CS 341: Algorithms

University of Waterloo Éric Schost eschost@uwaterloo.ca

Module 2: recurrences - master theorem - divide-and-conquer

An example: merge sort

Merge sort

Goal: sort an array of size n.

Idea: divide-and-conquer

- split the array in halves
- sort both halves
- merge

Call $\boldsymbol{t(n)}$ the maximum number of comparisons done for inputs of length n

Remarks (from CS240)

- merging two sorted arrays of size n/2 uses at most n-1 comparisons
- should not allocate new arrays, work in place

Intro: a useful divide-and-conquer recurrence

The function t(n) satisfies

$$t(1) = 0$$
, $t(n) = 2t(n/2) + n - 1$ (n a power of 2)

Remark: \leq is easy, = needs a little care

Let T(n) be such that

$$T(1) = 0$$
, $T(n) = 2T(n/2) + n$ (n a power of 2)

Observation: $t(n) \leq T(n)$, by induction

Unrolling the recurrence

$$T(n) = 2T(n/2) + n$$

$$= 2(2T(n/4) + n/2) + n$$

$$= 4T(n/4) + n + n$$

$$= 4T(n/4) + 2n$$

$$= 8T(n/8) + 3n$$

$$= \dots$$

$$= nT(n/n) + \log_2(n)n$$

$$= nT(1) + n\log_2(n) = n\log_2(n)$$

(n a power of two)

Alternative: the recursion tree

Overall, $T(n) = n \log_2(n)$, n a power of 2

Remark: expression for t(n) a bit less nice: $t(n) = n(\log_2(n) - 1) + 1$.

Alternative: guess and prove

Guess:
$$T(n) = n$$

$$n \stackrel{?}{=} 2(n/2) + n$$

Alternative: guess and prove

Guess:
$$T(n) = n$$

$$n \stackrel{?}{=} 2(n/2) + n$$

Guess: T(n) = kn, k TBD?

$$kn \stackrel{?}{=} 2(kn/2) + n = kn + n$$

Alternative: guess and prove

Guess:
$$T(n) = n$$

$$n \stackrel{?}{=} 2(n/2) + n$$

Guess: T(n) = kn, k TBD?

$$kn \stackrel{?}{=} 2(kn/2) + n = kn + n$$

Guess: $T(n) = kn \log_2(n), k \text{ TBD}$?

$$kn \log_2(n) \stackrel{?}{=} 2(k(n/2) \log_2(n/2)) + n$$

RHS is $kn \log_2(n/2) + n = \frac{kn \log_2(n) - kn + n}{n}$, so OK if k = 1.

The master theorem

Consider two integers $a, b \ge 1$, a real number $c \ge 0$ and a function T(n) s.t.

$$T(n) = aT(\frac{n}{h}) + \Theta(n^c), \quad T(1) = C$$

for n a power of b.

Note: for the analysis of a recursive algorithm,

- \bullet b is the factor by which we reduce the problem size
- a is the number of recursive calls
- $\Theta(n^c)$ is the cost to prepare the recursive calls and combine their results

Consider two integers $a, b \ge 1$, a real number $c \ge 0$ and a function T(n) s.t.

$$T(n) = aT(\frac{n}{h}) + \Theta(n^c), \quad T(1) = C$$

Theorem (clean)
$$T(b^k) = \begin{cases} \Theta((b^k)^c) & \text{if } a < b^c \iff c > \log_b(a) \\ \Theta((b^k)^c \log(b^k)) & \text{if } a = b^c \iff c = \log_b(a) \\ \Theta((b^k)^{\log_b(a)}) & \text{if } a > b^c \iff c < \log_b(a) \end{cases}$$

Consider two integers $a, b \ge 1$, a real number $c \ge 0$ and a function T(n) s.t.

$$T(n) = aT(\frac{n}{b}) + \Theta(n^c), \quad T(1) = C$$

Theorem (dirty)
$$T(n) = \begin{cases} \Theta(n^c) & \text{if } a < b^c \iff c > \log_b(a) \\ \Theta(n^c \log(n)) & \text{if } a = b^c \iff c = \log_b(a) \\ \Theta(n^{\log_b(a)}) & \text{if } a > b^c \iff c < \log_b(a) \end{cases}$$

Consider two integers $a, b \ge 1$, a real number $c \ge 0$ and a function T(n) s.t.

