
CS 341: Algorithms

University of Waterloo

Éric Schost

eschost@uwaterloo.ca

Module 2: recurrences - master theorem -
divide-and-conquer

1 / 40

An example: merge sort

2 / 40

Merge sort

Goal: sort an array of size n.

Idea: divide-and-conquer

• split the array in halves

• sort both halves

• merge

Call t(n) the maximum number of comparisons done for inputs of length n

Remarks (from CS240)

• merging two sorted arrays of size n/2 uses at most n− 1 comparisons

• should not allocate new arrays, work in place

3 / 40

Intro: a useful divide-and-conquer recurrence

The function t(n) satisfies

t(1) = 0, t(n) = 2t(n/2) + n− 1 (n a power of 2)

Remark: ≤ is easy, = needs a little care

Let T (n) be such that

T (1) = 0, T (n) = 2T (n/2) + n (n a power of 2)

Observation: t(n) ≤ T (n), by induction

4 / 40

Unrolling the recurrence

T (n) = 2T (n/2) + n

= 2(2T (n/4) + n/2) + n

= 4T (n/4) + n+ n

= 4T (n/4) + 2n

= 8T (n/8) + 3n

= . . .

= nT (n/n) + log2(n)n

= nT (1) + nlog2(n) = nlog2(n)

(n a power of two)

5 / 40

Alternative: the recursion tree

Overall, T (n) = n log2(n), n a power of 2

Remark: expression for t(n) a bit less nice: t(n) = n(log2(n)− 1) + 1.

6 / 40

Alternative: guess and prove

Guess: T (n) = n

n
?
= 2(n/2) + n

Guess: T (n) = kn, k TBD?

kn
?
= 2(kn/2) + n = kn+ n

Guess: T (n) = kn log2(n), k TBD?

kn log2(n)
?
= 2(k(n/2) log2(n/2)) + n

RHS is kn log2(n/2) + n = kn log2(n)− kn+ n, so OK if k = 1.

7 / 40

Alternative: guess and prove

Guess: T (n) = n

n
?
= 2(n/2) + n

Guess: T (n) = kn, k TBD?

kn
?
= 2(kn/2) + n = kn+ n

Guess: T (n) = kn log2(n), k TBD?

kn log2(n)
?
= 2(k(n/2) log2(n/2)) + n

RHS is kn log2(n/2) + n = kn log2(n)− kn+ n, so OK if k = 1.

7 / 40

Alternative: guess and prove

Guess: T (n) = n

n
?
= 2(n/2) + n

Guess: T (n) = kn, k TBD?

kn
?
= 2(kn/2) + n = kn+ n

Guess: T (n) = kn log2(n), k TBD?

kn log2(n)
?
= 2(k(n/2) log2(n/2)) + n

RHS is kn log2(n/2) + n = kn log2(n)− kn+ n, so OK if k = 1.

7 / 40

The master theorem

8 / 40

Master theorem
Consider two integers a, b ≥ 1, a real number c ≥ 0 and a function T (n) s.t.

T (n) = aT (
n

b
) + Θ(nc), T (1) = C

for n a power of b.

Note: for the analysis of a recursive algorithm,

• b is the factor by which we reduce the problem size

• a is the number of recursive calls

• Θ(nc) is the cost to prepare the recursive calls and combine their results

9 / 40

Master theorem
Consider two integers a, b ≥ 1, a real number c ≥ 0 and a function T (n) s.t.

T (n) = aT (
n

b
) + Θ(nc), T (1) = C

for n a power of b.

Theorem (clean)

T (bk) =


Θ((bk)c) if a < bc ⇐⇒ c > logb(a)

Θ((bk)c log(bk)) if a = bc ⇐⇒ c = logb(a)

Θ((bk)logb(a)) if a > bc ⇐⇒ c < logb(a)

9 / 40

Master theorem
Consider two integers a, b ≥ 1, a real number c ≥ 0 and a function T (n) s.t.

T (n) = aT (
n

b
) + Θ(nc), T (1) = C

for n a power of b.

Theorem (dirty)

T (n) =


Θ(nc) if a < bc ⇐⇒ c > logb(a)

Θ(nc log(n)) if a = bc ⇐⇒ c = logb(a)

Θ(nlogb(a)) if a > bc ⇐⇒ c < logb(a)

9 / 40

Master theorem
Consider two integers a, b ≥ 1, a real number c ≥ 0 and a function T (n) s.t.

