=>°
O(n'er(@) g > b°

9/40

Master theorem
Consider two integers a,b > 1, a real number ¢ > 0 and a function T'(n) s.t.

zmn:aT€q+@mm T(1)=C

for n a power of b.

O(n°) a < b°
T(n)=4{ O(n‘log(n)) a=10°
O(n'2(@)) leaf-heavy

9/40

Master theorem
Consider two integers a,b > 1, a real number ¢ > 0 and a function T'(n) s.t.

T(n) = aT(%) +Oems), T()=C

for n a power of b.

O(n°) a < b°
T(n) =4 O(nlog(n)) a=>b"
O(n'2(@)) leaf-heavy

Only doing the proof for C' =1 and O(n¢) = n, general case is just a bit longer.

Remark: similar results with big-O and big-Omega instead of ©
9/40

Examples

T(n)=4T(n/2)+n multiplying polynomials
® a=4,b=2,c=15s0log,(a) =2 and T(n) = O(n?)

10/ 40

Examples

T(n)=4T(n/2)+n multiplying polynomials
® a=4,b=2,c=15s0log,(a) =2 and T(n) = O(n?)

T(n) = 2T (n/2) + n?
®a=2b=2 c=2so0log(a) =1and T'(n) = O(n?)

10/ 40

Examples

T(n)=4T(n/2)+n multiplying polynomials
® a=4,b=2,c=15s0log,(a) =2 and T(n) = O(n?)

T(n) = 2T (n/2) + n?
®a=2b=2 c=2so0log(a) =1and T'(n) = O(n?)

T(n)=2T(n/4)+1 kd-trees
®a=2b=4,c=0s0log,(a) =1/2 and T'(n) = O(y/n)

10/ 40

Examples

T(n)=T(n/2)+1 binary search
®a=1,b=2 ¢=0so0logy(a) =0 and T'(n) = O(log(n))

11 /40

Examples

T(n)=TMn/2)+1 binary search
®a=1,b=2 ¢=0so0logy(a) =0 and T'(n) = O(log(n))

T(n)=TMn/2)+n
®*a=1,b=2 c=1so0logy(a) =0and 7T'(n) = O(n)

11/ 40

Examples

T(n)=TMn/2)+1 binary search
®a=1,b=2 ¢=0so0logy(a) =0 and T'(n) = O(log(n))

T(n)=TMn/2)+n
®*a=1,b=2 c=1so0logy(a) =0and 7T'(n) = O(n)

T(n) =T(n/2)
° 7

11/ 40

Examples

T(n)=TMn/2)+1 binary search
®*a=1,b=2 ¢=0so0logy(a) =0and T(n) = O(log(n))

T(n)=TMn/2)+n
®*a=1,b=2 c=1so0logy(a) =0and 7T'(n) = O(n)

T(n)=T(n/2)
o7

T(n) =2T(n/2) + nlog(n)
°?

11/ 40

Proof

1: a formula for n = b*. The definition becomes

TOF) = aT(OF 1) + bke
_ a(aT(bk—2)+b(k—1)c)+bkc
_ a2T(bk—2)+ab(k—1)c+bkc

— (lk + ak—lbc + ak—QbQC + . + ab(k}—l)c + bkc

Note: recursion tree has 1 root, a children, a® grand-children, ..., a* leaves

12 /40

Proof

1: a formula for n = b*. The definition becomes

TOF) = aT(OF 1) + bke
_ a(aT(bk—2)+b(k—1)c)+bkc
_ a2T(bk—2)+ab(k—1)c+bkc

— ak + ak—lbc + ak—QbQC + . + ab(k}—l)c + bkc
Note: recursion tree has 1 root, a children, a® grand-children, ..., a* leaves
T(bk) = aF <1+bi_|_..._|_ (bj)k)
k
= (b)F (1+g%+---+(b%))

12 /40

Proof

2: case discussion.

For n = b*,
o k =logy(n) so a¥ = aloes() = plogs(a)
. (=

13 /40

Proof

2: case discussion.