$$T(n) = aT(\frac{n}{h}) + \Theta(n^c), \quad T(1) = C$$

Theorem (dirty)
$$T(n) = \begin{cases} \frac{\Theta(n^c)}{(n^c \log(n))} & \text{root-heavy} \\ \Theta(n^c \log(n)) & a = b^c \\ \Theta(n^{\log_b(a)}) & a > b^c \end{cases}$$

Consider two integers $a, b \ge 1$, a real number $c \ge 0$ and a function T(n) s.t.

$$T(n) = aT(\frac{n}{h}) + \Theta(n^c), \quad T(1) = C$$

Theorem (dirty)
$$T(n) = \begin{cases} \Theta(n^c) & a < b^c \\ \Theta(n^c \log(n)) & a = b^c \\ \Theta(n^{\log_b(a)}) & \text{leaf-heavy} \end{cases}$$

Consider two integers $a, b \ge 1$, a real number $c \ge 0$ and a function T(n) s.t.

$$T(n) = aT(\frac{n}{h}) + \Theta(n^c), \quad T(1) = C$$

for n a power of b.

Theorem (dirty)
$$T(n) = \begin{cases} \Theta(n^c) & a < b^c \\ \Theta(n^c \log(n)) & a = b^c \\ \Theta(n^{\log_b(a)}) & \text{leaf-heavy} \end{cases}$$

Only doing the proof for C=1 and $\Theta(n^c)=n^c$, general case is just a bit longer.

Remark: similar results with big-O and big-Omega instead of Θ

$$T(n) = 4T(n/2) + n$$

multiplying polynomials

• $a = 4, b = 2, c = 1 \text{ so } \log_b(a) = 2 \text{ and } T(n) = \Theta(n^2)$

$$T(n) = 4T(n/2) + n$$

multiplying polynomials

• $a = 4, b = 2, c = 1 \text{ so } \log_b(a) = 2 \text{ and } T(n) = \Theta(n^2)$

$$T(n) = 2T(n/2) + n^2$$

• $a = 2, b = 2, c = 2 \text{ so } \log_b(a) = 1 \text{ and } T(n) = \Theta(n^2)$

$$T(n) = 4T(n/2) + n$$

multiplying polynomials

• $a = 4, b = 2, c = 1 \text{ so } \log_b(a) = 2 \text{ and } T(n) = \Theta(n^2)$

$$T(n) = 2T(n/2) + n^2$$

• a = 2, b = 2, c = 2 so $\log_b(a) = 1$ and $T(n) = \Theta(n^2)$

$$T(n) = 2T(n/4) + 1$$

kd-trees

• a = 2, b = 4, c = 0 so $\log_b(a) = 1/2$ and $T(n) = \Theta(\sqrt{n})$

$$T(n) = T(n/2) + 1$$

•
$$a = 1, b = 2, c = 0$$
 so $\log_b(a) = 0$ and $T(n) = \Theta(\log(n))$

$$T(n) = T(n/2) + 1$$

• a = 1, b = 2, c = 0 so $\log_b(a) = 0$ and $T(n) = \Theta(\log(n))$

$$T(n) = T(n/2) + n$$

• $a = 1, b = 2, c = 1 \text{ so } \log_b(a) = 0 \text{ and } T(n) = \Theta(n)$

$$T(n) = T(n/2) + 1$$

• a = 1, b = 2, c = 0 so $\log_b(a) = 0$ and $T(n) = \Theta(\log(n))$

$$T(n) = T(n/2) + n$$

• $a = 1, b = 2, c = 1 \text{ so } \log_b(a) = 0 \text{ and } T(n) = \Theta(n)$

$$T(n) = T(n/2)$$

• (

$$T(n) = T(n/2) + 1$$

•
$$a = 1$$
, $b = 2$, $c = 0$ so $\log_b(a) = 0$ and $T(n) = \Theta(\log(n))$

$$T(n) = T(n/2) + n$$

• $a = 1, b = 2, c = 1 \text{ so } \log_b(a) = 0 \text{ and } T(n) = \Theta(n)$

$$T(n) = T(n/2)$$

• 7

$$T(n) = 2T(n/2) + n\log(n)$$

• ?