T (n) = aT (
n

b
) + Θ(nc), T (1) = C

for n a power of b.

Theorem (dirty)

T (n) =


Θ(nc) root-heavy

Θ(nc log(n)) a = bc

Θ(nlogb(a)) a > bc

9 / 40

Master theorem
Consider two integers a, b ≥ 1, a real number c ≥ 0 and a function T (n) s.t.

T (n) = aT (
n

b
) + Θ(nc), T (1) = C

for n a power of b.

Theorem (dirty)

T (n) =


Θ(nc) a < bc

Θ(nc log(n)) a = bc

Θ(nlogb(a)) leaf-heavy

9 / 40

Master theorem
Consider two integers a, b ≥ 1, a real number c ≥ 0 and a function T (n) s.t.

T (n) = aT (
n

b
) + Θ(nc), T (1) = C

for n a power of b.

Theorem (dirty)

T (n) =


Θ(nc) a < bc

Θ(nc log(n)) a = bc

Θ(nlogb(a)) leaf-heavy

Only doing the proof for C = 1 and Θ(nc) = nc, general case is just a bit longer.

Remark: similar results with big-O and big-Omega instead of Θ

9 / 40

Examples

T (n) = 4T (n/2) + n multiplying polynomials

• a = 4, b = 2, c = 1 so logb(a) = 2 and T (n) = Θ(n2)

T (n) = 2T (n/2) + n2

• a = 2, b = 2, c = 2 so logb(a) = 1 and T (n) = Θ(n2)

T (n) = 2T (n/4) + 1 kd-trees

• a = 2, b = 4, c = 0 so logb(a) = 1/2 and T (n) = Θ(
√
n)

10 / 40

Examples

T (n) = 4T (n/2) + n multiplying polynomials

• a = 4, b = 2, c = 1 so logb(a) = 2 and T (n) = Θ(n2)

T (n) = 2T (n/2) + n2

• a = 2, b = 2, c = 2 so logb(a) = 1 and T (n) = Θ(n2)

T (n) = 2T (n/4) + 1 kd-trees

• a = 2, b = 4, c = 0 so logb(a) = 1/2 and T (n) = Θ(
√
n)

10 / 40

Examples

T (n) = 4T (n/2) + n multiplying polynomials

• a = 4, b = 2, c = 1 so logb(a) = 2 and T (n) = Θ(n2)

T (n) = 2T (n/2) + n2

• a = 2, b = 2, c = 2 so logb(a) = 1 and T (n) = Θ(n2)

T (n) = 2T (n/4) + 1 kd-trees

• a = 2, b = 4, c = 0 so logb(a) = 1/2 and T (n) = Θ(
√
n)

10 / 40

Examples

T (n) = T (n/2) + 1 binary search

• a = 1, b = 2, c = 0 so logb(a) = 0 and T (n) = Θ(log(n))

T (n) = T (n/2) + n

• a = 1, b = 2, c = 1 so logb(a) = 0 and T (n) = Θ(n)

T (n) = T (n/2)

• ?

T (n) = 2T (n/2) + n log (n)

• ?

11 / 40

Examples

T (n) = T (n/2) + 1 binary search

• a = 1, b = 2, c = 0 so logb(a) = 0 and T (n) = Θ(log(n))

T (n) = T (n/2) + n

• a = 1, b = 2, c = 1 so logb(a) = 0 and T (n) = Θ(n)

T (n) = T (n/2)

• ?

T (n) = 2T (n/2) + n log (n)

• ?

11 / 40

Examples

T (n) = T (n/2) + 1 binary search

• a = 1, b = 2, c = 0 so logb(a) = 0 and T (n) = Θ(log(n))

T (n) = T (n/2) + n

• a = 1, b = 2, c = 1 so logb(a) = 0 and T (n) = Θ(n)

T (n) = T (n/2)

• ?

T (n) = 2T (n/2) + n log (n)

• ?

11 / 40

Examples

T (n) = T (n/2) + 1 binary search

• a = 1, b = 2, c = 0 so logb(a) = 0 and T (n) = Θ(log(n))

T (n) = T (n/2) + n

• a = 1, b = 2, c = 1 so logb(a) = 0 and T (n) = Θ(n)

T (n) = T (n/2)

• ?