For n = b*,
o k =logy(n) so a¥ = aloes() = plogs(a)

° (bc)k =nc

&)
e if a =%, T'(n) = a*(k + 1) = n°(log,(n) + 1)

e if ¢ > b°, the first sum is in [1, K;) so n'°%(@) < T'(n) < K n'o8(@)
® if a < b° the second sum is in [1, K3) so n < T'(n) < Kon®

This is only for n = b*.

13 /40

Application to runtime analysis
Suppose algorithm A does the following on inputs I of size n.

If 1 < n < b, unit cost, else

® a recursive calls in sizes [n/b] or [n/b| + 1 (if b does not divide n), or exactly
n/b (if b divides n)

® X(I) extra operations.

14 /40

Application to runtime analysis
Suppose algorithm A does the following on inputs I of size n.

If 1 < n < b, unit cost, else

® a recursive calls in sizes [n/b] or [n/b| + 1 (if b does not divide n), or exactly
n/b (if b divides n)

® X(I) extra operations.

Example:

® merge-sort, counting only comparisons: a = b = 2 and
In/2] <X(I)<n-1

for input I of size n.

14 /40

Application to runtime analysis
Suppose algorithm A does the following on inputs I of size n.

If 1 < n < b, unit cost, else

® a recursive calls in sizes [n/b] or [n/b| + 1 (if b does not divide n), or exactly
n/b (if b divides n)

® X(I) extra operations.

Theorem
Suppose that X (I) < h(|I]), with h(n) € O(n¢). Then
O(n®) if a <b¢ < c>logy(a)
Tworst(n) = ¢ O(nclog(n)) if a =0° <= c=logy(a)

O(n'o8s(@)) if a>b° < c<logy(a)

14 /40

Application to runtime analysis
Suppose algorithm A does the following on inputs I of size n.

If 1 < n < b, unit cost, else

® a recursive calls in sizes [n/b] or [n/b| + 1 (if b does not divide n), or exactly
n/b (if b divides n)

® X(I) extra operations.

Theorem
Suppose that £(|I|) < X (I), with £(n) € Q(n®). Then
Q(n°) if a < b¢ < ¢ > logy(a)
Tworst(n) = ¢ Q(nclog(n)) ifa =10 < c=logy(a)

Q(nloes(@)) if a >0 < ¢ <logy(a)

14 /40

Application to runtime analysis
Suppose algorithm A does the following on inputs I of size n.

If 1 < n < b, unit cost, else

® a recursive calls in sizes [n/b] or [n/b| + 1 (if b does not divide n), or exactly
n/b (if b divides n)

® X(I) extra operations.

Theorem
Suppose that £(|I|) < X (I) < h(|I]), with £(n), h(n) € ©(nc). Then
O(n°) ifa <b¢ < c>logy(a)
Tworst(n) = ¢ ©(nclog(n)) if a =0b° <= c=logy(a)

O(n'oes(@) ifa > 0b° < c<logy(a)

14 /40

Application to runtime analysis
Suppose algorithm A does the following on inputs I of size n.

If 1 < n < b, unit cost, else

® a recursive calls in sizes [n/b] or [n/b| + 1 (if b does not divide n), or exactly
n/b (if b divides n)

® X(I) extra operations.

Example:
® merge-sort, counting only comparisons: a =b =2, {(n) = [n/2], h(n) =n —1
Both 4(n) and h(n) are in @ (n), so ¢ = 1 and Tworst (1) € O(nlog(n)).

14 / 40

Divide-and-conquer algorithms

15 /40

The framework

To solve a problem in size n:

Divide
® break the input into smaller problems

¢ ideally few such problems, all of size n/b for some constant b

Conquer

® solve these subproblems recursively

Recombine

® deduce the solution of the main problem from the subproblems

16 / 40

Multiplying polynomials

Goal: given F = fo+ -+ + frn_1z2" tand G = gg + + -+ + gn_12™ 1, compute

H =FG = fogo + (fog1 + f190)x + -+ + fru—1gn—12°" ">

Remark: assume all f; and g; fit in one word. Then, input and output size ®(n),
easy algorithm in @(n?).