1: a formula for $n = b^k$. The definition becomes

$$T(b^{k}) = aT(b^{k-1}) + b^{kc}$$

$$= a(aT(b^{k-2}) + b^{(k-1)c}) + b^{kc}$$

$$= a^{2}T(b^{k-2}) + ab^{(k-1)c} + b^{kc}$$

$$= \dots$$

$$= a^{k} + a^{k-1}b^{c} + a^{k-2}b^{2c} + \dots + ab^{(k-1)c} + b^{kc}$$

Note: recursion tree has 1 root, a children, a^2 grand-children, ..., a^k leaves

1: a formula for $n = b^k$. The definition becomes

$$T(b^{k}) = aT(b^{k-1}) + b^{kc}$$

$$= a(aT(b^{k-2}) + b^{(k-1)c}) + b^{kc}$$

$$= a^{2}T(b^{k-2}) + ab^{(k-1)c} + b^{kc}$$

$$= \dots$$

$$= a^{k} + a^{k-1}b^{c} + a^{k-2}b^{2c} + \dots + ab^{(k-1)c} + b^{kc}$$

Note: recursion tree has 1 root, a children, a^2 grand-children, ..., a^k leaves

$$T(b^k) = a^k \left(1 + \frac{b^c}{a} + \dots + \left(\frac{b^c}{a} \right)^k \right)$$
$$= (b^c)^k \left(1 + \frac{a}{b^c} + \dots + \left(\frac{a}{b^c} \right)^k \right)$$

2: case discussion.

For $n = b^k$,

- $k = \log_b(n)$ so $a^k = a^{\log_b(n)} = n^{\log_b(a)}$
- $(b^c)^k = n^c$

2: case discussion.

For $n = b^k$,

- $k = \log_b(n)$ so $a^k = a^{\log_b(n)} = n^{\log_b(a)}$

 \mathbf{so}

- if $a = b^c$, $T(n) = a^k(k+1) = n^c(\log_b(n) + 1)$
- if $a > b^c$, the first sum is in $[1, K_1)$ so $n^{\log_b(a)} \le T(n) \le K_1 n^{\log_b(a)}$
- if $a < b^c$, the second sum is in $[1, K_2)$ so $n^c \le T(n) \le K_2 n^c$

This is **only** for $n = b^k$.

Suppose algorithm A does the following on inputs I of size n.

If $1 \le n < b$, unit cost, else

- a recursive calls in sizes $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor + 1$ (if b does not divide n), or exactly n/b (if b divides n)
- X(I) extra operations.

Suppose algorithm A does the following on inputs I of size n.

If $1 \le n < b$, unit cost, else

- a recursive calls in sizes $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor + 1$ (if b does not divide n), or exactly n/b (if b divides n)
- X(I) extra operations.

Example:

• merge-sort, counting only comparisons: a = b = 2 and

$$\lfloor n/2 \rfloor \le X(I) \le n-1$$

for input I of size n.

Suppose algorithm A does the following on inputs I of size n.

If $1 \le n < b$, unit cost, else

- a recursive calls in sizes $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor + 1$ (if b does not divide n), or exactly n/b (if b divides n)
- X(I) extra operations.

Theorem

Suppose that $X(I) \leq h(|I|)$, with $h(n) \in O(n^c)$. Then

$$T_{\text{worst}}(n) = \begin{cases} O(n^c) & \text{if } a < b^c \iff c > \log_b(a) \\ O(n^c \log(n)) & \text{if } a = b^c \iff c = \log_b(a) \\ O(n^{\log_b(a)}) & \text{if } a > b^c \iff c < \log_b(a) \end{cases}$$

Suppose algorithm A does the following on inputs I of size n.

If $1 \le n < b$, unit cost, else

- a recursive calls in sizes $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor + 1$ (if b does not divide n), or exactly n/b (if b divides n)
- X(I) extra operations.

Theorem

Suppose that $\ell(|I|) \leq X(I)$, with $\ell(n) \in \Omega(n^c)$. Then

$$T_{\text{worst}}(n) = \begin{cases} \Omega(n^c) & \text{if } a < b^c \iff c > \log_b(a) \\ \Omega(n^c \log(n)) & \text{if } a = b^c \iff c = \log_b(a) \\ \Omega(n^{\log_b(a)}) & \text{if } a > b^c \iff c < \log_b(a) \end{cases}$$

Suppose algorithm A does the following on inputs I of size n.