T (n) = 2T (n/2) + n log (n)

• ?

11 / 40

Proof

1: a formula for n = bk. The definition becomes

T (bk) = aT (bk−1) + bkc

= a
(
aT (bk−2) + b(k−1)c

)
+ bkc

= a2T (bk−2) + ab(k−1)c + bkc

= . . .

= ak + ak−1bc + ak−2b2c + · · ·+ ab(k−1)c + bkc.

Note: recursion tree has 1 root, a children, a2 grand-children, . . . , ak leaves

T (bk) = ak
(
1 + bc

a + · · ·+
(
bc

a

)k)
= (bc)k

(
1 + a

bc + · · ·+
(
a
bc

)k)

12 / 40

Proof

1: a formula for n = bk. The definition becomes

T (bk) = aT (bk−1) + bkc

= a
(
aT (bk−2) + b(k−1)c

)
+ bkc

= a2T (bk−2) + ab(k−1)c + bkc

= . . .

= ak + ak−1bc + ak−2b2c + · · ·+ ab(k−1)c + bkc.

Note: recursion tree has 1 root, a children, a2 grand-children, . . . , ak leaves

T (bk) = ak
(
1 + bc

a + · · ·+
(
bc

a

)k)
= (bc)k

(
1 + a

bc + · · ·+
(
a
bc

)k)
12 / 40

Proof

2: case discussion.

For n = bk,

• k = logb(n) so ak = alogb(n) = nlogb(a)

• (bc)k = nc

so

• if a = bc, T (n) = ak(k + 1) = nc(logb(n) + 1)

• if a > bc, the first sum is in [1,K1) so nlogb(a) ≤ T (n) ≤ K1n
logb(a)

• if a < bc, the second sum is in [1,K2) so nc ≤ T (n) ≤ K2n
c

This is only for n = bk.

13 / 40

Proof

2: case discussion.

For n = bk,

• k = logb(n) so ak = alogb(n) = nlogb(a)

• (bc)k = nc

so

• if a = bc, T (n) = ak(k + 1) = nc(logb(n) + 1)

• if a > bc, the first sum is in [1,K1) so nlogb(a) ≤ T (n) ≤ K1n
logb(a)

• if a < bc, the second sum is in [1,K2) so nc ≤ T (n) ≤ K2n
c

This is only for n = bk.

13 / 40

Application to runtime analysis

Suppose algorithm A does the following on inputs I of size n.

If 1 ≤ n < b, unit cost, else

• a recursive calls in sizes ⌊n/b⌋ or ⌊n/b⌋+ 1 (if b does not divide n), or exactly
n/b (if b divides n)

• X(I) extra operations.

14 / 40

Application to runtime analysis

Suppose algorithm A does the following on inputs I of size n.

If 1 ≤ n < b, unit cost, else

• a recursive calls in sizes ⌊n/b⌋ or ⌊n/b⌋+ 1 (if b does not divide n), or exactly
n/b (if b divides n)

• X(I) extra operations.

Example:

• merge-sort, counting only comparisons: a = b = 2 and

⌊n/2⌋ ≤ X(I) ≤ n− 1

for input I of size n.

14 / 40

Application to runtime analysis

Suppose algorithm A does the following on inputs I of size n.

If 1 ≤ n < b, unit cost, else

• a recursive calls in sizes ⌊n/b⌋ or ⌊n/b⌋+ 1 (if b does not divide n), or exactly
n/b (if b divides n)

• X(I) extra operations.

Theorem

Suppose that X(I) ≤ h(|I|), with h(n) ∈ O(nc). Then

Tworst(n) =


O(nc) if a < bc ⇐⇒ c > logb(a)

O(nc log(n)) if a = bc ⇐⇒ c = logb(a)

O(nlogb(a)) if a > bc ⇐⇒ c < logb(a)

14 / 40

Application to runtime analysis

Suppose algorithm A does the following on inputs I of size n.

If 1 ≤ n < b, unit cost, else

• a recursive calls in sizes ⌊n/b⌋ or ⌊n/b⌋+ 1 (if b does not divide n), or exactly
n/b (if b divides n)

• X(I) extra operations.