1. for:=0,...,n—1do
2. for j=0,...,n—1do
3. hivj = hivj + fig;

17 /40

Divide-and-conquer
Idea: write F' = Fy + Fla:"/2, G = Go + G1z™/2. Then
H = FyGy + (FOG1 + FlGo)l‘n/Q + F1G1z"

Analysis:
® 4 recursive calls in size n/2
® O(n) additions to compute FyG1+F1G
e multiplications by 2™/2 and 2™ are free

® O(n) additions to handle overlaps

Recurrence: T'(n) = 4T (n/2) + O(n)
®a=4,b=2,¢c=1s0T(n)=0(n?

Not better than the naive algorithm. We do the same operations.

18 /40

Karatsuba’s algorithm

Idea: use the identity
(F0+F1:En/2)(G0+G1$n/2) = FQG(H—((FQ —+ Fl)(Go —+ Gl)—FoGo—F1G1)$n/2+F1G11‘n

Analysis:
® 3 recursive calls in size n/2
® O(n) additions to compute Fy + F} and Gg + Gy
e multiplications by z"/2 and z" are free

® O(n) additions and subtractions to combine the results

Recurrence: T'(n) = 3T(n/2) + O(n)
*a=3,b=2c=1s0T(n) = O(n°e3) logy(3) = 1.58...

19/ 40

Karatsuba’s algorithm

Idea: use the identity
(F0+F1:En/2)(G0—|—G1$n/2) = FQG()—l—((FQ —+ Fl)(Go —+ Gl)—FoGo—F1G1)$n/2+F1G11‘n

Analysis:
® 3 recursive calls in size n/2
® O(n) additions to compute Fy + F} and Gg + Gy
e multiplications by z"/2 and z" are free

® O(n) additions and subtractions to combine the results

Recurrence: T'(n) = 3T(n/2) + O(n)
*a=3,b=2c=1s0T(n) = O(n°e3) logy(3) = 1.58...

Remark: key idea = a formula for degree-1 polymomials that does 3 multiplications

19/ 40

Toom-Cook and FFT

Took-Cook:
® a family of algorithms based on similar expressions as Karatsuba
e for k > 2, 2k — 1 recursive calls in size n/k
* 50 T(n) = O(n'os(2k-1))

® gets as close to exponent 1 as we want (but very slowly)

FFT:
e if we use complex coefficients, FF'T can be used to multiply polynomials
e FFT follows the same recurrence as merge sort, 7'(n) = 27 (n/2) + O(n)

® so we can multiply polynomials in ©(n log(n)) ops over C

20/ 40

Multiplying matrices

Goal: given A = [a; j]1<ij<n and B = [bjx]1<j,k<n compute C = AB

Remark: input and output size ©(n?), easy algorithm in ©(n3)

fori=1,...,ndo
for j=1,....,ndo
for k=1,...,ndo
Cik = Cik + @i jbj

Ll

21 /40

Divide-and-conquer

Setup: write
A1 1 A1 2> <Bl 1 Bl 2)
A —) } B —))
<A2,1 Az o By1 DBas
with all A, B; j of size n/2 x n/2. Then

- <A1,1Bl,1 +A12B21 A11Bi2+ A17232,2>
A2 1B11+ A22Bo1 Az 1B1a+ A28

Naively: 8 recursive calls in size n/2 + O(n?) additions = T'(n) = O(n?)

Goal: find a better formula for 2 x 2 matrices

22 /40

Strassen’s algorithm

Compute

Q1
Q2
Q3
Q4
Qs
Qs
Q7

(A11 — A1 2)Ba>
(Ag1 — A22)Bi1
As2(B11+ B21)
A 1(B12+ Ba2)
(A1 + Az2)(B22 — Bi1)
(A11+ A21)(B11+ Bi2)
(A12+ A22)(B21 + B22)

and

Cin
Cip2
Co,1
Ca

Q1 —Q3— Qs+ Q7
Qs — Q1
Q2 + Q3

—Q2 — Q1+ Qs + Qs

Analysis: 7 recursive calls in size n/2 + O(n?) additions = T'(n) = ©(n'°82(7))

logy(7) = 2.80....

23 /40

Faster algorithms: Al to the rescue

o&E lind's game playing Al Just beat 50 year ord in computer science | MIT Technology Review - Google Chrom]
7 DeepMind's gar x +

% U *»00

= MIT Technology Review Signin Subscribe

ARTIFICIAL INTELLIGENCE

DeepMind’s game-playing Al has beaten a 50-year-
oldrecord in computer science

The new version of AlphaZero discovered a faster way to do matrix
multiplication, a core problem in computing that affects thousands of
everyday computer tasks.