If $1 \le n < b$, unit cost, else

- a recursive calls in sizes $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor + 1$ (if b does not divide n), or exactly n/b (if b divides n)
- X(I) extra operations.

Theorem

Suppose that $\ell(|I|) \leq X(I) \leq h(|I|)$, with $\ell(n), h(n) \in \Theta(n^c)$. Then

$$T_{\text{worst}}(n) = \begin{cases} \Theta(n^c) & \text{if } a < b^c \iff c > \log_b(a) \\ \Theta(n^c \log(n)) & \text{if } a = b^c \iff c = \log_b(a) \\ \Theta(n^{\log_b(a)}) & \text{if } a > b^c \iff c < \log_b(a) \end{cases}$$

Suppose algorithm A does the following on inputs I of size n.

If $1 \le n < b$, unit cost, else

- a recursive calls in sizes $\lfloor n/b \rfloor$ or $\lfloor n/b \rfloor + 1$ (if b does not divide n), or exactly n/b (if b divides n)
- X(I) extra operations.

Example:

• merge-sort, counting only comparisons: a = b = 2, $\ell(n) = \lfloor n/2 \rfloor$, h(n) = n - 1Both $\ell(n)$ and h(n) are in $\Theta(n)$, so c = 1 and $T_{\text{worst}}(n) \in \Theta(n \log(n))$.

Divide-and-conquer algorithms

The framework

To solve a problem in size n:

Divide

- break the input into **smaller** problems
- ideally few such problems, all of size n/b for some constant b

Conquer

• solve these subproblems recursively

Recombine

• deduce the solution of the main problem from the subproblems

Multiplying polynomials

Goal: given
$$F = f_0 + \dots + f_{n-1}x^{n-1}$$
 and $G = g_0 + \dots + g_{n-1}x^{n-1}$, compute
$$H = FG = f_0g_0 + (f_0g_1 + f_1g_0)x + \dots + f_{n-1}g_{n-1}x^{2n-2}$$

Remark: assume all f_i and g_i fit in one word. Then, input and output size $\Theta(n)$, easy algorithm in $\Theta(n^2)$.

1. **for** i = 0, ..., n - 1 **do**2. **for** j = 0, ..., n - 1 **do**3. $h_{i+j} = h_{i+j} + f_i g_j$

Divide-and-conquer

Idea: write
$$F = F_0 + F_1 x^{n/2}$$
, $G = G_0 + G_1 x^{n/2}$. Then

$$H = F_0 G_0 + (F_0 G_1 + F_1 G_0) x^{n/2} + F_1 G_1 x^n$$

Analysis:

- 4 recursive calls in size n/2
- $\Theta(n)$ additions to compute $F_0G_1+F_1G_0$
- multiplications by $x^{n/2}$ and x^n are free
- $\Theta(n)$ additions to handle overlaps

Recurrence:
$$T(n) = 4T(n/2) + \Theta(n)$$

•
$$a = 4, b = 2, c = 1 \text{ so } T(n) = \Theta(n^2)$$

Not better than the naive algorithm. We do the same operations.

Karatsuba's algorithm

Idea: use the identity

$$(F_0 + F_1 x^{n/2})(G_0 + G_1 x^{n/2}) = \mathbf{F_0 G_0} + ((\mathbf{F_0} + \mathbf{F_1})(\mathbf{G_0} + \mathbf{G_1}) - \mathbf{F_0 G_0} - \mathbf{F_1 G_1})x^{n/2} + \mathbf{F_1 G_1}x^n$$

Analysis:

- 3 recursive calls in size n/2
- $\Theta(n)$ additions to compute $F_0 + F_1$ and $G_0 + G_1$
- multiplications by $x^{n/2}$ and x^n are free
- $\Theta(n)$ additions and subtractions to combine the results

Recurrence:
$$T(n) = 3T(n/2) + \Theta(n)$$

•
$$a = 3, b = 2, c = 1 \text{ so } T(n) = \Theta(n^{\log_2(3)})$$

 $\log_2(3) = 1.58\dots$

Karatsuba's algorithm

Idea: use the identity

$$(F_0 + F_1 x^{n/2})(G_0 + G_1 x^{n/2}) = \mathbf{F_0 G_0} + ((\mathbf{F_0 + F_1})(\mathbf{G_0 + G_1}) - \mathbf{F_0 G_0} - \mathbf{F_1 G_1})x^{n/2} + \mathbf{F_1 G_1}x^n$$