Theorem

Suppose that ℓ(|I|) ≤ X(I), with ℓ(n) ∈ Ω(nc). Then

Tworst(n) =


Ω(nc) if a < bc ⇐⇒ c > logb(a)

Ω(nc log(n)) if a = bc ⇐⇒ c = logb(a)

Ω(nlogb(a)) if a > bc ⇐⇒ c < logb(a)

14 / 40

Application to runtime analysis

Suppose algorithm A does the following on inputs I of size n.

If 1 ≤ n < b, unit cost, else

• a recursive calls in sizes ⌊n/b⌋ or ⌊n/b⌋+ 1 (if b does not divide n), or exactly
n/b (if b divides n)

• X(I) extra operations.

Theorem

Suppose that ℓ(|I|) ≤ X(I) ≤ h(|I|), with ℓ(n), h(n) ∈ Θ(nc). Then

Tworst(n) =


Θ(nc) if a < bc ⇐⇒ c > logb(a)

Θ(nc log(n)) if a = bc ⇐⇒ c = logb(a)

Θ(nlogb(a)) if a > bc ⇐⇒ c < logb(a)

14 / 40

Application to runtime analysis

Suppose algorithm A does the following on inputs I of size n.

If 1 ≤ n < b, unit cost, else

• a recursive calls in sizes ⌊n/b⌋ or ⌊n/b⌋+ 1 (if b does not divide n), or exactly
n/b (if b divides n)

• X(I) extra operations.

Example:

• merge-sort, counting only comparisons: a = b = 2, ℓ(n) = ⌊n/2⌋, h(n) = n− 1

Both ℓ(n) and h(n) are in Θ(n), so c = 1 and Tworst(n) ∈ Θ(n log(n)).

14 / 40

Divide-and-conquer algorithms

15 / 40

The framework

To solve a problem in size n:

Divide

• break the input into smaller problems

• ideally few such problems, all of size n/b for some constant b

Conquer

• solve these subproblems recursively

Recombine

• deduce the solution of the main problem from the subproblems

16 / 40

Multiplying polynomials

Goal: given F = f0 + · · · + fn−1x
n−1 and G = g0 + · · · + gn−1x

n−1, compute

H = FG = f0g0 + (f0g1 + f1g0)x+ · · ·+ fn−1gn−1x
2n−2

Remark: assume all fi and gi fit in one word. Then, input and output size Θ(n),
easy algorithm in Θ(n2).

1. for i = 0, . . . , n− 1 do
2. for j = 0, . . . , n− 1 do
3. hi+j = hi+j + figj

17 / 40

Divide-and-conquer

Idea: write F = F0 + F1x
n/2,G = G0 + G1x

n/2. Then

H = F0G0 + (F0G1 + F1G0)x
n/2 + F1G1x

n

Analysis:

• 4 recursive calls in size n/2

• Θ(n) additions to compute F0G1+F1G0

• multiplications by xn/2 and xn are free

• Θ(n) additions to handle overlaps

Recurrence: T (n) = 4T (n/2) + Θ(n)

• a = 4, b = 2, c = 1 so T (n) = Θ(n2)

Not better than the naive algorithm. We do the same operations.

18 / 40

Karatsuba’s algorithm

Idea: use the identity

(F0+F1x
n/2)(G0+G1x

n/2) = F0G0+((F0 + F1)(G0 + G1)−F0G0−F1G1)x
n/2+F1G1x

n

Analysis:

• 3 recursive calls in size n/2

• Θ(n) additions to compute F0 + F1 and G0 +G1

• multiplications by xn/2 and xn are free

• Θ(n) additions and subtractions to combine the results

Recurrence: T (n) = 3T (n/2) + Θ(n)

• a = 3, b = 2, c = 1 so T (n) = Θ(nlog2(3)) log2(3) = 1.58 . . .

Remark: key idea = a formula for degree-1 polymomials that does 3 multiplications

19 / 40

Karatsuba’s algorithm

Idea: use the identity

(F0+F1x
n/2)(G0+G1x

n/2) = F0G0+((F0 + F1)(G0 + G1)−F0G0−F1G1)x
n/2+F1G1x

n

Analysis:

• 3 recursive calls in size n/2

• Θ(n) additions to compute F0 + F1 and G0 +G1

• multiplications by xn/2 and xn are free

• Θ(n) additions and subtractions to combine the results

Recurrence: T (n) = 3T (n/2) + Θ(n)

• a = 3, b = 2, c = 1 so T (n) = Θ(nlog2(3)) log2(3) = 1.58 . . .