By Will Douglas Heaven
October 5,2022

24 / 40

What this means

Direct generalization

® an algorithm that does k& multiplications for matrices of size ¢ gives
T(n) € ©(nlosc(k))

25 / 40

What this means

Direct generalization
® an algorithm that does k& multiplications for matrices of size ¢ gives
T(n) € ©(nlosc(k))
One challenge: find best k for small values of £
e SAT solving, gradient descent, ...

¢ AlphaTensor found some better values, but none beats Strassen (except for
matrices over {0, 1}, with operations modulo 2)

25 / 40

What this means

Direct generalization
® an algorithm that does k& multiplications for matrices of size ¢ gives
T(n) € ©(nlosc(k))
One challenge: find best k for small values of £
e SAT solving, gradient descent, ...

¢ AlphaTensor found some better values, but none beats Strassen (except for
matrices over {0, 1}, with operations modulo 2)

Best exponent to date (using more than just divide-and-conquer)
® O(n?3788) "improves from previous record O(n?37280)

® galactic algorithms

25 / 40

Counting inversions

Goal: given an unsorted array A[l..n], find the number of inversions in it.
Def: (i,7) is an inversion if ¢ < j and A[i] > A[j]

Example: with A =[1,5,2,6,3,8,7,4], we get

(2,3),(2,5),(2,8),(4,5),(4,8),(6,7),(6,8),(7,8)

26 / 40

Counting inversions

Goal: given an unsorted array A[l..n], find the number of inversions in it.

Def: (i,7) is an inversion if ¢ < j and A[i] > A[j]

Example: with A =[1,5,2,6,3,8,7,4], we get
(2,3),(2,5),(2,8),(4,5),(4,8),(6,7),(6,8),(7,8)

Remark: we show the indices where inversions occur

Remark: easy algorithm (two nested loops) in ©(n?)

Remark: to do better than n?, we cannot list all inversions

26 / 40

Toward a divide-and-conquer algorithm

Idea (for n a power of two)
® ¢, = number of inversions in A[l..n/2]
¢ ¢, = number of inversions in A[n/2 4+ 1..n]
® ¢; = number of transverse inversions with ¢ <n/2 and j > n/2

® return cy + ¢ + ¢

Example: with A =[1,5,2,6,3,8,7,4]

® cp= 1 (2’3)
® c.=3 (67 7)7 (67 8)’ (7’ 8)
o =14 (2,5),(2,8),(4,5), (4,8)

c¢ and ¢, done recursively. What about ¢;?

Transverse inversions

Goal: how many pairs (¢,7) with ¢« <n/2, j > n/2, Ali] > A[j]?

Example: with A =11,5,2,6,3,8,7,4|

¢y = #i’s greater than 3 + #1i’s greater than 8 + #1i’s greater than 7 +

#1’s greater than 4

or

¢t = #j’s less than 1 + #j’s less than 5 + #j’s less than 2 + #j’s less than 6

28 / 40

Transverse inversions

Goal: how many pairs (¢,7) with ¢« <n/2, j > n/2, Ali] > A[j]?

Example: with A =11,5,2,6,3,8,7,4|

¢y = #i’s greater than 3 + #1i’s greater than 8 + #1i’s greater than 7 +

#1’s greater than 4

or

¢t = #j’s less than 1 + #j’s less than 5 + #j’s less than 2 + #j’s less than 6

Observation: this number does not change if both sides are sorted

So assume that left and right are sorted after the recursive calls.
Example: starting from [1,5,2,6,3,8,7,4], we get

[1,2,5,6,3,4,7,8]

28 / 40

Enhancing mergesort

Idea: find ¢; during merge.

Merge(A[1..n]) (both halves of A assumed sorted)
1 copy A into a new array S

2 i=1;7=n/2+1;

3 for (k + 1;k < n;k++) do

4. if (i >n/2) Alk] < S[j++]

5 else if (j > n) A[k] « S[i++]

6 else if (S[i] < S[j]) Alk] « S[i++]

7 else A[k] < S[j++]

29 / 40

Enhancing mergesort

Idea: find ¢; during merge.