Analysis:

- 3 recursive calls in size n/2
- $\Theta(n)$ additions to compute $F_0 + F_1$ and $G_0 + G_1$
- multiplications by $x^{n/2}$ and x^n are free
- $\Theta(n)$ additions and subtractions to combine the results

Recurrence:
$$T(n) = 3T(n/2) + \Theta(n)$$

•
$$a = 3, b = 2, c = 1 \text{ so } T(n) = \Theta(n^{\log_2(3)})$$

 $\log_2(3) = 1.58\dots$

Remark: key idea = a formula for degree-1 polymomials that does **3** multiplications

Toom-Cook and FFT

Took-Cook:

- a family of algorithms based on similar expressions as Karatsuba
- for $k \geq 2$, 2k-1 recursive calls in size n/k
- so $T(n) = \Theta(n^{\log_k(2k-1)})$
- gets as close to exponent 1 as we want (but very slowly)

FFT:

- if we use complex coefficients, FFT can be used to multiply polynomials
- FFT follows the same recurrence as merge sort, $T(n) = 2T(n/2) + \Theta(n)$
- so we can multiply polynomials in $\Theta(n \log(n))$ ops over $\mathbb C$

Multiplying matrices

Goal: given $A = [a_{i,j}]_{1 \le i,j \le n}$ and $B = [b_{j,k}]_{1 \le j,k \le n}$ compute C = AB

Remark: input and output size $\Theta(n^2)$, easy algorithm in $\Theta(n^3)$

```
1. for i = 1, ..., n do
2. for j = 1, ..., n do
3. for k = 1, ..., n do
4. c_{i,k} = c_{i,k} + a_{i,j}b_{j,k}
```

Divide-and-conquer

Setup: write

$$A = \begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \quad B = \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix}$$

with all $A_{i,k}, B_{i,j}$ of size $n/2 \times n/2$. Then

$$C = \begin{pmatrix} A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\ A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \end{pmatrix}$$

Naively: 8 recursive calls in size $n/2 + \Theta(n^2)$ additions $\implies T(n) = \Theta(n^3)$

Goal: find a better formula for 2×2 matrices

Strassen's algorithm

Compute

$$\begin{vmatrix} Q_1 & = & (A_{1,1} - A_{1,2})B_{2,2} \\ Q_2 & = & (A_{2,1} - A_{2,2})B_{1,1} \\ Q_3 & = & A_{2,2}(B_{1,1} + B_{2,1}) \\ Q_4 & = & A_{1,1}(B_{1,2} + B_{2,2}) \\ Q_5 & = & (A_{1,1} + A_{2,2})(B_{2,2} - B_{1,1}) \\ Q_6 & = & (A_{1,1} + A_{2,1})(B_{1,1} + B_{1,2}) \\ Q_7 & = & (A_{1,2} + A_{2,2})(B_{2,1} + B_{2,2}) \end{vmatrix}$$
 and
$$\begin{vmatrix} C_{1,1} & = & Q_1 - Q_3 - Q_5 + Q_7 \\ C_{1,2} & = & Q_4 - Q_1 \\ C_{2,1} & = & Q_2 + Q_3 \\ C_{2,2} & = & -Q_2 - Q_4 + Q_5 + Q_6 \end{vmatrix}$$

Analysis: 7 recursive calls in size
$$n/2 + \Theta(n^2)$$
 additions $\implies T(n) = \Theta(n^{\log_2(7)})$ $\log_2(7) = 2.80...$

Faster algorithms: Al to the rescue

What this means

Direct generalization

• an algorithm that does k multiplications for matrices of size ℓ gives $T(n) \in \Theta(n^{\log_{\ell}(k)})$

What this means

Direct generalization

• an algorithm that does k multiplications for matrices of size ℓ gives $T(n) \in \Theta(n^{\log_{\ell}(k)})$

One challenge: find best k for small values of ℓ

- SAT solving, gradient descent, ...
- AlphaTensor found some better values, but none beats Strassen (except for matrices over {0,1}, with operations modulo 2)

What this means

Direct generalization

• an algorithm that does k multiplications for matrices of size ℓ gives $T(n) \in \Theta(n^{\log_{\ell}(k)})$

One challenge: find best k for small values of ℓ

- SAT solving, gradient descent, ...
- AlphaTensor found some better values, but none beats Strassen (except for matrices over $\{0,1\}$, with operations modulo 2)

Best exponent to date (using more than just divide-and-conquer)

- $O(n^{2.37188})$, improves from previous record $O(n^{2.37286})$
- galactic algorithms

Counting inversions

Goal: given an unsorted array A[1..n], find the number of inversions in it.