Remark: key idea = a formula for degree-1 polymomials that does 3 multiplications

19 / 40

Toom-Cook and FFT

Took-Cook:

• a family of algorithms based on similar expressions as Karatsuba

• for k ≥ 2, 2k − 1 recursive calls in size n/k

• so T (n) = Θ(nlogk(2k−1))

• gets as close to exponent 1 as we want (but very slowly)

FFT:

• if we use complex coefficients, FFT can be used to multiply polynomials

• FFT follows the same recurrence as merge sort, T (n) = 2T (n/2) + Θ(n)

• so we can multiply polynomials in Θ(n log(n)) ops over C

20 / 40

Multiplying matrices

Goal: given A = [ai,j]1≤i,j≤n and B = [bj,k]1≤j,k≤n compute C = AB

Remark: input and output size Θ(n2), easy algorithm in Θ(n3)

1. for i = 1, . . . , n do
2. for j = 1, . . . , n do
3. for k = 1, . . . , n do
4. ci,k = ci,k + ai,jbj,k

21 / 40

Divide-and-conquer

Setup: write

A =

(
A1,1 A1,2

A2,1 A2,2

)
B =

(
B1,1 B1,2

B2,1 B2,2

)
with all Ai,k, Bi,j of size n/2× n/2. Then

C =

(
A1,1B1,1 +A1,2B2,1 A1,1B1,2 +A1,2B2,2

A2,1B1,1 +A2,2B2,1 A2,1B1,2 +A2,2B2,2

)
Naively: 8 recursive calls in size n/2 + Θ(n2) additions =⇒ T (n) = Θ(n3)

Goal: find a better formula for 2× 2 matrices

22 / 40

Strassen’s algorithm

Compute∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q1 = (A1,1 −A1,2)B2,2

Q2 = (A2,1 −A2,2)B1,1

Q3 = A2,2(B1,1 +B2,1)
Q4 = A1,1(B1,2 +B2,2)
Q5 = (A1,1 +A2,2)(B2,2 −B1,1)
Q6 = (A1,1 +A2,1)(B1,1 +B1,2)
Q7 = (A1,2 +A2,2)(B2,1 +B2,2)

and

∣∣∣∣∣∣∣∣
C1,1 = Q1 −Q3 −Q5 +Q7

C1,2 = Q4 −Q1

C2,1 = Q2 +Q3

C2,2 = −Q2 −Q4 +Q5 +Q6

Analysis: 7 recursive calls in size n/2 + Θ(n2) additions =⇒ T (n) = Θ(nlog2(7))
log2(7) = 2.80 . . .

23 / 40

Faster algorithms: AI to the rescue

24 / 40

What this means

Direct generalization

• an algorithm that does k multiplications for matrices of size ℓ gives
T (n) ∈ Θ(nlogℓ(k))

One challenge: find best k for small values of ℓ

• SAT solving, gradient descent, . . .

• AlphaTensor found some better values, but none beats Strassen (except for
matrices over {0, 1}, with operations modulo 2)

Best exponent to date (using more than just divide-and-conquer)

• O(n2.37188), improves from previous record O(n2.37286)

• galactic algorithms

25 / 40

What this means

Direct generalization

• an algorithm that does k multiplications for matrices of size ℓ gives
T (n) ∈ Θ(nlogℓ(k))

One challenge: find best k for small values of ℓ

• SAT solving, gradient descent, . . .

• AlphaTensor found some better values, but none beats Strassen (except for
matrices over {0, 1}, with operations modulo 2)

Best exponent to date (using more than just divide-and-conquer)

• O(n2.37188), improves from previous record O(n2.37286)

• galactic algorithms

25 / 40

What this means

Direct generalization

• an algorithm that does k multiplications for matrices of size ℓ gives
T (n) ∈ Θ(nlogℓ(k))

One challenge: find best k for small values of ℓ

• SAT solving, gradient descent, . . .

• AlphaTensor found some better values, but none beats Strassen (except for
matrices over {0, 1}, with operations modulo 2)

Best exponent to date (using more than just divide-and-conquer)

• O(n2.37188), improves from previous record O(n2.37286)

• galactic algorithms

25 / 40

Counting inversions

Goal: given an unsorted array A[1..n], find the number of inversions in it.