Merge(A[l..n]) (both halves of A assumed sorted)
copy A into a new array S; ¢=10
i=1;,7=n/2+1;
for (k+ 1; k <n; k++) do
if (i > n/2) Alk] «+ S[j++]
else if (j > n) A[k] < S[i++]; c=c+n/2
else if (S[i] < S[j]) Alk] + S[i++]; c=c+j— (n/2+1)
else A[k] «+ S[j++]

N Ot W

Example: with [1, 2, 5, 6,3, 4, 7, §]
® when we insert 1 back into A, j =5soc=c+0
® when we insert 2 back into A, j =5soc=c+0
® when we insert 5 back into A, j =7soc=c+ 2

® when we insert 6 back into A, j =7soc=c+ 2

29 / 40

Analysis

Enhanced merge is still ©(n) so total remains ©(n log(n))

Remark: (nlog(n)) lower bound in the comparison model (decision tree)

30 /40

Closest pairs

Goal: given n points (x;, ;) in the plane, find a pair (i, j) that minimizes the
distance

dij = \/(Jf'z' —z5)* + (i — y5)?

Equivalent to minimize
d7 j = (zi — 25)° + (yi —)’

Assumption: all x;’s are pairwise distinct

31/40

Divide-and-conquer

Idea: separate the points into two halves L, R at the median z-value
e [= all n/2 points with = < Zpedian
® R = all n/2 points with = > Zpedian
e find the closest pairs in both L and R recursively

® the closest pair is either between points in L (done), or between points in R
(done), or transverse (one in L, one in R)

8L’-L,
ot——

32 /40

Finding the shortest transverse distance

Set 0 = min(dg, dR)
¢ We only need to consider transverse pairs (P, Q) with dist(P, R) < § and
dist(Q, L) < 4.

SL"H
ot—>
ge=26?

33 /40

Finding the shortest transverse distance
Set 0 = min(dg, dR)
e For any P = (zp,yp), enough to look at points with yp <y < yp + 9

SL’-L,
ot——9

33 /40

Finding the shortest transverse distance
Set 6 = min(dr, 0R)
e For any P = (zp,yp), enough to look at points with yp <y < yp + 9

SL’-L,
oL——9

Pol?

So it is enough to check distances d(P, Q) for @ in the rectangle.

33 /40

How many points in the rectangle?

There are at most 8 points from our initial set (including P) in the rectangle.

34 /40

How many points in the rectangle?
Claim

There are at most 8 points from our initial set (including P) in the rectangle.

Proof. Cover the rectangle with 8 squares of side length §,/2
® open on the left, closed on the right
® they overlap along lines, but it’s OK

°
S.-4
I - o%l\fg
.
q i °

34 /40

How many points in the rectangle?
Claim

There are at most 8 points from our initial set (including P) in the rectangle.

Proof. Cover the rectangle with 8 squares of side length §,/2
® open on the left, closed on the right
® they overlap along lines, but it’s OK

Squares on the left only contain points from L, squares on the right only contain
points from R.

Consequence: in each square, only one point (either from L or R).

34 /40

Data structures

Initialization: sort the points twice, with respect to z and to y.
One-time cost O(n log(n)), before recursive calls cf kd-trees

Then: recursion

¢ finding the z-median is easy O(1)
e for the next recursive calls, split the sorted lists O(n)
¢ remove the points at distance > § from the x-splitting line O(n)

® inspect all remaining points in increasing y-order. For each of them, compute
the distance to the next 8 points and keep the min. O(n)

Runtime: T'(n) = 2T'(n/2) + ©(n) so T'(n) € O(nlog(n))

35 /40

Beyond the master theorem: median of medians

Median: given A[0..n — 1], find the entry that would be at index |n/2| if A was
sorted

Selection: given A[0..n — 1] and k in {0,...,n — 1}, find the entry that would be at
index k if A was sorted

Known results: sorting A in O(n log(n)), or a simple randomized algorithm in
expected time O(n)

36 /40

The selection algorithm

quick-select(A, k)
A: array of size n, k: integer s.t. 0 < k <n
1. p <+ choose-pivot(A)
i < partition(A4, p) 1 is the correct index of p
if i = k then
return Alf]
else if i > k then
return quick-select(A[0,1,...,i—1],k)
else if i < k then
return quick-select(A[i+1,i+2,...,n— 1],k —i—1)

XN oW

Question: how to find a pivot such that both ¢ and n — ¢« — 1 are not too large?