Def: (i, j) is an inversion if i < j and A[i] > A[j]

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4], we get

$$(2,3), (2,5), (2,8), (4,5), (4,8), (6,7), (6,8), (7,8)$$

Counting inversions

Goal: given an unsorted array A[1..n], find the number of inversions in it.

Def: (i, j) is an inversion if i < j and A[i] > A[j]

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4], we get

$$(2,3), (2,5), (2,8), (4,5), (4,8), (6,7), (6,8), (7,8)$$

Remark: we show the indices where inversions occur

Remark: easy algorithm (two nested loops) in $\Theta(n^2)$

Remark: to do better than n^2 , we cannot list all inversions

Toward a divide-and-conquer algorithm

Idea (for n a power of two)

- c_{ℓ} = number of inversions in A[1..n/2]
- c_r = number of inversions in A[n/2 + 1..n]
- c_t = number of transverse inversions with $i \le n/2$ and j > n/2
- return $c_{\ell} + c_r + c_t$

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]

- $c_{\ell} = 1$
- $c_r = 3$
- $c_t = 4$

- (2,3)
- (6,7), (6,8), (7,8)
- (2,5), (2,8), (4,5), (4,8)

 c_{ℓ} and c_r done recursively. What about c_t ?

Transverse inversions

Goal: how many pairs (i, j) with $i \le n/2, j > n/2, A[i] > A[j]$?

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4] $c_t = \#i$'s greater than 3 + #i's greater than 8 + #i's greater than 7 + #i's greater than 4 or $c_t = \#j$'s less than 1 + #j's less than 5 + #j's less than 2 + #j's less than 6 + #j

Transverse inversions

Goal: how many pairs (i, j) with $i \le n/2, j > n/2, A[i] > A[j]$?

Example: with A = [1, 5, 2, 6, 3, 8, 7, 4]

 $c_t = \#i$'s greater than 3 + #i's greater than 8 + #i's greater than 4 + #i

or

 $c_t = \#j$'s less than 1 + #j's less than 5 + #j's less than 2 + #j's less than 6

Observation: this number does not change if both sides are sorted

So assume that left and right are sorted after the recursive calls.

Example: starting from [1, 5, 2, 6, 3, 8, 7, 4], we get

Enhancing mergesort

Idea: find c_t during merge.

```
 \begin{aligned} & \textbf{Merge}(A[1..n]) \text{ (both halves of } A \text{ assumed sorted)} \\ & 1. & \text{copy } A \text{ into a new array } S \\ & 2. & i = 1; \ j = n/2 + 1; \\ & 3. & \textbf{for } (k \leftarrow 1; k \leq n; k++) \textbf{ do} \\ & 4. & \textbf{if } (i > n/2) \ A[k] \leftarrow S[j++] \\ & 5. & \textbf{else if } (j > n) \ A[k] \leftarrow S[i++] \\ & 6. & \textbf{else if } (S[i] < S[j]) \ A[k] \leftarrow S[i++] \\ & 7. & \textbf{else } A[k] \leftarrow S[j++] \end{aligned}
```

Enhancing mergesort

Idea: find c_t during merge.

```
 \begin{aligned} & \textbf{Merge}(A[1..n]) \text{ (both halves of $A$ assumed sorted)} \\ & 1. & \text{copy $A$ into a new array $S$; $$ $c = 0$} \\ & 2. & i = 1; $j = n/2 + 1; \\ & 3. & \textbf{for } (k \leftarrow 1; \ k \leq n; \ k++) \ \textbf{do} \\ & 4. & \textbf{if } (i > n/2) \ A[k] \leftarrow S[j++] \\ & 5. & \textbf{else if } (j > n) \ A[k] \leftarrow S[i++]; \ c = c + n/2 \\ & 6. & \textbf{else if } (S[i] < S[j]) \ A[k] \leftarrow S[i++]; \ c = c + j - (n/2 + 1) \\ & 7. & \textbf{else $A[k] \leftarrow S[j++]$} \end{aligned}
```