Def: (i, j) is an inversion if i < j and A[i] > A[j]

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4], we get

(2, 3), (2, 5), (2, 8), (4, 5), (4, 8), (6, 7), (6, 8), (7, 8)

Remark: we show the indices where inversions occur

Remark: easy algorithm (two nested loops) in Θ(n2)

Remark: to do better than n2, we cannot list all inversions

26 / 40

Counting inversions

Goal: given an unsorted array A[1..n], find the number of inversions in it.

Def: (i, j) is an inversion if i < j and A[i] > A[j]

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4], we get

(2, 3), (2, 5), (2, 8), (4, 5), (4, 8), (6, 7), (6, 8), (7, 8)

Remark: we show the indices where inversions occur

Remark: easy algorithm (two nested loops) in Θ(n2)

Remark: to do better than n2, we cannot list all inversions

26 / 40

Toward a divide-and-conquer algorithm

Idea (for n a power of two)

• cℓ = number of inversions in A[1..n/2]

• cr = number of inversions in A[n/2 + 1..n]

• ct = number of transverse inversions with i ≤ n/2 and j > n/2

• return cℓ + cr + ct

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]

• cℓ = 1 (2, 3)

• cr = 3 (6, 7), (6, 8), (7, 8)

• ct = 4 (2, 5), (2, 8), (4, 5), (4, 8)

cℓ and cr done recursively. What about ct?

27 / 40

Transverse inversions

Goal: how many pairs (i, j) with i ≤ n/2, j > n/2, A[i] > A[j]?

Example: with A = [1, 5, 2, 6,3, 8, 7, 4]

ct = #i’s greater than 3 + #i’s greater than 8 + #i’s greater than 7 +
#i’s greater than 4
or

ct = #j’s less than 1 + #j’s less than 5 + #j’s less than 2 + #j’s less than 6

Observation: this number does not change if both sides are sorted

So assume that left and right are sorted after the recursive calls.

Example: starting from [1, 5, 2, 6, 3, 8, 7, 4], we get

[1, 2, 5, 6,3, 4, 7, 8]

28 / 40

Transverse inversions

Goal: how many pairs (i, j) with i ≤ n/2, j > n/2, A[i] > A[j]?

Example: with A = [1, 5, 2, 6,3, 8, 7, 4]

ct = #i’s greater than 3 + #i’s greater than 8 + #i’s greater than 7 +
#i’s greater than 4
or

ct = #j’s less than 1 + #j’s less than 5 + #j’s less than 2 + #j’s less than 6

Observation: this number does not change if both sides are sorted

So assume that left and right are sorted after the recursive calls.

Example: starting from [1, 5, 2, 6, 3, 8, 7, 4], we get

[1, 2, 5, 6,3, 4, 7, 8]

28 / 40

Enhancing mergesort

Idea: find ct during merge.

Merge(A[1..n]) (both halves of A assumed sorted)
1. copy A into a new array S
2. i = 1; j = n/2 + 1;
3. for (k ← 1; k ≤ n; k++) do
4. if (i > n/2) A[k]← S[j++]
5. else if (j > n) A[k]← S[i++]
6. else if (S[i] < S[j]) A[k]← S[i++]
7. else A[k]← S[j++]

29 / 40

Enhancing mergesort

Idea: find ct during merge.

Merge(A[1..n]) (both halves of A assumed sorted)
1. copy A into a new array S; c = 0
2. i = 1; j = n/2 + 1;
3. for (k ← 1; k ≤ n; k++) do
4. if (i > n/2) A[k]← S[j++]
5. else if (j > n) A[k]← S[i++]; c = c+ n/2
6. else if (S[i] < S[j]) A[k]← S[i++]; c = c+ j − (n/2 + 1)
7. else A[k]← S[j++]

Example: with [1, 2, 5, 6, 3, 4, 7, 8]

• when we insert 1 back into A, j = 5 so c = c+ 0

• when we insert 2 back into A, j = 5 so c = c+ 0

• when we insert 5 back into A, j = 7 so c = c+ 2

• when we insert 6 back into A, j = 7 so c = c+ 2
29 / 40

Analysis

Enhanced merge is still Θ(n) so total remains Θ(n log(n))