37 /40

Median of medians
Sketch of the algorithm:
e divide A into n/5 groups Gy, ..., G5 of size 5
® find the medians my,...,m,, 5 of each group O(n)

® pivot p is the median of [m1,...,m,/s] T(n/5)

With this choice of p, the indices 7 and n — ¢ — 1 are at most 7n/10

38 /40

Median of medians
Sketch of the algorithm:
® divide A into n/5 groups G1,..., Gy /5 of size 5

® find the medians my,...,m,, 5 of each group O(n)
® pivot p is the median of [my,...,m,, 5] T(n/5)
Claim

With this choice of p, the indices ¢ and n — ¢ — 1 are at most 7n/10

Proof
e half of the m;’s are greater than p n/10
e for each m;, there are 3 elements in GG; greater than or equal to m;
® so at least 3n /10 elements greater than p
® so at most 7n/10 elements less than p

® so ¢ is at most 7n/10. Same thing forn —i —1

38 /40

Median of medians
Sketch of the algorithm:
e divide A into n/5 groups Gy, ..., G5 of size 5

® find the medians my,...,m,, 5 of each group O(n)

® pivot p is the median of [m1,...,m,/s] T(n/5)

With this choice of p, the indices 7 and n — ¢ — 1 are at most 7n/10

Consequence: the runtime T'(n) satisfies

T(n) <T(n/5)+T(7n/10) + O(n)

This gives T'(n) € O(n)

38 /40

Establishing T'(n) by guess-and-prove

Suppose more precisely T'(n) < T'(n/5) + T'(7n/10) 4+ an, a constant.

39 /40

Establishing T'(n) by guess-and-prove

Suppose more precisely T'(n) < T'(n/5) + T'(7n/10) 4+ an, a constant.
Guess: T'(n) < n. If true for n/5 and 7n/10, we get

T(n) <n/5+4+T/10+an = (a+9/10)n

39 /40

Establishing T'(n) by guess-and-prove

Suppose more precisely T'(n) < T'(n/5) + T'(7n/10) 4+ an, a constant.
Guess: T'(n) < n. If true for n/5 and 7n/10, we get

T(n) <n/5+4+T/10+an = (a+9/10)n

Guess: T'(n) < kn, k TBD. If true for n/5 and 7n/10, we get
T(n) < kn/5+ 7kn/10 + an = (a + 9k/10)n.

Want £ such that o + 9k/10 = k: take k = 10c.

39 /40

Establishing T'(n) by guess-and-prove

Suppose more precisely T'(n) < T'(n/5) + T'(7n/10) 4+ an, a constant.
Guess: T'(n) < n. If true for n/5 and 7n/10, we get

T(n) <n/5+4+T/10+an = (a+9/10)n

Guess: T'(n) < kn, k TBD. If true for n/5 and 7n/10, we get
T(n) < kn/5+ 7kn/10 + an = (a + 9k/10)n.
Want £ such that o + 9k/10 = k: take k = 10c.

So T'(n) is in O(n), but with a relatively large constant.

39 /40

Final remark

Why not median of three?

® we do n/3 groups of 3 and find their medians my1,...,m, 3 O(n)
® pis the median of [my,...,m, 3] T(n/3)
e half of the m;’s are greater than p n/6

in each group, 2 elements greater than or equal to m;

so overall at least n/3 elements greater than p
soi<2n/3,andn —1—1¢<2n/3

40 / 40

Final remark

Why not median of three?
® we do n/3 groups of 3 and find their medians my1,...,m, 3

® pis the median of [my,...,m, 3]

half of the m;’s are greater than p

® in each group, 2 elements greater than or equal to m;
® so overall at least n/3 elements greater than p
®*s0i<2n/3,andn—1—1¢<2n/3

Recurrence: T'(n) < T(n/3) + T(2n/3) + O(n)

What does this give for T'(n)?

O(n)
T(n/3)

40 / 40