Example: with [1, 2, 5, 6, 3, 4, 7, 8]

- when we insert 1 back into A, j = 5 so c = c + 0
- when we insert 2 back into A, j = 5 so c = c + 0
- when we insert 5 back into A, j = 7 so c = c + 2
- when we insert 6 back into A, j = 7 so c = c + 2

Analysis

Enhanced merge is still $\Theta(n)$ so total remains $\Theta(n \log(n))$

Remark: $\Omega(n \log(n))$ lower bound in the comparison model (decision tree)

Closest pairs

Goal: given n points (x_i, y_i) in the plane, find a pair (i, j) that minimizes the distance

$$d_{i,j} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

Equivalent to minimize

$$d_{i,j}^2 = (x_i - x_j)^2 + (y_i - y_j)^2$$

Assumption: all x_i 's are pairwise distinct

Divide-and-conquer

Idea: separate the points into two halves L, R at the median x-value

- $L = \text{all } n/2 \text{ points with } x \leq x_{\text{median}}$
- $R = \text{all } n/2 \text{ points with } x > x_{\text{median}}$
- find the closest pairs in both L and R recursively
- the closest pair is either between points in L (done), or between points in R (done), or transverse (one in L, one in R)

Finding the shortest transverse distance

Set $\delta = \min(\delta_R, \delta_R)$

• We only need to consider transverse pairs (P, Q) with $\operatorname{dist}(P, R) \leq \delta$ and $\operatorname{dist}(Q, L) \leq \delta$.

Finding the shortest transverse distance

Set $\delta = \min(\delta_R, \delta_R)$

• For any $P = (x_P, y_P)$, enough to look at points with $y_P \le y < y_P + \delta$

Finding the shortest transverse distance

Set $\delta = \min(\delta_R, \delta_R)$

• For any $P = (x_P, y_P)$, enough to look at points with $y_P \le y < y_P + \delta$

So it is enough to check distances d(P,Q) for Q in the rectangle.

How many points in the rectangle?

Claim

There are at most 8 points from our initial set (including P) in the rectangle.

How many points in the rectangle?

Claim

There are at most $\bf 8$ points from our initial set (including P) in the rectangle.

Proof. Cover the rectangle with 8 squares of side length $\delta/2$

- open on the left, closed on the right
- they overlap along lines, but it's OK

How many points in the rectangle?

Claim

There are at most 8 points from our initial set (including P) in the rectangle.

Proof. Cover the rectangle with 8 squares of side length $\delta/2$

- open on the left, closed on the right
- they overlap along lines, but it's OK

Squares on the left only contain points from L, squares on the right only contain points from R.

Consequence: in each square, only one point (either from L or R).

Data structures

Initialization: sort the points **twice**, with respect to x and to y. One-time cost $O(n \log(n))$, before recursive calls

cf kd-trees

Then: recursion

- finding the x-median is easy O(1)
- for the next recursive calls, split the sorted lists O(n)
- remove the points at distance $\geq \delta$ from the x-splitting line O(n)
- inspect all remaining points in increasing y-order. For each of them, compute the distance to the next 8 points and keep the min. O(n)

Runtime: $T(n) = 2T(n/2) + \Theta(n)$ so $T(n) \in \Theta(n \log(n))$

Beyond the master theorem: median of medians

Median: given A[0..n-1], find the entry that would be at index $\lfloor n/2 \rfloor$ if A was sorted

Selection: given A[0..n-1] and k in $\{0,...,n-1\}$, find the entry that would be at index k if A was sorted

Known results: sorting A in $O(n \log(n))$, or a simple randomized algorithm in expected time O(n)

The selection algorithm

```
quick-select(A, k)
A: array of size n, k: integer s.t. 0 \le k \le n
1. p \leftarrow \mathsf{choose\text{-}pivot}(A)
2. i \leftarrow \mathsf{partition}(A, p)
                                            i is the correct index of p
   if i = k then
           return A[i]
5.
   else if i > k then
           return quick-select(A[0,1,\ldots,i-1],k)
     else if i < k then
           return quick-select(A[i+1, i+2, ..., n-1], k-i-1)
```

Question: how to find a pivot such that both i and n-i-1 are not too large?