Remark: Ω(n log(n)) lower bound in the comparison model (decision tree)

30 / 40

Closest pairs

Goal: given n points (xi, yi) in the plane, find a pair (i, j) that minimizes the
distance

di,j =
√
(xi − xj)2 + (yi − yj)2

Equivalent to minimize

d2i,j = (xi − xj)
2 + (yi − yj)

2

Assumption: all xi’s are pairwise distinct

31 / 40

Divide-and-conquer

Idea: separate the points into two halves L,R at the median x-value

• L = all n/2 points with x ≤ xmedian

• R = all n/2 points with x > xmedian

• find the closest pairs in both L and R recursively

• the closest pair is either between points in L (done), or between points in R
(done), or transverse (one in L, one in R)

32 / 40

Finding the shortest transverse distance

Set δ = min(δR, δR)

• We only need to consider transverse pairs (P,Q) with dist(P,R) ≤ δ and
dist(Q,L) ≤ δ.

33 / 40

Finding the shortest transverse distance

Set δ = min(δR, δR)

• For any P = (xP , yP), enough to look at points with yP ≤ y < yP + δ

33 / 40

Finding the shortest transverse distance

Set δ = min(δR, δR)

• For any P = (xP , yP), enough to look at points with yP ≤ y < yP + δ

So it is enough to check distances d(P,Q) for Q in the rectangle.

33 / 40

How many points in the rectangle?

Claim

There are at most 8 points from our initial set (including P) in the rectangle.

34 / 40

How many points in the rectangle?

Claim

There are at most 8 points from our initial set (including P) in the rectangle.

Proof. Cover the rectangle with 8 squares of side length δ/2

• open on the left, closed on the right

• they overlap along lines, but it’s OK

34 / 40

How many points in the rectangle?

Claim

There are at most 8 points from our initial set (including P) in the rectangle.

Proof. Cover the rectangle with 8 squares of side length δ/2

• open on the left, closed on the right

• they overlap along lines, but it’s OK

Squares on the left only contain points from L, squares on the right only contain
points from R.

Consequence: in each square, only one point (either from L or R).

34 / 40

Data structures

Initialization: sort the points twice, with respect to x and to y.
One-time cost O(n log(n)), before recursive calls cf kd-trees

Then: recursion

• finding the x-median is easy O(1)

• for the next recursive calls, split the sorted lists O(n)

• remove the points at distance ≥ δ from the x-splitting line O(n)

• inspect all remaining points in increasing y-order. For each of them, compute
the distance to the next 8 points and keep the min. O(n)

Runtime: T (n) = 2T (n/2) + Θ(n) so T (n) ∈ Θ(n log(n))

35 / 40

Beyond the master theorem: median of medians

Median: given A[0..n− 1], find the entry that would be at index ⌊n/2⌋ if A was
sorted

Selection: given A[0..n− 1] and k in {0, . . . , n− 1}, find the entry that would be at
index k if A was sorted

Known results: sorting A in O(n log(n)), or a simple randomized algorithm in
expected time O(n)

36 / 40

The selection algorithm

quick-select(A, k)
A: array of size n, k: integer s.t. 0 ≤ k < n
1. p← choose-pivot(A)
2. i← partition(A, p) i is the correct index of p
3. if i = k then
4. return A[i]
5. else if i > k then
6. return quick-select(A[0, 1, . . . , i− 1], k)
7. else if i < k then
8. return quick-select(A[i+ 1, i+ 2, . . . , n− 1], k − i− 1)

Question: how to find a pivot such that both i and n − i − 1 are not too large?

37 / 40

Median of medians
Sketch of the algorithm:

• divide A into n/5 groups G1, . . . , Gn/5 of size 5

• find the medians m1, . . . ,mn/5 of each group O(n)

• pivot p is the median of [m1, . . . ,mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − i − 1 are at most 7n/10

38 / 40

Median of medians
Sketch of the algorithm:

• divide A into n/5 groups G1, . . . , Gn/5 of size 5

• find the medians m1, . . . ,mn/5 of each group O(n)

• pivot p is the median of [m1, . . . ,mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − i − 1 are at most 7n/10