Median of medians

Sketch of the algorithm:

- divide A into n/5 groups $G_1, \ldots, G_{n/5}$ of size 5
- find the medians $m_1, \ldots, m_{n/5}$ of each group
- pivot p is the median of $[m_1, \ldots, m_{n/5}]$ T(n/5)

Claim

With this choice of p, the indices i and n-i-1 are at most 7n/10

O(n)

Median of medians

Sketch of the algorithm:

- divide A into n/5 groups $G_1, \ldots, G_{n/5}$ of size 5
- find the medians $m_1, \ldots, m_{n/5}$ of each group
- pivot p is the median of $[m_1, \ldots, m_{n/5}]$ T(n/5)

Claim

With this choice of p, the indices i and n-i-1 are at most 7n/10

Proof

- half of the m_i 's are greater than p
- for each m_i , there are 3 elements in G_i greater than or equal to m_i
- so at least 3n/10 elements greater than p
- so at most 7n/10 elements less than p
- so i is at most 7n/10. Same thing for n-i-1

O(n)

n/10

Median of medians

Sketch of the algorithm:

- divide A into n/5 groups $G_1, \ldots, G_{n/5}$ of size 5
- find the medians $m_1, \ldots, m_{n/5}$ of each group
- pivot p is the median of $[m_1, \ldots, m_{n/5}]$ T(n/5)

Claim

With this choice of p, the indices i and n - i - 1 are at most 7n/10

Consequence: the runtime T(n) satisfies

$$T(n) \le T(n/5) + T(7n/10) + O(n)$$

Claim

This gives $T(n) \in O(n)$

O(n)

Suppose more precisely $T(n) \leq T(n/5) + T(7n/10) + \alpha n$, α constant.

Suppose more precisely $T(n) \leq T(n/5) + T(7n/10) + \alpha n$, α constant.

Guess: $T(n) \leq n$. If true for n/5 and 7n/10, we get

$$T(n) \le n/5 + 7n/10 + \alpha n = (\alpha + 9/10)n$$

Suppose more precisely $T(n) \leq T(n/5) + T(7n/10) + \alpha n$, α constant.

Guess: $T(n) \leq n$. If true for n/5 and 7n/10, we get

$$T(n) \leq n/5 + 7n/10 + \alpha n = (\alpha + 9/10)n$$

Guess: $T(n) \leq kn$, k TBD. If true for n/5 and 7n/10, we get

$$T(n) \le kn/5 + 7kn/10 + \alpha n = (\alpha + 9k/10)n.$$

Want k such that $\alpha + 9k/10 = k$: take $k = 10\alpha$.

Suppose more precisely $T(n) \leq T(n/5) + T(7n/10) + \alpha n$, α constant.

Guess: $T(n) \leq n$. If true for n/5 and 7n/10, we get

$$T(n) \le n/5 + 7n/10 + \alpha n = (\alpha + 9/10)n$$

Guess: $T(n) \leq kn$, k TBD. If true for n/5 and 7n/10, we get

$$T(n) \le kn/5 + 7kn/10 + \alpha n = (\alpha + 9k/10)n.$$

Want k such that $\alpha + 9k/10 = k$: take $k = 10\alpha$.

So T(n) is in O(n), but with a relatively large constant.

Final remark

Why not median of three?

- we do n/3 groups of 3 and find their medians $m_1, \ldots, m_{n/3}$
- p is the median of $[m_1, \ldots, m_{n/3}]$
- half of the m_i 's are greater than p
- in each group, 2 elements greater than or equal to m_i
- so overall at least n/3 elements greater than p
- so $i \leq 2n/3$, and $n-1-i \leq 2n/3$

O(n)

T(n/3) n/6

Final remark

Why not median of three?

- we do n/3 groups of 3 and find their medians $m_1, \ldots, m_{n/3}$
- p is the median of $[m_1, \ldots, m_{n/3}]$
- half of the m_i 's are greater than p
- in each group, 2 elements greater than or equal to m_i
- so overall at least n/3 elements greater than p
- so $i \le 2n/3$, and $n 1 i \le 2n/3$

Recurrence:
$$T(n) \leq T(n/3) + T(2n/3) + O(n)$$

What does this give for T(n)?

O(n)

T(n/3) n/6