Proof

• half of the mi’s are greater than p n/10

• for each mi, there are 3 elements in Gi greater than or equal to mi

• so at least 3n/10 elements greater than p

• so at most 7n/10 elements less than p

• so i is at most 7n/10. Same thing for n− i− 1
38 / 40

Median of medians
Sketch of the algorithm:

• divide A into n/5 groups G1, . . . , Gn/5 of size 5

• find the medians m1, . . . ,mn/5 of each group O(n)

• pivot p is the median of [m1, . . . ,mn/5] T (n/5)

Claim

With this choice of p, the indices i and n − i − 1 are at most 7n/10

Consequence: the runtime T (n) satisfies

T (n) ≤ T (n/5) + T (7n/10) +O(n)

Claim

This gives T (n) ∈ O(n)

38 / 40

Establishing T (n) by guess-and-prove

Suppose more precisely T (n) ≤ T (n/5) + T (7n/10) + αn, α constant.

Guess: T (n) ≤ n. If true for n/5 and 7n/10, we get

T (n) ≤ n/5 + 7n/10 + αn = (α+ 9/10)n

Guess: T (n) ≤ kn, k TBD. If true for n/5 and 7n/10, we get

T (n) ≤ kn/5 + 7kn/10 + αn = (α+ 9k/10)n.

Want k such that α + 9k/10 = k: take k = 10α.

So T (n) is in O(n), but with a relatively large constant.

39 / 40

Establishing T (n) by guess-and-prove

Suppose more precisely T (n) ≤ T (n/5) + T (7n/10) + αn, α constant.

Guess: T (n) ≤ n. If true for n/5 and 7n/10, we get

T (n) ≤ n/5 + 7n/10 + αn = (α+ 9/10)n

Guess: T (n) ≤ kn, k TBD. If true for n/5 and 7n/10, we get

T (n) ≤ kn/5 + 7kn/10 + αn = (α+ 9k/10)n.

Want k such that α + 9k/10 = k: take k = 10α.

So T (n) is in O(n), but with a relatively large constant.

39 / 40

Establishing T (n) by guess-and-prove

Suppose more precisely T (n) ≤ T (n/5) + T (7n/10) + αn, α constant.

Guess: T (n) ≤ n. If true for n/5 and 7n/10, we get

T (n) ≤ n/5 + 7n/10 + αn = (α+ 9/10)n

Guess: T (n) ≤ kn, k TBD. If true for n/5 and 7n/10, we get

T (n) ≤ kn/5 + 7kn/10 + αn = (α+ 9k/10)n.

Want k such that α + 9k/10 = k: take k = 10α.

So T (n) is in O(n), but with a relatively large constant.

39 / 40

Establishing T (n) by guess-and-prove

Suppose more precisely T (n) ≤ T (n/5) + T (7n/10) + αn, α constant.

Guess: T (n) ≤ n. If true for n/5 and 7n/10, we get

T (n) ≤ n/5 + 7n/10 + αn = (α+ 9/10)n

Guess: T (n) ≤ kn, k TBD. If true for n/5 and 7n/10, we get

T (n) ≤ kn/5 + 7kn/10 + αn = (α+ 9k/10)n.

Want k such that α + 9k/10 = k: take k = 10α.

So T (n) is in O(n), but with a relatively large constant.

39 / 40

Final remark

Why not median of three?

• we do n/3 groups of 3 and find their medians m1, . . . ,mn/3 O(n)

• p is the median of [m1, . . . ,mn/3] T (n/3)

• half of the mi’s are greater than p n/6

• in each group, 2 elements greater than or equal to mi

• so overall at least n/3 elements greater than p

• so i ≤ 2n/3, and n − 1 − i ≤ 2n/3

Recurrence: T (n) ≤ T (n/3) + T (2n/3) + O(n)

What does this give for T (n)?

40 / 40

Final remark

Why not median of three?

• we do n/3 groups of 3 and find their medians m1, . . . ,mn/3 O(n)

• p is the median of [m1, . . . ,mn/3] T (n/3)

• half of the mi’s are greater than p n/6

• in each group, 2 elements greater than or equal to mi

• so overall at least n/3 elements greater than p

• so i ≤ 2n/3, and n − 1 − i ≤ 2n/3

Recurrence: T (n) ≤ T (n/3) + T (2n/3) + O(n)

What does this give for T (n)?

40 / 40

